信号与系统实验指导书

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一 滤波器

一 实验目的

1 了解无源和有源滤波器的种类、基本结构及其特性;

2 对比并研究无源滤波器和有源滤波器的滤波特性; 二 原理说明

1.滤波器的作用是对输入信号的频率具有选择性。滤波器的种类很多,但总的来说,可分为两大类,即经典滤波器和现代滤波器。经典滤波器可分为四种,即低通(LP )、高通(HP )、带通(BF )、带阻(BS )滤波器。图1-1分别给出了四种滤波器的理想幅频响应。

图1-1 四种滤波器的理想幅频特性

2 滤波器可认为是一个二端网络,可用图1-2的模型来描述。其幅频特性和相频特性可由下式反映: . .

H (j ω) =U2/U1=A(ω)∠θ(ω)

H (j ω)为网络函数,又称为传递函数。

三 预习练习

1

预习滤波器的有关内容和原理;

2 预习运算放大器的相关知识及用运算放大器构成滤波器的方法;

3 推导各类滤波器的网络函数。

(b )高通滤波器

(c) 带通滤波器

(a) 低通滤波器

0 fc f

(d) 带阻滤波器

0 fcl f0 fch f

图1-2 滤波器

四实验步骤及内容

1 用实验导线按图1-3构造滤波器:

(a) 无源低通滤波器 (b) 有源低通滤波器

(c) 无源高通滤波器 (d) 有源高通滤波器

(e) 无源带通滤波器 (f) 有源带通滤波器

(g)无源带阻滤波器(h)有源带阻滤波器

图1-3 各种滤波器的实验电路图

2 测试各无源和有源滤波器的幅频特性:

例1:测试RC无源低通滤波器的幅频特性。

实验电路如图1-3(a)所示。

实验时,打开函数信号发生器,使其输出幅度为1V的正弦信号,将此信号加到滤波器的输入端,在保持正弦信号输出幅度不变的情况下,逐渐改变其频率,用交流电压表测量滤

波器输出端的电压U2。每当改变信号源频率时,

例2:测试RC有源低通滤波器的幅频特性。

实验电路如图1-3(b)所示。放大系数K=1。

实验时,打开函数信号发生器,使其输出幅度为1V的正弦信号,将此信号加到滤波器的输入端,在保持正弦信号输出幅度不变的情况下,逐渐改变其频率,用交流电压表测量滤波器输出端的电压U2。每当改变信号源频率时,都必须观测一下U1是否保持稳定1V,数据如有改变应及时调整,将测量数据记入下表。

按照以上方法,分别测量其它种类的滤波器的幅频特性。

五仪器设备:

1 信号与系统实验箱

2 交流电压表

3 双踪示波器

六实验报告要求

1 根据实验测量所得数据,绘制各类滤波器的幅频特性曲线。比较并计算出特征频率、截止频率和通频带。

2 分析各类无源和有源滤波器的滤波特性。

实验二一阶电路的瞬态响应

一实验目的

1用万用表观察时间常数τ较大的RC串联电路接通直流电压的瞬态响应。熟悉用万用表判别较大电容好坏的方法。

2用示波器观察和测定RC电路的阶跃响应和时间常数τ。

3了解时间常数对响应波形的影响及积分、微分电路的特点。

二原理说明

1 用万用表观察大时间常数的RC串联电路接通直流电压的瞬态响应。

如上图所示,虚线框内为万用表的欧姆档等效电路,它由电池,中值电阻r 和电流表G 组成。当万用表黑、红表笔分别接电解电容的正、负极时,就构成了RC 串联电路接通直流电压的情况,而表头指针的偏转就反映了电路响应电流的大小(满度电流I=v/r )。当将电容的两个端点短路,即使电容的初始电压为零 0)0(=C V ,则电容两端的电压为

)1(/τt C e V V --=

电路中电流为 τ

/t e r

V i -=

其中rc =τ是这个电路的时间常数,若从下图所示响应电流随时间变化的曲线上,任

意选两点P (i 1,t 1)和Q (i 2, t 2)

则由 τ

/11t e r V i -=

τ/22t e r

V

i -=

得 τ/)(ln 122

1t t i i

-=

于是,可得时间常数τ的关系式 )

/ln(211

2i i t t -=

τ

若取 2/12i i = 则 7

.01

2t t -=

τ 这样,只要从某点电流值i 1开始计时到i 1/2值所经历的时间除以0.7即为电路的时间常数τ。

当改变万用表欧姆档的档值时,其中值电阻值也随之改变,即电路的时间常数τ也随之改变,则瞬态响应所经历的时间也随之改变。当被测电容很小时,由于τ太小和表针的惰性,表针还未启动瞬态响应过程已经结束。所以,当电容量小于0.01uF 时,用万用表欧姆档还不能观察到电路的瞬态响应过程,且也只能在R ×10K 档(r 中=240K )观察到表针有摆动的现象,表针未偏转至满度值就返回。

利用上述原理就可用万用表来判别大于0.01uF 的电容器的好坏,若表针不摆动或偏转后不返回,则说明电容器开路或短路。若表针不返回至“∞”处,则说明电容器漏电。

2 积分电路和微分电路

图2-1 万用表的欧姆档检查电解点容等效电路

图2-2 点容器接通直流电压时响应

电流

如图所示为一阶RC 串联电路图。

)(t Vs 是周期为T 的方波信号, 设0)0(=C V 则

dt t V RC dt R t V C dt t i C t V R R C ⎰

⎰⎰===

)(1)(1)(1)( 当时间常数RC =τ很大,即τ》T 时,在方波的激励下,C V 上冲得的电压远小于R V 上的电压,即)(t V R 》)(t V C 因此 )()(t V t Vs R ≈

所以 dt t V RC t V S C ⎰

)(1

)( 上式表明,若将)(t V C 作为输出电压,则)(t V C 近似与输出电压)(t Vs 对时间的积分成正比。我们称此时的RC 电路为积分电路,波形如下

如果输出电压是电阻R 上的电压V R (t )则有

dt

t dV RC t i R t V C R )

()()(⋅

=⋅= 当时间常数RC =τ很小 ,即τ《T 时,)(t V C 》)(t V R ,因此)()(t V t V C S ≈ 所以 dt

t dV RC

t V S R )

()(≈ 上式表明,输出电压V R (t )近似与输出电压VS (t )对时间的微分成正比。我们称此时的RC

V S V 图2-3 一阶RC 串联实验电路图

相关文档
最新文档