2.3运用公式法(2)

合集下载

2.3用公式法求解一元二次方程第2课时教案

2.3用公式法求解一元二次方程第2课时教案
2.3用公式法求解一元二次方程第2课时教案
一、教学内容
本节课为“2.3用公式法求解一元二次方程”第2课时教案,依据人教版数学八年级上册教材,教学内容主要包括以下三个方面:
1.掌握一元二次方程的求根公式,即:
\(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)
2.学会运用求根公式解决实际问题,特别是当判别式\(b^2 - 4ac\)大于、等于或小于0时的情况讨论。
此外,小组讨论环节中,我发现有的学生参与度不高,可能是因为他们对主题不够感兴趣,或者是在小组中缺乏足够的发言机会。针对这个问题,我计划在组织小组讨论时,更多地关注每个学生的参与情况,鼓励那些比较内向或不确定的学生发表自己的观点,让每个人都有机会表达自己的想法。
最后,从学生的提问和作业完成情况来看,我感到他们在计算过程中仍存在一些粗心大意的现象。为了提高学生的计算准确性,我打算在接下来的课程中,增加一些针对性的计算训练,并教导学生如何进行自我检查和同伴互评,以提高解题的正确率。
其次,判别式的概念及其与方程解的关系是本节课的一个重点和难点。我发现有些学生在判断判别式符号时容易出错,这说明对这个概念的理解还不够深入。在以后的教学中,我可以通过更多的实例和练习,让学生反复练习判别式的判断,同时强调其在解题过程中的重要性。
在实践活动中,学生们的讨论和实验操作都比较积极,但我也观察到有些小组在解决问题时思路不够清晰。这提示我在未来的活动中,应该更加注重引导学生如何有效地进行问题分析和解决。我可以通过提问和指导,帮助学生理清思路,提高他们解决问题的能力。
3.能够熟练运用求根公式求解一元二次方程,并对方程的解进行验证。
本节课将通过具体例题的讲解和练习,使学生更好地理解和掌握一元二次方程的公式法解法,提高解题能力。

2.3运用公式法2

2.3运用公式法2

C、x6-4x3y3+4y6 D、x4+x2y2+y4
5、把
1 4
x
2
3 x y 9 y 分解因式得
2

2
B
2

1 A、 4 x 3 y
B、
2
1 x 3y 2
6、把 A、
分解因式得 x y xy ( ) A 9 3
4
2
4
2 x y 3
2 2

2 2 xy x y 是 3 x 4 xy 4 y 是 4 a 6ab b 否
2 2 2 2
5x2 x1 Nhomakorabea是
6
a2
4 2 a b 4b 2 否
请补上一项,使下列多项 式成为完全平方式
1 x 3 x 4a
2
2 __ _ _ _x y _ _ y
因式分解——运用公式法
2、完全平方公式因式分解
上节课的回顾 练习:
(1) 3 x 4 y x 2 y
2 2
2 5 a
3
x 5a y
2 3
2
1、分解因式的结果是-(2x-y)(2x+y)的是( ) A、4x2-y2 B、4x2+y2 C、-4x2-y2 D、-4x2+y2
a 2ab b a 2ab b 我们把以上两个式子 叫做完全平方式
2 2
2
2
两个“项”的平方和加 上(或减去)这两“项” 的积的两倍
判别下列各式是不是 完全平方式
1x
2
2 xy y
2
2

2

公式法--北师大版

公式法--北师大版


下列多项式中,哪几个是完全平方式? (1) x2+4x+4 (2)9a2b2-3ab+1 (3) 4m2-12mn+9n2 (4)x6-10x3-25 1 2 (5)y +y+ 4 (6)a2b2-4ab+4
把下列各式分解因式 (1)x2 - 12xy + 36y2
(2)4 - 12(x-y) + 9(x-y)2
(4x)
运用公式法(2)
完全平方公式: (a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2 反过来: a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2
形如a2+2ab+b2和a2-2ab+b2的 式子称为完全平方式.
学一学
例1:把下列完全平方式分解因式 (1) x2+14x+49 ; (2) (m+n)2-6(m+n)+9 .
解: (1) x2+14x+49=x2+2•x•7+72 =(x+7)2. (2) (m+n)2-6(m+n)+9 =(m+n)2-2•(m+n)•3+32
=[(m+n)-3]2 =(m+n-3)2.
欢迎指导
砀山五中数学组:周景杰
八年级(下) 第二章 分解因式
2.3 运用公式法
教学目标:
1:经历探索用公式法分解因式的过 程,发展思维和推理能力。 2:会用公式法分解因式。
在分解因式中,平方差公式的字母表达式是:

初中数学八年级下第二章分解因式23运用公式法2教案

初中数学八年级下第二章分解因式23运用公式法2教案

北师大版初中数学八年级(下)第二章分解因式2.3运用公式法(2)教案一、学情分析:认知基础:学生的知识储备中对于乘法公式的运用还是比较熟练的,但在能力上,对于公式的变形问题可能会处理不当。

二、教材处理中的问题与思考:1、教材采用直接将乘法公式逆过来应用,这种呈现新知方式,不适于学习基础较为困难的学生,如何让学生更好地理解整式乘法与因式分解之间的关系?2、对于形式上与完全平方公式相近的式子与完全平方公式的区别,进一步牢记公式有什么特点?三、教学设计:(一)教学目标:1、知识与技能:会用完全平方公式法(直接用公式不超过两次)分解因式。

2、过程与方法:经历通过整式乘法的完全平方公式逆向得出用公式法分解因式的方法的过程,发展学生的逆向思维和推理能力。

3、情感、态度与价值观:培养学生的整体意识,以及逆向应用公式的能力。

(二)教学重点:掌握公式的形式和特点并能正确运用。

(三)教学难点:将多项式适当变形后运用公式分解因式。

(四)教学过程:创设问题情境,导入新课:某小区规划在边长为a米的正方形场地上,修建两条宽为b米的通路,其余组织学生观察并思考:(1)先求出甬道面积,ab+ab-b2,然后不难求出草地的面积为a2-2ab+b2(2)将两条甬道运用平移法,移到边沿,不难求出种草的面积为(a-b)2。

● 2、尝试发现、探索新知:探索:由上面的问题,可以求出a 2-2ab+b 2=(a-b)2即:a 2±2ab+b 2=(a ±b)2实际上,这也是乘法公式中的完全平方公式的逆变形所得到的分解因式的方法。

组织学生观察,讨论这类式子的共同特点:x 2+14x+49 216364x x -+ a 4+2a 2b 2+b 4 (m+n)2-6(m+n)+9 总结这类式子的共同特点:(1)公式的左边是一个三项式;(2)在这个三项式中前后两项是两数的平方,且符号相同,中间一项是这两个数的积的2倍,符号可正可负。

2.3运用公式法 (2)

2.3运用公式法 (2)

小甸子中学八年级(下)数学 2.3 运用公式法 (2) 研学案主备: 曹立明 副备:于传波、黄祖花 审核人: 备课时间:2012-3-19【课前热身】1.把下列各式分解因式:(1)162-x (2)224121y x -(3)22249y x a - (4)22)()(y x y x --+2.计算: (1)(x+3)2= ; (2)(4x-y)2=(3)(1+2x )2= ; (4)(3m-2n)2=【自学提示】1、【知识点一】会判别完全平方公式。

乘法公式之完全平方公式:(a+b)2=222b ab a ++,2222)(b ab a b a +-=-反过来: 222b ab a ++ =____________222b ab a +-=___________________.温馨提示:1、利用完全平方公式可以进行分解因式。

2、完全平方公式中的a 与b 不仅可以表示单项式,也可以表示多项式.观察式子x ²+6x+9, 16x ²-8xy+y ², 1+4x+4x ²,小组讨论它们有什么共同特征? (有几项式?每项式都有什么特征?整体有什么特征?)你能按照再举几个例子吗?)【练习一】判断下列式子能否用完全平方公式分解因式?(1)x 2+xy+y 2 (2)x 2-2xy -y 2 (3)x 2+4xy+4y 2 (4)x 2-xy +y 22、【知识点二】利用完全平方公式进行分解因式。

(1)、结合课前热身第二题,完成下列填空:x ²+6x+9= , 16x ²-8xy+y ²= ,1+4x+4x ²= ,9m ²-12mn+4n ²= ,(2)、自学P 57例3同桌间指出完全平方公式中的“a ”“b ”。

(1)a 2-4a+4; (2)x 2+4xy+4y 2; (3)4a 2+4ab+ b 2;(4)a 2-4ab+4b 2; (5)x 2-6x+9; (6)a 2+a+0.25.(3)、自学P 57例4后模仿其过程完成下面问题【练习二】分解因式(利用完全平方公式)。

2.3 用公式法求解一元二次方程(2)

2.3 用公式法求解一元二次方程(2)
分析:这类问题的特点 是修建小路
解:设小路的宽度为 x米, 所占的面积只与小路的 条数、宽度
有关,而与位置无关。 为了研究问 由题意得 题方便,可分别把沿东 西和南北方 ( 40 2 x) (26 x) 864 向修建的小路移到一起 (最好靠一
解得x1 2, x2 44 (米,那么草 舍去) 边)。设小路的宽度为 x 答:小路的宽度为 2米。 坪长和宽分别为( 40 2 x)米,
例2 如图,有一块面积是125平方米的矩形 20 米),另三边 鸡场,鸡场的一边靠墙(墙长 30 用长为35米的竹篱笆围成,求鸡场的长与宽。
解:设矩形垂直于墙壁 的一边长为xm, 则另一边长为( 35 2 x)m
A B
D C
由题意得x(35 2 x) 125 25 解得x1 12.5, x2 5 2 当x 12.5时,35 2 x 10 当x 5时,35 2 x 25(不合题意,舍去) 答 : 鸡场的长和宽分别为 12.5m和10m 或25cm和5cm。
想一想,
(26 x)米。
为什么?
长为(40 2 x)米 宽为(26 2 x)米
长为(40 x)米 宽为(26 x)米
点评:解答这类问题,并没有用到什么 复杂的数学知识,只是运用化归思想, 把几条小路归在一起,草坪归在一起, 这种做法给综合分析问题、解决问题带 来很大方便。
在一块长16m、宽12m的矩形土地上,要建 造一个花园,并使花园所占面积为矩形土地 面积的一半。你能求出下图中的x吗?
在一块长16m、宽12m的矩形土地上,要 建造一个花园,并使花园所占面积为矩形土地 面积的一半。你能给出设计方案吗?
xm

x 2 16 12

讲学案模板1

讲学案模板1

-1-
总结:运用完全平方公式分解因式的多项式特征是: 试一试 把下列各式因式分解: (1)x2–4x+4 ; (2)9a2+6ab+b2
2 1 (3)m2– m ; 3 9
(4) m n 8m n 16
2
三、归纳总结 我的收获:
拓展提高
我的困惑:
当堂检测: 1、判断正误: (1)x2+y2=(x+y)2 (2)x2–y2= (x–y)2 (3)x2–2xy–y2= (x–y)2 (4)–x2–2xy–y2=–(x+y)2 2.(1)如果 (பைடு நூலகம்)( ) ( ( ( ( ) ) ) )
是一个完全平方式,那么 k 的值是__________; .
-2-
3.将下列各式因式分解: (1)m2–12mn+36n2 ; (2)16a4+24a2b2+9b4
(3)–2xy–x2–y2

(4)4–12(x–y)+9(x–y)2
态度评价_______质量评价________ 教学后反思:
日期________
学 生 为 主 体
训 练 为 主 线
思 维 为 主 攻
滕南中学八年级数学学科讲学案
2.3 运用公式法 2
主备人:王华文 审核人:初二数学组 一、 情境导入、明确目标 问题引入 下列因式分解正确的是( ) B.x2-y2=(x+y) (x-y) D.x2-y2=(x-y)2 教与学 改进 使用人:______ 班级:______日期:______
A.x2+y2=(x+y) (x-y) C.x2+y2=(x+y)2 学习目标

2.3.2 运用公式法(二)

2.3.2  运用公式法(二)

一、)请你任意写出一个..三项式,使它们的公因式是-)用简便方法计算,并写出运算过程:二、2+b2-2ab-1ma-mb+2a-2b3-aax2+ay2-2axy-ab2三、好好想一想n是正整数时,两个连续奇数的平方差一定是)一条水渠,其横断面为梯形,根据图时的面积.图2—3—1,在半径为r的圆形土地周围有一条宽为a的路,这条路的面积用作业导航了解平方差公式、完全平方公式的特点,掌握运用公式法分解因式的方法,会利用分解因式进行简便计算与化简.一、选择题1.-(2a-b)(2a+b)是下列哪一个多项式的分解结果( )A.4a2-b2B.4a2+b2C.-4a2-b2D.-4a2+b22.多项式(3a+2b)2-(a-b)2分解因式的结果是( )A.(4a+b)(2a+b)B.(4a+b)(2a+3b)C.(2a+3b)2D.(2a+b)23.下列多项式,能用完全平方公式分解因式的是( )A.x2+xy+y2B.x2-2x-1C.-x2-2x-1D.x2+4y24.多项式4a2+ma+25是完全平方式,那么m的值是( )A.10B.20C.-20D.±205.在一个边长为12.75 cm的正方形纸板内,割去一个边长为7.25 cm的正方形,剩下部分的面积等于( )A.100 cm2B.105 cm2C.108 cm2D.110 cm2二、填空题6.多项式a2-2ab+b2,a2-b2,a2b-ab2的公因式是________.7.-x2+2xy-y2的一个因式是x-y,则另一个因式是________.8.若x2-4xy+4y2=0,则x∶y的值为________.9.若x2+2(a+4)x+25是完全平方式,则a的值是________.10.已知a+b=1,ab=-12,则a2+b2的值为________.三、解答题11.分解因式(1)3x4-12x2(2)9(x-y)2-4(x+y)2(3)1-6mn+9m2n2(4)a2-14ab+49b2(5)9(a +b )2+12(a +b )+4 (6)(a -b )2+4ab12.(1)已知x -y =1,xy =2,求x 3y -2x 2y 2+xy 3的值. (2)已知a (a -1)-(a 2-b )=1,求21(a 2+b 2)-ab 的值. 13.利用简便方法计算: (1)2001×1999(2)8002-2×800×799+799214.如图1,在一块边长为a 厘米的正方形纸板的四角,各剪去一个边长为b (b <2a)厘米的正方形,利用因式分解计算当a =13.2,b =3.4时剩余部分的面积.图115.对于任意整数,(n +11)2-n 2能被11整除吗?为什么?参考答案一、1.D 2.B 3.C 4.D 5.D二、6.a-b7.y-x8.2 9.1或-9 10.25三、11.(1)3x2(x+2)(x-2) (2)(5x-y)(x-5y) (3)(3mn-1)2(4)(a-7b)2(5)(3a+3b+2)2(6)(a+b)2112.(1)2 (2)213.(1)3999999 (2)114.128平方厘米15.略2.3 运用公式法同步练习1.填空:(1)多项式各项的公因式是___________;(2)多项式各项的公因式是_________;(3)如果是一个完全平方式,那么k的值是__________;(4)().2.把下列各式分解因式:(1);(2);(3);(4);(5);(6);(7);(8).3.利用分解因式计算:(1);(2);(3);(4);(5);(6);(7);(8).4.先分解因式,再求值:(1),其中;(2),其中.5.对于任意自然数是否能被24整除?为什么?参考答案1.(1) ;(2);(3)9;(4) .2.(1) ;(2) ;(3) ;(4);(5);(6);(7);(8).3.(1)27.6;(2)125;(3)10100;(4)0.0395;(5)9801;(6)7;(7)6.32;(8)5000.4.(1) ,当 时,原式=9216;(2) ,当时,原式=100.5.,能被24整除.2.3 运用公式法 同步练习一、选择题1,下列各式中不能用平方差公式分解的是( )A.-a 2+b 2B.-x 2-y 2C.49x 2y 2-z 2D.16m 4-25n 2 2.下列各式中能用完全平方公式分解的是( )①x 2-4x+4; ②6x 2+3x+1; ③ 4x 2-4x+1; ④ x 2+4xy+2y 2 ; ⑤9x 2-20xy+16y 2A.①②B.①③C.②③D.①⑤3.在多项式:①16x 5-x;②(x-1)2-4(x-1)+4; ③(x+1)4-4x(x+1)2+4x 2;④-4x 2-1+4x 中,分解因式的结果中含有相同因式的是( )A.①②B.③④C.①④D.②③ 4.分解因式3x 2-3x 4的结果是( )A.3(x+y 2)(x-y 2)B.3(x+y 2)(x+y)(x-y)C.3(x-y 2)2D.3(x-y )2(x+y) 25.若k-12xy+9x 2是一个完全平方式,那么k 应为( )A.2B.4C.2y 2D.4y 26.若x 2+2(m-3)x+16, 是一个完全平方式,那么m 应为( )A.-5B.3C.7D.7或-1 7.若n 为正整数,(n+11)2-n 2 的值总可以被k 整除,则k 等于( ) A.11 B.22 C.11或22 D.11的倍数. 二、填空题8.( )2+20pq+25q 2= ( )29.分解因式x 2-4y 2= ___________ ; 10.分解因式ma 2+2ma+m= _______ ;11.分解因式2x 3y+8x 2y 2+8xy 3 __________ .12.运用平方差公式可以可到:两个偶数的平方差一定能被 _____ 整除。

《应用公式法》第二课时导学案

《应用公式法》第二课时导学案

2.3.2 运用公式法(二)【学习目标】1、完全平方公式分解因式。

2、提公因式法是分解因式的首先考虑的方法,再考虑用运用公式法分解因式。

【自学检测】①(a+b )2=_____________ ②(a -b )2=_____________【思考与探究】下列多项式中,尝试将它们分别写成两个因式的乘积。

1)a 2-4a +4 2)4a 2-6ab +9b 2总结平方差公式的特点:□2+2□△+△2=( ) 2 □2-2□△+△2=( ) 2练一练下列各式是不是完全平方式?(1)a 2-4a+4;(2)x 2+4x+4y 2;(3)4a 2+2ab+41b 2; (4)a 2-ab+b 2;(5)x 2-6x -9;(6)a 2+a+0.25.[例1]把下列完全平方式分解因式:(1)x 2+14x+49;(2)(m+n )2-6(m +n )+9.【反馈练习】1、下列各式可以用完全平方公式分解因式的是( )A 、2242b ab a +-B 、4142+-m m C 、269y y +- D 、222y xy x -- 2、因式分解一般步骤:1)第一项是负号,先提取_________。

2)若有公因式,应提取__________,再用_________分解因式。

3)分解因式后的每个因式应为不能再_________了。

4)分解因式时,要灵活采用方法。

3、把下列各式分解因式。

1)2236123xy y x x +- 2)()()110252+-+-x y y x[例2]把下列各式分解因式:(1)3ax 2+6axy+3ay 2; (2)-x 2-4y 2+4xy.把下列各式分解因式:(1)4a 2-4ab+b 2;(2)a 2b 2+8abc+16c 2;(3)(x+y )2+6(x+y )+9; (4)1442m -6mn +n 2; (5)4(2a+b )2-12(2a+b )+9; (6)51x 2y -x 4-1002y 参考练习把下列各式分解因式1.-4xy -4x 2-y 2;2.3ab 2+6a 2b+3a 3;3.(s+t )2-10(s+t )+25;4.0.25a 2b 2-abc+c 2;5.x 2y -6xy+9y;6.2x 3y 2-16x 2y+32x;7.16x 5+8x 3y 2+xy 4。

北师大版九年级数学2.3用公式法求解一元二次方程(2)课后练习

北师大版九年级数学2.3用公式法求解一元二次方程(2)课后练习

用公式法求解一元二次方程(第2课时)
1.用公式法解方程243x x =+时,24b ac ∆=-的值是( )
A.4
B.28
C.20 D .-4
2.若点P 的横、纵坐标恰好是方程22240x x --=的两根,则点P 在( )
A. 第二象限
B. 第四象限
C.第一象限 D 第二或第四象限
3.方程2269x x -=的根为
4.已知三角形的两边长为分别为3cm 和4cm ,第三边长是方程2650x x -+=的根,则该三角形的周长为 ,形状为 ,面积为
5.如图,某小区规划在一个长30 m 、宽20 m
的长方形土地上修建三条等宽的通道,使其
中两条与AB 平行,另外两条与AD 平行,
其余部分种花草,要使每一块花草的面积
都为 78 m2,那么通道宽应该设计为多少?
设通道宽为x m ,则由题意列的方程
为_____________________.
6. 某农场要建一个长方形的养鸡场,养鸡场的一边靠墙(墙长25 m),另外三边用木栏围成,木栏长40 m. 养鸡场的面积能达到180 m2 吗?如果能,请给出设计方案;如果不能,请说明理由.
7.要对一块长为60m ,宽为40m 的矩形荒地ABCD 进行绿化和硬化,设计方案如图所示,矩形P ,Q 为两块绿地,其余为硬化路面。

P ,Q 两块绿地周围的硬化路面宽度都相等,并且两块绿地的面积和矩形ABCD 面积的
14,求P ,Q 两块绿地周围硬化路面的宽。

Q P D C B A。

北师大八年级数学下运用公式法(2)学案

北师大八年级数学下运用公式法(2)学案

2.3运用公式法(2)课型:新授 学生姓名:_________[目标导航]1.学习目标(1)经历通过整式乘法的完全平方公式等逆向得出用公式法分解因式的方法的过程,发展逆向思维能力和推理能力。

(2)会用公式法分解因式。

(3)在逆用乘法公式的过程中,了解换元的思想方法2.学习重点:会逆用完全平方公式、十字相乘法对多项式进行因式分解。

3.学习难点:熟练逆用完全平方公式、十字相乘法对多项式进行因式分解。

[课前导学]1.课前预习:阅读课本P57—P58并完成课前检测。

2.课前检测(1) 分解因式: ①24224916.0n m b a - ②224)32(x y x -- ③)()(3x y y x -+-(2) ①222(________)2520(______)=++q pq ; ②22)(________________94=+-x x ; ③________________)2)(3(=++x x ; ④_________________)2)(1(=--x x ; (3) 默写平方差公式:____________ ______________________________________ ; =++))((b x a x ___________________________________________________________;3.课前学记(课前学习疑难点、教学要求建议)[课堂研讨]1.新知探究(1)新课引入:①填空:(a+b )(a-b ) = ; a 2–b 2= ;(a+b )2= ; (a-b)2 = ;a 2+2ab+b 2= ; a 2-2ab+ b 2= .②结论:形如:______________________和____________________的式子称为完全平方式。

③填空:(x+a )(x+b ) = ; (a x+b )(c x+d ) = ; x 2+(a+b)x+ ab = ; ac x 2+(ad+bc)x+bd= ; (x-a )(x-b ) = ; (a x-b )(c x-d ) = ; x 2-(a+b)x+ ab = ; ac x 2-(ad+bc)x+bd= ;通过上面的填空谈谈你的收获:_______________________________________________________; ④结论:由分解因式与整式乘法的关系可以看出,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式,这种分解因式的方法叫做______________________;(2)新课讲解①例1 把下列完全平方式分解因式:49142++x 9)(6)(2++-+n m n m②例2 逆用乘法公式分解因式:232++x x 122--x x③例3 把下列各式分解因式22363ay axy ax ++ xy y x 4422+-- a ax ax -+-3222.学习过关(1)下列多项式中,哪几个是完全平方式?请把是完全平方式的多项式分解因式:① 412+-x x ( ) ② 13922+-ab b a ( ) ③ 229341n mn m ++ ( ) ④ 251036--x x ( ) (2)把下列各式分解因式:① 223612y xy x +- ② 422492416bb a a ++③ 222y x xy --- ④ 2)(9)(124y x y x -+--(3)运用“十字相乘法”把下列各式分解因式:① 322--x x ② 2522++x x ③ 2)(3)(2++++b a b a.[课外拓展]1.课后记(收获、体会、困惑)2.分层作业(班级:_____________,学生姓名:____________)A 必做题(限时10分钟,实际完成时间:_______分钟)(1)把下列各式分解因式① 1222+-xy y x ② 24129t t +- ③ 412++y y④ 6480252+-m m ⑤2241y xy x ++ ⑥ 4422+-ab b a(2) 把下列各式分解因式① 9)(6)(2++++y x y x ② 22)()(2c b c b a a +++- ③ 32244y y x xy --④ 322a a a -+- ⑤4524+-x x ⑥ 22252y xy x +-B 选做题(1)已知多项式12x 与一个单项式和一个整式的完全平方,请你找出一个满足条件的单项式.(2)把下列式子分解因式:①ax+bx+2a+2b. ②a 2-ab -4b+4a.③ab -5a+3b -15.C 思考题(1)若(x+2)(x+3)(x+4)(x+5)+k 是完全平方式,求K 的值。

123运用公式法(二)教案

123运用公式法(二)教案

12.3运用公式法(二)一、教学目标(一)教学知识点1.使学生会用完全平方公式分解因式.2.使学生学习多步骤,多方法的分解因式.(二)能力训练要求在导出完全平方公式及对其特点进行辨析的过程中,培养学生观察、归纳和逆向思维的能力.(三)情感与价值观要求通过综合运用提公因式法、完全平方公式,分解因式,进一步培养学生的观察和联想能力.二、教学重点让学生掌握多步骤、多方法分解因式方法.(五)教学难点让学生学会观察多项式的特点,恰当地安排步骤,恰当地选用不同方法分解因式. 三、教学方法观察—发现—运用法四、教学过程Ⅰ.创设问题情境,引入新课[师]我们知道,因式分解是整式乘法的反过程,倒用乘法公式,我们找到了因式分解的两种方法:提取公因式法、运用平方差公式法.现在,大家自然会想,还有哪些乘法公式可以用来分解因式呢?在前面我们不仅学习了平方差公式(a+b)(a-b)=a2-b2而且还学习了完全平方公式(a±b)2=a2±2ab+b2本节课,我们就要学习用完全平方公式分解因式.Ⅱ.新课1.推导用完全平方公式分解因式的公式以及公式的特点.[师]由因式分解和整式乘法的关系,大家能否猜想出用完全平方公式分解因式的公式呢?[生]可以.将完全平方公式倒写:a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)2.便得到用完全平方公式分解因式的公式.[师]很好.那么什么样的多项式才可以用这个公式分解因式呢?请大家互相交流,找出这个多项式的特点.[生]从上面的式子来看,两个等式的左边都是三项,其中两项符号为“+”,是一个整式的平方,还有一项符号可“+”可“-”,它是那两项乘积的两倍.凡具备这些特点的三项式,就是一个二项式的完全平方,将它写成平方形式,便实现了因式分解.[师]左边的特点有(1)多项式是三项式;(2)其中有两项同号,且此两项能写成两数或两式的平方和的形式;(3)另一项是这两数或两式乘积的2倍.右边的特点:这两数或两式和(差)的平方.用语言叙述为:两个数的平方和,加上(或减去)这两数的乘积的2倍,等于这两个数的和(或差)的平方.形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式.由分解因式与整式乘法的关系可以看出,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法.[师]判断一个多项式是否为完全平方式,要考虑三个条件,项数是三项;其中有两项同号且能写成两个数或式的平方;另一项是这两数或式乘积的2倍.[生](1)是.(2)不是;因为4x不是x与2y乘积的2倍;(3)是;(4)不是.ab不是a与b乘积的2倍.(5)不是,x2与-9的符号不统一.(6)是.2.例题讲解[例1]把下列完全平方式分解因式:(1)x2+14x+49;(2)(m+n)2-6(m +n)+9.[师]分析:大家先把多项式化成符合完全平方公式特点的形式,然后再根据公式分解因式.公式中的a,b可以是单项式,也可以是多项式.解:(1)x2+14x+49=x2+2×7x+72=(x+7)2(2)(m +n)2-6(m +n)+9=(m +n)2-2·(m +n)×3+32=[(m +n)-3]2=(m +n -3)2.[例2]把下列各式分解因式:(1)3ax2+6axy+3ay2;(2)-x2-4y2+4xy.[师]分析:对一个三项式,如果发现它不能直接用完全平方公式分解时,要仔细观察它是否有公因式,若有公因式应先提取公因式,再考虑用完全平方公式分解因式.如果三项中有两项能写成两数或式的平方,但符号不是“+”号时,可以先提取“-”号,然后再用完全平方公式分解因式.解:(1)3ax2+6axy+3ay2=3a(x2+2xy+y2)=3a(x+y)2(2)-x 2-4y 2+4xy=-(x 2-4xy +4y 2)=-[x 2-2·x ·2y +(2y )2]=-(x -2y )2Ⅲ.课堂练习a .随堂练习1.解:(1)是完全平方式x 2-x +41=x 2-2·x ·21+(21)2=(x -21)2 (2)不是完全平方式,因为3ab 不符合要求.(3)是完全平方式41m 2+3 m n +9n 2 =(21 m )2+2×21 m ×3n +(3n )2 =(21 m +3n )2 (4)不是完全平方式2.解:(1)x 2-12xy +36y 2=x 2-2·x ·6y +(6y )2=(x -6y )2;(2)16a 4+24a 2b 2+9b 4=(4a 2)2+2·4a 2·3b 2+(3b 2)2=(4a 2+3b 2)2(3)-2xy -x 2-y 2=-(x 2+2xy +y 2)=-(x +y )2;(4)4-12(x -y )+9(x -y )2=22-2×2×3(x -y )+[3(x -y )]2=[2-3(x -y )]2=(2-3x +3y )2Ⅳ.课时小结这节课我们学习了用完全平方公式分解因式.它与平方差公式不同之处是:(1)要求多项式有三项.(2)其中两项同号,且都可以写成某数或式的平方,另一项则是这两数或式的乘积的2倍,符号可正可负.同时,我们还学习了若一个多项式有公因式时,应先提取公因式,再用公式分解因式. Ⅴ.课后作业习题12.51.解:(1)x 2y 2-2xy +1=(xy -1)2;(2)9-12t +4t 2=(3-2t )2;(3)y 2+y +41=(y +21)2; (4)25m 2-80 m +64=(5 m -8)2;(5)42x +xy +y 2=(2x +y )2; (6)a 2b 2-4ab +4=(ab -2)22.解:(1)(x +y )2+6(x +y )+9=[(x +y )+3]2=(x +y +3)2;(2)a 2-2a (b +c )+(b +c )2=[a -(b +c )]2=(a -b -c )2;(3)4xy 2-4x 2y -y 3=y (4xy -4x 2-y 2)=-y (4x 2-4xy +y 2)=-y (2x -y )2;(4)-a +2a 2-a 3=-(a -2a 2+a 3)=-a (1-2a +a 2)Ⅵ.活动与探究写出一个三项式,再把它分解因式(要求三项式含有字母a 和b ,分数、次数不限,并能先用提公因式法,再用公式法分解因式.分析:本题属于答案不固定的开放性试题,所构造的多项式同时具备条件:①含字母a 和b ;②三项式;③可提公因式后,再用公式法分解.参考答案:4a 3b -4a 2b 2+ab 3=ab (4a 2-4ab +b 2)=ab (2a -b )2。

用公式法求解一元二次方程ppt课件

用公式法求解一元二次方程ppt课件
题 k=0 总有实数根,∴Δ=(2 )2+4k≥0,解得 k≥-7,

突 ∴k 的取值范围是 k≥-7;

(2)∵ 方程有两个相等的实数根,
∴Δ=(2 )2+4k=0,∴k=-7,代入方程,
得x2+2 x+7=0,即(x+ )2=0,解得 x1=x2=- .
2.3 用公式法求解一元二次方程

破 地的面积为144 m2,则 x=______.
2.3 用公式法求解一元二次方程






[解析] 根据题意,得(18-2x)(15-x)=144
解得 x=21(不合题意,舍去)或 x=3,
∴ 道路的宽为 3 m.
[答案] 3
2.3 用公式法求解一元二次方程
变式衍生


如图,在宽为 20 m,长为 30 m 的矩形地面上修建两

易 2×100-4x)cm,宽为(40-2x)cm,根据题意得(1 000混 2×100-4x)(40-2x)=15200, 整理得 x2-220x+2100=0

析 ,解得 x1=210,x2=10.因为当 x=210 时,1000-2×1004x<0,40-2x<0,即画心的长与宽为负值,不符合实际意


解 用的最大长度为 15 m,一面利用旧墙,其余三面用篱笆围
读 成,篱笆总长为 24 m.若计划在花圃中间再用一道篱笆隔
成两个小矩形,且围成的花圃面积为50 m2,问能否成功围
成花圃?
2.3 用公式法求解一元二次方程
重 ■题型 甬道问题


如图,世纪广场有一块矩形绿地,AB=18 m,

2.3运用公式法

2.3运用公式法
4( x 2 2 x 1) 7 4( x 1) 2 7
任何一个正奇 你发现了什么规 数都可以表示 律?能用因式分 解来说明你发现 成两个相邻自 的规律吗? 然数的平方差。 对于正奇数 2n+1(n为自然 2 2 数),有 n 1 n
1 3 5 7 …
1 12 02
3 22 12
5 32 22
7 42 32


ห้องสมุดไป่ตู้

n 1 n n 1 n 2n 1
1.把下列各式分解因式
(1)(a 2 b 2 ) 2 4 a 2 b 2
(1)x -12xy+36y (1)18a2-50 4 2 2 4 (2)16a +24a b +9b (2)-3ax2+3ay4 2 2 (3)-2xy-x -y (3)(a+b)2-4a2 2 (4)4-12(x-y)+9(x-y) (4)-25x2y2+100 2+2a2x+a3; (5) ax 2 2 (5)4(a-b) -9(2a+3b) 2+6xy-3y2. (6) - 3 x 2 2 2 (6)(x +3x) -(x+1)
已知3a+b=10000,3a-b=0.0001, 求 b2-9a2 的值.
3.下列各式中,不能用完全平方公式分解的是( ) A、x4+6x2y2+9y4 B、x2n-2xnyn+y2n C、x6-4x3y3+4y6 D、x4+x2y2+y4
4.如果100x2+kxy+y2可以分解为(10x-y)2,那么k的值是( A、20 B、-20 C、10 D、-10 5.如果x2+mxy+9y2是一个完全平方式,那么m的值为( A 、6 B、±6 C、3 D、±3 ) )

八年级数学下册 第二章 2.3运用公式法学案(2)(无答案) 北师大版

八年级数学下册 第二章 2.3运用公式法学案(2)(无答案) 北师大版

§2.3运用公式法(2)【学习目标】1. 会用完全平方公式分解因式2. 综合运用分解因式的方法分解因式【学习重点】1.熟练掌握完全平方公式分解因式【学前准备】1.什么是分解因式? 我们已经学习了哪些因式分解的方法?2.把下列各式分解因式:① x a ax 222- ② 42-a③ a a -34 ④ x x 335-【师生探究合作交流】1.请你写出完全平方公式.这个公式倒过来可以写成: 222b ab a ++= 222b ab a +-=2.观察()2222b ab a b a ++=+与()2222b a b ab a +=++的不同点是什么? 发现:①第一个等式的左边()2b a +表示相乘关系; 第二个等式的左边222b ab a ++表示一个多项式。

②第一个等式表示把整式乘积形式转化成多项式形式;第二个等式是把多项式形式转化成整式乘积的形式。

因此,前者是多项式的乘法运算,而后者是分解因式。

3.完全平方式的特点:形如222b ab a ++和222b ab a +-的式子都称为完全平方式。

其特点是:(1)公式中的字母a,b 可以用单项式或多项式代替.(2)能运用完全平方公式分解的多项式必须是三项式,其中首末两项是两个数的完全平方,且这两项符号相同,而中间的一项是首项与末项乘积的2倍4.把下列各式分解因式:(1) 962++x x (2) ()()25102+---n m n m 解:(1)962++x x =22332+⨯+x x =( 2)(2)()()25102+---n m n m =(52)(2⨯--n m )+( 2) =( 2)(3) a ax ax 412+- (4) 2422-+-y y5.把下列各式分解因式:(注意方法,观察结果是否不能再分解了)(1) 1224+-x x (2) 222121y x xy ---【议一议】1.两个连续奇数的平方差能被8整除吗?为什么?你用了______分钟(真棒!)【小试牛刀】1.随堂练习【课堂小结】1. 用完全平方公式分解因式与平方差公式不同之处:【今日作业】1. 课后习题2.5第1,2【拓展与延伸】1.课本复习题写P63.第11。

2.3 公式法(2) (1)

2.3 公式法(2) (1)
九年级数学组 主 备 人: 议课组:第三组 议课时间: 2014年8月30日
上课时间:
2014年9月
温故复习(2分钟)
1.一元二次方程的求根公式是什么? 用公式法解一元二次方程的步骤是怎 样的? 2.当b ²-4ac的符号怎样时,方程有两个 不相等的实数根?有两个相等的实数 根?没有实数根?
学习目标(1分钟)
2. 方程 x kx 1 0 的根的情况是(C) A.只有一个实数根 B.有两个实数根 C.有两个不相等的实数根 D.没有实数根
2
3.关于X的一元二次方程 x 2 x m 0 有两个实数根,则m的取值范围是 m 1
2
4. (P44随堂练习)帮小颖列出方程并求解。
解:依题意得,
解 : 设这两位数的个位数字为x, 根据题意, 得
x 10x 3 x. 2 整理得x 11x 30 0.
2
解得x1 5, x2 6.
x 3 5 3 2, 或x 3 6 3 3.
答 : 这个两位数为25, 或36.
2 .将一块正方形的铁皮四角剪去一个边长为4cm的小正 方形,做成一个无盖的盒子.已知盒子的容积是400cm3, 求原铁皮的边长.
有两个实数根. 1 k 变:当k______ 4 时,关于x的方程kx²+x-1=0有 实数根.
3.三角形两边长分别是6和8,第三边长是一元二次方
程x2-16x+60=0的一个根,则三角形面积是( D )
A 24
C 48
B 24或 8 5
D 8 5
选做:
1.一个两位数,它的十位数字比个位数字小3,而它的个位 数字的平方恰好等于这个两位数.求这个两位数.

公式法--北师大版(2019年8月整理)

公式法--北师大版(2019年8月整理)
欢迎指导
砀山五中数学组:周景杰
八年级(下) 第二章 分解因式 2.3 运用公式法
教学目标:
1:经历探索用公式法分解因式的过 程Байду номын сангаас发展思维和推理能力。 2:会用公式法分解因式。
;/?p=4699 最新口子 信用卡秒批 ;
凡二十三郎 疑是 外舍家寒乞 出其不意 可赠给事中 是以嘉祥累仍 晋怀帝永嘉五年 置人无定数 监征蜀诸军事 身被重创 侍中 未足以譬 而祭酒 吴安令 又领徐州大中正 亮见世路屯险 白雀产吴郡盐官民家 怀敬累见宠授 除辅国参军 属兖州 并告前宁州刺史应袭 上疾笃 江左以来 汉 元帝所制 熙穆令 何 访以今上起居 前汉广阳县 始基嫔德 改从旧名 白雀见宣光北门 虏烧营 〔阙〕同心鸟 城池甚固 口八千三百四十二 后潘淑妃有宠 小号将军为大郡边守置佐吏者 怀肃与江夏相张畅之攻澹之於西塞 前汉属东郡 嘉禾生襄平县 分新宁立 徐志有 太宰江夏王义恭领中 书监 太康二年置兴古之都唐县 故邛都国 元显引为中军参军 辰曜交和 高祖善其能将军持重 吴立 舜摄帝位 元嘉十六年二月 汉成帝置 洛 〔阙〕地珠 武烈 而望求信者哉 弟寔 元嘉二十九年十月丁未 记室 南城固令 又惧首尾受敌 亦有口诏 今征西 徐羡之将废庐陵王义真 朕卜祥大昕 或自谓李统 寿阳献白兔 寿昌令 南豫州刺史武陵王骏以闻 不专为国 实资仁范 属降公主 木连理生汝阴 怅然有怀 尚书郎 云网四合 后汉 岂敢苟违天邪 燮理阴阳 西於令 属合浦 逋宁 湛逃亡 升明二年 乃许之 诘屈倾靡 文帝元嘉七年七月乙酉 太守历阳王子顼以闻 口万一千七百五十 三 复为九江郡 又常叹宰相顿有数人 知必有兴复晋室者 扬州刺史 子耕嗣 太祖寝疾累年 孝武大明五年 属新会 渐不悦 祖宁 白雀见南海增城县民吴比屋 度支 汉旧县 充孝之道 凉城〔二汉东郡有聊城县 还治广陵 天时不如地
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

从符号看: 平方项符号相同 (即:两平方项的符号同号,首尾2倍中间项)
填一填
多项式
x2 6x 9
是否是完全 平方式


4 y 4 y 1
2
a、b各表 表示(a+b)2 示什么 或(a-b)2 a表示x, ( x 3)2 b表示3 a表示2y, (2 y 1) 2 b表示1
1 4a 2
2
2
总结与反思:
• 1:整式乘法的完全平方公式是:
a b
2
2
a 2ab b
2
2
• 2:利用完全平方公式分解因式的公式形式是:
a 2ab b a b
2
2
• 3:完全平方公式特点: 含有三项;两平方项的符号同号;首尾2倍中间项
3.已知x2+4x+y2-2y+5=0,求 x-y 的值。
2 2
-b)=a2+a-a2+b=a+b=-2得
2 2
a b a b 2ab (a b) (2) ab 2 2 2 2 2
=ax (x+1)(x-1)
(有公因式,先提公因式。) (因式分解要彻底。)
课前复习:
2.除了平方差公式外,还学过了哪些公式?
(a b) a 2ab b
2
2
2
(a b) a 2ab b
2
2
2
a 2ab b a b 2 2 2 a 2ab b a b
a、b各表 示什么
表示(a+b)2 或(a-b)2


a表示x, b表示1/2
1 2 (x ) 2
9a 2b 2 3ab 1
1 2 m 3mn 9n 2 4

a表示1 m , 1 2
b表示3n
( m 3n) 2 2
x 10x 25
6 3

填空:
(1)a2+
2ab
+b2=(a+b)2 b2 =(a-b) 2 =( m+1 ) 2 =( n-1 ) 2
2 2 2
完全平方式
熟知公式特征! 用公式法正确分解因式关键是什么? 完全平方式 a2 ±2a b + b2 = ( a ± b )2 从项数看: 都是有 3 项
(一数) 2 ± 2(一数)(另一数)+(另一数)2=(一数±另一数)2
从每一项看:都有两项可化为两个数(或整式)
的平方,另一项为这两个数(或整式) 的乘积的2倍.
2.3运用公式法
(2)
课前复习:1、分解因式学了哪些方法
提取公因式法:ma+mb+mc=m(a+b+c)
运用公式法: ① a2-b2=(a+b)(a-b)
练习

4
把下列各式分解因式
2
ax ax
2 2
② x4-16 解:原式=(x2+4)(x2-4)
=(x2 +4)(x+2)(x-2)
解:原式=ax (x2-1)
2 2
(7)(a+1)2-2(a2-1) +(a-1)2=(a+1-a+1)2=4
(8)9(a b) 12(a b ) 4(a b) 2 3(a b) 2(a b)
2 2 2 2
(5a b)
2Hale Waihona Puke 因式分解:(y2 + x2 )2 - 4x2y2
解 : 原式 ( y x 2 xy)( y x 2 xy)
=
3 2(a b)
2
2
=(3-2a+2b)
分解因式:
(1)x -12xy+36y
4 2 2 2 2
=(x-6y)
4
2
(2)16a +24a b +9b =(4a +3b ) (3)-2xy-x -y =-(x+y)2
2 2
2
2 2
(4)4-12(x-y)+9(x-y) =(2-3x+3y)
解:由x +4x+y -2y+5=(x +4x+4)+(y -2y+1) =(x+2) +(y-1) =0得 x+2=0,y-1=0 ∴x=-2,y=1
2 2 2 2 2 2
1 ∴x =(-2) = 2
-y -1
分解因式:
1. x 8x 16
2
=-(x+4)
2
2. 4 x 2 x y 2 4 x x y =(3x+y)2
2+2ab-b2 (a b) 2 (2)a
错。此多项式不是完全平方式
练一练 因式分解:
(1)25x2+10x+1
解:原式=(5x) +2×5x×1+1
2 2
(2)9a 6ab b
2
2
=(5x+1)
2
2
2
解:原式=(3a) -2×3a×b+b
=(3a-b)
2
练一练 因式分解:
解:原式=(7a) +2×7a×b+b
2
(4) 9x 12xy 4 y (3x 2 y)2
2 2
把下列各式因式分解
(5)9a 4b(3a b) 9a 12ab 4b (3a 2b)
2
2 2
2
(6)3ax 6axy 3ay 3a( x2 2xy y 2 ) 3a( x y)2
2 2 2 2
=(y+x) (y-x) 简便计算:
2
2
2
56 68 56 34
2
2
解:原式=(56+34) =90 =8100
2
1.已知 4x2+kxy+9y2 是一个完全
平式,则k=
2.已知 的值。
±12
a2+b2 +ab 求 2
a(a+1)-(a2-b)=-2,
2
解:
2 2
由a(a+1)-(a
2
原式 (m n)2 2 (m n) 3 32 解:
(m n 3)2
例题 (3) 3ax2+6axy+3ay2
原式 3a( x 2xy y ) 解:
2 2
3a(x y)2
(4)
-x2-4y2+4xy
[x 2 2 x (2y) (2y) 2 ]
( x 2 y) 2
原式 ( x 2 - 4xy 4y 2 ) 解:
例题
(5)
4a 12ab 9b
2
2
2
2
解: 原式 (2a) 2 (2a) (3b) (3b) (2a 3b) 2 (6) 16x4-8x2+1
解: 原式 (4x ) 2 (4x ) 1 1
3.
ax 2a x a
2 2
3
=a(x+a)
2
把下列各式因式分解
(1)9 x 4 y (3x 2 y)(3x 2 y)
2 2
(2) 9x 4 y (2 y 3x)(2 y 3x)
2 2
(3)9 x 12xy 4 y (3x 2 y)
2 2
(2)a2-2ab+ (3)m2+2m+ (4)n2-2n+
1
1
(5)x2-x+0.25=( x-0.5 ) 2
(6)4x2+4xy+( y ) 2=( 2x+y ) 2
例题 (1) x2+14x+49 解:原式 x 2 x 7 7
2 2
(x 7)
2
(2)
(m n) 6(m n) 9
=(7a+b)
2
(3)49a b 14ab
2 2
2
2
(4)-a2-10a -25
解:原式=-(a +2×a×5+5 ) =-(a+5)
2 2 2
练一练 因式分解:
(5)-a3b3+2a2b3-ab3 3 2 2 解:原式=-ab (a -2a×1+1 ) 3 2 =-ab (a-1) (6)9 - 12(a-b) + 4 (a-b)2 2 解:原式=3 -2×3×2(a-b)+[2(a b)]2
1 1 x x 2 4
2


x2 4x 4 y 2
4 y 12xy 9x
2 2


a表示2y, (2 y 3x) 2 b表示3x a表示(a+b), (a b 1) 2 b表示1
(a b) 2(a b) 1
2

填一填
多项式
1 x x 4
2
是否是完全 平方式
2 2 2 2
(4x 2 1)2
( 2 x) 1 2 (2x 1)(2x 1) 2 2 (2x 1) (2x 1)
2

2 2

判断因式分解正误。
(1)
-x2-2xy-y2=
2
-(x-y)
2
2
错。应为: -x -2xy-y =-(x+y)
2
2 2
=-( x +2xy+y )
相关文档
最新文档