25.2用列举法求概率(优质公开课)

合集下载

人教版九年级数学上册优质课课件《25.2列表法求概率》

人教版九年级数学上册优质课课件《25.2列表法求概率》

拓广探索
• 在围棋盒中有x颗黑色棋子 和y颗白色棋子,从盒中随 机地取出一个棋子,如果它 是黑色棋子的概率是3/8, 写出表示x和y关系的表达 式.如果往盒中再放进10颗 黑色棋子,则取得颗黑色棋 子的概率为1/2,求x和y的 值.
小结
拓展
从表面上看,随机现象的每一次观察结果都是偶 然的,但多次观察某个随机现象,立即可以发现: 在大量的偶然之中存在着必然的规律.
本题中元音字母: A E I 辅音字母: B C D H
• 例题选讲 • 甲乙两个同学做“石头、剪刀、布”的 游戏,在一个回合中两人能分出胜负的 概率是多少? • 分析:(1)一个回合:那么是几次等 可能试验?树形图应该画几级?(甲、 乙独立出拳的,应该算两次) • (2)每一个级别里应该画几条树枝? (每个试验的结果有几种可能性)
用列表法求概率时应注意各种结果出现的 可能性必须相同. 用列表格法的优缺点及局限性. 有放回还是无放回的问题
要学会建立适当的数学模型
小结
拓展
回 味 无 穷
用树状图或表格表示概率
1、利用树状图或表格可以清晰地表示出某 个事件发生的所有可能出现的结果;从而较 方便地求出某些事件发生的概率.
2 根据不同的情况选择恰当的方法表示某个事 件发生的所有可能结果。 3.当试验包含两步时,列表法比较方便,当然, 此时也可以用树形图法,当试验在三步或三 步以上时,用树形图法方便.
.“手心手背”是同学们中间广为流传的游戏, 游戏时甲、乙、丙三方每次做“手心”“手背” 两种手势中的一种,规定:⑴出现三个相同手 势不分胜负须继续比赛;⑵出现一个“手心” 和或一个“手背”和两个“手心”时,则一种 手势者为胜,两种相同手势者为负。 假定甲、乙、丙三人每次都是等可能地做这 两种手势,那么,甲、乙、丙三位同学胜的 概率是否一样?这个游戏对三方是否公平? 若公平,请说明理由,若不公平,如何修改 游戏规则才能使游戏对三方都公平?

25.2-用列举法求概率-(共27张)PPT课件

25.2-用列举法求概率-(共27张)PPT课件

(3)至少有一次骰子的点数为3的概率是 11
36
2021
9
总结
当一次试验要涉及两个
因素(如:同时掷两个骰子)或一
个因素做两次试验(如:一个骰
子掷两次)并且可能出现的结果
数目较多时,为不重不漏地列出
所有可能的结果,通常可以采用
列表法,也可以用树形图。
2021
10
想一想:
如果把上题中的“同时掷两个骰子” 改为 “把一个骰子掷两次”,所得的结果有变 化吗?
25.2 用列举法求概率
2021
1
在一次试验中,如果可能出现的结果
只有_有_限__个,且各种结果出现的可能性大 小_相__等_,我们可以通过列举试验结果的方 法,分析出随机事件发生的概率。
2021
2
2021
3
2021
4
方法一:枚举法 正正 正反 反正 反反
方法二:列表法
第一枚 第二枚
正正 正反
没有变化
2021
11
试一试:
小明和小亮做扑克游戏,桌面上放有两堆牌,分 别是红桃和黑桃的1,2,3,4,5,6,小明建议:我从红桃 中抽取一张牌,你从黑桃中取一张,当两张牌数字 之积为奇数时,你得1分,为偶数我得1分,先得 到10分的获胜”。如果你是小亮,你愿意接受这 个游戏的规则吗? 为什么?
这个游戏对小亮和小明公 平吗?
(1)取出的3个小球上恰好有1个、2个和3个元音字母的概率分别是多少?
(2)取出的3个小球上全是辅音字母的概率是多少?解:由树形图得,有12种可能的结果, 并且它们发生的可能性都相等。

A
(1)只有一个元音字母(记为事件
B
A)的结果有5种,则 P(A)= 5

人教版九年级数学上册《25-2 用列举法求概率(第2课时)》教学课件PPT初三优秀公开课

人教版九年级数学上册《25-2 用列举法求概率(第2课时)》教学课件PPT初三优秀公开课

探究新知
归纳总结
画树状图求概率的基本步骤
1将第一步可能出现的A种等可能结果写在第 一 层; 2 若第二步有B种等可能的结果,则在第一层 每个结果下面画B个分支,将这B种结果写在第二 层,以此类推; 3根据树状图求出所有的等可能结果数及所求 事 件包含的结果数,利用概率公式求解.
探究新知 素养考点 利用画树状图求概率


(反,正)

P(正面向上)= 1 . 4

(反,反)
探究新知
树状图的画法
如一个试验中涉及2个因素,第一个因素中有2种可能情况; 第二个因素中有3种可能的情况. 则其树形图如下图:
一个试验
第一个因素
A
B
第二个因素 1 2 3 1 2 3 n=2×3=6
树状图法:按事件发生的次序,列出事件可能出现的结果.
1 (1)P(全部继续直行)= 27 ;
共有27种行驶方向
(2)P(两车向右,一车向左)=
7
1 9

(3) P(至少两车向左)=27 .
探究新知
例2 甲、乙、丙三人做传球的游戏,开始时,球在 甲手中,每次传球,持球的人将球任意传给其余两 人中的一人,如此传球三次. (1)写出三次传球的所有可能结果(即传球的方式); (2)指定事件A:“传球三次后,球又回到甲的手中” , 写出A发生的所有可能结果; (3)P(A).
CB A
你能用列表法列举所有可能出现的结果吗?
素养目标
3. 进一步学习分类思想方法,掌握有关数 学技能. 2. 掌握树状图法的定义,并能运用树状 图 计算事件的概率.
1. 进一步理解等可能事件概率的意义.
探究新知
知识点 利用画树状图法求概率

25.2用列举法求概率(优质公开课)

25.2用列举法求概率(优质公开课)

6
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
1.在6张卡片上分别写有1—6的整数.随机 的抽取一张后不放放回回,再随机的抽取一张. 那么两次取出的数字和为偶数的概率是多 少?
123456
2.有两双大小质地相同仅颜色不同 的手套(不分左右手,可用A1,A2表示一双, 用B1,B2表示另一双),若从这四只手套中 随机取出两只,利用列举法表示所有可能 出现的结果,并写出恰好配成相同颜色的 一双手套,4)
5
(1,5)
6
(1,6)
2
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
2.探究新知
方法一:将两枚硬币分别记做 A、B,于是可以直
接列举得到:(A正,B正),(A正,B反),
(A反,B正), (A反,B反)四种等可能的结果.故:
P(两枚正面向上)=
1 4

P(两枚反面向上)=
1 4

P(一枚正面向上,一枚反面向上)=
1 2

2.探究新知
方法二:将同时掷两枚硬币,想象为先掷一枚,再 掷一枚,分步思考:在第一枚为正面的情况下第二枚硬 币有正、反两种情况,同理第一枚为反面的情况下第二 枚硬币有正、反两种情况.
(1,4) (2,4) (3,4) (4,4) (5,4) (6,4)
5
(1,5) (2,5) (3,5) (4,5) (5,5) (6,5)

25.2 第1课时 用列举法求概率课件-2024-2025学年人教版数学九年级上册

25.2 第1课时 用列举法求概率课件-2024-2025学年人教版数学九年级上册

3.C [解析] 列表如下:
甲盒

1
2
3
乙盒
4
5
6
7
5
6
7
8
6
7
8
9
由表可知,共有9种等可能的结果,其中编号之和大于6的结
果有6种,所以P(编号之和大于6)=69 = 23.
谢 谢 观 看!
数学 九年级上册 人教版
第 二
概率初步


25.2 第1课时 用列举用列举法求概率
探究与应用
课堂小结与检测

活动1 能用直接列举法求概率
究 与
例1 (教材典题)同时抛掷两枚质地均匀的硬币,求下列事件
应 的概率:

(1)两枚硬币全部正面向上;
解:列举抛掷两枚硬币所能产生的全部结果,它们是:正正,正反,
B.13
C.14
D.15

课 3.甲盒中有编号分别为1,2,3的3个完全相同的乒乓球,乙盒

小 中有编号分别为4,5,6的3个完全相同的乒乓球.现分别从每

与 个盒子中随机地取出1个乒乓球,则取出的乒乓球的编号之
检 测
和大于6的概率为
(C)
A.49
B.59
C.23
D.79
相关解析
2.C [解析] 从四条线段中任选三条,有4种结果,即(1,3,5), (1,3,7),(1,5,7),(3,5,7),这些结果出现的可能性相等,其中能构 成三角形的结果只有1种,即(3,5,7),所以能构成三角形的概 率P=14.故选C.

小 1.假如每枚鸟卵都可以成功孵化小鸟,且孵化出的小鸟是雄
结 与
鸟和雌鸟的可能性相等.现有2枚鸟卵,孵化出的小鸟恰有一

人教版九年级数学上册《用列举法求概率》概率初步PPT精品教学课件

人教版九年级数学上册《用列举法求概率》概率初步PPT精品教学课件

板书设计
把两枚骰子分别记为第1枚和第2枚,这样就可以用下面的方形表格列举出
所有可能出现的结果.
解决问题
两枚骰子分别记为第1枚和第2枚,所有可能的结果列表如下:
(1)满足两枚骰子点数相同(记为事件A)的结果有6个
6
1
(表中斜体加粗部分),所以P(A)= 36 = 6.
(2)满足两枚骰子的和是9(记为事件B)的结果有4个
2.如图所示的扇形图给出的是地球上海洋、陆地的表面积约占地球表面积的
百分比. 若宇宙中有一块陨石落在地球上,则它落在海洋中的概率是
%.
达标检测
1.“同吋掷两枚质地均匀的骰子,至少有一枚骰子的点数是3”的概率为


1
A.
3
11
B.
36
5
C.
12
1
D.
4
2.不透明的袋子中装有红球1个、绿球1个、白球2个,这些球除颜色外无
出场,由于人为指定出场顺序不合规,要重新抽签确定出场顺序,则抽签后三个
运动员出场顺序都发生变化的概率是
.
达标检测
5.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,
2
3
其中红球1个,若从中随机摸出一个球,这个球是白球的概率为 .
(1)求袋子中白球的个数;
(2)随机摸出一个球后放回并搅匀,再随机摸出一个球,请用画树状图
5
,全是辅音字母的结果有两个,
12
2
1
即BCH,BDH,所以P(三个辅音)= = .
12
6
P(一个元音)=
练习巩固
1.经过某十字路口的汽车,可能直行,也可能左转或右转. 如果这三种可能

25.2用列举法求概率(1)课件

25.2用列举法求概率(1)课件
?
红黄
绿

红 绿黄
想一想
7种,记为: 红1红2红3绿 1绿2黄1黄2
三、过程分析 3.2自主分析,探索新知 3、教师总结,
解:一共有7中等可能的结果。 (1)指向红色有3种结果, P(红色)=3/7
(2)指向红色或黄色一共有5种 等可能的结果,P( 红或黄)=5/7 (3)不指向红色有4种等可能的
A区和B区踩中地雷的概率 是一样的吗?
三、过程分析 3.3深化拓展,应用新知
解:A区有8格3个雷, 遇雷的概率为3/8,
B区有9×9-9=72个小方格, 还有10-3=7个地雷, 由于3/8大于7/72, 所以第二步应踩B区 遇到地雷的概率为7/72,
【设计意图】 【效果预估】
三、过程分析
想一想
3.4归纳总结,提炼新知
从知识、方法、情感三方面来谈一谈这节课的收
获。
我学到了……
?
我体会到了……
三、过程分析 3.5布置作业,巩固新知 (1)必做题:书本P150/ 1,2 (2)选做题:
请设计一个游戏,并用列举法计算游戏者获胜 的概率。
四、教法分析
引导—发现教学法 问题情境—建立数学模型—应用与拓展 1、情境激智法: 2、自主探究法: 3、以用促学法:
三、过程分析 3.1创设情景,发现新知
教师总结:
一般的,如果在一次实验中,有n种可能的结果, 并且它们发生的可能性都相等,事件A包括其中的 M种结果,那么事件A发生的概率为P(A)=m/n
注意:n是在一次实验中所有等可能的结果数(与
事件A无关),m是事件A所包含的所有等可能性
结果数。
m≤n,
0≤ P(A) ≤1
多媒体辅助教学
五、评价分析

《用列举法求概率 》教案 (公开课获奖)2022北师大版

《用列举法求概率   》教案 (公开课获奖)2022北师大版

山东省郯城三中九年级数学上册《25.2 用列举法求概率〔第4课时〕》教案课型复习验收结果:合格/需完善时间分管领导课时1课时教学目标:1.使学生能够运用列举法〔包括列表,树形图〕计算随机事件发生的概率,并阐述理由.2. 通过应用列表发或画树形图解决实际问题,提高学生解决问题的能力,开展应用意识。

重点:能够运用列表法和树形图计算随机事件发生的概率,并说明理由。

难点:运用列表法和树形图计算随机事件发生的概率。

教学过程教师活动学生活动修改意见一.创设情境:1.从A,B,C,D四人中用抽签的方法,任选两人去清扫公共场所,选中A的概率是多少?2. 有一对酷爱运动的年轻夫妇给他们12个月大的婴儿拼排3块分别写有“20”,“08"和“北京〞的字块,如果婴儿能够排成"2021北京〞或者“北京2021".那么他们就给婴儿奖励,假设婴儿能将字块横着正排,那么这个婴儿能得到奖励的概率是___________.3.先后抛掷两枚均匀的硬币,至少出现一次正面的概率是___________。

4小红方案到外婆家度暑假,为此她准备了一件粉色衬衣、一件白色衬衣,又买了三条不同款式的裙子:一步裙、太阳裙和牛仔裙。

(1)她一共有多少种搭配方法?(2)如果30天中她每天都变换一种搭配,她有几天穿白衬衫?几天穿牛仔裙?几天白衬衣配牛仔裤?二.探索交流:1.在围棋盒中有x颗黑色棋子和y颗白色棋子,从盒中随机地取出一个棋子,如果它是黑色棋子的概率是3/8,写出表示x和y关系的表达式。

如果往盒中再放进10颗黑色棋子,那么取得黑色棋子的概率变为1/2,求x和y的值2.秦皇岛是奥运足球比赛的分赛场,学校统一组织学生去观看足球比赛,但是因为名额有限,张明与王红只分得一以课堂小测试的形式让学生自主完成这四道题,然后小组内交流讨论,检验自己对用列举法求概率的掌握程度自主完成—组内交流、讨论—归纳总结教师在学生完成问题后应注意引导学生发现在我们的周围大量地存在着大量用列举法求概率的事件。

九年级数学上册 25.2 用列举法求概率课件 新人教版

九年级数学上册 25.2 用列举法求概率课件 新人教版
并且可能出现的结果数目较多时,为了不重不漏 的列出所有可能的结果,通常采用列表法.
列表法中表格构造特点: 一个因素所包含的可能情况
另一
个因素 所包含 的可能
两个因素所组合的 所有可能情况,即n
情况
在所有可能情况n中,再找到满足条件的事件的个
数m,最后代入公式计算.
引例1.掷两枚硬币,求下列事件的概率: (1)两枚硬币全部正面朝上; (2)两枚硬币全部反面朝上; (3)一枚硬币正面朝上,一枚硬币反面朝上.
25.2用列举法求概率(1)
飞机失事会给旅客造成意外伤害。一 家保险公司要为购买机票的旅客进行保 险,应该收取多少保费呢?为此保险公 司必须精确计算出飞机失事的概率有多 大.
复习
概率的定义 •事件A发生的可能性大小的数值 叫做事件A的概率,记作P(A).
0≤P(A) ≤1.
• 必然事件;在一定条件下必然发生的事件
解:其中一枚硬币为A,另一枚硬币为B,则所有可能结果如
表所示:
AB



(正,正)
(正,反)

(反,正)
(反,反)
总共4种结果,每种结果出现的可能性相同.
思考
“同时掷两个质地相同的骰子”与 “把一个骰子掷两次”,所得到的结果有变化吗?
“同时掷两个质地相同的骰子” 两个骰子各出现的点数为1~6点
“把一个骰子掷两次” 两次骰子各出现的点数仍为1~6点
伸手游戏:规定每个同学伸出一只 手(只能手心或手背朝上)
问题1:只有一个同学伸出一只手时, 所有结果有几种?
2种:手心朝上或手背朝上,这两种 结果的可能性相同。
手心朝上的概率是多少? P( 手心朝上)= 1
2
伸手游戏:规定每个同学伸出一只 手(只能手心或手背朝上)

25.2用列举法求概率课件(第一课时)

25.2用列举法求概率课件(第一课时)
1、当一次试验要涉及两个因素,并且可能出 现的结果数目较多时,为了不重不漏的列出 所有可能的结果,通常采用列表法。
随堂检测
用实际行动来证明我能行
1、一个家庭有两个孩子,从出生的先后顺序和性别上来分, 所有可能出现的情况( )
C
(A)男女 ,男男,女男 (B)男女 ,女男
(C)男女 ,男男,女男,女女, (D)男男,女女 2、从甲地到乙地可坐飞机、火车、汽车,从乙地到丙地可坐飞 机、火车、汽车、轮船,某人乘坐以上交通工具,从甲地经 乙地到丙地的方法有( )种. A.4 B.7 C.12 D.81 3、一张圆桌旁有四个座位,A先坐在如图所示的座位上,B、C、D 1/3 三人随机坐到其他三个座位上.则A与B不相邻而坐的概率为___
(1,6) (2,6) (3,6) (4,6) (5,6) (6,6)
(3)满足至少有一个骰子的点数为2(记为事件C)的结果有11个。
11 P (C ) 36
如果把例2中的“同时掷两个骰子”改为 “把一个骰子掷两次”,所得的结果有变化 吗?
没有变化
随堂练习 (基础练习)
1、一个袋子中装有2个红球和2个绿球,任意摸出一球,记录 颜色放回,再任意摸出一球,记录颜色放回,请你估计两次都 1 摸到红球的概率是________。
(1,4) (2,4) (3,4) (4,4) (5,4) (6,4)
(1,5) (2,5) (3,5) (4,5) (5,5) (6,5) (1,6) (2,6) (3,6) (4,6) (5,6) (6,6)
(1)两个骰子的点数相同;
(1)满足两个骰子点数相同(记为事件A)的结果有6个
6 1 P ( A) 36 6
C
4、染色体隐性遗传病,只有致病基因在纯合状态(dd)时才 会发病,在杂合状态(Dd)时,由于正常的显性基因型D存在, 致病基因d的作用不能表现出来,但是自己虽不发病,却能将病 传给后代,常常父母无病,子女有病,如下表所示: 母亲基因型Dd D 父亲基因型 Dd D d DD Dd d Dd dd

九年级数学上册25.2用列举法求概率课件(新人教版)_2_6-10

九年级数学上册25.2用列举法求概率课件(新人教版)_2_6-10

学科内综合
点M(x,y)可以在数字-1,0,1,2中任意选取.试求(1)点M在第二象限内的概率.
(2)点M不在直线y=-2x+3上的概率.
中考链接
两人要去某风景区游玩,每天某一时段开往该风景区有三辆汽车(票价相同),但是他们不知道这些车的舒适程度,也不知道汽车开过来的顺序,两人采用了不同的乘车方案:
甲无论如何总是上开来的第一辆车,而乙则是先观察后上车,当第一辆车开来时,他不上来,而是仔细观察车的舒适状况.如果第二辆车的状况比第一辆好,他就上第二车;如果第二辆车不比第一辆车好,他就上第三辆车.如果把这三辆车的舒适程度分上、中、下三等,请尝试着解决下面的问题:(1)三辆车按出现的先后顺序共有哪几种不同的可能?
(2)你认为甲、乙两人采用的方案,哪一种方案使自己
乘坐上等车的可能性大?为什么?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5
(1,5) (2,5) (3,5) (4,5) (5,5) (6,5)
6
(1,6) (2,6) (3,6) (4,6) (5,6) (6,6)
3.运用新知
(3)至少有一枚骰子的点数是 2(记为事件 C)的
结果有
11
种,所以,
P(C)=
11 36

第1枚 1
第2枚
1
(1,13)
课堂检测
3.经过某十字路口的汽车,它可能继续直行, 也可能向左转或向右转,如果这三种可能性 大小相同,两辆汽车经过这个十字路口,求 下列事件的概率:
(1)两辆车向同一方向行驶;
(2)两辆车向不同的方向行驶.
5.课堂小结
(1)用列举法求概率应该注意哪些问题? (2)列表法适用于解决哪类概率求解问题?使用 列表法有哪些注意事项?
第1枚 1
第2枚
1
(1,1)
2
(1,2)
3
(1,3)
4
(1,4)
5
(1,5)
6
(1,6)
2
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
4
(1,4)
5
(1,5)
6
(1,6)
2
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
1.复习旧知
在一次试验中,如果可能出现的结果只有有限个, 且各种结果出现的可能性大小相等,那么我们可以通过 列举试验结果的方法,求出随机事件发生的概率,这种 求概率的方法叫列举法.
2.探究新知
例1 同时向空中抛掷两枚质地均匀的硬币,求下 列事件的概率:
(1)两枚硬币全部正面向上; (2)两枚硬币全部反面向上; (3)一枚硬币正面向上、一枚硬币反面向上.
25.2 用列举法求概率
1.复习旧知
1.概率的定义:
一般地,对于一个随机事件A,我们把刻
画其 发生可能性大小的数值 ,称为随机
事件A发生的概率,记为 P(A).
2、等可能试验有两个共同点: 1.每一次试验中,可能出现的结果是 有限个 ; 2.每一次试验中,出现的结果 可能性相等.
1.复习旧知
3、一般地,如果一次试验中,有 n种可能的结果, 并且它们发生的可能性都相等.事件A包含其中 的 m种结果 .那么事件A发生的概率.P(A)=m
5
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
可以看出,同时掷两枚骰子,可能出现的结果有 36 种,并且它们出现的可能性相等.
3.运用新知
(1)两枚骰子点数相同(记为事件 A)的结果有 6
种,即(1,1),(2,2),(3,3),(4,4),
4
(1,4) (2,4) (3,4) (4,4) (5,4) (6,4)
5
(1,5) (2,5) (3,5) (4,5) (5,5) (6,5)
6
(1,6) (2,6) (3,6) (4,6) (5,6) (6,6)
3.运用新知
(2)两枚骰子点数之和是 9(记为事件 B)的结果
有 4 种,即(3,6),(4,5),(5,4),(6,3),
(1)两枚骰子的点数相同; (2)两枚骰子点数的和是 9; (3)至少有一枚骰子的点数为 2.
当一次试验要涉及两个因素(例如掷 两枚骰子)并且可能出现的结果数目较多 时,为不重不漏地列出所有可能结果,通 常采用列表法、树形图.
3.运用新知
解:两枚骰子分别记为第 1 枚和第 2 枚,可以用下 表列举出所有可能的结果.
(5,5),(6,6),所以,P(A)=
6 36
1 = 6.
第1枚
1
2
3
4
5
6
第2枚
1
(1,1) (2,1) (3,1) (4,1) (5,1) (6,1)
2
(1,2) (2,2) (3,2) (4,2) (5,2) (6,2)
3
(1,3) (2,3) (3,3) (4,3) (5,3) (6,3)
6
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
1.在6张卡片上分别写有1—6的整数.随机 的抽取一张后不放放回回,再随机的抽取一张. 那么两次取出的数字和为偶数的概率是多 少?
123456
2.有两双大小质地相同仅颜色不同 的手套(不分左右手,可用A1,A2表示一双, 用B1,B2表示另一双),若从这四只手套中 随机取出两只,利用列举法表示所有可能 出现的结果,并写出恰好配成相同颜色的 一双手套的概率.
2.探究新知
方法一:将两枚硬币分别记做 A、B,于是可以直
接列举得到:(A正,B正),(A正,B反),
(A反,B正), (A反,B反)四种等可能的结果.故:
P(两枚正面向上)= 1 . 4
P(两枚反面向上)=
1. 4
P(一枚正面向上,一枚反面向上)=
1. 2
2.探究新知
方法二:将同时掷两枚硬币,想象为先掷一枚,再 掷一枚,分步思考:在第一枚为正面的情况下第二枚硬 币有正、反两种情况,同理第一枚为反面的情况下第二 枚硬币有正、反两种情况.
2.探究新知
两枚硬币分别记为第 1 枚和第 2 枚,可以用下表列 举出所有可能出现的结果.
列表法
第1枚


第2枚
正 (正,正) (反,正)
反 (正,反) (反,反)
由此表可以看出,同时抛掷两枚硬币,可能出现的 结果有 4 个,并且它们出现的可能性相等.
3.运用新知
例2 同时掷两枚质地均匀的骰子,计算下列事件 的概率:
所以,
P(B)=
4 36
=
1 9

第1枚
1
2
3
4
5
6
第2枚
1
(1,1) (2,1) (3,1) (4,1) (5,1) (6,1)
2
(1,2) (2,2) (3,2) (4,2) (5,2) (6,2)
3
(1,3) (2,3) (3,3) (4,3) (5,3) (6,3)
4
(1,4) (2,4) (3,4) (4,4) (5,4) (6,4)
n
概率的范围: 0≤P(A)≤1
1.复习旧知
回答下列问题,并说明理由. (1)掷一枚硬币,正面向上的概率是_______; (2)袋子中装有 5 个红球,3 个绿球,这些球除了 颜色外都相同,从袋子中随机摸出一个球,它是红色的 概率为________; (3)掷一个骰子,观察向上一面的点数,点数大 于 4 的概率为______.
相关文档
最新文档