谷氨酸发酵控制

合集下载

谷氨酸发酵过程控制—发酵培养基的灭菌

谷氨酸发酵过程控制—发酵培养基的灭菌
❖ 蒸汽一停,即由无菌空气充入保持罐内正压。 发酵罐空消、实消的方法及步骤: 空消 → 进料及升温 → 实消
优点: ❖ 保留较多的营养质量 ❖ 容易放大 ❖ 较易自动控制; ❖ 糖受蒸汽的影响较少; ❖ 缩短灭菌周期; ❖ 在某些情况下,可使发酵罐的腐蚀减少; ❖ 发酵罐利用率高; ❖ 蒸汽负荷均匀。 缺点: ❖ 设备比较复杂,投资较大。
发酵罐的空消与实消
发酵罐使用遵循的原则: ❖ 通蒸汽前先封闭所有阀门。 ❖ 粗过滤器不空消也不实消,要按期处理,所以必需封
夹套加
保温阶
冷却阶



t
共同加 热
发酵罐与培养基的灭菌(空消和实消)
①培养基分批灭菌法 优点:不需要专门的灭菌设备,投资少,对设备 要求简单,对蒸汽的要求也比较低,灭菌效果可 靠。
分批灭菌是中小型生产工厂经常采用的一种培养 基灭菌方法。
发酵罐与培养基的灭菌(空消和实消)
②培养基连续灭菌 在发酵行业里也称“连消法”。此法只在大规模的
闭通向粗过滤器的阀门。 ❖ 活蒸汽,灭过头,即尾汽不能关死,要保证有活蒸汽
放出,但不能太大,以免分压。 ❖ 罐体排气口排汽,并保持罐内正压。 ❖ 空气过滤系统只空消,不实消,以免罐中物料冲入过
滤器内。但空消一结束,即要通入无菌空气吹干管路 并保压,避免染菌。
❖ 进蒸汽时顺着蒸汽管路开阀门,结束时逆着进路关阀 门,先开尾阀后开主阀,结束时先关主阀后关尾阀。
子情境:谷氨酸发酵条件控制-发酵培养基的灭菌
通过引导文的阅读,请完成以下问题
❖ 发酵罐空消前需要进行什么准备工作? ❖ 发酵培养基的灭菌(实消)有几种方法? ❖ 培养基连消法的优缺点? ❖ 培养基分批灭菌的优缺点?
发酵罐与培养基的灭菌(空消和实消)

4谷氨酸发酵机制

4谷氨酸发酵机制


硫是含硫氨基酸的组成成分,构成酶的活性基团。培养基 中的硫酸镁供应的硫已充足,不需另加。
3. 钾盐
许多酶的激活剂,钾盐少长菌体,钾盐足够产谷氨酸。 谷氨酸发酵产物生成期需要的钾盐比菌体生长期高。
菌体生长期需硫酸钾量约为0.1g/L,谷氨酸生成期需硫酸钾量
为0.2-1.0g/L.
4. 微量元素
添加方式:
铵盐、液氨等可采取流加方法,液氨作用快,采取连续流加, 尿素少量多次分批流加。 用硫酸铵等生理酸性盐为氮源时,由于铵离子被利用而残留 SO42-等酸根,使PH下降,需在培养基中加入碳酸钙以自动中 和pH。但添加碳酸钙易形成污染,生产上一般不用此法。
三、无机盐

功能
构成菌体成分、酶的组成成分、酶的激活剂或抑制剂、


斜面菌种的培养 目的:纯菌生长繁殖 措施:多含有机氮,不含或少含糖 一级种子培养
目的:大量繁殖活力强的菌体 措施:少含糖分,多含有机氮,培养条件有利于长菌。

二级种子培养
目的:获得发酵所需的足够数量的菌体
为发酵培养基的配制原则
供给菌体生长繁殖和谷氨酸生产所需要的适量的营养和能源 原料来源丰富,价格便宜,发酵周期短,对产物提取无妨碍等。
酶活
改变生物合成途径,使代谢产物发生变化
改变发酵液物理性质 影响菌种对营养物的分解与吸收
5.
6.
不同微生物的最适生长温度不同
同一种微生物,菌体生长和产物合成的最适温度不一定相同。

谷氨酸生产菌的最适生长温度为30-34℃,T6-13菌 株比较耐高温,斜面、一级、二级种子和发酵开始 温度可选用33-34 ℃,生产谷氨酸的最适温度为3537℃. 谷氨酸温度敏感菌株1021最适生长温度是30 ℃, 最适产谷氨酸温度38 ℃,发酵过程中采用分段控制。

4谷氨酸发酵控制

4谷氨酸发酵控制

由于各种微生物所具有的酶系不同,所 能利用的碳源往往是不同的。目前所发现的 谷氨酸产生菌均不能直接利用淀粉,只有利 用葡萄糖、果糖、蔗糖和麦芽糖等单糖或双 糖,有些菌种能够利用醋酸、乙醇、正烷烃 等。由于国内绝大多数味精厂采用的碳源为 淀粉水解糖,因此这里主要介绍淀粉水解糖 作业碳源的发酵。
培养基中糖浓度对谷氨酸发酵有很大影 响。在一定范围内,谷氨酸产酸率随糖浓 度增加而增加,但当糖浓度过高时,由于 渗透压增大,对菌体生长和发酵均不利, 当工艺条件配合不当时,糖酸转化率相当 低。同时培养基浓度大,氧溶解的阻力也 增大,影响供氧效率。
由于双酶法(高温淀粉酶液化、糖化 酶水解)对原料中生物素等营养因子破坏 很少,因此采用双酶法制糖时,如果采用 生物素亚适量工艺进行谷氨酸发酵,尽量 采用精制淀粉。
4.1.2 氮源
氮源是合成菌体蛋白质、核酸等含氮物 质和合成谷氨酸氨基的来源。同时,在发酵 过程中一部分氨用于调节发酵液pH,形成谷 氨酸铵。因此,谷氨酸发酵需要的氮源比一 般的发酵工业要高,一般发酵工业碳氮比为 100: 0.2~2.0,而谷氨酸发酵的碳氮比为 100: 15~30。
磷酸盐对谷氨酸发酵影响很大。当磷 酸盐偏高时,菌体代谢转向合成缬氨酸; 但如磷酸盐过低,菌体生长也不好,造成 延长发酵时间,影响谷氨酸的合成。
②硫酸镁 Mg2+许多重要酶(如己糖磷酸化酶、异柠 檬酸脱氢酶、羧化酶等)的激活剂。如果Mg2+ 含量太少,就会影响其底物的氧化。一般革 兰氏阳性菌对Mg2+的最低要求为25mg/L;革 兰氏阴性菌为4~5mg/L。 MgSO4· 2O中含Mg2+ 9.87%,发酵培 7H 养基中添加0.5g/L MgSO4· 2O时,Mg2+浓 7H 度约为50mg/L。

谷氨酸发酵过程控制—谷氨酸棒杆菌三角瓶液体培养

谷氨酸发酵过程控制—谷氨酸棒杆菌三角瓶液体培养

2、培养条件 ①温度 种子培养应选择最适温度。 ②通气量 足够的通气量可以提高种子质量。
3、接种量 接种量的大小决定于生产菌种在发酵罐中生长繁
殖的速度。接种量过大会引起溶氧不足,影响产物合 成;接种量过小会延长培养时间,降低发酵罐的生产 率。
通 常 接 种 量 : 细 菌 1-5% , 酵 母 菌 5-10% , 霉 菌 715%,有时20-25%。
请阅读引导文,并回答以下问题:
1、由斜面接种至液体培养基,采用什么接种工具? 2、无菌操作接种应该在什么环境下进行? 3、谷氨酸棒杆菌摇瓶种子培养条件和培养时间?
❖ 由斜面接种至液体培养基,采用的接种工具:接种环。 ❖ 接种环境:必须在一个无杂菌污染的环境中进行严格的
无菌操作。
摇瓶培养条件和时间: 培养时间12h; 设置摇床转速100rpm; 培养温度33-34℃。
谷氨酸发酵条件控制-谷氨酸棒杆菌三角瓶液体培养
谷氨酸的生产工艺流程: 一级种子扩大培养
摇瓶培养(三角瓶培养)的目的:
产生大量繁殖活力强的菌体,培养基组分应以少含 糖分,多含有机氮为主,培养条件有利于长菌。
1、培养基 种子培养基要满足以下要求: (1)营养成分适合种子培养的需要; (2)选择有利于孢子发芽和菌体生长的培养基; (3)营养上要易于被菌体直接吸收和利用; (4)营养成分要适当丰富和完全,氮源和维生素 含量要高; (5)营养成分要尽可能与发酵培

氨基酸类药物的发酵生产—谷氨酸的发酵生产

氨基酸类药物的发酵生产—谷氨酸的发酵生产

生物素的来源:氨基酸生产上可以作为生物素来源的原料 有玉米浆、麸皮水解液、糖蜜及酵母水解液等,通常选取 几种混合使用。例如,许多工厂选择纯生物素、玉米浆、 糖蜜这三种物质来配制培养基。各种原料来源及加工工艺 不同,所含生物素的量不同。玉米浆含生物素500μg/kg, 麸皮含生物素300μg/kg,甘蔗糖蜜含生物素1500μg/kg。
操作简单 周期长,占地面积大。
直接常温等电点法工艺流程
发酵液
起晶中和点(pH4-4.5) 育晶(2h)
盐酸
菌体及细小的 谷氨酸晶体
等电点搅拌pH3-3.22 静置沉降4-6h 离心分离
成品
母液
干燥
湿谷氨酸晶体
2、离子交换法
可用阳离子交换树脂来提取吸附在树脂上的谷氨 酸阳离子,并可用热碱液洗脱下来,收集谷氨酸 洗脱流分,经冷却、加盐酸调pH 3.0~3.2进行结 晶,之后再用离心机分离即可得谷呈棒形或短杆形; 革兰氏阳性菌,无鞭毛,无芽孢;不能运动; 需氧性的微生物; 生物素缺陷型; 脲酶强阳性; 不分解淀粉、纤维素、油脂、酪蛋白、明胶等;
发酵中菌体发生明显形态变化,同时细胞膜渗透性改变; 二氧化碳固定反应酶系强; 异柠檬酸裂解酶活力欠缺或微弱,乙醛酸循环弱; α-酮戊二酸氧化能力微弱; 柠檬酸合成酶、乌头酸酶、异柠檬酸脱氢酶、谷氨酸脱氢酶活
有机氮丰富有利于长菌,因此谷氨酸发酵前期要 求一定量的有机氮,通常在基础培养基中加入适 量的有机氮,在发酵过程中流加尿素、液氨或氨 水来补充无机氮。
(3)无机盐
磷酸盐 :工业生产上可用K2HPO4·3H2O、KH2PO4、 Na2HPO4·12H2O、NaH2PO4·2H2O等磷酸盐,也可用磷酸。 过高:代谢转向合成缬氨酸。 过低:菌体生长缓慢。

谷氨酸棒杆菌发酵工艺控制

谷氨酸棒杆菌发酵工艺控制

种子培养基:每升含葡萄糖60g,KH2PO4 2.5g , MgSO4.7H2O 0.5g (NH4)2SO4 5g ,玉米浆30g ,pH 7.2 115℃ 20min发酵培养基:每升含葡萄糖70g,KH2PO4 2.5g, K2HPO4 2.5g, MgSO4.7H2O 0.5g, (NH4)2SO4 25g ,玉米浆45g ,pH7.0 (四)罐上的工艺控制1)预热:打开夹套蒸汽进汽阀,微开排污阀,将罐温加热至100℃2)灭菌:关闭夹套蒸汽进汽阀,开启蒸汽进罐阀,使罐温升至121℃;打开空气管路蒸汽阀门对空气过滤器进行灭菌;调整蒸汽进罐阀、排气阀的开度使罐压保持在0.12MPa左右(如此时温度与121℃相差较大,则可用121℃重新标定罐内温度);保持30min;关闭所有蒸汽阀门,让罐压下降至0.01MPa,打开空气进气阀,引无菌空气保压(0.03~0.05MPa),确保罐压小于过滤器空气压。

3)发酵准备阶段:开启冷却模式,开启进水阀,快速降温至28℃;退出冷却模式,开启发酵模式,保温运作;开启搅拌器(100rpm),如果排气阀没有过度的逃液,则可加大搅拌速率,或加大空气进气量。

4)发酵:采用火焰法接种,调节排气阀、进气阀开度,还有搅拌器速率,在不过分逃液的前提下,保持较高的DO值;发酵过程中微开取样管路(蒸汽进罐阀紧闭)保持较小的蒸汽排出(时刻保持取样管路无菌)。

5)取样:关闭蒸汽排出阀,关闭蒸汽进汽阀,开启蒸汽排出阀,开启蒸汽进罐阀,并调节该两阀门的开度使发酵液以适宜的流量流出,用三角瓶接约20mL;关闭蒸汽进罐阀门,开启蒸汽进汽阀。

6)放罐:关闭空气进气管路,开启夹套加热管路,关闭冷凝水管路,关闭蒸汽排出阀,引蒸汽进罐,待罐温升至100℃后,计时3min;关闭蒸汽进罐阀,关闭蒸汽进汽阀;开启空气进气管路,开启蒸汽进罐阀,利用压强将液体放出;放完后,关闭空气进气管路;通自来水按以上步骤洗罐3次;通入自来水,待下次发酵开始。

谷氨酸发酵过程控制—发酵罐取样操作

谷氨酸发酵过程控制—发酵罐取样操作

❖ 二、取样操作 ❖ 1.先把发酵罐取样口胶管上的止血钳松开 ❖ 2.同时打开取样管上的阀门,让发酵罐里的发酵液把滞留在
取样管里的发酵液冲尽。
❖ 3.关住取样阀门并把取样管上的胶管夹住。 ❖ 4.点火焰并移到取样管下方, 把其上的胶管拔出, 火焰完全封
住取样管出口。
❖ 5.把取样瓶上的胶管(其中任何一条)用无菌操作的方法套到 取样管上, 把火焰移开。
数据记录
发酵时间h 0
6
12 18
24
30 36 42
温度℃
pH
通风量L/min 溶氧量%
生物量g/L
谷氨酸的生 成量
残糖量
补料量
备注
子情境:谷氨酸发酵条件控制-发酵罐取样操作
为什么在发酵 过程中需要取 样呢?
取样后需要检 测那些指标呢?
❖ 取样方法: ❖ 一、材料准备 ❖ 1 .“短管” 准备: 外径Φ12 的优质胶管(医药公司售)若干条。 ❖ 每条长15 公分左右 ❖ 每条两头都各用一层布和一层牛皮纸包扎好灾菌备用。(如
图l )
❖ 2 .“采样瓶” 准备: 用250 m L三角烧瓶若干个, 瓶塞用优质 胶塞, 其上打两个Φ8 的孔, 并各插进Φ10 的玻璃管(每根6-8 厘米)玻管上套外径是Φ12 的优质胶管, 胶管的另一端则用一 层纱布和一层牛皮纸包好。灭菌备用(如图2 )
❖ 3.发酵罐的取样口准备: 改用Φ10的铁管或铜管, 套上外径 Φ12 的优质胶管。在实消后, 把取样阀关紧, 同时要把其上 的胶管用止血钳夹紧(如图3 )
❖ 9.第二次取样按照1-8 进行。
从发酵罐中取出的 样品该如何处理呢?
❖ 一、发酵液的处理 ❖ ①镜检:每隔6小时检测菌体的生长状况,要求无杂菌和噬

谷氨酸发酵的因素级控制

谷氨酸发酵的因素级控制

pH发生变化的主要原因是培养基中营养 成分的利用和代谢产物的积累。 如当谷氨酸棒状杆菌利用糖类物质不断 生成谷氨酸时,培养液的pH就会下降。 而碱性物质的消耗和氨的生成等则会导 致培养液的pH上升。
pH:前期pH(7.5~8.0),中后期pH7.0~7.6。 通过采用流加尿素,氨水或液氨等办法调节 pH,补充氮源。
pH值 值
1) pH值对谷氨酸产生菌生长的影响
谷氨酸产生菌象其它微生物一样, 有最适生长 pH值范围, 当高于或低于这个值时:(1) 菌体内 的酶受到抑制, 菌体新陈代谢受阻, 生长停滞; (2) 菌体细胞膜所带电荷发生改变, 从而改变 细胞膜的渗透性, 影响菌体对营养的吸收和代 谢产物的排出; (3) 影响培养基组分和中间代 谢产物的离解, 从而影响菌体对这些物质的利 用。
1.1氨酸生产菌种
谷氨酸生产菌为谷氨酸棒杆菌、乳糖发 酵短杆菌、黄色短杆菌。革兰氏阳性菌, 菌体为球形、短杆至棒状,不同形状芽 孢,没有鞭毛,不能运行,需要生物素 作为生长因子,在通气条件下才能生产 谷氨酸。
1.2生产原料
玉米、小麦、甘薯、大米等,其中 甘薯和淀粉最为常用。大米进行浸泡磨 浆,再调成15°Bé,调PH6.0,加细菌 a-淀粉酶在85℃进行液化,液化30min 后,加糖化酶在60℃条件下糖化24h, 过滤后可供配制培养基。
生物素亚适量时,菌体代谢失调, 细胞膜通透性增强,细胞内的谷氨酸 能及时排出,有利于谷氨酸的积累, 发酵液内由菌体细胞排除谷氨酸能 达总氨基酸92%左右。因此,要根据 发酵时期来控制生物素的含量。
供氧
过量:NADPH的再氧化能力会加强,使 α-KGA的还原氨基化受到影响,不利于 GA 的生成。 供氧不足:积累大量的乳酸,使发酵液 的pH值下降,不利于GA的产生,同时, 一部分葡萄糖转成了乳酸,影响了糖酸 转化率,降低了产物的提出率。

谷氨酸发酵中的几个关键问题

谷氨酸发酵中的几个关键问题
• 三羧酸循环苹果酸脱氢生成草酰乙酸, ,再生.
• 伍德-沃克曼反应Wood-Werkman reaction(丙 酮酸,草酰乙酸,异养,原生动物) 二氧化碳被固定于丙酮酸生成草酰乙酸的反应。
• 两个碳原子以CO2的形式离开循环。循环最后草 酰乙酸会再次生成,再次从乙酰辅酶A中得到两 个碳原子。就是说,一分子六碳化合物(柠檬酸) 经过多部反应分解成一分子四碳化合物(草酰乙 酸)。草酰乙酸会在接下来的反应中遵循同样的 途径获得两个碳原子,再次成为柠檬酸。
2、发酵温度适中产谷氨酸;温度过高容易积累乳酸。 3、发酵培养基中生物素亚适量,积累谷氨酸;生物素不足,菌体生长
不良;如过量则积累琥珀酸或乳酸;同时菌体大量繁殖。 4、磷酸盐适量产谷氨酸,过量则积累缬氨酸。
5、NH4+ 适量产谷氨酸,ቤተ መጻሕፍቲ ባይዱ量产谷氨酰胺,如不足则积累 一酮戊二酸。
6、PH中性和微碱性产谷氨酸;酸性则积累N一乙酰谷氨酰胺和谷氨酰胺。
6
五、以葡萄糖为原料,生物合成谷氨酸,在菌体生长期采用何循环提供 生长所需物质?在谷氨酸生成期,采用何循环积累谷氨酸?
1. 谷氨酸生产菌株为缺陷型,生产过程分为菌体生长期和 谷氨酸积累期。
2. 此代谢途径至少有16步酶促反应。
3. 在谷氨酸发酵的菌体生长期,由于三羧酸循环中的缺陷 (丧失-酮戊二酸脱氢酶氧化能力或氧化能力微弱),谷氨 酸产生菌采用乙醛酸循环途径进行代谢,提供四碳二羧酸及 菌体合成所需的中间产物等。
3、随着异常形态逐渐增多,产酸速度加快。到发酵16h~ 20h,生物素基本耗完,完成了谷氨酸非积累型细胞向 谷氨酸积累型细胞的转变,除去了渗透的障碍物,OD 值稳定,产谷氨酸量直线上升,直至发酵结束。
3
三、谷氨酸发酵条件控制不当。代谢产物会有什么变化?

谷氨酸发酵影响因素及控制

谷氨酸发酵影响因素及控制
发酵液中还原糖的含量一般应控制在10%~13%。
影响因素5:碳氮比
氮源是合成菌体细胞蛋白质、核酸和谷氨酸的氨 基来源,大约85%的氮源被用于合成谷氨酸,另外 15%用于合成菌体。
谷氨酸发酵需要的氮源比一般发酵工业多得多, 一般发酵工业碳氮比为100:0.2~2.0,谷氨酸发 酵的碳氮比为100:15~21。
谷氨酸发酵是典型的代谢控制发酵 发酵过程中,谷氨酸的大量积累不是
由于生物合成途径的特异,而是菌体代谢 调节控制和细胞膜通透性的特异调节以及 发酵条件的适合。
整个发酵过程可简单的分为2个阶段: 第1阶段是菌体生长阶段; 第2阶段是产酸阶段,谷氨酸得以大量积累

第二节 影响谷氨酸产量的因素及发酵条件控制
NH4+ α -酮戊二酸(缺乏)←→谷氨酸(适量)←→谷氨酰胺(过量 )
pH N-乙酰谷氨酰胺(酸性)←→谷氨酸(中性或微碱性)
磷酸 缬氨酸(高浓度)←→谷氨酸
生物素 乳酸或琥珀酸(丰富)←→谷氨酸(缺乏)
谷氨酸发酵过程中,生产菌种的特性、生 物素、发酵温度、pH值、通风和发酵产生的泡 沫都是影响谷氨酸积累的主要因素。在实际生 产中,只有针对存在的问题,严格控制工艺条
一般在菌体生长期碳氮比应大一些氮低在碳源和氮源的比为31时谷氨酸棒状杆菌会大量合成谷氨酸但当碳源和氮源的比为41时谷氨酸棒状杆菌只生长而不合成谷氨酸谷氨酸发酵前期012h是菌体大量繁殖阶段在此阶段菌体利用培养基中的营养物质来合成核酸蛋白质等供菌体繁殖用而控制这些合成反应的最适温度均在3032
谷氨酸发酵的影响因素及控制
影响因素5:碳氮比
控制 ??
在谷氨酸发酵过程中,应正确控制碳氮比。
一般在菌体生长期碳氮比应大一些(氮低), 在产酸期,碳氮比应小些(氮高)。

谷氨酸发酵过程控制—谷氨酸棒杆菌液体培养基的配制

谷氨酸发酵过程控制—谷氨酸棒杆菌液体培养基的配制

请阅读引导文,并回答以下问题:
1、谷氨酸棒杆菌种子培养基(一级扩大培养)的配方? 2、配制200ml液体种子培养液,计算各营养成分的添加量? 3、根据现有条件,怎样调节培养基pH? 4、500ml三角瓶的装液量是多少? 5、高压蒸汽灭菌的条件是什么?
谷氨酸液体种子培养基的配方:
葡萄糖 2.5%,尿素 0.5%,硫酸镁 0.04%,磷酸氢二 钾 0.1%,玉米浆 2.5%,pH7.0。
种子的扩大培养
2、一级种子培养(摇瓶培养) 一级种子培养的目的在于产生大量繁殖活力强的菌体 ,培养基组成应以少含糖分,多含有机氮为主,培养 条件从而有利于长菌。
种子的扩大培养
3、二级种子培养 为了获得发酵所需要的足够数量的菌体,在一级种子 培养的基础上进而扩大到种子罐的二级种子培养。种 子罐容积大小取决于发酵罐大小和种量比例。
谷氨酸发酵条件控制谷氨酸棒杆菌液体培养基的配制
ห้องสมุดไป่ตู้
谷氨酸的生产工艺流程: 一级种子扩大培养
种子扩大培养:
种子扩大培养是指将保存在砂土管、冷冻干燥管中处 休眠状态的生产菌种接入试管斜面活化后,再经过扁瓶 或摇瓶及种子罐逐级扩大培养,最终获得一定数量和质 量的纯种过程。这些纯种培养物称为种子。
种子的扩大培养
装液量:在一定大小体积的三角瓶中装入一定量的培养 基(一般为瓶体积的10%-20%)。 那么500ml三角瓶中装液量:100ml。
高压蒸汽灭菌的条件:121℃,15min。
种子扩大培养的任务:
工业生产规模的增大→需要种子就增多→种子的扩 大培养 种子扩大培养的任务,不但要得到纯而壮的培养物, 还要获得活力旺盛、性能稳定、接种数量足够的、纯 的培养物。
种子的扩大培养

第四章谷氨酸发酵过程控制

第四章谷氨酸发酵过程控制

5.工艺控制 (1)接种量4~5% (2)发酵4h添加0.2%吐温-60 (3)pH6.5左右 (4)温度 0~12h,30~33℃; 12~24h,33~34 ℃; 24~26h,34~35 ℃ (5)通风比1:0.3
(二)甘蔗糖蜜添加青霉素流加糖发酵工艺
1.菌株:S9114、F415 2.一级种子培养基: 葡萄糖2.5~3.5%,磷酸氢二钾0.15~0.2%,玉米浆 2.5%,酵母膏0.5%,硫酸镁0.04~0.05%,尿素 0.5%,Mn2+、Fe3+各2mg/L,pH6.7~7.0 3.二级或三级种子培养基 甘蔗糖蜜3~4%,磷酸氢二钾0.15%,硫酸镁0.04%, 尿素0.5%,pH6.7~7.0 4.发酵培养基 甘蔗糖蜜8%,磷酸0.075~0.09%,氯化钾0.08% , 硫酸镁0.04~0.06%,尿素0.5%,消泡剂 0.03~0.04%,pH7.2~7.5
二、pH值对谷氨酸发酵的影响 1.pH值对谷氨酸发酵的影响 (1)酶的活性 (2)细胞膜所带电荷 (3)物质的离解 (4)代谢途径
2.发酵过程pH 值的变化及控制 pHቤተ መጻሕፍቲ ባይዱ变化反应谷氨酸发酵的重要指标 控制: 流加尿素、液氨、添加碳酸钙法。
三、供氧对谷氨酸发酵的影响 1.溶解氧与谷氨酸的需氧量 葡萄糖氧化的需氧量: 彻底氧化1:6 合成代谢产物:1:1.9 必须连续向发酵液通入氧。
3. 钾盐 酶的激活剂 钾含量低长菌体,多产谷氨酸。 4. 微量元素 四、生长因子
(1) 生物素 (2) 维生素B1
第二节 培养条件对谷氨酸发酵的影响 一、温度对谷氨酸发酵的影响 1.温度影响细胞中酶的活性,而影响代谢 速度、途径方向 2.酶是蛋白质,受热容易失活,温度愈高 失活愈快,菌体易衰老,影响发酵液的性 质来间接影响发酵。 3.影响基质和氧的溶解从而影响发酵 4.微生物最适的生长温度范围 谷氨酸产生菌:最适生长温度30~34℃ 最适产酸温度35~37℃

谷氨酸发酵主要影响因素及其控制

谷氨酸发酵主要影响因素及其控制

谷氨酸发酵的主要影响因素包括微生物、营养物质、pH值、温度和压力等。 首先,微生物是谷氨酸发酵的关键因素。不同种类的微生物具有不同的生长特性 和代谢途径,因此选择适合的微生物种类对谷氨酸发酵至关重要。其次,营养物 质是微生物生长和谷氨酸合成的基础。碳源、氮源、无机盐等营养成分的种类和 浓度都会影响发酵过程。
谷氨酸发酵主要影响因素及其 控制
基本内容
谷氨酸发酵是一种广泛应用于食品、医药和化工等领域的重要生物发酵过程。 在此过程中,微生物利用各种营养物质进行生长繁殖,并产生谷氨酸。了解谷氨 酸发酵的主要影响因素及其控制方法对于提高发酵效率、优化工艺具有重要意义。 本次演示将就谷氨酸发酵的影响因素及控制方法进行详细论述。
参考内容
基本内容
谷氨酸发酵是一种重要的生物过程,用于生产谷氨酸盐,如谷氨酸钠(味精 的主要成分)。在这个过程中,微生物,主要是谷氨酸棒状杆菌,利用糖或其他 碳水化合物作为碳源,并产生谷氨酸作为主要产物。这个过程需要精密的设备管 理以确保效率和产量。本次演示将讨论谷氨酸发酵设备管理的现状和发展趋势。
pH值是调节微生物生长和代谢的重要因素,不同pH值条件下,微生物的生长 速率和谷氨酸的合成量会有所不同。此外,温度和压力也会影响微生物的生长和 代谢,进而影响谷氨酸发酵过程。
针对上述影响因素,可采取以下控制方法以提高谷氨酸发酵效率:
1、优化工艺:通过调整培养基成分、优化发酵条件,提高谷氨酸产量。例 如,可以通过优化碳源、氮源的比例,为微生物提供最佳的生长环境;通过调节 pH值,控制微生物生长和谷氨酸合成;通过控制温度和压力,维持良好的发酵环 境。
3、清洁与卫生管理
谷氨酸发酵设备的清洁和卫生管理对于产品的质量和设备的运行至关重要。 为此,大多数企业都采用先进的清洁和消毒系统,以确保设备和管道的清洁,防 止微生物污染。

谷氨酸生产的培养基和发酵工艺控制的主要技术参数

谷氨酸生产的培养基和发酵工艺控制的主要技术参数

谷氨酸生产的培养基和发酵工艺控制的主要技术参数摘要:谷氨酸非人体所必需氨基酸,但它参与许多代谢过程,因而具有较高的营养价值,谷氨酸能与血氨结合生成谷酰胺,接触组织代谢过程中所产生的氨毒害作用,另外谷氨酸单钠盐有很强烈的鲜味,是重要的调味品。

关键词:谷氨酸发酵影响因素工艺控制谷氨酸发酵主要原料有淀粉、甘蔗蜜糖、甜菜蜜糖等,国内多以淀粉为原料生产谷氨酸。

谷氨可通过谷氨酸生产菌在代谢过程中合成,这是一个复杂的过程,第一步是将原料淀粉水解成糖,即糖化作用,第二步是将糖在谷氨酸菌的作用下发酵成谷氨酸。

由葡萄糖生物合成谷氨酸的代谢途径:一、谷氨酸的生物合成途径主要有EMP途径、HM途径、TCA途径、乙醛酸循环、伍德—沃克反应等。

谷氨酸的生物合成途径大致是:葡萄糖经糖酵解(EMP途径)和己糖磷酸支路(HMP途径)生成丙酮酸,再氧化成乙酰辅酶A(乙酰COA),然后进入三羧酸循环,生成α-酮戊二酸。

α-酮戊二酸在谷氨酸脱氢酶的催化及有NH4+存在的条件下,生成谷氨酸。

当生物素缺乏时,菌种生长十分缓慢;当生物素过量时,则转为乳酸发酵。

因此,一般将生物素控制在亚适量条件下,才能得到高产量的谷氨酸。

二、谷氨酸生产菌的生化特征有:1、有催化固定CO2的二羧酸合成酶;2、a—酮戊二酸脱氢酶的活性很弱,这样有利于a—酮戊二酸的蓄积;3、异柠檬酸脱氢酶活力很强,而异柠檬酸裂解酶的活性不能太强,这样有利于谷氨酸前提物a—酮戊二酸的合成,满足合成谷氨酸的需要;4、谷氨酸脱氢酶的活力高,这样有利于谷氨酸的合成;5、谷氨酸生产菌经呼吸链氧化的能力要求弱;6、菌体本身进一步分解转化和利用谷氨酸的能力低下,利于谷氨酸的蓄积。

三、谷氨酸发酵工艺谷氨酸生产菌能在菌体外大量积累谷氨酸是由于菌体代谢调节处于异常状态,只有具特异性生理特征的菌体才能大量积累谷氨酸,这样的菌体对环境条件是敏感。

谷氨酸发酵是建立在容易变动的代谢平衡上,是受多种条件支配的。

第四章谷氨酸发酵的代谢与控制

第四章谷氨酸发酵的代谢与控制

第四章谷氨酸发酵的代谢与控制⏹氨基酸是生物体不可缺少的营养成分之一,因此,氨基酸的生产和应用受到了人们的重视。

⏹氨基酸发酵是典型的代谢控制发酵,也就是说发酵的关键在于其控制机制是否能被解除,能否打破微生物的正常代谢调节,人为地控制发酵。

⏹谷氨酸参与许多代谢过程,具有较高的营养价值。

谷氨酸发酵目前研究得较为透彻。

4.1谷氨酸合成途径谷氨酸产生菌菌体内形成谷氨酸的方式:(1)还原氨基化作用NH4+和供氢体存在的条件下,α-酮戊二酸在谷氨酸脱氢酶的催化下形成谷氨酸(2)氨基转移作用在氨基转移酶的催化作用下,除甘氨酸外,任何一种氨基酸都可与α-酮戊二酸作用,使α-酮戊二酸转化成谷氨酸。

4.2谷氨酸生物合成的调节机制4.2.1 优先合成与反馈调节4.2.2生物素的调节⏹生物素是羧化和转羧化反应的辅酶,在代谢过程中起CO2载体的作用。

⏹生物素充足: 糖酵解速度显著提高,打破了糖降解速度与丙酮酸氧化速度之间的平衡,丙酮酸趋于生成乳酸的反应,因而会引起乳酸的溢出。

生物素限量:丙酮酸的有氧氧化减弱,则乙酰辅酶A的生成量减少,乙酸浓度降低,琥珀酸氧化能力降低而积累。

导致乙醛酸循环基本上封闭。

4.3谷氨酸发酵的代谢控制育种⏹菌体生长期:为获得能量和产生生物合成反应所需的中间产物,需要异柠檬酸裂解酶反应,走乙醛酸循环途径。

⏹谷氨酸生成期:为了积累谷氨酸,最好没有异柠檬酸裂解酶反应,封闭乙醛酸循环。

⏹依据谷氨酸生物合成途径及代谢调节机制,谷氨酸发酵的代谢控制育种可从如下五个方面着手:进、通、节、堵、出。

4.3.1 “进”(1)选育耐高渗透压的菌株1)耐高糖选在20-30%葡萄糖的平板上生长好的突变株2)耐高谷氨酸选育在15-20%谷氨酸的平板上生长好的突变株3)耐高糖、高谷氨酸选育在20%葡萄糖加15%谷氨酸的平板上生长好的突变株。

4.3.2“通”⏹选育解除α-酮戊二酸到谷氨酸反馈调节的突变株1)选育抗谷氨酸结构类似物突变株,如抗谷氨酸氧肟酸等2)选育抗谷氨酰胺的突变株⏹选育强化CO2固定反应的突变株强化二氧化碳固定反应能提高菌种的产酸率1)选育以琥珀酸或苹果酸为唯一碳源的培养基上生长快、大的菌株2)选育氟丙酮酸敏感性突变株⏹选育强化三羧酸循环中从柠檬酸到α-酮戊二酸代谢的突变株1)选育抗氟乙酸、氟化钠、氟柠檬酸等突变株2)选育强化能量代谢的突变株抗呼吸链抑制剂突变株,如抗丙二酸的突变株抗氧化磷酸化解偶联剂突变株,如抗2,4-二硝基苯酚的突变株。

谷氨酸发酵过程控制—谷氨酸棒杆菌的种子无菌检测

谷氨酸发酵过程控制—谷氨酸棒杆菌的种子无菌检测

2、平板划线检查法 操作过程:倒平板→空培养→待测样品划线→培养观察 优点:能检出更少的杂菌,即灵敏度高 缺点:需要较长时间的培养(一般要过夜),操作较
繁琐。
3、酚红肉汤培养检查法 操作步骤: 无菌肉汤培养基空培养→接入种子→培养过夜 优点:能检出更少的杂菌,即结果较为准确 缺点:需要较长时间的培养(一般要过夜),操作较
革兰氏染色步骤:初染、媒染、脱色、复染等四个步骤。 1)涂片固定。 2)草酸铵结晶紫染1分钟。 3)自来水冲洗。 4)加碘液覆盖涂面染约1分钟。 5)水洗,用吸水纸吸去水分。 6)加95%酒精数滴,并轻轻摇动进行脱色,30秒后水洗, 吸去水分。 7)番红染色液(稀)染2分钟后,自来水冲洗。 8)干燥,镜检。
无杂菌检查方法: ❖ 显微镜检查法 ❖ 平板划线培养检查法 ❖ 肉汤培养检查法
1、显微镜观察法 ❖ 对于细菌,通常用革兰氏染色法,染色后在高倍显
微镜下观察。 ❖ 对于霉菌、酵母发酵,先用低倍镜观察生产菌的
特征,然后再用高倍镜观察有否杂菌存在。
优点:简便、快速,能及时发现杂菌
缺点:不易检查早期杂菌
谷氨酸发酵条件控制谷氨酸棒杆菌摇瓶种子无菌检测
一、谷氨酸棒杆菌一级种子质量要求 种龄:12h,pH值:6.4±0.1 光密度:净增OD值0.5以上 残糖:0.5%以下 无菌检查:(-) 噬菌体检查:(-) 镜检:菌体生长均匀、粗壮,排列整齐 革兰氏阳性反应。
能力。因此首先必须保证生产菌种的稳定性, 其次是提供种子培养的适宜环境保证无杂菌侵入,以获 得优良种子。因此在生产过程中通常进行以下两项检查:
(1)菌种稳定性的检查
(2)无(杂菌)检查
种子无杂菌检查的意义:
发酵过程通常是微生物纯种培养过程,培养过程中 只允许特定的微生物生长,一旦发酵过程有其他微 生物存在,就视为染菌,染菌严重会影响目的菌的 生长,导致发酵失败。

发酵技术中的PH控制

发酵技术中的PH控制

发酵技术中的PH控制1 pH值对菌体生长和代谢产物形成的影响pH表示溶液氢离子浓度的负对数,纯水的[H+]浓度是10-7mol/L,因此pH为7,pH >7呈碱性,pH<7呈酸性,pH值差1时,其[H+]浓度就相差10倍。

最高、最适、最低三基点,主要是影响微生物活动环境的离子强度、细胞膜的透性及膜上的带电性和氧化-还原电位、酶活性。

❖不同种类微生物,对pH要求不同;❖酵母:pH 3.8-6.0❖细菌:pH 6.5-7.5❖霉菌:pH 4.0-5.8❖放线菌:pH 6.5-8.0同种微生物对pH变化的反映不同。

如,石油代蜡酵母pH 3.5-5.0 生长良好,不易染菌;pH >5.0时,易染细菌;pH <3.0时,生长受抑制,易自溶;❖pH不同,微生物代谢产物不同。

❖❖pH在微生物培养的不同阶段有不同的影响❖❖微生物生长和发酵的最适宜pH可能不同。

❖❖影响酶的活性,当pH值抑制菌体中某些酶的活性时,会阻碍菌体的新陈代谢;❖影响微生物细胞膜所带电荷的状态,改变细胞膜的通透性,影响微生物对营养物质的吸收和代谢产物的排泄;❖影响培养基中某些组分的解离,进而微生物对这些成分的吸收;❖pH值不同,往往引起菌体代谢过程的不同,使代谢产物的质量和比例发生改变。

❖影响氧的溶解和氧化还原电势的高低;❖pH值影响孢子发芽;举例:❖影响菌体的生长:产黄曲霉的细胞壁的厚度就随pH值的增加而减小:其菌丝直径在pH6.0时为2~3 μm;pH7.4时为2~18 μm,并呈膨胀酵母状;pH值下降后菌丝形态又会恢复正常。

❖影响产物合成:合成青霉素的最适pH值范围为6.5~6.8。

❖影响产物稳定性:β-内酰胺抗生素沙纳霉素的发酵中,pH在6.7~7.5之间时抗生素的产量相近,高于或低于这个范围,合成受到抑制。

在这个pH值范围内,沙纳霉素的稳定性未受到严重影响;但pH>7.5时,稳定性下降,半衰期缩短,发酵单位也下降。

第五章谷氨酸的发酵控制

第五章谷氨酸的发酵控制

(3)消泡的方法
①物理方法:如改变温度 ②机械消泡:如耙式消泡器 优点:节省消泡剂,减少污染。 缺点:不能从根本上消除引起泡沫稳定的因素。
(3)消泡的方法
③化学消泡:加入消泡剂
优点:消泡效果好,作用快,用量少。
缺点:可能会影响菌体生长或代谢产物的生成; 增加染菌机会;添加过量会影响氧的传递。
④发酵工业上采用机械消泡与化学消泡结合 的方法。
1.高初糖发酵
如,在高初糖谷氨酸发酵中,高玉米浆用量和高生物 素用量可以明显降低高初糖对菌体细胞的抑制作用;
且在接种量10%,玉米浆用量为0.55%,生物 素用量为10μg/L,初糖190g/L的谷氨酸发酵 中,流加500g/L的浓糖,30h的产酸率达到14 5.8g/L,糖酸转化率达到60.32%。
<24
180 2500 200
10
11.5
270 600~ 120 1800
1200 53
1200 8300 1300
第二节 主要发酵参数分段控制原则及其特点
一、中初糖流加高浓度糖液的 生物素“超亚适量”工艺
1. 流 程 图
2.谷氨酸发酵记录表
3.培养基的配方
(1)二级种子培养基 葡萄糖 300kg;KH2PO4 12kg;MgSO4· 2O 6kg;糖 7H 蜜100kg;玉米浆 200kg;纯生物素150mg;消泡剂 1.5kg;定容7000L,实消,121℃保温 10min。
3.无机盐
(3)钾 钾是许多酶的激活剂。 对谷氨酸发酵的影响: 谷氨酸发酵产物生成所需要的钾盐比菌体生长需要 量高,钾盐少利于长菌体,钾盐充足利于产谷氨酸。菌 体生长需钾约为1.0~1.5mmol/L,谷氨酸生成需钾约 为2.0~10.0mmol/L。

谷氨酸发酵过程控制—谷氨酸发酵系统设备及工艺流程介绍

谷氨酸发酵过程控制—谷氨酸发酵系统设备及工艺流程介绍
③通风 谷氨酸生产菌是兼性好氧菌,有氧、 无氧条件下都能生长,只是代谢产 物不同。在谷氨酸发酵过程中,通 风必须适度。过大菌体生长慢,过 小产物谷氨酸变成乳酸。 •发酵前期以低通风量为宜; •发酵中、后期以高通风量为宜。 实际生产中,以气体转子流量 计来检查通气量。
发酵工艺流程及发酵系统设备
4、泡沫的控制 发酵罐泡沫来源: 发酵过程强烈通风和菌体代谢产生CO2,使培养液产生 大量泡沫。 泡沫的危害: 氧在发酵液中的扩散受阻,影响菌体的呼吸和代谢。 消泡方法: 机械消泡:耙式、离心式、刮板式、蝶式消泡器 化学消泡:天然油脂、聚酯类、醇类、硅酮等
子情境:谷氨酸发酵过程控制-谷氨酸发酵系统 设备及工艺流程介绍
通过引导文的学习,请回答以下问题
❖ 1、谷氨酸发酵的工艺流程? ❖ 2、发酵培养基配制需要考虑哪些因素? ❖ 3、为什么需要对谷氨酸发酵条件进行控制? ❖ 4、谷氨酸发酵过程需要控制哪些发酵参数?
发酵工艺流程及发酵系统设备
1、谷氨酸发酵工艺 流程:
发酵工艺流程及发酵系统设备
1、培养基的配制 谷氨酸发酵培养基组成包括碳源、氮源、无机盐和生 长因子等。
①碳源 谷氨酸生产菌均不能利用淀粉,只利用葡萄糖、果糖等, 有些菌种还能利用醋酸、正烷烃等做碳源。 在一定范围内,谷氨酸产量随葡萄糖浓度的增加而增加, 但葡萄糖浓度过高,造成渗透压过大,对菌体生长不利, 谷氨酸对糖的转化率降低,国内谷氨酸发酵糖浓度为125150g/L。
知识拓展
谷氨酸发酵过程中,生产菌种的特性、培养基、 发酵温度、pH值、通风和发酵产生的泡沫都是 影响谷氨酸积累的主要因素。在实际生产中,只 有针对存在的问题,严格控制工艺条件,才能达 到稳产、高产的目的。
2、谷氨酸发酵条件
①pH 发酵液的pH影响微生物的生长和代谢 途径。 发酵前期如果pH偏低,则菌体生长旺 盛,长菌而不产酸;如果 pH偏高,则 菌体生长缓慢,发酵时间拉长。谷氨 酸生产菌的最适pH一般在7.0-8.0。 •发酵前期:pH在7.5左右; •发酵中后期:7.2左右对提高谷氨酸产 量有利。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一简述甜菜糖蜜添加吐温发酵的机理!!!吐温是一种表面活性剂,它是在菌体细胞不饱和脂肪酸合成的过程中,作为抗代谢物具有抑制作用,对生物素具有拮抗作用。

通过拮抗脂肪酸的生物合成,达到控制磷脂合成,导致磷脂合成不足。

结果形成磷脂合成不足的不完全的细胞膜,提高了谷氨酸向膜外漏出的渗透性。

二简述甘蔗糖蜜添加青霉素流加糖发酵的机理!!!添加青霉素可抑制谷氨酸生产菌细胞壁的后期合成,主要抑制糖肽转肽酶,影响细胞壁肽聚糖的生物合成。

因为青霉素的结构与革兰氏阳性的谷氨酸菌所特有的糖肽的D-Ala-D-Ala末端结构类似,因而它取代合成糖肽的底物而和酶的活性中心结合,是五肽末端的丙氨酸不能被肽酶移去,谷氨酸桥一头无法与它前面的丙氨酸相接,因此交联不能形成,网状的结构连接不起来,糖肽的合成就不能完成,于是菌体内的尿二磷和N-乙酰胞壁酸便大量的积累,青霉素与转肽酶相结合,形成了青霉素的酶,结果形成不完全的细胞壁,导致形成不完全的细胞膜。

由于青霉素合成细胞壁后期生物合成,是细胞膜处于无保护的状态,又由于膜内外的渗透压差,进而导致细胞膜的物理损伤,形成不完全的细胞膜,失去渗透障碍物,增大了谷氨酸向胞外分泌的渗透能力。

三简述温度敏感突变株发酵生产谷氨酸的机理!!!谷氨酸温度敏感突变株的突变位置是在决定与谷氨酸分泌有密切关系的细胞膜结构基因上,发生碱基的转换或者颠换,一个碱基被另一个碱基所置换,这样为该基因所指导的酶在高温下失活,导致细胞膜某些结构的改变,当控制培养温度为最适温度时,菌体正常的生长,当温度提高到一定的程度时,菌体便停止生长且大量的产酸。

而它仅需通过控制物理的方式就可以完成谷氨酸生产菌由生长型细胞向产酸型细胞的转变。

四简述谷氨酸发酵培养基对发酵的影响及控制措施!!!影响因素及控制措施如下:1.生物素谷氨酸在发酵的过程中,前期:菌体的生殖期,一定量的生物素是菌体增殖期所必须的一般在5ug/L,而在产物合成期,要控制生物素的浓度,一般在0.5ug/g,以保证产物的正常合成。

2. 碳源谷氨酸产生菌均不能利用淀粉,只能利用葡萄糖、蔗糖、麦芽糖等;有些菌种能利用醋酸、乙醇、正烷烃等作碳源。

淀粉水解糖的质量对发酵影响很大。

一般还原性的糖的浓度控制在125—150g/L。

3 碳氮比碳氮比对谷氨酸发酵影响很大,在发酵的不同阶段,控制碳氮比以促进以生长阶段向产酸阶段转化,在长菌阶段,如氨根离子过量会抑制菌体生长,在产酸阶段,如氨根离子不足,a-酮戊二酸不能还原并氨基化,而积累a-酮戊二酸,谷氨酸生成量少。

一般发酵工业碳氮比为100:(0.2~2.0),谷氨酸的碳氮比为100:(15~30),当碳氮比在100:11以上才开始累积谷氨酸。

4. 磷酸盐是某些蛋白质和核酸的组成成分,参与一系列的代谢反应,ADP、A TP 是重要的能量传递者。

工业生产上常用K2HPO4·3H2O、KH2PO4、Na2 HPO4·12H2O、NaH2PO4·2H2O等磷酸盐,也可用磷酸。

对谷氨酸发酵的影响:磷浓度过高时,菌体的代谢转向合成缬氨酸,但磷含量过低,菌体生长不好。

当培养基中配用1~1.5g/L时,磷浓度为0.0044~0.0066mol/L。

当配用0.5~0.7g/L时,磷浓度为0.005~0.007mol/L。

当配用1.7~2.0g/L时,磷浓度为0.0048~0.00565mol/L。

5. 硫酸镁镁离子是许多重要的酶(如己糖磷酸化酶、异柠檬酸脱氢酶、羧化酶等)的激活剂。

发酵培养基配用0.25 ~1g/L时,Mg2+浓度40~60mg /L。

硫存在于细胞的蛋白质中,是含硫氨基酸的组成成分。

培养基中的硫已由硫酸镁供给,不必另加。

6. 钾钾是许多酶的激活剂。

对谷氨酸发酵的影响:谷氨酸发酵产物生成所需要的钾盐比菌体生长需要量高,钾盐少利于长菌体,钾盐充足利于产谷氨酸。

菌体生长需钾约为 1.0~1.5mmol /L,谷氨酸生成需钾约为2.0~10.0mmol/L。

7. 微量元素锰:是某些酶的激活剂。

羧化反应必需锰,如谷氨酸生物途径中,草酰琥珀酸脱羧生成α-酮戊二酸是在Mn2+存在下完成的。

一般培养基配用MnSO4·4H2O 2mg/L。

铁:是细胞色素氧化酶、过氧化氢酶的成分,又是若干酶的激活剂。

五简述谷氨酸发酵的条件对发酵的影响及控制措施!!!1. 温度对发酵的影响及控制温度要影响酶的活性,生物合成的途经,影响发酵液的物理性质以及菌种对营养物质的吸收。

(1)发酵前期:应满足菌体生长所需的最适温度它的最适生长温度在30~34摄氏度。

若温度偏高,菌生长快易衰老;若温度偏低,菌生长慢发酵周期延长。

(2)发酵中期:应将温度提高到最适产酸温度一般控制在35~37摄氏度。

2. PH值影响及控制PH对微生物的生长和代谢产物的形成有很大的影响,它影响酶的活性,影响微生物细胞膜所带的电荷,影响培养基某些营养物质和中间代谢产物的离解,同时也影响微生物的代谢途经。

一般发酵前期控制pH在7.3左右。

发酵中期控制pH在7.2左右。

发酵后期控制pH在7.0左右,将放罐时,为了后续提取,pH6.5~6.8左右。

2.1调节PH的方法:①添加碳酸钙法当采用酸性铵盐作为碳源时,NH4+被利用,剩下的酸根引起pH下降,此时使用。

缺点:用量大,操作时易染菌,对产物提取有影响。

②尿素流加法优点:尿素的分解、利用和pH变化具有一定规律性,容易控制。

流加量和次数根据pH的变化,菌体生长、耗糖量、发酵阶段来确定。

③液氨添加法液氨的作用:作为氮源;调解pH。

使用方法:根据pH的变化自动控制流加。

3 溶氧量对发酵过程的影响及控制发酵前期:供氧要满足菌体生长的要求;当发酵液中PL>PL临界时,供氧充足,菌体生长速率达最大值。

但是再提高供氧反而对菌体生长起到抑制作用。

谷氨酸合成期,需要大量的氧。

多级控制模式:发酵前期逐步提高通气量,发酵中期控制通气量在最高值并维持6~10h,发酵后期逐步降低气量。

在整个过程中,提高、维持以及降低通气量根据实际生产时菌体生长和产物生成的需氧量而定。

工厂中一般是根据OD值的变化和耗氧速率的变化来控制通气量。

六简述谷氨酸发酵过程中的主要变化及中间代谢控制!!!适应期: 特点:细胞进行呼吸作用,合成大分子物质和所需能量,菌体个体长大,没有分裂,糖等基质基本不耗或很少消耗,pH稍微上升。

适应期的长短取决于菌种活力、种子量、发酵培养基和发酵条件等,一般为3h左右。

但采用高生物素、大种量的强制发酵工艺时适应期非常短。

对数生长期:特点:菌体:代谢逐渐旺盛,菌体大量繁殖,个体生长与群体繁殖循环交替进行,培养物的混浊度与菌体增殖情况基本一致,OD直线增长,菌体形态与二级种子相同,绝大多数为“V”型分裂。

耗糖:耗糖速度逐渐加快,糖作为碳源和能源用于合成细胞成分和合成反应所需要的能量。

pH:尿素被尿酶分解放出氨使pH 上升,氨被菌体利用又使pH下降,这时必须及时流加液氨,补充氮源和调节pH。

温度:由于菌体代谢活动放热,一般发酵5h左右温度开始上升,应注意降温。

CO2:由于菌体不断增加,代谢旺盛,排气中CO2浓度显著增加。

耗氧:耗氧量很快增加,溶解氧下降,CO2排气中浓度也下降。

对数生长期发酵控制:应根据情况提高风量,在对数生长期末期要加大风量,供给充足的氧,并及时流加液氨,供给充分的氮源,促进增值型菌体向生长型菌体转化。

转化期:是菌体由增殖型向生产型转化的时期。

特点:菌体数量达到最大值,培养液的OD值与菌体增殖不一致。

“V”字形和伸长、膨大菌形同时存在,且伸长菌体不断增加。

这是代谢最旺盛的阶段,耗糖加快,谷氨酸生成迅速增加,耗氧速率加快,并接近最大值,放热也达最大值,且泡沫显著增加。

转化期发酵控制:此时期的变化受生物素和风量的明显影响。

生物素用量与供氧应巧妙地配合好。

一般来说,加大风量对菌体的伸长、膨大有促进作用。

产酸期:特点:菌体完成由增殖型向生产型转化后,菌型几乎都伸长、膨大,边缘不完整,像花生形。

大量积累谷氨酸,耗糖与产酸相适应,产酸达到最大值。

产酸期发酵控制:应继续流加液氨,保证有充足的氮源,pH维持在7.0~7.2。

为加快产酸速率,可适当提高温度,继续供氧。

在发酵后期,耗氧量减少,可适当降低风量,流加液氨以少量为好,控制pH6.8~7.0。

当残糖降到1%时,根据发酵情况,可将风量降到最低,促进中间产物转化成谷氨酸。

序异常现象原因分析处理方法10时pH值高(1)初尿过多(2)尿素灭菌温度过高、时间过长停搅拌,小通风,待菌体生长,pH下降后再按正常发酵进行2发酵前期pH值过高(1)初尿过多(2)菌种被烧死(3)种子感染噬菌体(4)培养基缺乏或抑制菌体生长(1)按第1项方法处理(2)补种(3)按感染噬菌体处理(4)根据情况补料,补种(5)均先停搅拌、小通风3菌体生长缓慢或不长(1)感染噬菌体(2)培养基贫乏(3)菌种老化(4)前期风量过大,或初尿过多抑制生长(1)按感染噬菌体处理(2)补料,并停搅拌(3)换种、补种(4)停搅拌、小通风4中后期耗糖慢、产酸低(1)菌种老化(2)前期风量过大后期无力(3)种子或发酵前期温度过高(4)生物素不足(1) 略减风量,如残糖高可补种,或并罐发酵(2) 略减风量,如残糖高可补种,或并罐发酵(3) 略减风量,如残糖高可补种,或并罐发酵(4) 补料514h后OD值继上升(1)生物素过量(2)染菌(1)提高风量,提高温度(2)按染菌处理6耗糖快,pH偏低, 产酸低(1) 培养基丰富,生物素过量(2) pH低,流尿不及时(3) 通风不足,空气短路,搅拌转速低(4) 感染杂菌(1)提高风量,提高pH(2)及时流尿,提高pH(3)提高风量,提高pH(4)按染菌处理7发酵液变红色生物素充足,风量不足提高风量8谷氨酸生成后又下跌(1)pH偏低,NH4+过量,谷氨酸转变为谷酰胺(2)大量下跌,可能染菌(1)及时流尿,提高pH(2)按染菌处理9泡沫太多(1)水解糖质量不好(2)染菌(1)改进水解糖质量(2)按染菌处理。

相关文档
最新文档