概率的意义与表示方法

合集下载

概率的定义及其确定方法

概率的定义及其确定方法

概率的定义及其确定⽅法1.2 概率的定义及其确定⽅法本节包括概率的公理化定义、排列与组合公式、确定概率的频率⽅法、古典⽅法、⼏何⽅法及主观⽅法。

主要介绍概率的定义,在排列、组合公式的基础上,利⽤频率⽅法、古典⽅法、⼏何⽅法及主观⽅法计算事件的概率。

概率是对随机事件发⽣可能性⼤⼩的数值度量。

1.随机事件的发⽣是带有偶然性的,但随机事件的发⽣的可能性是有⼤⼩之分的;2. 随机事件的发⽣的可能性是可以度量的,犹如长度和⾯积⼀样;3.在⽇常⽣活中往往⽤百分⽐来表⽰。

这⾥也是如此在概率论的发展史上,曾经有过概率的古典定义、概率的⼏何定义、概率的频率(统计)定义和概率的主观定义。

1933年,前苏联数学家柯尔莫哥洛夫⾸次提出了概率的公⾥化定义。

⼀、概率的公理化定义1.定义设Ω为⼀样本空间, F 为Ω上的某些⼦集组成的⼀个事件域,如果对任意事件A ∈F ,定义在F 上的⼀个实值函数P (A )满⾜:(1)⾮负性公理:()0;P A ≥(2)正则性公理:()1;P A =(3)可列可加性公理:若12,,,n A A A 两两互不相容,有11()();n n n n P A P A +∞+∞===∑则称P (A )为事件A 的概率,称三元素(,,)P ΩF 为概率空间。

1.并没有告诉我们应如何确定概率。

但概率的古典定义、概率的⼏何定义、概率的频率(统计)定义和概率的主观定义都是在⼀定的场合下确定概率的⽅法。

由于计算概率要⽤到排列与组合的公式。

2.概率是关于事件的函数。

⼆、排列与组合公式1.两⼤计数原理(1)乘法原理:如果某件事需要经过k 步才能完成,做完第⼀步有1m 种⽅法,做完第⼆步有2m 种⽅法,…,做完第k 步有k m 种⽅法,那么完成这件事共有12n m m m 种⽅法。

如某班共有45位同学,他们⽣⽇完全不相同的情况有365×364×363×…×321种。

(2)加法原理:如果某件事可由k 类不同的办法之⼀去完成,在第⼀类办法中有1m 种完成⽅法,在第⼆类办法中有2m 种⽅法,…,在第k 类办法中有k m种⽅法,那么完成这件事共有12n m m m +++ 种⽅法。

概率的定义及其计算学习笔记

概率的定义及其计算学习笔记
15
例 Dewey G. 统计了约438023个英语单词中各 字母出现的频率,发现各字母出现的频率 不同:
A: 0.0788 E: 0.1268 I: 0.0707 M: 0.0244 Q: 0.0009 U: 0.0280 Y: 0.0202
B: 0.0156 F: 0.0256 J: 0.0010 N: 0.0706 R: 0.0594 V: 0.0102 Z: 0.0006
Anm n(n 1)(n 2)(n m 1)
全排列
Ann n!
可重复排列:从 n 个不同的元素中可重复地 取出 m 个排成一排, 不同的排法有
nm 种
23
不尽相异元素的全排列:n 个元素中有 m 类, 第 i 类中有 ki 个相同的元素,
k1 k2 km n, 将这 n 个元素按一定的次序排成一排,
(1)某指定的 k 个盒子中各有一球;
则 nA1 k!
P( A1)
(2)恰有 k 个盒子中各有一球;
nA1 n
k! Nk
nA2 CNk k !
P(
A2
)
CNk N
k!
k
7
(3)某指定的一个盒子没有球;
nA3 (N 1)k
P(
A3
)
(
N 1)k Nk
(4)某指定的一个盒子恰有 m 个球 ( m k );
又由 AB B, P(B AB) P(B) P(AB) P(A B) P(A) P(B) P(AB)
19
推广: P( A B C) P( A) P(B) P(C)
P( AB) P( AC) P(BC)
P( ABC)
一般:P(n
Ai
)
n
P(

概率的意义

概率的意义

思考7:在遗传学中有下列原理: (1)纯黄色和纯绿色的豌豆均由两个特 征因子组成,下一代是从父母辈中各随 机地选取一个特征组成自己的两个特征. (2)用符号YY代表纯黄色豌豆的两个特 征,符号yy代表纯绿色豌豆的两个特征. (3)当这两种豌豆杂交时,第一年收获 的豌豆特征为:Yy.把第一代杂交豌豆再 种下时,第二年收获的豌豆特征为: YY, Yy,yy.
2、决策中的概率思想
思考2:某中学高一年级有12个班,要从 中选2个班代表学校参加某项活动。由于 某种原因,一班必须参加,另外再从二 至十二班中选1个班.有人提议用如下的 方法:掷两个骰子得到的点数和是几, 就选几班,你认为这种方法公平吗?哪 个班被选中的概率最大? 不公平,因为各班被选中的概率不全相 等,七班被选中的概率最大.
思考3:试验:全班同学各取一枚同样的 硬币,连续抛掷两次,观察它落地后的 朝向.将全班同学的试验结果汇总,计算 三种结果发生的频率.你有什么发现?随 着试验次数的增多,三种结果发生的频 率会有什么变化规律?
“两次正面朝上”的频率约为0.25, “两次反面朝上” 的频率约为0.25, “一次正面朝上,一次反面朝上” 的频率约为0.5.
4、遗传机理中的统计规律 豌豆杂交试验的子二代结果
性状 的 5474 性状 茎的高度 长茎 787 隐性 绿色 2001 皱皮 短茎 1850 277
思考6:你能从这些数据中发现什么规律吗?
孟德尔的豌豆实验表明,外表完全相同 的豌豆会长出不同的后代,并且每次试 验的显性与隐性之比都接近3︰1,这种 现象是偶然的,还是必然的?我们希望 用概率思想作出合理解释.
思考3:如果连续10次掷一枚骰子,结果 都是出现1点,你认为这枚骰子的质地是 均匀的,还是不均匀的?如何解释这种 现象? 这枚骰子的质地不均匀,标有6点的那面 比较重,会使出现1点的概率最大,更有 可能连续10次都出现1点. 如果这枚骰子 的质地均匀,那么抛掷一次出现1点的概 率为,连续10次都出现1点的概率 1 为 . 0.000000016538 6 这是一个小概率事件,几乎不可能发生.

25.2.1 概率及其意义 华师大版数学九年级上册课件

25.2.1 概率及其意义 华师大版数学九年级上册课件
(来自教材)
知识点 1 概率及其意义
知1-讲
1. 概率的定义:一个事件发生的可能性就叫做该事件的 概率.
2.概率公式:一般地,如果在一次试验中,有n种可能的 结果,并且它们发生的可能性都相等,事件A包含其
要点中精的析m:种用结公果式.P那(A么)=事件m A. 求发概生率的值概的率试P(验A)特=点mn :.
解:根据题意可得:阴影部分面积为52=25,
总面积为(3+4)2=49,
∴P(飞在阴影区域的概率是
25
.
49
知1-讲
归纳
知1-讲
对于飞镖投射阴影区域这类题的解法:首先根据题 意把数量关系用“图形”面积表示出来,用数形结合思 想解答.用阴影区域表示所求事件A,然后计算阴影区 域的面积在总面积中所占的比例,这个比例即事件A发 生的概率.
m
2.
n0≤ ≤1.
3. 2. 概率的取值范围:0≤P(A)≤1.
4. 3.三种事件的概率:当A是必然事件时,P(A)=1;
5. 当A是不可能事件时,P(A)=0;
6.
当A是随机事件时,P(A)满足0<P(A)<1.
知2-讲
【例3】 班级里有20位女同学和22位男同学,班上每位同 学的名字都被分别写在一张小纸条上,放入 一 个盒中搅匀.如果老师随机地从盒中取出1张纸条, 那么抽到男同学名字的概率大还是抽到女同学名 字的 概率大?
20 22 21
21 21
所以抽到男同学名字的概率大.
知2-讲
(来自教材)
知2-讲
【例4】 甲袋中放着22个红球和8个黑球,乙袋中放着200个 红球、80个黑球和10个白球.三种球除了颜色以外没 有任何其他区别.两袋中的球都已经各自搅匀. 从袋 中任取1个球,如果你想取出1个黑球,选哪个袋成 功的机会大呢?

概率知识讲解+习题集

概率知识讲解+习题集

中考内容中考要求ABC事件了解不可能事件、必然事件和随机事件的含义概率了解概率的意义;知道大量重复实验时,可以用频率估计概率会运用列举法(包括列表、画树状图)计算简单事件发生的概率⎧⎪⎧⎪⎪⎪⎨⎨⎪⎪⎩⎪⎪⎩定义列表概率求法树状图用频率估算概率与频数的关系一、与概率有关的定义:1、必然事件:事先能肯定一定发生的事件称为必然事件.2、不可能事件:事先能肯定一定不发生的事件称为不可能事件.3、确定事件:事先能肯定它是否发生的事件称为确定事件,必然事件和不可能事件都是确定事件.4、不确定事件(随机事件):事先不能肯定它会不会发生的事件称为不确定事件.5、概率:随机事件A 发生的可能性的大小.记为()P A .设n 为事件A 包含的可能结果数,m 为所有可能结果总数,则()nP A m=. 对于任何一个事件A ,它的概率()P A 满足0()1P A ≤≤,必然事件的概率是1, 不可能事件的概率是0.7、(补充)乘法原理:若一件事情需分m 个步骤完成,而且每个步骤的概率分别为:12,,m p p p ,则,完成该事件的概率为:12m p p p p =⋅⋅⋅.加法原理:若一件事情需分m 种方法完成,而且每种方法的概率分别为:12,,m p p p ,则,完成该事件的概率为:12m p p p p =+++二、求概率的方法:知识精讲中考大纲概率知识网络图1、列表2、画树状图3、用频率估计概率 列举法求概率如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中m 种结果,那么事件A 发生的概率为m n. 用树状图法求概率当一次试验涉及3个或更多因素(例如从3个口袋中取球)时,列举法就不方便了,可采用树状图法表示出所有可能的结果,再根据()mP A n=计算概率. 利用频率估计概率一般地,在大量重复试验中,如果事件A 发生的频率mn稳定于某个常数p ,那么这个常数p 就叫做事件A 的概率,记作()()()01P A p P A =≤≤三、概率与频率的关系←⎧⎪↓⎨⎪⎩频率用试验的方法频率与概率(试验次数很多)理论概率1、当一次试验涉及多个因素(对象)时,常用列表法或树状图法求出事件发出的所有等可能的结果,然后找出要求事件发生的结果数,根据概率的意义求其概率.2、当完成事件的层次较多或事件发生的可能性不相等时,求相关事件的概率是困难的,转换视角,从问题的对立面:反面求解,常能化简求值.3、游戏的公平性是通过概率来判断的,在得分相等的前提下,若对于参加游戏的每一个人获胜的概率相等,则游戏公平,否则不公平;在概率不等的前提下,可将概率乘相应得分,结果相等即公平,否则不公平.1、在审题时,看拿出来的东西是否放回.2、答题时需要注意步骤.易错点辨析解题方法技巧如图,有6张扑克牌,从中随机抽取1张,点数为偶数的概率().(2014北京中考)A.16B.14C.13D.12题型一事件【例1】下列事件中必然发生的是()A.抛两枚均匀的硬币,硬币落地后,都是正面朝上B.掷一枚质地均匀的骰子,朝上一面的点数是3C.通常情况下,抛出的篮球会下落D.阴天就一定会下雨【例2】下列成语所描述的事件是必然发生的是()A. 水中捞月B. 拔苗助长C. 守株待免D. 瓮中捉鳖【例3】下列事件中是必然事件的是()A.小菊上学一定乘坐公共汽车B.某种彩票中奖率为1%,买10000张该种票一定会中奖C.一年中,大、小月份数刚好一样多D.将豆油滴入水中,豆油会浮在水面上【例4】下列事件是必然事件的是()A.抛掷一枚硬币,四次中有两次正面朝上B.打开电视体育频道,正在播放NBA球赛C.射击运动员射击一次,命中十环D.若a是实数,则0a课堂练习真题链接概率习题集题型二简单概率计算【例5】从1~12这十二个自然数中任取一个,取到的数恰好是4倍数的概率是().(2014石景山期末)A.112B.14C.13D.12【例6】在12的正方形网格格点上放三枚棋子,按图所示的位置已放置了两枚棋子,如果第三枚棋子随机放在其它格点上,那么以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为__________.(2014昌平期末)【例7】下列说法正确的是().(2014朝阳期末)A.“明天的降水概率为80%”,意味着明天有80%的时间降雨B.小明上次的体育测试成绩是“优秀”,这次测试成绩一定也是“优秀”C.“某彩票中奖概率是1%”,表示买100张这种彩票一定会中奖D.掷一枚质地均匀的骰子,“点数为奇数”的概率等于“点数为偶数”的概率【例8】不透明的袋中装有3个分别标有数字1,2,3的小球,这些球除数字不同外,其它均相同.从中随机取出一个球,以该球上的数字作为十位数,再从袋中剩余2个球中随机取出一个球,以该球上的数字作为个位数,所得的两位数大于20的概率为().(2014大兴期末)A.12B.13C.23D.16【例9】袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列是必然事件的是().(2014东城期末)A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球【例10】小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则向上的一面的点数小于3的概率为().(2014房山期末)A.13B.12C.16D.23【例11】一枚质地均匀的正方体骰子,其六个面分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字不小于3的概率是().(2014丰台期末)A.12B.13C.23D.16【例12】一个口袋里放有三枚除颜色外都相同的棋子,其中有两枚是白色的,一枚是红色的.从中随机摸出一枚记下颜色,放回口袋搅匀,再从中随机摸出一枚记下颜色,两次摸出棋子颜色不同的概率是__________.(2014丰台期末)【例13】汶川大地震时,航空兵空投救灾物质到指定的区域(圆A)如图所示,若要使空投物质落在中心区域(圆B)的概率为12,则B与A的半径之比为.BA【例14】6张大小、厚度、颜色相同的卡片上分别画上线段、等边三角形、直角梯形、正方形、正五边形、圆.在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是()A.16B.13C.12D.23【例15】在今年的中考中,市区学生体育测试分成了三类,耐力类,速度类和力量类。

概率的定义

概率的定义

概率的定义表示一个事件发生的可能性大小的数,叫做该事件的概率。

它是随机事件出现的可能性的量度,同时也是概率论最基本的概念之一。

人们常说某人有百分之多少的把握能通过这次考试,某件事发生的可能性是多少,这都是概率的实例。

但如果一件事情发生的概率是1/n,不是指n次事件里必有一次发生该事件,而是指此事件发生的频率接近于1/n这个数值。

概率的频率定义随着人们遇到问题的复杂程度的增加,等可能性逐渐暴露出它的弱点,特别是对于同一事件,可以从不同的等可能性角度算出不同的概率,从而产生了种种悖论。

另一方面,随着经验的积累,人们逐渐认识到,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示一定的稳定性。

R.von 米泽斯把这个固定数定义为该事件的概率,这就是概率的频率定义。

从理论上讲,概率的频率定义是不够严谨的。

A.H.柯尔莫哥洛夫于1933年给出了概率的公理化定义。

百万分之一概率黑白配双胞胎概率的严格定义设E是随机试验,S是它的样本空间。

对于E的每一事件A赋于一个实数,记为P(A),称为事件A的概率。

这里P(·)是一个集合函数,P(·)要满足下列条件:(1)非负性:对于每一个事件A,有P(A)≥0; (2)规范性:对于必然事件S,有P(S)=1; (3)可列可加性:设A1,A2……是两两互不相容的事件,即对于i≠j,Ai∩Aj=φ,(i,j=1,2……),则有P(A1∪A2∪……)=P(A1)+P(A2)+……概率的古典定义如果一个试验满足两条:(1)试验只有有限个基本结果;(2)试验的每个基本结果出现的可能性是一样的。

这样的试验,成为古典试验。

对于古典试验中的事件A,它的概率定义为:P(A)=m/n,n表示该试验中所有可能出现的基本结果的总概率数目。

m表示事件A包含的试验基本结果数。

这种定义概率的方法称为概率的古典定义。

概率的统计定义在一定条件下,重复做n次试验,nA为n次试验中事件A发生的次数,如果随着n逐渐增大,频率nA/n逐渐稳定在某一数值p附近,则数值p称为事件A在该条件下发生的概率,记做P(A)=p。

概率的意义

概率的意义
1 过试验和观察,可以发现出现各个面的可能性都应该是 , 6
10 从而连续10次出现1点的概率为( 1 ) 0.000000016538 ,这在
6
一次试验(即连续10次抛掷一枚骰子)中是几乎不可能发生
的.
Page 14
我们面临两种选择:
(1)这枚骰子质地均匀; 很显然大家选择第二种答案. 如果我们面临的是从多个可选答案中挑选正确答案的决策 问题,那么“使得样本出现的可能性最大”可以作为决策 的准则,这种判断问题的方法称为极大似然法. (2)这枚骰子质地不均匀
Page
15
公元1503年,北宋大将狄青,奉令征讨南方侬智高叛乱,他在 誓师时,当着全体将士的面拿出100枚铜钱说:“我把这100 枚铜钱抛向空中,如果落地后,100枚铜100枚铜钱当众抛出后,
竟然全部都是正面朝上.狄青又命军士取来100枚铁钉,把这 100枚铜钱钉在地上,派兵把守,任人观看.于是宋朝军心大 振,个个奋勇争先,而侬智高部下也风闻此事,军心涣散, 狄青终于顺利地平定了侬智高的叛乱. 请发表你对这件事的看法?
Page
19
降水概率的大小只能说明降水可能性的大小,概率值
越大只能表示在一次试验中发生的可能性越大.在一次试 验中“降水”这个事件是否发生仍然是随机的. 尽管明天下雨的可能性很大,但由于“明天下雨” 是随机事件,因此仍然有可能不下雨.
Page
20
遗传机理中的统计规律 孟德尔把黄色和绿色的豌豆杂交,第一年收获的豌豆 全是黄色的.第二年,当他把第一年收获的黄色豌豆再种下 时, 收获的豌豆既有黄色的又有绿色的.
最有可能是什么颜色的球?
红球.
Page
27
5.甲、乙两人进行比赛,比赛的规则是同时抛掷两枚质地 均匀的硬币,如果出现两次正面向上,那么甲得一分;如 果出现一次正面向上,一次反面向上,那么乙得一分,你 认为这种比赛规则公平吗? 同时抛掷两枚质地均匀的硬币,所有可能出现的结果 “正正”、“正反”、“反正”、“反反”四种,其中两

用树状图或表格求概率

用树状图或表格求概率

用树状图或表格求概率相关知识点链接:1、频数与频率频数:在数据统计中,每个对象出现的次数叫做频数,频率:每个对象出现的次数与总次数的比值为频率。

2、概率的意义和大小:概率就是表示每件事情发生的可能性大小,即一个时间发生的可能性大小的数值.必然事件发生的概率为1;不可能事件发生的概率为0;不确定事件发生的概率在0与1之间.【知识点1】频率与概率的含义在试验中,每个对象出现的频繁程度不同,我们称每个对象出现的次数为频数,而每个对象出现的次数与总次数的比值为频率,即把刻画事件A发生的可能性大小的数值,称为事件A发生的概率。

【例1】不透明的袋中有3个大小相同的球,其中2个位白色,1个位红色,每次从袋中摸出一(2)观察表中出现红球的频率,随着试验次数的增多,出现红球的概率______________。

【知识点2】通过实验运用稳定的频率来估计某一时间的概率在进行试验的时候,当试验的次数很大时,某个事件发生的频率稳定在相应的概率附近.我们可以通过多次试验,用一个事件发生的频率来估计这一事件发生的频率。

例2 三张除字母外完全相同的纸牌,字母分别是A,A,K,每次抽一张为试验一次,经过多(2)观察表格,估计摸到A的概率;(3)求摸到A的概率;【知识点3】利用画树状图或列表法求概率(重难点)【例4】有列表法求以下随机事件发生的概率掷一枚均匀的骰子,每次试验掷两次,求两次骰子夫人点数和为7的概率。

例5 明华外出游玩时带了2件上衣(白色、米色)和3条裤子(蓝色、黑色、棕色),他任意拿出一件上衣和一条裤子恰好是白色和黑色的概率是多少?题型一:求事件的概率例1 某市今年的信息技术结业考试,采用学生抽签的方式决定自己的考试内容.规定:每位考生先在三个笔试题(题签分别用表示)中抽取一个,再在三个上机题(题签分别用代码表示)中抽取一个进行考试,小亮在看不到题签的情况下,分别从笔试题和上机题中随机的各抽取一个题签(1)用画树状图或列表法表示出所有可能的结果。

八下九上知识点

八下九上知识点

第七章数据的收集、整理和描述抽样与样本1.普查:考察全体对象的调查方式叫做全面调查。

2.抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。

3.总体:要考察的全体对象称为总体。

4.个体:组成总体的每一个考察对象称为个体。

5.样本:被抽取的所有个体组成一个样本。

6.样本容量:样本中个体的数目称为样本容量。

频率分布1、频率分布的意义在许多问题中,只知道平均数和方差还不够,还需要知道样本中数据在各个小范围所占的比例的大小,这就需要研究如何对一组数据进行整理,以便得到它的频率分布。

2、研究频率分布的一般步骤及有关概念(1)研究样本的频率分布的一般步骤是:①计算极差(最大值与最小值的差)②决定组距与组数③决定分点④列频率分布表⑤画频率分布直方图(2)频率分布的有关概念①极差:最大值与最小值的差②频数:落在各个小组内的数据的个数③频率:每一小组的频数与数据总数(样本容量n)的比值叫做这一小组的频率。

第八章 认识概率确定事件和随机事件 1、确定事件必然发生的事件:在一定的条件下重复进行试验时,在每次试验中必然会发生的事件。

不可能发生的事件:有的事件在每次试验中都不会发生,这样的事件叫做不可能的事件。

2、随机事件:在一定条件下,可能发生也可能不放声的事件,称为随机事件。

随机事件发生的可能性一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。

对随机事件发生的可能性的大小,我们利用反复试验所获取一定的经验数据可以预测它们发生机会的大小。

要评判一些游戏规则对参与游戏者是否公平,就是看它们发生的可能性是否一样。

所谓判断事件可能性是否相同,就是要看各事件发生的可能性的大小是否一样,用数据来说明问题。

概率的意义与表示方法 1、概率的意义一般地,在大量重复试验中,如果事件A 发生的频率mn会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率。

2、事件和概率的表示方法一般地,事件用英文大写字母A ,B ,C ,…,表示事件A 的概率p ,可记为P (A )=P 确定事件和随机事件的概率之间的关系 1、确定事件概率当A 是不可能发生的事件时,P (A )=0 2、确定事件和随机事件的概率之间的关系不可能事件 随机事件 必然事件第九章中心对称图形旋转角在平面内,将一个图形绕一个定点转动一定角度,这样的图形运动叫旋转,这个定点称为旋转中心,旋转角度称为旋转角图形旋转的性质:1、旋转前、后图形全等2、对应点到旋转中心的距离相等3、每对对应点与旋转中心的连所成的叫彼此相等中心对称把一个图形绕某点旋转180°,如果它能与另一个图形重合,那么这两个图形关于这一点城中心对称中心对称的性质1.、具有旋转图形的所有性质2、对应点连线都经过对称中心,并且被对称中心平分中心对称图形把一个平面图形绕某一点旋转180°,如果旋转后的图形与原图形完全重合,那么这个图形式中心对称图形,这个点是对称中心平行四边形:两组对边分别平行的四边形叫平行四边形平行四边形的性质1、平行四边形对边相等2、平行四边形对角相等3、平行四边形对角线互相平分平行四边形的判定1、两组对边分别平行的四边形是平行四边形2、一组对边平行且相等的四边形是平行四边形3、两条对角线互相平分的四边形是平行四边形4、两组对边分别别相等的四边形是平行四边形矩形:有一个角是直角的平行四边形是矩形矩形的性质1、所有平行四边形的性质2、对角线相等3、四个角都是直角矩形的判定1、有一个角是直角的平行四边形是矩形2、有3个角是直角的四边形正是矩形3、对角线相等的平行四边形是矩形菱形:有一组邻边相等的平行四边形是菱形菱形的性质1、所有平行四边形的性质2、四边相等3、对角线相互垂直,且每条对角线平分一组对角菱形的判定1、有一组邻边相等的平行四边形是菱形2、四边都相等的四边形是菱形3、对角线相互垂直的平行四边形是菱形正方形:有一组邻边相等且一个角为直角的平行四边形是正方形三角形中位线的性质三角形中位线平行于第三边且等于它的一半第十章 分式1、分式定义:形如BA的式子叫分式,其中A 、B 是整式,且B 中含有字母。

11、概率

11、概率

第11讲 概 率【竞赛导航】一、事件的分类? 二、概率的意义及计算:1.事件A 的概率P (A ):一般地,在大量重复进行同一试验时,若事件A 发生的频率总是接近于某个常数,这个常数就是该事件的概率.(0≤P (A )≤1)2.等可能事件的概率:(1)一般地,如果事件在一次试验中各种结果出现可能性大小是相等的,我们就说是等可能事件. (2)一般地,如果一次试验中共有n 种等可能性的结果,其中事件A 所包含的结果 有m 种结果,则事件A 的概率是P(A)=nm. 【典例解析】例1、下列说法正确的是( )A .在一次抽奖活动中,“中奖的概率是1100”表示抽奖100次就一定会中奖 B .随机抛一枚硬币,落地后正面一定朝上C .同时掷两枚均匀的骰子,朝上一面的点数和为6D .在一副没有大小王的扑克牌中任意抽一张,抽到的牌是6的概率是113例2、有五条线段,长度分别是2,4,6,8,10,从中任意取三条,能构成三角形的概率是多少?例3、小明有三双不同颜色的袜子,他在黑暗中任意拿了两只,求这两只袜子恰好能配套的概率。

他至少要拿几只袜子才能保证有一双袜子配套?为什么?例4、奥地利遗传学家孟德尔曾经将纯种的黄豌豆和绿豆杂交,得到杂种第一代豌豆,再用杂种第一代豌豆自交,产生杂交第二代豌豆,孟德尔发现第一代豌豆全是黄的,第二代豌豆有黄的,也有绿的,但黄色和绿色的比是一个常数。

孟德尔经过分析以后,可以用遗传学理论解释这个现象,比如设纯种黄豌豆的基因是yy ,纯种绿豌豆的基因是gg ,黄色基因是显性的,接下来,你可以替孟德尔来解释吗?第二代豌豆是绿豌豆的概率是多少呢?想一想,生活中还有类似现象吗?你能设法解释这一现象吗?例5、甲、乙二人玩一个游戏,每人抛一个质地均匀的小立方体(每个面分别标有数字1、2、3、4、5、6),落定后,若两个小立方体朝上的数字之和为偶数,则甲胜;若两个小立方体朝上的数字之和为奇数,则乙胜.你认为这个游戏公平吗?试说明理由.例6、研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球和黄球.怎样估算其数量? 操作方法:先从盒中随机摸出8个球,画上记号放回盒中,再进行摸球实验.摸球实验的要求:先搅拌均匀,每次摸出一个球,放回盒中再继续.活动结果:摸球实验活动一共做了50次,统计结果如下表: 推测计算:由上述的摸球实验可推算: 盒中红球、黄球各占总球数的百分 比分别是多少?盒中总共有多少个 球?其中有红球多少个?例7、学生甲与学生乙玩一种转盘游戏.如图是两个完全相同的转盘,每个转盘被分成面积相等的四个区域,分别用数字“1”、“2”、“3”、“4”表示.固定指针,同时转动两个转盘,任其自由停止,若两指针所指数字的积为奇数,则甲获胜;若两指针所指数字的积为偶数,则乙获胜;若指针指向扇形的分界线,则都重转一次. 在该游戏中乙获胜的概率是( )A. 14B. 12C. 34D. 56例8、扬州市体育中考现场考试内容有三项:50米跑为必测项目;另在立定跳远、实心球(二选一)和坐位体前屈、1分钟跳绳(二选一)中选择两项。

概率的意义

概率的意义
(2)由这张频数和频率表可知,机器人抛 掷完9999次时,得到_5_0_0_6__次正面,正面出 现的频率是_5_0_._1%__.那么,也就是说机器人 抛掷完9999次时,得到___4_9_94__次反面,反 面出现的频率是_4_9_._9%____.
5.给出以下结论,错误的有( D)
①如果一件事发生的机会只有十万分之一, 那么它就不可能发生. ②如果一件事发生 的机会达到99.5%,那么它就必然发生. ③如果一件事不是不可能发生的,那么它就 必然发生. ④如果一件事不是必然发生的 ,那么它就不可能发生.
A.1个 B.2个 C.3个 D.4个
6.一位保险推销员对人们说:“人有可 能得病,也有可能不得病,因此,得病与 不得病的概率各占50%”他的说法B( )
A.正确
B.不正确
C.有时正确,有时不正确
D.应由气候等条件确定
7.某位同学一次掷出三个骰子三个全 是“6”的事件是(D ) A.不可能事件B.必然事件
是必然的、不可能的还是不确定的? 是不确定的; “最终得到的数字是奇数”呢? 是不确定的;
(3)你能用自己的语言描述必然事件发生的可能性吗?
用1(或100%)来表示
必然事件发生的可能性,即概率为1;
用0来表示不可能事件发生的可能性。
即概率为0;
必然事件发生的可能性是100% 即概率为1; 不可能事件发生的可能性是 0; 即概率为0;
3
同理, 当第一次指针指向其它的
奇数 a 时,
指针顺时针方向转动同样的格数 a,
所得结果数应是 2a 或(2a–6)(a≥3),
即所得结果数总是偶数.
2 (2)如果指针指向偶数b, 如6,
指针顺时针方向转动同样的格数 b,

概率常见的方法

概率常见的方法
归纳总结:通过归分析,列举出所有的可能结果数 及某事件发生的可能结果数从而求出概率的方法叫 分析列举法。
试一试:
1、( (2013年自贡市中考)在四张背面完全相同的卡片
上分别印有等腰三角形、平行四边形、菱形、正五边行、
圆形,印有图案的一面朝下,混合后从中随机抽取一张,
则抽到卡片上印有的图案是轴对称图形的概率为( D )
归纳总结:上述列出的所有可能情况结果图就像个 倒立的台阶一样。故称这种求概率的方法叫台阶法。
8x2 16 0
试一试
在数据1,-1,4,-4中任意选两个数据,均是
一元二次方程x2-3x-4=0的根的概率是( A )
A.1/6
B.1/3
C.1/2
D.1/4
例5(2012.泰安)一个不透明的布袋中有分别标着数字 1,2,3,4的四个乒乓球,先从袋中随机摸出一个乒 乓球,不放回再摸一个,则这两个乒乓球上的数字
A.1/3
B.2/3
C.4/9
ห้องสมุดไป่ตู้
D.5/9
解:小明遇到红、黄、绿三色交通信号灯是三个对 立事件,它们的概率之和为“1”,故P(绿)=1-1/31/9=5/9
归纳总结:在概率问题中,每一个对立事件的概率 和等于1,即P(事件A)+P(事件B)+……=1,此 法简称“和为1法”
试一试
做重复实验:抛掷同一枚啤酒瓶盖1000 次,经过统计得“凸面向上”的频率约为0.44, 则可以由此估计抛掷这枚啤酒瓶盖出现
“凹面向上”的概率约D为( )
A.0.22 B.0.44 C.0.50 D.0.56
例4、(2013年河南省中考)现有四张完全相同的卡 片,上面分别标有数字-1,-2,3,4.把卡片背面朝 上洗匀,然后从中随机抽取两张,则这两张卡片上

概率的定义及其确定方法(最新整理)

概率的定义及其确定方法(最新整理)

§1.2 概率的定义及其确定方法在本节,我们要给出概率的定义,这是概率论中最基本的概念。

本节中我们还将介绍几种确定概率的方法。

随机事件的发生有偶然性,但我们常常会觉察到随机事件发生的可能性是有大小之分的。

例如,购买彩票后可能中大奖,可能不中奖,但中大奖的可能性远比不中奖的可能性小。

既然各种事件发生的可能性有大有小,自然使人们想到用一个数字表示事件发生的可能性大小。

这个数字就称为事件的概率。

然而,对于给定的事件,该用哪个数字作为它的概率呢?这决定于所研究的A 随机现象或随机试验以及事件的特殊性,不能一概而论。

在概率论的发展历史A 上,人们针对特定的随机试验提出过不同的概率的定义和确定概率的方法:古典定义、几何定义和频率定义。

这些概率的定义和确定方法虽然有其合理性,但也只适合于特定的随机现象,有很大的局限性。

那么如何给出适合于一切随机现象的概率的最一般的定义呢? 1900年数学家希尔伯特提出要建立概率的公理化定义以解决这个问题,即以最少的几条本质特性出发去刻画概率的概念.1933年数学家柯尔莫哥洛夫首次提出了概率的公理化定义,这一公理化体系迅速得到举世公认,有了这个定义后,概率论才被正式承认为一个数学分支,并得到迅猛发展.1.概率的公理化定义定义1.2.1 设为样本空间,为的某些子集组成的事件域.ΩF Ω))((F A A P ∈是定义在事件域上的实值集函数,如果它满足:F (1)非负性公理 对于任一,有;F A ∈0)(≥A P (2)正则性公理 ;1)(=ΩP (3)可列可加性公理 若……两两互不相容,则,,21A A ,,n A 则称)(A P 为事件A 的概率,称三元总体为概率空间.),,(P F Ω 概率的公理化定义刻画了概率的本质,概率是集合(事件)的实值函数,若在事件域上给出一个函数,只要这个函数满足上述三条公理就称为概率。

这个定义只涉及样本空间和事件域及概率的最本质的性质而与具体的随机现象无关。

第二讲 概率

第二讲  概率

列表法,求恰好匹配的概率.
第八章
统计与概率
金 榜 之 路 数 学 ·
解:列树状图如下:
共有12种不同结果,其中能匹配的有4种,因此恰好匹 配的概率是
第八章 统计与概率
金 榜 之 路 数 学 ·
判断一个事件是确定事件或不确定事件(随机事件)是中
考中常考查知识点,一般以选择、填空形式出题,很多内
容涉及生活中的事件,转盘、摸牌、摸球游戏等.判断时 要依据事件发生的可能性进行区分.
第八章
统计与概率
金 榜 之 路 数 学 ·
5.在一个不透明的布袋中,红色、黑色、白色的玻璃 球共有40个,除颜色外其他完全相同.小明通过多次摸球 试验后发现其中摸到红色球、黑色球频率稳定在15%和45%, 则口袋中白色球的个数可能是
( C )
A.24 C.16 B.18 D.6
解析:多次试验的频率可代替事件的概率,摸到白球 的概率为1-45%-15%=40%.
统计与概率
金 榜 之 路 数 学 · 1.下列事件是不确定事件的是 ( B )
A.太阳停止运动
B.明天有雷阵雨 C.每个人都要面对死亡 D.把一块石子掷出大气层
第八章
统计与概率
金 榜 之 路 数 学 ·
2.“从一袋中随机摸出1球恰是黄球的概率为 意思是
”的
( C )
A.摸球5次就一定有1次摸中黄球
第八章
统计与概率
金 榜 之 路 数 学 · 思路分析:因为有两个转盘,并且各转一次,所以画 树状图应分两层,A盘转出三种不同结果,在A盘转出的三 种结果下是B盘转出的四种结果,这样共有12种不同结果;
若列表格,纵、横栏各对应A、B盘上的数字,交叉位置计
算两盘数字之和.

《概率》统计与概率PPT(频率与概率)

《概率》统计与概率PPT(频率与概率)
700÷0.95≈1 789.
课堂篇探究学习
探究一
探究二
思维辨析
当堂检测
概率的应用——数学建模
典例为了估计水库中鱼的尾数,可以使用以下的方法:先从水库
中捕出2 000尾鱼,给每尾鱼做上记号,不影响其存活,然后放回水库.
经过适当的时间,让其和水库中的其他鱼充分混合,再从水库中捕
出500尾,查看其中有记号的鱼,有40尾,试根据上述数据,估计水库
定义
表示法
一般地,对于事件 A 与事件
包含
关系
B,如果事件 A 发生,则事件
一定发生
B⊇A
________
B__________,称事件 B 包含
(或
事件 A(或事件 A 包含于事件
A⊆B
_______)
B)
图示
定义
表示法
给定事件 A,B,由所
有 A 中的样本点与 B
并事件
中的样本点组成的事

件称为 A 与 B 的_____
合格产品
D.该厂生产的产品合格的可能性是99.99%
答案:D
解析:合格率是99.99%,是指该工厂生产的每件产品合格的可能
性大小,即合格的概率.
课堂篇探究学习
探究一
探究二
思维辨析
当堂检测
概率与频率的关系及求法
例2下面是某批乒乓球质量检查结果表:
抽取球数
优等品数
优等品出
现的频率
50
45
100
92
200
概率为78%”,这是指(
)
A.明天该地区有78%的地区降水,其他22%的地区不降水
B.明天该地区降水的可能性大小为78%

概率在现实生活中的应用

概率在现实生活中的应用

概率在现实生活中的应用我认为学习概率应该有两种认识,一是要理性的理解概率的意义,二是要学以致用。

一、概率的意义(1)一般地,频率是随着实验者、实验次数的改变而变化的;(2)概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同;(3)频率是概率的近似值,概率是频率的稳定值.它是频率的科学抽象.当试验次数越来越多时,频率围绕概率摆动的平均幅度越来越小,即频率靠近概率. (4)概率从数量上刻画了一个随机事件发生的可能性的大小.二、学以致用学以致用不仅是会做“单项选择题选对正确答案的概率是多少?”的问题,还要会解决生活中的实际问题。

例如:1、在保险公司里有2500个同一年龄的人参加了人寿保险,在一年里死亡的概率为0.002,每个人一年付12元保险费,而在死亡的时候家属可以领取由保险公司支付的2000元,问保险公司盈利的概率是多少,公司获利不少于10000的概率是多少?这样的问题咋一看很难知道保险公司是否盈利,但经过概率统计的知识一计算就可以得知公司是几乎必定盈利的。

2、李炎是一位喜欢调查研究的好学生,他对高三年级的12个班(每班50人)同学的生日作过一次调查,结果发现每班都有三位同学的生日相同,难道这是一种巧合吗?解析:本题即求50个同学中出现生日相同的机会有多大?我们知道,任意两个人的生日相同的可能性为1/365×1/365≈0.0000075,确实非常小,那么对于一个班而言,这种可能性是不是也不大呢?正面计算这种可能性的大小并不简单,因为要考虑可能有2个人生日相同,3个人生日相同,……有50个人生日相同的这些情况。

如果我们从反而来考察,即计算找不到俩个人生日相同的可能性,就可知道最少有两个人生日相同的可能性。

对于任意2个人,他们生日不同的可能性是(365/365)×(364/365)=365×364/3652对于任意3个人,他们中没有生日相同的可能性是365/365×364/365×363/365=365×364×363/3653;类似可得,对于50个人,找不到两个生日相同的可能性是365×364×363×…×316/36550≈0.03,因此,50个人中至少有两个人生日相同的机会达97%,这么大的可能性有点出乎意料,然而事实就是如此,高三年级的12个班级(每班50人)都有两位同学生日相同的事件发生,并非巧合。

初中概率与统计知识点总结

初中概率与统计知识点总结

1 2 3 4 5 6 7 8 9 10-环78 9 10初中概率与统计知识点总结一、统计的基础知识1、统计调查的两种基本形式:调查方式 概念 适用范围 备注 全面调查(普查) 对调查对象的全体进行调查; 零错误、零失误或对象较少 抽样调查 对调查对象的部分进行调查; 调查具有破坏性或对象较多 保证随机性 2.各基础统计量总体:所有考察对象的全体叫做总体。

个体:总体中每一个考察对象叫做个体。

样本:从总体中所抽取的一部分个体叫做总体的一个样本。

样本容量:样本中个体的数目叫做样本容量。

样本平均数:样本中所有个体的平均数叫做样本平均数。

总体平均数:总体中所有个体的平均数叫做总体平均数,在统计中,通常用样本平均数估计总体平均数。

(1)平均数的概念①平均数:一般地,如果有n 个数,,,,21n x x x 那么,)(121n x x x nx +++=叫做这n 个数的平均数,x 读作“x 拔”。

②加权平均数:如果n 个数中,1x 出现1f 次,2x 出现2f 次,…,k x 出现k f 次(这里n f f f k =++ 21),那么,根据平均数的定义,这n 个数的平均数可以表示为nf x f x f x x kk ++=2211,这样求得的平均数x 叫做加权平均数,其中k f f f ,,,21 叫做权。

(2)平均数的计算方法①定义法:当所给数据,,,,21n x x x 比较分散时,一般选用定义公式:)(121n x x x nx +++=②加权平均数法:当所给数据重复出现时,一般选用加权平均数公式:nf x f x f x x kk ++=2211,其中n f f f k =++ 21。

③新数据法:当所给数据都在某一常数a 的上下波动时,一般选用简化公式:a x x +='。

其中,常数a 通常取接近这组数据平均数的较“整”的数,a x x -=11',a x x -=22',…,a x x n n -='。

边际概率意义__概述说明以及解释

边际概率意义__概述说明以及解释

边际概率意义概述说明以及解释1. 引言1.1 概述边际概率是统计学中一个重要的概念,它描述了在多维随机变量中某个单一事件发生的概率。

通过研究各个事件之间的关联程度,边际概率提供了一种对个体事件发生概率的理解方式。

边际概率不仅在统计学领域有广泛应用,还在经济学和决策分析等领域具有重要意义。

1.2 文章结构本文将围绕边际概率的意义展开详细讨论,并介绍其在各个领域中的应用案例。

文章主要包括以下几个部分:引言、边际概率的定义、边际概率的应用领域、边际概率与条件概率的关系、概述说明、解释边际概率的意义和重要性以及结论等。

1.3 目的本文旨在对读者深入解释和阐述边际概率的意义,并通过实例展示其在不同领域中的应用。

通过本文阐述,读者可以更全面地理解并运用边际概率,同时也为进一步研究和探索边际概率提供了一些思路和建议。

2. 边际概率的意义:2.1 边际概率的定义:边际概率是概率论和统计学中一个重要的概念,它用于描述随机变量中某一事件发生的概率。

边际概率可以通过考察单独发生某个事件的情况下,其他事件发生与否对该事件出现概率的影响来进行计算。

具体而言,边际概率是指在给定某一随机变量下,其他随机变量的取值不确定时,该随机变量取某个特定值(或者落在某个特定区间)的概率。

2.2 边际概率的应用领域:边际概率在许多领域都有广泛应用。

在统计学中,它被用于描述单个观测值或变量之间的关系。

例如,在回归分析中,我们可以通过计算相关变量与因变量之间的边际效应来研究它们之间的关联程度。

此外,在经济学领域,边际分析也离不开边际概率的运用。

通过观察经济行为主体对商品数量和价格改变的反应,可以得到各种需求和供给函数模型,然后计算边际概率来评估各种决策对市场的影响。

2.3 边际概率与条件概率的关系:边际概率与条件概率密切相关。

在给定一组随机变量时,边际概率描述了其中一个随机变量的单独分布情况。

而条件概率则是当已知部分随机变量取值时,其他未知随机变量发生某一事件的概率。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档