典型电路分析之射随器电路分析
射级跟随电路实验报告资料
射级跟随电路实验报告资料一、实验目的:1. 了解晶体管射级跟随电路的基本原理和特性;2. 学会使用电路实验箱、示波器等仪器,测量信号的幅度、相位等,提高实验操作技能;3. 加深对AC信号放大器、集电极跟随电路的理解和认识。
二、实验原理:1. 晶体管的结构和工作原理:晶体管是一种三极管,由集电极、基极、发射极等结构组成。
它的工作原理是通过基极电流控制发射极电流,从而控制集电极电流,实现信号放大的目的。
2. AC信号放大器:AC信号放大器是指能够对交流信号进行放大的电路,常用的有共发射极放大器、共基级放大器、共集极放大器等。
其中,射级跟随电路就是一种典型的共发射极电路。
3. 射级跟随电路:射级跟随电路是由一个共发射极级和一个接在其后的共集极级组成的放大器电路。
其主要原理是前一级的输出信号直接作为后一级的输入信号,实现两级级联的放大。
三、实验器材:实验器材主要有信号源、示波器、实验箱、万用表等。
四、实验步骤:1. 连好实验电路。
将晶体管、电阻器等连接起来,接入电源线,注意极性。
2. 连接示波器。
在射级输出端和采用探头的共集极输出端分别接上示波器。
3. 调节电路。
依照电路图依次调整电阻的数值,使电路正常工作。
4. 测量电路参数。
使用万用表检测电脑的电压和电流,使用示波器测量信号幅度、相位等参数。
五、实验结果和分析:1. 实验结果:通过实验测量得到的输出波形如下所示。
2. 分析:从输出波形可以看出,当输入信号增大时,输出信号也会相应增大。
同时,在集电极输出端接入电阻,来限制集电极输出电压的幅度,并避免输出负载对电路产生干扰。
六、实验结论:通过本次实验,了解了晶体管射级跟随电路的基本原理和特性;熟悉了使用电路实验箱、示波器等仪器,测量信号的幅度、相位等;并深化了对AC信号放大器、集电极跟随电路的理解和认识。
晶体管电路设计 精讲 第十八贴 常见射随器分析
晶体管电路设计精讲第十八贴常见射随器分析学习内容:常用的射极跟随器特点及原理分析大家好,距上一贴发出已经7天了,看了看浏览量已经有200多,但能坚持看完的貌似只有十来个人。
不管怎么说,为了这10多个人也要把贴子继续下去。
好了,现在言归正传,下面是正式内容。
********************************在上一贴中我们讲到了射极跟随器的一个扩展应用:推挽放大器。
这种放大器采用NPN三极管和PNP三极管配合工作,大大提高了电源的利用效率,也减少了制作时对所用元件的要求。
因此在现实生活中被大量采用。
而射随器还有许多种变形,以适应不同的应用要求。
今天我们就来研究一下经常会遇到的几种射随器的电路。
第一种,使用正负电源的电路这个电路采用了正负电源供电,在以前讲共射极放大器时也接触过这种形式的电源。
这种电路的一个特点是可以把三极管的基极偏置在地电位上(0V),这样的一个好处就是当输入信号不含直流成份时,可以省去输入耦合电容。
而即使输入信号中含有直流成份,而这个直流成份与信号电平叠加后只要没有使三极管进入饱合或截止状态,则放大器仍能正常工作。
或者换句话说,这种放大器可以对直流信号进行放大,只不过由于输出耦合电容的存在而导致放大后的直流信号不能被负载取得而已。
为了帮助大家更好的理解上面的内容,在下面给出三种可能的输入信号波形,结合这三种波形,对照上面的电路会较容易的理解。
本图中的三个波形自上而下分别是含有正直流成份的正弦波,不含直流成分的正弦波,含负直流成份的正弦波。
考虑下这三种波形的信号在输入有耦合电容的放大器和无耦合电容的放大器会产生什么效果,对放大器有何影响?将基极偏置在0V时,还有一个好处是在保证了基极电流稳定性的前提下,省掉了两个分压偏置电阻。
在以前的贴子中有的朋友对此种偏置电路的基极电流的流向和取消分压偏置电阻感到不是很理解。
那么下面我们专门针对这个问题再做一下讲解。
下面有三个电路图,分别是三种不同的偏置电路,我们来分析一下它们的优缺点:所谓偏置电路,就是为三极管提供一个合适的工作状态,以使其工作在线性放大区。
射极跟随器实验报告
射极跟随器实验报告射极跟随器实验报告一、实验目的本实验旨在通过模拟电路实现射极跟随器的功能,加深对射极跟随器工作原理的理解,掌握其电路组成、工作过程及性能特点。
二、实验原理射极跟随器是一种共射极放大电路,其输出信号从发射极取出,经缓冲器和负载电阻反馈到输入端,形成射极跟随器。
射极跟随器具有高输入阻抗、低输出阻抗、电压放大倍数接近1的特点,常用于多级放大电路的输入级或输出级,起缓冲、隔离和放大的作用。
三、实验步骤1.准备实验材料:电源、信号发生器、电阻、电容、电感、三极管等。
2.搭建射极跟随器电路:将电源、信号发生器、电阻、电容、电感、三极管等按照射极跟随器的电路组成连接起来。
3.调节输入信号:打开电源,调节信号发生器,使输入信号频率和幅度变化。
4.测量输出信号:使用示波器等测量仪器,测量射极跟随器输出信号的幅度和相位等参数。
5.记录实验数据:将输入信号和输出信号的幅度、相位等参数记录在实验数据表中。
6.分析实验结果:根据实验数据,分析射极跟随器的性能特点,加深对射极跟随器工作原理的理解。
7.整理实验报告:整理实验步骤、实验数据和分析结果,撰写实验报告。
四、实验数据及分析1.实验数据表:记录输入信号和输出信号的幅度、相位等参数。
幅度的增大而增大,但增大幅度较小;输出信号相位与输入信号相位基本一致,说明射极跟随器具有较好的线性放大特性。
同时,由于射极跟随器具有高输入阻抗和低输出阻抗的特点,使得电路具有较好的隔离效果,可以有效地避免前后级电路之间的相互影响。
五、结论总结通过本次实验,我们验证了射极跟随器的电路组成、工作过程及性能特点。
实验结果表明,射极跟随器具有高输入阻抗、低输出阻抗和较好的线性放大特性,能够有效提高电路的阻抗匹配和信号传输效率。
在多级放大电路中应用射极跟随器可以实现良好的缓冲、隔离和放大效果。
本实验加深了我们对射极跟随器工作原理的理解,为今后在电子系统中应用射极跟随器提供了有益的参考。
运放射随器电路
运放射随器电路
运放放大器是一种电子电路元件,它的独特性质使得其可以增加电路的输入信号的幅度。
射随器电路是一种基于运放放大器的电路,用于从输入信号中提取出特定的频率组成部分。
射随器电路主要由运放、电阻和电容组成。
运放应置于一个反馈回路中,以使得输出信号与输入信号之间保持稳定的比例关系。
电容和电阻的作用是滤除输入信号中不需要的频率部分。
射随器电路的工作原理是利用运放的运算放大器特性,将输入信号从一个电容中注入到运放的负输入端,通过运算放大器产生的反转信号将信号放大后输出。
由于运放具有高增益和低失真的特性,因此可以在不损失信号质量的情况下将信号幅度增大。
在射随器电路中,输入信号的频率通过改变电容和电阻之间的数值来选择。
通常,不同的RC组合可以提取不同的频率特征。
此外,通过调整反馈回路中的电阻,可以进一步调整输出信号的幅度和相位。
总之,射随器电路利用运放的特性,可以提取输入信号中的特定频率部分,从而在电路设计和信号处理中发挥重要作用。
射极跟随器的原理及典型电路
射极跟随器的原理及典型电路
射极跟随器的典型电路:
射极跟随器又叫射极输出器,是一种典型的负反馈放大器。
从晶体管的连
接方法而言,它实际上是共集电极放大器。
图中Rb是偏置电阻,C1、Cl是
耦合电容。
信号从基极输入,从发射极输出。
晶体管发射极接的电阻Re,在电路中具有重要作用,它好象一面镜子,反映了输出、输入的跟随特性。
输入电压usr=ube+usc。
通常Usc>Ube,忽略Ube不计,则
usr≈usc。
显然,这就意味着射极限随器的电压放大倍数近似等于1,即:输入电压幅度与输出电压幅度近似相等。
当Usr增加时,ib、ie都增加,发射极电压ue(usc)也就增加。
反之,Usr减小时Usc也减小。
这说明输出电
压与输入电压同相,正是因为不仅输出电压与输入电压大小相等,而且相位
也相同。
输出电压紧紧跟随输人电压而变化,我们把这种具有跟随特性的电
路称为射极限随器。
射极跟随器以很小的输人电流却可以得到很大的输出电流(ie=(1+β)ib)。
因此具有电流放大及功率放大作用。
需要区别的是普通的多级共射级放大电路,是不放大电流放大电压,这点跟射随是相反的。
在电视电路中,中放解
出TV的视频图像后用射极电路来输出,保证输出图像的变化随输入而改变,需主意的是一般幅度要达到1.2V左右,需通过调节RB和RE的比例调节输出交流波形的幅度。
射随器
返回
CE-CB串接放大电路 2.3.1 CE-CB串接放大电路
(1)直流通道
CB Rc R1
EC C2
U B1 =
R3 EC R1 + R2 + R3
Rs
R2 C1 RL R3 Re
U B2
R2 + R3 EC = R1 + R2 + R3 U B 1 − U BE 1 Re
us
Ce
IC 2 ≈ Ie2 = IC 1 ≈ Ie1
hie hie hfeib rce hfeib rce
返回 hie Rs Rb us
休Hale Waihona Puke 1 休息2hfeibrce
Re
RL
射随器微变等效分析: 2. 射随器微变等效分析:
交流参数: (4) 交流参数:
ⅰ输入电阻: R i = R b //R i ’
Rs us Ri R’i ib + hie Rb ui
i (RS ′ // hie ) RS ′ = 而i b = i ′+h hie RS ie h fe RS ′ ( 1+ ′ )irce + i ( R's // hie ) RS + hie ′= ∴ R0 i = (1+ h fe R's R's + hie )rce + R's // hie
I e1 =
电路仿真
Rc R1
EC
UCE1 = (UB2 −UBE2 ) − (UB1 −UBE1 ) UCE2 = EC − UCE1 − I e1 ( RC + Re )
UB2
R2 UBE2
IC2 Ie2=IC1 Ie1
三极管射极跟随器电路-推荐下载
三极管射极跟随器电路共集电极放大电路射极输出器、射极跟随器)
图1 射极输出器电路
一、静态分析
二、动态分析
图2 微变等效电路
图3 微变等效电路
1. 电流放大倍数:(忽略Rb的分流)
图4 输出电路
结论:
1)
但是,有较大的电流放大倍数
2)输入输出同相,输出电压跟随输入电压,故称电压跟随器。
3. 输入电阻
图5 输入电路图
输入电阻较大,作为前一级的负载,对前一级的放大倍数影响较小。
4. 输出电阻
用加压求流法求输出电阻。
图5 等效电路
射极输出器的输出电阻很小,带负载能力强。
射极输出器特点:
电压增益小于近似等于1,输出电压与输入电压同相,输入电阻高,输出电阻低。
射极输出器的使用
1、将射极输出器放在电路的首级,可以提高输入电阻。
2、将射极输出器放在电路的末级,可以降低输出电阻,提高带负载能力。
3、将射极输出器放在电路的两级之间,可以起到电路的匹配作用。
例:
估算静态工作点,计算电流放大倍数、电压放大倍数和输入、输出电阻。
图6 例图电路
可见:输入电阻很大,输出电阻很小。
射极跟随器原理及应用
射极跟随器射极跟随器(又称射极输出器,简称射随器或跟随器)是一种共集接法的电路见下图,它从基极输入信号,从射极输出信号。
它具有高输入阻抗、低输出阻抗、输入信号与输出信号相位相同的特点一、射随器的主要指标及其计算一、输入阻抗从上图(b)电路中,从1、1`端往右边看的输入阻抗为:R i=U i/I b=r be+(1+β)Re L式中:Re L=Re//R L,r be是晶体管的输入电阻,对低频小功率管其值为:r be=300+(1+β)(26毫伏)/(Ie毫伏)在上图(b)电路中,若从b、b’端往右看的输入阻抗为R i=U i/I i=R b//R i o.由上式可见,射随器的输入阻抗要比一般共射极电路的输入阻抗rbe高(1+β)倍。
2、输出阻抗将Es=0,从上图(C)的e、e'往式看的输出阻抗为:Ro=Uo/U i=(r be+Rs b)/(1+β),式中Rs=Rs//Rb, 若从输出端0、0’往左看的输出阻抗为Ro=Ro//Reo3、电压放大倍数根据上图(b)等效电路求得:Kv=Uo/U i=(1+β)Re l/[R b e+(1+β)Re l],式中:Rel=Re//RL,当(1+β)Rel>>rbe时,Kv=1,通常Kv<1.4、电流放大倍数根据上图(b)等效电路求得:K I=Io/I i=(1+β)Rs b Re/(Rs b+R i)(Re+R L)式中:Rsb=Rs//Rb,Ri=rbc+(1+β)Relo 通常,射随器具有电流和功率放大作用。
二、射随器的实用电路下图是高频放大器使用的一种电路,由同轴电缆把信号输出,电缆的特性阻抗一般为50欧或70欧,所以要通过跟随器BG2实现阻抗变换。
图2是一种自举式的跟随器,它的特点是:1、自举由于R3的下端电位随上端电位升曾而升高,故称为自兴举,自举作用使R3两端的交流压降为零。
所以对交流来说,R3相当于开路,从而避免了偏置电路降低了输入阻抗的缺陷。
射级跟随电路实验报告
射级跟随电路实验报告
实验目的:
1.通过实验了解射级跟随电路的基本原理和特点。
2.通过实验学会设计和制作射级跟随电路。
实验仪器:
1.示波器
2.函数信号发生器
3.电路板和元件
实验原理:
射级跟随电路是其中一种线性放大电路,主要用于实现电压跟随功能。
其基本构成是由输入级和输出级两个级构成,且两个级
之间相互耦合。
其优点是输入输出之间具有很高的隔离度,稳定性高,通用性强,常用于各种高灵敏度的信号放大和跟随。
实验过程:
1.根据实验原理所述,准备好所需的实验仪器和元件,将电路板连线按照图示电路进行连接。
2.使用函数信号发生器输入所需的信号波形,输出信号波形通过示波器实时观察和分析。
3.根据观察和分析结果,进行必要的电路调整和优化,以确保电路的稳定性和输出的精准性。
4.进行参数测试和记录,对实验过程中出现的问题进行及时分析和解决。
实验结果:
经过实验,我们成功地设计出了一款基于射级跟随电路原理的
电路板,并在不同频率下进行测试和记录。
测试结果表明,对于
不同级数和元件选型,射级跟随电路的跟随效果和输出精准性有
较大的区别。
同时,通过多次实验和调整,我们也意识到电路板
的布局和元件间的距离会对电路的稳定性和输出精准性产生影响。
结论:
通过射级跟随电路实验,我们更深刻地了解了射级跟随电路的
基本原理和特点,学会了设计和制作射级跟随电路,同时也掌握
了一定的电子电路实验技能和知识。
我们相信通过持续不断的实
践和学习,将能够更上一层楼,在电子电路与工程领域中取得更
大的突破与创新。
射极跟随器实验心得
射极跟随器实验心得射极跟随器实验心得射极跟随器是电子电路中常用的一种放大器,其特点是输入阻抗高、输出阻抗低,能够有效地提高电路的驱动能力和隔离效果。
在射极跟随器的实验中,我通过亲手搭建电路、调试参数,深入了解了其工作原理和特性,收获颇丰。
实验过程中,我们首先根据射极跟随器的电路原理,搭建了相应的实验电路。
由于射极跟随器是由共发射极放大器演变而来的,因此我们首先搭建了共发射极放大器,并逐步调整其参数,使其满足射极跟随器的输入阻抗高、输出阻抗低的要求。
在这个过程中,我深刻体会到了理论知识与实践操作的结合,只有充分理解电路原理,才能更好地完成实验。
在完成电路搭建后,我们开始进行数据测量和结果分析。
通过示波器和信号发生器等设备,我们获取了输入输出信号的幅度、相位等信息,并对其进行了详细的分析。
实验结果表明,射极跟随器能够有效地提高电路的驱动能力和隔离效果,同时具有高输入阻抗和低输出阻抗的优点。
这与射极跟随器的电路原理和特性完全吻合,进一步验证了理论的正确性。
在实验过程中,我们还发现了一些问题。
例如,由于实验设备和个人操作水平的限制,我们得到的数据与理论值存在一定的误差。
这使我意识到实验过程中细节的重要性,只有严谨的操作和准确的测量才能得到可靠的数据。
此外,在实验过程中还涉及到电路的调试和故障排除等问题,这需要我们在实践中不断积累经验和学习新知识。
通过这次射极跟随器的实验,我不仅深入了解了射极跟随器的工作原理和特性,还提高了自己的实践操作能力和团队协作能力。
首先,我充分认识到理论与实践相结合的重要性。
只有将理论知识应用到实际操作中,才能更好地理解和掌握其内涵。
其次,我意识到团队合作的重要性。
在实验过程中,我们需要互相协作、互相帮助,才能顺利完成实验任务。
此外,我也学会了如何面对实验中遇到的问题,如何分析数据、总结结果等一系列实验技能。
这些技能对我未来的学习和工作都非常重要。
总之,这次射极跟随器的实验使我受益匪浅。
射极跟随器分析与设计实验报告
射极跟随器分析与设计实验报告140223班魏义明14021068射极跟随器分析与设计实验报告一、实验目的:(1)通过使用Multisim来仿真电路,测试如图2所示的射随器电路的静态工作点、电压放大倍数、输入电阻和输出电阻,并观察静态工作点的变化对输入输出特性的影响。
(2)学习设计电流源负载射随器,并研究其性能。
(3)观察失真现象,了解其产生的原因。
(4)了解运算发大器电压跟随器的特性。
图2参考电路图二、实验步骤:(1)请对该电路进行直流工作点分析,进而判断管子的工作状态。
(2)请利用软件提供的各种测量仪表测出该电路的输入电阻。
(3)请利用软件提供的各种测量仪表测出该电路的输出电阻。
(4)请利用软件提供的各种测量仪表测出该电路的幅频、相频特性曲线。
(5)请利用交流分析功能给出该电路的幅频、相频特性曲线。
(提示:在上述实验步骤中,建议使用普通的2N2222A三极管,并请注意信号源幅度和频率的选取,否则将得不到正确的结果,图中只是参考值,建议进行交流分析后再确定信号源的幅度和频率。
)三、数据处理(1)、实验原理图及简述电路功能和工作原理(2)、1、直流工作点分析结果(结果如下图)各点电压V1=17.75727V,V2=24V,V3=17.11667V。
Vbe=V1-V3=0.6406V,Vce=V2-V3=24-17.11667V,故可知发射极正偏,集电极反偏。
因此电路处于放大状态。
2、输入电阻的计算方法为,输入电压/输入电流。
电路图如下图其中xum1为电流表,xum2为电压表。
输入电压U=99.996mV,输入电流为I=240.471nA。
计算可得输入电阻R=415.8kΩ。
(3)、输出电阻的计算方法为:从输出端看进去,电源短路,负载断开,输入电压/输入电流。
电路图如下图,其中xum1为电流表。
此时V=99.996mV,I=2.929mA。
计算可得输出电阻R=34.14Ω。
4、(1)利用测量仪器测量幅频相频特性曲线(2)利用交流分析功能测出其幅频相频特性曲线五.加电流源的射级跟随器2.计算输入电阻由上图知,V=99.996mV,I=202.064nA, Ri=V/I=494.9kΩ,3.计算输出电阻Ro=V/I=39.629/1.245=31.8Ω4.波特图六.设计一使用运放搭建的电压跟随器七.实验相关问题1.总结电路一与电路的异同,比较输入输出电阻值和幅频特性曲线,说明原因。
典型电路分析之射随器电路分析
典型电路分析之射随器电路分析射随,是我们通常对射极跟随器的简称,其实也就是共集电极放大器,它的特点:1、晶体管射随电路具有较高的输入阻抗和较低的输出阻抗--基极回路电阻的1/1+β(β是晶体管的直流放大系数,也就是三极管规格书中的hFE,BC857AW正常工作时为250),具有隔离阻抗变换的作用。
2、电流增益很大,Ie=Ib(1+β)。
3、电压增益接近1,输入信号与输出信号同相,大小基本相等,这也是射随名字的由来。
由于射随的这几个特点,我们将其用在例如中放VIDEO输给DECODER,DECODER 的AV OUT等电路,弥补原先器件输出电流小,带载能力不足的缺点,减少后级电路对前级电路的影响,从而达到增强电路的带负载能力和前后级阻抗匹配,射随器同时还可以隔离逆向干扰,一路信号可以通过两个射随分成两路,而不会互相干扰,所以AV OUT,AUDIO OUT也经常使用这个电路。
目前我们常用的射随电路根据使用PNP或NPN三极管也有两种形式:A、PNP图1上面这个电路经常用于我们的AV OUT电路。
输入信号VIDEO IN波形变高时,三极管截止,VCC通过R1给C1充电;输入信号VIDEO IN波形变低时,三极管导通,C1通过导通的三极管对地放电。
电路形式看似很简单,器件不多,但如果器件使用不当的话,很容易造成输出波形失真:1、电容C1:C1在这个电路中起着仅次于三极管的作用。
电容的特性直观的说就是会保持电容两端电压不突变,电容量越大,这个阻止电压突变的能力就越强。
而通常我们说的通交流隔直流,可以通过这个公式来分析:电路中电容的容抗Xc=1/2πf C ,其中f为信号的频率,C为电容量的大小。
那么也就是说,当C不变时,频率越高,容抗Xc越小,那么电流越大,信号越容易通过。
那么为什么直流会被隔离呢?直流电平,相当于f=0,这时候容抗Xc=无穷大,相当于开路,信号自然无法传送过去了。
当f不变时,C越大,容抗Xc越小,那么电流越大,信号越容易通过。
射极跟随器实验报告
射极跟随器实验报告实验六射极跟随器一、实验目的l 、掌握射极跟随器的特性及测量方法。
2、进一步学习放大器各项参数的测量方法。
二、实验原理下图为射极跟随器实验电路。
跟随器输出电压能够在较大的范围内跟随输入电压作线性变化,而具有优良的跟随特性。
1、输入电阻R i实际测量时,在输入端串接一个已知电阻R 1,在A 端输入的信号是V i ,在B 端的输入信号是i V ',显然射极输出器的输入电流为:1R V V I ii i'-=' i I '是流过R 的电流,于是射极输出器之输入电阻为:11-'='-'=''=ii i i ii ii V V R R V V V I V R 所以只要测得图中A 、B 两点信号电压的大小就可按上式计算出输入电阻R i 。
2、输出电阻R 0在放大器的输出端的D 、F 两点,带上负载R L ,则放大器的输出信号电压V L 将比不带负载时的V 0有所下降,因此放大器的输出端D 、F 看进去整个放大器相当于一个等效电源,该等到效电源的电动势为V S ,内阻即为放大器的输出电阻R 0,按图中等效电路先使放大器开路,测出其输出电压为V 0,显然V 0=V S ,再使放大器带上负载R L ,由于R 0的影响,输出电压将降为:LSL R R V R V +'=S V V =0 则L S R V V R ??-=100所以在已知负载R L 的条件下,只要测出V 0和V L ,就可按上式算出射极输出器的输出电阻R 0。
3、电压跟随范围电压跟随范围,是指跟随器输出电压随输入电压作线性变化的区域,但在输入电压超过一定范围时,输出电压便不能跟随输入电压作线性变化,失真急剧增加。
因为射极跟随器的10==iV V V A 由此说明,当输入信号V i 升高时,输出信号V 0也升高,反之,若输入信号降低,输出信号也降低,因此射极输出器的输出信号与输入信号是同相变化的,这就是射极输出器的跟随作用。
(完整版)射极跟随器作用详解
三极管射极跟随器电路-射极输出器工作原理-射极输出器电路图-什么是射极跟随器-晶体管跟随器
来源:互联网作者:电子电路图
共集电极放大电路射极输出器、射极跟随器)
图1 射极输出器电路
一、静态分析
二、动态分析
图2 微变等效电路
图3 微变等效电路
1. 电流放大倍数:(忽略Rb的分流)
图4 输出电路
结论:
1)
但是,有较大的电流放大倍数
2)输入输出同相,输出电压跟随输入电压,故称电压跟随器。
3. 输入电阻
图5 输入电路图
输入电阻较大,作为前一级的负载,对前一级的放大倍数影响较小。
4. 输出电阻
用加压求流法求输出电阻。
图5 等效电路
射极输出器的输出电阻很小,带负载能力强。
射极输出器特点:
电压增益小于近似等于1,输出电压与输入电压同相,输入电阻高,输出电阻低。
射极输出器的使用
1、将射极输出器放在电路的首级,可以提高输入电阻。
2、将射极输出器放在电路的末级,可以降低输出电阻,提高带负载能力。
3、将射极输出器放在电路的两级之间,可以起到电路的匹配作用。
例:
估算静态工作点,计算电流放大倍数、电压放大倍数和输入、输出电阻。
图6 例图电路
可见:输入电阻很大,输出电阻很小。
射极跟随器实验报告
一、实验目的1. 掌握射极跟随器的基本原理和电路结构。
2. 了解射极跟随器的输入阻抗、输出阻抗和电压放大倍数等主要特性。
3. 学习使用电子仪器对射极跟随器进行测试和分析。
4. 通过实验加深对模拟电子技术中放大器原理的理解。
二、实验原理射极跟随器(Emitter Follower)是一种常用的电压放大电路,其特点是输入阻抗高、输出阻抗低、电压放大倍数接近于1。
射极跟随器主要由晶体管、偏置电阻、负载电阻等组成。
其工作原理是:输入信号通过晶体管的基极输入,经过放大后,从发射极输出,从而实现电压放大的目的。
三、实验器材1. 晶体管(如2N3904)2. 偏置电阻(如R1、R2)3. 负载电阻(如RL)4. 信号源5. 示波器6. 数字万用表7. 基准电源8. 连接线四、实验步骤1. 按照实验电路图连接电路,确保连接正确无误。
2. 将信号源输出设置为正弦波,频率为1kHz,幅度为1V。
3. 使用示波器观察输入信号和输出信号的波形,并调整偏置电阻R1和R2,使输出信号不失真。
4. 使用数字万用表测量晶体管各电极的电压,并记录数据。
5. 改变负载电阻RL的值,观察输出信号的变化,并记录数据。
6. 使用示波器观察输出信号的相位,并与输入信号进行比较。
五、实验结果与分析1. 输入阻抗测量:通过测量输入信号和基极电压,可以计算出射极跟随器的输入阻抗。
实验结果表明,射极跟随器的输入阻抗较高,有利于信号源与放大电路之间的匹配。
2. 输出阻抗测量:通过测量空载输出电压和接入负载后的输出电压,可以计算出射极跟随器的输出阻抗。
实验结果表明,射极跟随器的输出阻抗较低,有利于驱动负载。
3. 电压放大倍数测量:通过测量输入信号和输出信号的幅度,可以计算出射极跟随器的电压放大倍数。
实验结果表明,射极跟随器的电压放大倍数接近于1,说明其具有电压跟随特性。
4. 相位测量:通过观察输入信号和输出信号的相位,可以判断射极跟随器的相移情况。
实验结果表明,射极跟随器的输入信号和输出信号同相,说明其具有较好的相移特性。
_射极跟随器_的特点及应用
第13卷第3期河南教育学院学报(自然科学版)V ol.13N o.32004年9月Journal of Henan Institute of Education (Natural Science )Sep.2004收稿日期:2004-05-18作者简介:周金成(1972—),男,河南长葛人,郑州师范高等专科学校物理系助教.文章编号:1007-0834(2004)03-0032-02“射极跟随器”的特点及应用周金成,张海泉(郑州师范高等专科学校物理系,河南郑州450044) 摘要:讨论了晶体管电路中的一种典型电路———“射极跟随器”的特点,并对其应用给以归纳和总结.关键词:晶体管;射极跟随器中图分类号:T N71012 文献标识码:B “射极跟随器”是晶体管放大电路的三种连接形式中的一种———共集放大电路.其通过发射极电阻R e 将输出电压V 0全部反馈到输入电路中去,电路为深度负反馈,反馈系数F =1.它的一些独特之处使其在电子技术中的应用极为广泛,本文对其特点和应用给予归纳和总结.1 “射极跟随器”的特点图1 射极跟随器电路 图1是一简单的晶体管放大电路,由于它的输出端是发射极,所以称其为射极输出器.又由于它与共射极放大电路的最大不同之处在于其输出电压μ0与输入电压μi 同相位,而且电路的放大倍数小于1且接近于1,因此,该电路又称之为“射极跟随器”.下面对其特点和应用给以简要的说明.111 输入电阻高图1的“射极跟随器”的微变等效电路如图2所示.由此可得其输入电阻为:R i =U i I l=I i R b +I bγbe +I e R e I i=I b (R b +γbe )+(1+β)I b R e I b=R b +γbe +(1+β)Re 图2 射极跟随器的微变等效电路 而共发射极放大电路的输入电阻为:R i =R b +γbe ,因此,若选择合适的三极管电流放大倍数β,则“射极跟随器”的输入电阻将远远高于其射极放大电路[1].112 输出电阻低图3为求“射极跟随器”的输出电阻等效电路,由基尔霍夫定律得联立方程:图3 射极跟随器的输出电阻求解图 I 0+βI b =I ′I ′+I b =I eU 0=-I b (R b +γbe )联立求解得:R 0=U 0I 0=R b +γbe1+β∥R e 可见,如果选择的三极管电流放大倍数β较大,而R b 、γbe 较小,则R 0比R e 小得多,电路的输出·23·电阻很低.113 电压放大倍数近似为1图4 射极跟随器的微变等效电路 图4为“射极跟随器”的微变等效电路,则可得电路的电压放大倍数为:A u =U 0U i =Ie R eI b (R b +γbe )+I e R e=(1+β)I b R eI b (R b +γbe )+(1+β)I b R e =(1+β)R eR b +γbe +(1+β)R e 可见,A u 恒小于1.但通常情况下,(1+β)R e µ(R b +γbe ),故可得A u ≈1,且U 0与U i 同相位,所以该电路称为“射极跟随器”.2 应用根据“射极跟随器”的特点,其广泛地应用在多级放大器的输入级、输出级和中间级.211 作输出级使用图5 射极跟随器作多级放大电路的输出级 图5为RC 移相式振荡器的原理电路,输出级的三极管T 2是“射极跟随器”.如果不接入T 2,而让T 1直接带载,则当振荡器接入负载时,负载的参数将会影响选频网络的参数,使电路的工作状态受到影响.因此,在电路的输出端接入T 2,使振荡选频电路和负载支路相隔离,二者互不干扰,电路能够正常工作.212 作测量放大器的输入级图6 射极跟随器作多级放大电路的输入级 图6为DA -16型晶体管毫伏表原理电路的部分电路,图中的T 1、T 2、R 4、R 5、R 6、R 7、C 4组成带自举电路的“射极输出器”,且T 1、T 2组成了达林顿复合管.这样,图中电路的输入电阻很大,从而在测量时对被测电路的影响较小,提高了测量精度.图中的D 10是作为保护二极管,利用二极管的钳位作用,防止在测量时输入电压过高而毁坏晶体管.213 作中间级使用图7 射极跟随器作多级放大电路的中间级 图7是一多级放大电路,T 2处于射极跟随状态,其将输入级T 1和输出级T 3相互隔开,减弱了T 1和T 3的相互影响,并且由于T 2具有的电压跟随特性,使得T 2的加入对电路的工作状态没有影响.因此,此时T 2所起的作用是缓冲、隔离前后级的相互干扰,保证电路的正常工作[2].参考文献[1] 杨素行1模拟电子技术基础简明教程[M].北京:高等教育出版社,19981[2] 康华光1电子技术基础(模拟部分)[M].北京:高等教育出版社,19881The Characteristics and Application of Emitter Follow erZHOU Jin-cheng ,ZHANG Hai-quan(The Physics Department o f Zhengzhou Teacher s ’College ,Zhengzhou 450044,China )Abstract :The article discusses the characteristics of a typical circuit of the transistor circuitemitter follower ,and summa 2rizes its applications.K ey w ords :transistor ;emitter follower·33·。
实验六射极跟随器
实验六 射极跟随器一、实验内容及要求1、 放大器静态工作点的调整及测试;2、 射极跟随器的特性及测试。
二、实验目的1、 掌握放大器静态工作点的动态调整法;2、 掌握射极跟随器的特性及测试方法。
三、实验原理1、射极跟随器的电路结构及特性射极跟随器原理图如图6-1,其输出取自发射极,故称其为射极跟随器。
其特点是(1)输入电阻Ri 高 (2)输出电阻Ro 低(3)电压放大倍数近似等于1 2、实验原理测试静态工作点的调整采用动态调整法。
放大电路的动态参数测量原理与实验三类似,请复习。
四、实验内容及操作1、利用Multisim 软件搭建实验电路图如图6-2。
2、射极跟随器工作状态测试①信号源频率选择1KHz 左右,信号源输出幅度约5Vp-p (即Us ≈5Vp-p ≈1768mVrms ≈2500mVp );②断开开关S1(负载电阻RL=∞);③单击“RUN ”按钮,双击示波器XSC1,弹出虚拟Agilent 示波器,观察Vi 和Vo 之波形是否失真,相位关系如何,测试Vi 和Vo 的峰-峰值,测试结果如表6-1。
3、射极跟随器最佳静态工作点的测试①增大信号源幅度至输出波形刚刚出现失真,调节Rw 使失真消失;②重复①多次,直到调节Rw 不能使失真消失,此时稍微回调Rw 和稍微减小信号源幅度,使输出波形不失真。
至此,电路工作点已经达到最佳状态(最佳动态范围)。
③用Multisim “分析仿真”的“直流工作点”分析功能直接得到该电路的直流工作点,闭合开关S2,直流工作点设置如图6-3,分析结果如表6-2。
4、测量电压放大倍数Av 及射极跟随器的跟随特性(R L =∞)①断开开关S1、S2,②信号源频率选择1KHz 左右,输入幅度(Us )约6Vp-p ,测量U i 、Uo ,③将Us 分别调节到4 Vp-p 、2 Vp-p ,测量U i 、Uo ,记入记入表6-3。
④根据测量数据,计算表中的A V ,并与理论估算值比较。
射极跟随器设计及射随器电路
射极跟随器设计及射随器电路射极跟随器(又称射极输出器,简称射随器或跟随器)是一种共集接法的电路见下图,它从基极输入信号,从射极输出信号。
它具有高输入阻抗、低输出阻抗、输入信号与输出信号相位相同的特点一、射随器的主要指标及其计算一、输入阻抗从上图(b)电路中,从1、1`端往右边看的输入阻抗为:Ri=Ui/Ib=rbe+(1+β)ReL式中:ReL=Re//RL,rbe是晶体管的输入电阻,对低频小功率管其值为:rbe=300+(1+β)(26毫伏)/(Ie毫伏)在上图(b)电路中,若从b、b'端往右看的输入阻抗为Ri=Ui/Ii=Rb//Rio.由上式可见,射随器的输入阻抗要比一般共射极电路的输入阻抗rbe高(1+β)倍。
2、输出阻抗将Es=0,从上图(C)的e、e'往式看的输出阻抗为:Ro=Uo/Ui=(rbe+Rsb)/(1+β),式中Rs=Rs//Rb,若从输出端0、0'往左看的输出阻抗为Ro=Ro//Reo3、电压放大倍数根据上图(b)等效电路求得:Kv=Uo/Ui=(1+β)Rel/[Rbe+(1+β)Rel],式中:Rel=Re//RL,当(1+β)Rel>>rbe时,Kv=1,通常Kv<1.4、电流放大倍数根据上图(b)等效电路求得:KI=Io/Ii=(1+β)RsbRe/(Rsb+Ri)(Re+RL)式中:Rsb=Rs//Rb,Ri=rbc+(1+β)Relo 通常,射随器具有电流和功率放大作用。
二、射随器的实用电路下图是高频放大器使用的一种电路,由同轴电缆把信号输出,电缆的特性阻抗一般为50欧或70欧,所以要通过跟随器BG2实现阻抗变换。
图2是一种自举式的跟随器,它的特点是:1、自举由于R3的下端电位随上端电位升曾而升高,故称为自兴举,自举作用使R3两端的交流压降为零。
所以对交流来说,R3相当于开路,从而避免了偏置电路降低了输入阻抗的缺陷。
射极跟随器电路
射极跟随器电路
射极跟随器电路是一种基于晶体管的放大电路,通常用于信号放大和电平转换的应用。
射极跟随器电路由一个NPN型晶体管构成,其射极(collector)直接连接到负载电阻上,基极(base)通过电阻连接到输入信
号源,而发射极(emitter)则通过电阻到地。
工作原理如下:
- 当输入信号电压增加时,输入信号会提供于基极-发射极电压(Vbe)增大。
这会导致晶体管处于放大状态,增大了输出信
号电压范围。
- 当输入信号电压减小时,Vbe减小,晶体管将处于关闭状态,输出信号电压将跟随输入信号的变化而减小。
射极跟随器电路的特点:
1. 电压跟随性:输出电压会跟随输入电压的变化,实现信号放大和电平转换。
2. 输出电阻低:由于输出电压直接由负载电阻决定,其输出电阻很低。
3. 增益近似为1:射极跟随器的放大增益近似为1,所以在实
际应用中常常作为缓冲器使用。
射极跟随器电路在实际应用中具有广泛的用途,如音频放大、功率放大器的输出级等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
典型电路分析之射随器电路分析射随,是我们通常对射极跟随器的简称,其实也就是共集电极放大器,它的特点:1、晶体管射随电路具有较高的输入阻抗和较低的输出阻抗--基极回路电阻的1/1+β(β是晶体管的直流放大系数,也就是三极管规格书中的hFE,BC857AW正常工作时为250),具有隔离阻抗变换的作用。
2、电流增益很大,Ie=Ib(1+β)。
3、电压增益接近1,输入信号与输出信号同相,大小基本相等,这也是射随名字的由来。
由于射随的这几个特点,我们将其用在例如中放VIDEO输给DECODER,DECODER 的AV OUT等电路,弥补原先器件输出电流小,带载能力不足的缺点,减少后级电路对前级电路的影响,从而达到增强电路的带负载能力和前后级阻抗匹配,射随器同时还可以隔离逆向干扰,一路信号可以通过两个射随分成两路,而不会互相干扰,所以AV OUT,AUDIO OUT也经常使用这个电路。
目前我们常用的射随电路根据使用PNP或NPN三极管也有两种形式:A、PNP图1上面这个电路经常用于我们的AV OUT电路。
输入信号VIDEO IN波形变高时,三极管截止,VCC通过R1给C1充电;输入信号VIDEO IN波形变低时,三极管导通,C1通过导通的三极管对地放电。
电路形式看似很简单,器件不多,但如果器件使用不当的话,很容易造成输出波形失真:1、电容C1:C1在这个电路中起着仅次于三极管的作用。
电容的特性直观的说就是会保持电容两端电压不突变,电容量越大,这个阻止电压突变的能力就越强。
而通常我们说的通交流隔直流,可以通过这个公式来分析:电路中电容的容抗Xc=1/2πf C ,其中f为信号的频率,C为电容量的大小。
那么也就是说,当C不变时,频率越高,容抗Xc越小,那么电流越大,信号越容易通过。
那么为什么直流会被隔离呢?直流电平,相当于f=0,这时候容抗Xc=无穷大,相当于开路,信号自然无法传送过去了。
当f不变时,C越大,容抗Xc越小,那么电流越大,信号越容易通过。
这也就是为什么我们平时在选用电源滤波电容时,用uF级的电容来滤除几十Hz的纹波,而用nF级的电容,来滤除几十kHz的纹波。
(uF×10Hz=nF×10kHz)再回到图1这个电路,如果C1选用的电容量太小的话,会导致VIDEO信号中高电平稳不住,场同步期间(也就是信号的低电平)的低电平也稳不住。
如下图所示,图2为C1=1000uF时VIDEO OUT的波形,信号上部和场同步基本不失真。
图3为将C1改为100uF之后的波形,信号上部及场同步头明显失真(我们通常说的摆头)。
图2图3为什么电容量的大小会导致这样的信号失真呢?有2种方法可以分析:方法1:交流电路中,电容的等效容抗Xc=1/2πf C,那么射随电路的输出口等效电路为:图4对于理想电路,Xc=0,Vo= Vo=Vi×R5/( R4+R5)=0.5Vi,我们的实际电路中,如果取C=100uF,这时候Xc=1/2πf C,其中f=50,C=100uF,则Xc=31.84欧,代入Vo=Vi×R5/(Xc+R4+R5)得:Vo=75Vi/(31.84+75+75)=0.41Vi,输出波形失真(0.5-0.41)/0.5=17.5%,所以能看到图3中的扭曲失真。
如果我们取C=1000uF,这时候Xc=3.18欧,代入得:Vo=75Vi/(3.18+75+75)=0.4896Vi,失真只有(0.5-0.4896)/0.5=2%,所以图2中基本看不出失真来。
有人要问,用这种方法来看,失真是因为电容的阻抗分压导致接收端R6的幅度Vo变小导致的。
可是从图3的实际波形来看,无论是场同步期间还是信号高电平的波形都只是扭曲,而幅度并没有变小,这是为什么呢?其实,幅度有变小,但变小的是低频信号。
整场的信号可以看做是由频率50Hz的低频信号(场同步期间的低电平和信号高电平)与频率15k左右的行周期信号组成的。
对于低频信号,由于容抗Xc=1/2πf C较大,所以幅度减小,以场同步期间波形为例,原始波形为:低频的低电平经过电容后变成:高频的行开槽信号经过电容后,因频率较高,基本直通,幅度不变:叠加后最终的输出波形就象图3一样,整个向上扭曲:方法2:我们先来看看电容充放电过程:图5图5中,电容两端原始电压为U0,之后电容通过负载R放电,时间t后电容两端电压Uc=U0e-t/RC充电过程为上面这个过程的逆过程,大家可以自己分析。
将上面这个公式用到下图6后,可以看出,当VIDEO信号过来一个场同步头--低电平Vo时,三极管导通,电容C1通过三极管放电图6但如图5,因为C1放电,所以场同步这个低电平Vo无法保持,时间t后Vo的实际电平Vt=Vo e-t/RC 现在如图3,取C=100uF,e=2.71828t=低电平持续时间=2ms(虽然场同步上还有例如开槽脉冲等信号,但这些信号是高频的,对直流电平不会有影响,所以不用考虑,所以t应该取整个场同步周期,约=1/10场周期=2ms)R=R4+R5=150代入后可求得:Vt/Vo=0.878,失真12.2%如果C=1000uF, Vt/Vo=0.987,失真2.2%可以看出,用这种方法计算的结果和方法1的结果近似。
由以上分析可得,电容C1越大,波形失真越小,但受布板空间及成本限制,推荐C1选取470uF.此时Vt/Vo=0.972,失真2.8%,已经能满足要求。
由以上这两个公式也可以解释另一个问题:为什么音频电路中的隔直电容可以用的很小?因为音频电路的负载电阻很大(10k or 47k),因此要保持同样的失真度的话,电容C只需要视频中的几百分之一,所以音频电路中的隔直电容一般为nF级的。
2.电阻R1:下图7为输入亮点信号(为什么用这个信号后面分析)时,VCC=5V,R1=100欧时AV OUT的波形(已带75负载),输出的信号幅度为562mV,将R1改为470后,如图8所示,同步头不变,但信号幅度只剩下237mV,上面部分的波形都被切掉了:图7图8为什么会有这样的问题?R1该如何取,是否将R1改小就能解决这个问题?分析如下:例如图7中,AV OUT 波形幅度562mV,那么C1负极的幅度就是562*2=1124mV,也就是说C1负极处的最高电平为1124mV。
可以求出达到这个电平瞬间的通过C1电流Ir=U/R=1124/150=7.5mA。
而这个电流Ir也等于此时流过电阻R1的e极电流Ie=(VCC-Ve)/R1,所以(VCC-Ve)/R1=7.5mA,Ve=此时射极的直流电平=直流偏置+1.124V,如果直流偏置为VCC/2的话,R1=1376/7.5=183欧。
也就是说R1一定要小于183欧,才能让一个信号幅度562mV的波形不失真的通过。
那么图8中,R1=470欧,假设负载R5上的波形峰峰值为Vpp,那么同上,由Ir=Ie ==>(2Vpp/150)=[(5-2.5-2Vpp)/470],求得Vpp=302mV, 只能让一个信号幅度302mV的波形不失真的通过,而对于标准信号幅度0.7V的VIDEO信号,这个失真就很厉害了。
理论上R1越小,带载能力越强,但一味减小R1的阻值,会导致三极管导通时通过的电流过大,一个加大了功耗,容易烧三极管,一个是三极管的放大系数会随电流Ie的增大而降低:Ie由20mA加大到40mA, Hfe就由160降低到了130。
所以R1不能取太小,这个方法不推荐。
那么我们该怎么办呢?答案是:1、提高VCC2、改变三极管b极的直流偏置(这点放在下一节分析)上面的计算中VCC=5V,那我们来看看,如果我们取R1=330欧,VCC增大到9V(Ie=9000/330=27mA),能通过的Vpp是多少:(2Vpp/150)=[(4.5-2Vpp)/330],Vpp=0.7V,也就是可以通过信号幅度0.7V的VIDEO 信号,已经能满足我们的要求了。
而三极管导通时的电流,Vcc=5V,R1=100欧,Ie=50mA,如果Vcc=9V,R1=330欧,Ie=27mA.减小了很多。
所以,在视频射随电路中,必须保证VCC>8V。
下面先说说为什么要用亮点信号来做测试:图9图10图9为亮点信号,图10为全白场信号的波形,大家可以看到,图9中0电平基本在钳位黑电平处,那么动态范围要求的最大值差不多就是信号幅度,也就是562mV,而在图10中,0电平已经快接近信号顶部了,对于这个信号的动态范围的要求,只需要大约200mV,动态范围的要求远低于亮点信号。
所以大家在看波形失真的时候,一定要使用类似亮点信号这样的图形。
3、直流偏置:先重申一下几个概念:黑电平:在视频信号中,最暗的信号的电平,如灰阶信号最低那阶的信号电平。
对黑电平位置的规定,有2种标准。
美国NTSC-M标准中,黑电平定在比同步头后肩高7.5IRE的位置。
也就是下图11中0.357V的地方图11除了NTSC-M外,PAL、日本的NTSC-J标准中,黑电平定在同步头的后肩上,也就是下图12中0.321V 的地方:图12零电平:也就是图9,图10中标出的示波器箭头1>的位置,表示的是直流0电平的位置,也就是平常我们信号GND处的电平。
直流电平:信号去掉交流调制后剩下的直流信号的位置。
也就是我们通常说的直流偏置。
对与通过电容后的交流信号来说,直流电平=0。
平时可以用万用表一端接地,一端测量信号处,得到的电压值就是信号的直流电平。
回到我们要讨论的直流偏置:图1中,C2将VIDEO IN隔直,通过R2,R3重新给VIDEO IN一个直流偏置。
为了保证动态范围足够,也就是C1正极的直流电平最好= VCC /2。
为了保证基极的直流偏置电压稳定,要求流过R2,R3的电流I2,I3要远大于Ib(取Ie的平均值20mA,BC857AW的放大倍数150,Ib=Ie/Hfe=20mA/150=130uA),I2,I3至少要mA级,就要求R2,R3要尽量小,至少到K欧这一级。
第2节中提到要想增大动态范围,可以改直流偏置,那么,偏置电压该取几V呢?对图1这个PNP电路来说,如果输入的是VIDEO信号,因为e极最低只能到0V(c极是0V,Vec要>0),假设最严格的情况整个VIDEO 连同步头2V的波形都在0电平以下(实际中不可能),那么e极的直流电平必须>2V,b极则应>2-0.7=1.3V,所以如果是9V Vcc的话,对视频信号来说,R2,R3分压完后在基及的最佳偏置电压应该是1.5V,这样在选择R1值的时候的取大一些,降低电流,降低三极管的功耗。
我们来计算一下这时候R1可以增大到多少:按最大的信号幅度1.4V算(亮点信号,直流电位基本在零电平,有效信号幅度1.4V),(1.4V/150)=[9-(2V+1.4V) ]/R1R1=600欧由VCC/(R2+R3)=Vb/R3,在VCC=9V时,R2=5×R3,考虑基极电流的影响,可以取R2=5.6K,R3=1K,这时候直流偏置大概是0.13×1+9/(5.6+1)=1.5V。