高考数学总复习椭圆

合集下载

高考数学专题复习_椭圆

高考数学专题复习_椭圆

高考数学专题复习椭圆【考纲要求】一、考点回顾1. 椭圆的定义2. 椭圆的标准方程3. 椭圆的参数方程4 椭圆的简单几何性质5 点与椭圆的位置关系6 关于焦点三角形与焦点弦7 椭圆的光学性质8. 关于直线与椭圆的位置关系问题常用处理方法二 典例剖析1 求椭圆的标准方程【例1】(1)已知椭圆的中心在原点,焦点在x 轴上,一个焦点与短轴的两个端点的连-方程为____________(2)椭圆的中心在原点,焦点在坐标轴上,直线1y x =+交椭圆于,P Q 两点,若0OP OQ ⋅=u u u r u u u r ,且2PQ =u u u r ,则椭圆方程为_____________________【例2】设椭圆()222210x y a b a b+=>>的左焦点为F ,上顶点为A ,过A 点作AF 的垂线分别交椭圆于P ,交x 轴于Q ,且85AP PQ =u u u r u u u r(1)求椭圆的离心率。

(2)若过,,A F Q 三点的圆恰好与直线30x ++=相切,求椭圆的方程。

【例3】已知中心在原点的椭圆的左,右焦点分别为12,F F ,斜率为k 的直线过右焦点2F与椭圆交于,A B 两点,与y 轴交于点M 点,且22MB BF =u u u r u u u r(1)若k ≤(2)若k =AB 的中点到右准线的距离为10033,求椭圆的方程【例4】已知椭圆的中心在原点O ,短轴长为右准线交x 轴于点A ,右焦点为F ,且2OF FA =,过点A 的直线l 交椭圆于,P Q 两点 (1)求椭圆的方程(2)若0OP OQ ⋅=u u u r u u u r,求直线l 的方程(3)若点Q 关于x 轴的对称点为Q ',证明:直线PQ '过定点 (4)求OPQ V 的最大面积【例5】已知椭圆C的中心在原点,焦点在x轴上,椭圆C上的点到焦点的距离的最大值为3,最小值为1(1)求椭圆C的标准方程=+与椭圆交于,A B两点(,A B不是左,右顶点)且以(2)若直线:l y kx mAB为直径的圆过椭圆C的右顶点,求证:直线l过定点,并求出该定点的坐标2 椭圆的性质【例6】已知椭圆()222210x y a b a b+=>>的两个焦点分别为()1,0F c -,()2,0F c ,在椭圆上存在一点P ,使得120PF PF ⋅=u u u r u u u r(1)求椭圆离心率e 的取值范围(2)当离心率e 取最小值时,12PF F V 的面积为16,设,A B 是椭圆上两动点,若线段AB 的垂直平分线恒过定点(0,Q 。

高考数学椭圆知识点汇总

高考数学椭圆知识点汇总

高考数学椭圆知识点汇总椭圆,作为高考数学中的一个重要知识点,经常出现在考试中。

对于很多学生来说,椭圆可能会让人感到有些困惑和难以掌握。

因此,本文将对高考数学中的椭圆知识点进行汇总,以帮助大家更好地理解和应对考试。

一、基本概念椭圆是平面上到两个定点F1和F2的距离之和等于常数2a,且以两点连线的中点为中心的闭合曲线。

F1和F2称为椭圆的焦点,连线F1F2的长度称为椭圆的焦距,直线段连接两个焦点的中点和椭圆上一点的长度称为椭圆的半径。

二、标准方程椭圆的标准方程为:(x-x0)²/a² + (y-y0)²/b² = 1 或 (y-y0)²/a² + (x-x0)²/b² = 1,其中(x0, y0)为椭圆的中心坐标,a为长轴长度,b为短轴长度。

三、图形性质1. 在横轴上,椭圆的离心率为e=√(a²-b²)/a,范围为0<e<1。

当e→0时,椭圆变成一个圆。

2. 椭圆关于x、y轴对称,即对于任意(x, y)在椭圆上,则(-x, y)、(x, -y)、(-x, -y)也在椭圆上。

3. 椭圆的离心率小于1,因此离心率为1的图形为双曲线,离心率大于1的图形为抛物线。

四、焦点与半径1. 焦距等于2ae,其中e为焦距与长轴的比值。

2. 椭圆离焦点的距离之和等于椭圆上任意一点到两个焦点的距离之和。

3. 椭圆的半径r和焦距f的关系为r² = a² - b² = a²(1 - e²) = f² + b²。

五、直线与椭圆的关系1. 直线与椭圆相交于两个点,则这两个点关于椭圆的中心对称。

2. 直线与椭圆相切于一点,则这个点恰好位于椭圆的一个焦点上。

3. 直线既不与椭圆相交也不相切,则直线与椭圆没有交点。

六、椭圆的参数方程椭圆的参数方程为:x = x0 + a*cosθ,y = y0 + b*sinθ,其中θ为参数,0 ≤ θ ≤ 2π。

椭圆高考必会知识点

椭圆高考必会知识点

椭圆高考必会知识点在高考的数学考试中,椭圆是一个重要的考点,学生需要熟悉和掌握相关的知识。

本文将介绍椭圆的定义、性质及其在解决数学问题中的应用。

一、椭圆的定义和性质椭圆是平面上一点到两个固定点(焦点)的距离之和等于常数的轨迹。

其中,两个固定点之间的距离被定义为焦距,焦距的一半被表示为c。

另外,连接两个焦点的长度的一半被定义为半焦距,半焦距的表示为ae。

椭圆的定义可以用数学方程表示为:x^2/a^2 + y^2/b^2 = 1,其中a 和b分别为椭圆的半长轴和半短轴。

椭圆的中心为原点O(0,0),半长轴和半短轴分别与x轴和y轴平行。

椭圆具有以下性质:1. 两焦点关于x轴和y轴对称;2. 长轴与x轴夹角为α,有tanα = b/a;3. 短轴与x轴夹角为β,有tanβ = a/b;4. 长轴和短轴的长度满足a>b。

二、椭圆的方程及常见图形1. 标准方程:椭圆的标准方程为x^2/a^2 + y^2/b^2 = 1,其中a和b分别为椭圆的半长轴和半短轴。

通过标准方程,我们可以确定椭圆的形状和大小。

2. 常见图形:根据椭圆的标准方程,我们可以得到不同形状的椭圆。

当a=b时,椭圆变为圆;当a>b时,椭圆在x轴上展开,较短的轴在y轴上;当b>a时,椭圆在y轴上展开,较短的轴在x轴上。

三、椭圆的焦点和准线1. 焦点:椭圆的焦点是椭圆定义中的两个固定点,记为F1和F2。

根据椭圆的定义,任意一点P到焦点F1和F2的距离之和等于常数,即PF1 + PF2 = 2a。

焦点在椭圆的长轴上,且与短轴的中点连线垂直。

2. 准线:椭圆的准线是椭圆上所有与焦点和直径平行的直线。

准线与椭圆的性质密切相关,在解决数学问题中常常需要利用准线的性质进行推导和计算。

四、椭圆的参数方程除了标准方程外,我们还可以通过参数方程来表示椭圆。

椭圆的参数方程为:x = a*cosθy = b*sinθ其中θ为参数,取值范围为0°≤θ≤360°或0≤θ≤2π。

高三复习椭圆知识点讲解

高三复习椭圆知识点讲解

高三复习椭圆知识点讲解椭圆,作为平面解析几何的一部分,是高三数学的重要知识点之一。

在高三学习阶段,对于椭圆的理解和熟练运用显得尤为重要。

本文将对高三复习椭圆的知识点进行讲解,帮助同学们加深对椭圆的理解,提升解题的能力。

一、椭圆的定义及性质椭圆是平面上到两个定点F1,F2的距离之和等于常数2a的点P的轨迹。

在椭圆中,常数2a称为长轴,定点F1和F2称为焦点,连结两个焦点的线段称为主轴,主轴的中点称为椭圆的中心。

椭圆还有一些重要的性质,如:离心率、焦距、短半轴等。

二、椭圆的方程在平面直角坐标系中,椭圆的方程有两种形式:标准方程和一般方程。

1. 标准方程:椭圆的标准方程为:$\dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} = 1$,其中$a$和$b$分别是椭圆的长半轴和短半轴。

2. 一般方程:椭圆的一般方程为:$Ax^2 + By^2 + Cx + Dy + E = 0$,其中$A,B,C,D,E$为常数。

三、椭圆的基本性质1. 离心率:椭圆的离心率定义为$\varepsilon = \dfrac{c}{a}$,其中$c$为焦点到中心的距离,$a$为长半轴长。

离心率用来衡量椭圆的扁平程度,范围在0到1之间。

2. 焦距:椭圆的焦距定义为$2ae$,其中$a$为长半轴长,$e$为离心率。

3. 短半轴:椭圆的短半轴$b$满足$b = a\sqrt{1 - \varepsilon^2}$,其中$a$为长半轴长,$\varepsilon$为离心率。

四、椭圆的图像特点1. 椭圆的图像是一个闭合曲线,对称于$x$轴和$y$轴,且关于原点对称。

2. 当$a > b$时,椭圆的图像在$x$轴上开口,称为纵椭圆;当$a < b$时,椭圆的图像在$y$轴上开口,称为横椭圆。

3. 当离心率$\varepsilon = 0$时,椭圆退化为一个圆。

五、常用公式及运用1. 椭圆上一点P的坐标$(x, y)$,可由参数方程表示为:$x =a\cos\theta, y = b\sin\theta$。

2024届高考数学复习:精选历年真题、好题专项(椭圆)练习(附答案)

2024届高考数学复习:精选历年真题、好题专项(椭圆)练习(附答案)

2024届高考数学复习:精选历年真题、好题专项(椭圆)练习一. 基础小题练透篇1.已知定点F 1,F 2,且|F 1F 2|=8,动点P 满足|PF 1|+|PF 2|=8,则动点P 的轨迹是( ) A .椭圆 B .圆 C .直线 D .线段2.[2023ꞏ山西省忻州市高三联考]“m >0”是“方程x 24 +y 2m =1表示椭圆”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 3.[2023ꞏ重庆市高三模拟]几何学中,把满足某些特定条件的曲线组成的集合叫做曲线族.点Q 是椭圆族T 上任意一点,如图所示,椭圆族T 的元素满足以下条件:①长轴长为4;②一个焦点为原点O ;③过定点P ()0,3 ,则||QP +||QO 的最大值是( )A .5B .7C .9D .114.[2023ꞏ四川省遂宁市模拟]已知椭圆x 2a 2 +y 2b 2 =1(a >b >0)的离心率为12 ,则( ) A .a 2=2b 2 B .3a 2=4b 2 C .a =2b D .3a =4b5.[2023ꞏ甘肃省张掖市高三检测]已知椭圆x 2+y 2b 2 =1(1>b >0)的左、右焦点分别为F 1,F 2,点M 是椭圆上一点,点A 是线段F 1F 2上一点,且∠F 1MF 2=2∠F 1MA =2π3 ,|MA |=32 ,则该椭圆的离心率为( )A .3B .12C .223D .36.在平面直角坐标系xOy 中,已知点A (0,3 ),B (0,-3 ),动点M 满足|MA |+|MB |=4,则MA → ꞏMB →的最大值为( )A .-2B .0C .1D .27.已知椭圆C 的焦点在x 轴上,过点(322 ,2)且离心率为13 ,则椭圆C 的焦距为________. 8.[2023ꞏ陕西省西安市模拟]椭圆x 29 +y 23 =1的左、右焦点分别为F 1,F 2,点P 在椭圆上,如果PF 1的中点在y 轴上,那么|PF 1|是|PF 2|的________倍.二. 能力小题提升篇1.[2023ꞏ陕西省安康市高三联考]已知F 1,F 2是椭圆C :x 2a 2 +y 215 =1(a >15 )的两个焦点,P 为C 上一点,且∠F 1PF 2=60°.||PF 1 =5||PF 2 ,则C 的方程为( )A .x 221 +y 215 =1B .x 218 +y 215 =1C .x 236 +y 215 =1 D .x 242 +y 215 =12.[2023ꞏ广西贵港市高三联考]若2<m <8,椭圆C :x 2m +y 22 =1与椭圆D :x 2m +y 28 =1的离心率分别为e 1,e 2,则( )A .e 1ꞏe 2的最小值为32B .e 1ꞏe 2的最小值为12C .e 1ꞏe 2的最大值为3D .e 1ꞏe 2的最大值为123.[2023ꞏ江西名校联盟模拟]在直角坐标系xOy 中,F 是椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点,过点F 作x 轴的垂线交椭圆C 于P ,Q 两点,连接PB 交y 轴于点E ,连接AE 交PQ 于点M ,若M 是线段PF 的中点,则椭圆C 的离心率为( )A.22 B .12 C .13 D .144.[2023ꞏ陕西省西安市高三检测]设椭圆C :x 2a 2 +y 2b 2 =1()a >b >0 的右焦点为F ,椭圆C 上的两点A ,B 关于原点对称,且满足F A → ꞏFB →=0,||FB ≤||F A ≤2||FB ,则椭圆C 的离心率的最大值是( )A .13B .33C .23D .535.[2023ꞏ陕西省咸阳市摸底]已知椭圆C :x 2m 2-1+y 2m 2 =1(m >0)的两个焦点分别为F 1,F 2,点P 为椭圆上一点,且△PF 1F 2面积的最大值为3 ,则椭圆C 的短轴长为________.6.[2023ꞏ福建省高三联考]抛物线C 1:y 2=4x 的焦点F ,点P ()3,2 ,以点F ,P 为焦点的椭圆与抛物线有公共点,则椭圆的离心率的最大值为________.三. 高考小题重现篇1.[2021ꞏ山东卷]已知F 1,F 2是椭圆C :x 29 +y 24 =1的两个焦点,点M 在C 上,则||MF 1 ꞏ||MF 2 的最大值为( )A .13 B. 12 C .9 D. 62.[全国卷Ⅰ]已知椭圆C :x 2a 2 +y 24 =1的一个焦点为(2,0),则C 的离心率为( )A .13B .12C .22 D .2233.[2022ꞏ全国甲卷]已知椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的离心率为13 ,A 1,A 2分别为C的左、右顶点,B 为C 的上顶点.若BA → 1ꞏBA →2=-1,则C 的方程为( )A .x 218 +y 216 =1B .x 29 +y 28 =1C .x 23 +y 22 =1 D .x 22 +y 2=14.[2022ꞏ全国甲卷]椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的左顶点为A ,点P ,Q 均在C 上,且关于y轴对称.若直线AP,AQ的斜率之积为14,则C的离心率为()A.32B.22C.12D.135.[2019ꞏ全国卷Ⅲ]设F1,F2为椭圆C:x236+y220=1的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为________.6.[2021ꞏ全国甲卷]已知F1,F2为椭圆C:x216+y24=1的两个焦点,P,Q为C上关于坐标原点对称的两点,且|PQ|=|F1F2|,则四边形PF1QF2的面积为________.四. 经典大题强化篇1.已知椭圆x2a2+y2b2=1(a>b>0)的一个顶点为B(0,4),离心率e=5,直线l交椭圆于M,N两点.(1)若直线l的方程为y=x-4,求弦|MN|的长;(2)如果△BMN的重心恰好为椭圆的右焦点F,求直线l方程的一般式.2.[2022ꞏ湖北武汉调研]已知椭圆C:x2a2+y2b2=1(a>b>0)的一个顶点为A(2,0),离心率为22,直线y=k(x-1)与椭圆C交于不同的两点M,N.(1)求椭圆C的方程;(2)当△AMN的面积为103时,求k的值.参考答案一 基础小题练透篇1.答案:D答案解析:因为|PF 1|+|PF 2|=|F 1F 2|,所以动点P 的轨迹是线段F 1F 2. 2.答案:B答案解析:当m >0时方程x 24 +y 2m =1不一定表示椭圆,如m =4时方程x 24 +y 24=1,即x 2+y 2=4就表示一个圆,所以“m >0”不是“方程x 24 +y2m=1表示椭圆”的充分条件;但是当方程x 24 +y 2m =1表示椭圆时,应有m >0,所以“m >0”是“方程x 24 +y 2m=1表示椭圆”的必要条件,故选B. 3.答案:A答案解析:如图所示设点Q 所在椭圆的另一焦点为F ,则||QP +||QO =||QP +4-||QF ≤||PF +4=4-||PO +4=5. 故选A. 4.答案:B答案解析:椭圆的离心率e =c a =12,c 2=a 2-b 2,化简得3a 2=4b 2,故选B.5.答案:B答案解析:设|MF 1|=r 1,|MF 2|=r 2,则r 1+r 2=2a =2,由余弦定理得|F 1F 2|2=|MF 1|2+|MF 2|2-2|MF 1||MF 2|cos 2π3,即4c 2=r 21 +r 22 +r 1r 2=(r 1+r 2)2-r 1r 2=4-r 1r 2,所以r 1r 2=4-4c 2,因为S △F 1MF 2=S △F 1MA +S △AMF 2,所以12 r 1r 2sin 23 π=12 r 1·|MA |·sin π3 +12 r 2·|MA |·sin π3,整理得r 1r 2=(r 1+r 2)·|MA |,即4-4c 2=2×32 ,整理得c 2=14,所以c =12 ,a =1,e =c a =12.故选B. 6.答案:C答案解析:易知M 的轨迹为椭圆,其方程为y 24+x 2=1,设M (x ,y ),则x 2=1-y 24,∴MA → ·MB → =(-x ,3 -y )·(-x ,-3 -y )=x 2+y 2-3=y 2+(1-y 24)-3=3y24-2, 因为y ∈[-2,2],所以34y 2∈[0,3],即3y24 -2∈[-2,1],∴(MA → ·MB →)max =1. 7.答案:2答案解析:设椭圆方程为x 2a 2 +y 2b 2 =1,由离心率为13 可得c a =13,由a 2=b 2+c 2可得b 2a 2=89 ,又92a 2 +4b 2 =1,解得a 2=9,b 2=8,c =1,焦距为2. 8.答案:5答案解析:由题得c =6 ,由题得PF 2⊥x 轴,当x =6 时,69+y 23 =1,所以y =±1,∴|PF 2|=1,所以|PF 1|=2×3-|PF 2|=6-1=5, 所以|PF 1|是|PF 2|的5倍.二 能力小题提升篇1.答案:C答案解析:在椭圆C :x 2a 2 +y 215=1(a >15 )中,由椭圆的定义可得||PF 1 +||PF 2 =2a ,因为||PF 1 =5||PF 2 ,所以||PF 2 =a 3,||PF 1 =5a3,在△PF 1F 2中,||F 1F 2 =2c ,由余弦定理得||F 1F 2 2=||PF 1 2+||PF 2 2-2||PF 1 ||PF 2 cos ∠F 1PF 2,即4c 2=25a 29 +a29-5a 29 =21a 29 ,所以c 2a 2 =2136 ,又b 2=15.所以a 2=36,所以椭圆C 的方程为x 236 +y 215 =1. 故选C. 2.答案:D答案解析:因为2<m <8,所以e 1= 1-2m ,e 2= 1-m8,所以e 1·e 2=⎝ ⎛⎭⎪⎫1-2m ⎝ ⎛⎭⎪⎫1-m 8 =1+14-⎝ ⎛⎭⎪⎫2m +m 8 ≤54-22m ·m 8 =12, 当且仅当m =4时,等号成立,故e 1·e 2的最大值为12,e 1·e 2无最小值.故选D.3.答案:C答案解析:不妨设点P 在x 轴上方,如图,连接BQ ,则由椭圆的对称性易得∠PBF =∠QBF ,∠EAB =∠EBA ,所以∠EAB =∠QBF ,所以ME ∥BQ ,所以|PE ||EB | =|PM ||MQ | .因为OE ∥PF ,所以|OF ||OB |=|EP ||EB | ,从而有|PM ||MQ | =|OF ||OB | .又M 是线段PF 的中点,所以e =c a =|OF ||OB | =|PM ||MQ | =13 . 4.答案:D答案解析:如图所示:设椭圆的左焦点F ′,由椭圆的对称性可知,四边形AFBF ′为平行四边形,又FA → ·FB →=0,即FA ⊥FB , 所以平行四边形AFBF ′为矩形,所以||AB =||FF ′ =2c ,设||AF ′ =|BF |=n ,||AF =m, 在直角△ABF 中,m +n =2a ,m 2+n 2=4c 2,得mn =2b 2,所以m n+n m =2c 2b 2 ,令m n =t ,得t +1t =2c2b 2 ,又由||FB ≤||FA ≤2||FB ,得m n =t ∈[1,2],所以t +1t =2c 2b 2 ∈⎣⎢⎡⎦⎥⎤2,52 ,所以c 2b 2 ∈⎣⎢⎡⎦⎥⎤1,54 ,即b 2a 2 =11+c 2b2∈⎣⎢⎡⎦⎥⎤49,12 , 所以e =ca=1-b 2a 2 ∈⎣⎢⎡⎦⎥⎤22,53 ,所以离心率最大值为53 .故选D.5.答案:23答案解析:由椭圆的方程可知,椭圆的焦点F 1,F 2在y 轴上,且|F 1F 2|=2m 2-(m 2-1) =2,由题意可知,当点P 为椭圆C 左右顶点时,△PF 1F 2的面积最大,且12 |F 1F 2|m 2-1 =3 ,解得m =2,所以椭圆C 的短轴长为2m 2-1 =23 .6.答案:22答案解析:抛物线C 1:y 2=4x 的焦点F (1,0),根据题意2c =(3-1)2+(2-0)2=22 ,c =2 .设椭圆和抛物线的交点为Q ,Q 到抛物线准线x =-1的距离为d ,离心率最大,即a 最小,a =||QF +||QP 2 =d +||QP 2 ≥3-(-1)2=2, 当PQ 与准线垂直时等号成立,此时e =ca =22. 三 高考小题重现篇1.答案:C答案解析:由题,a 2=9,b 2=4,则||MF 1 +||MF 2 =2a =6,所以||MF 1 ·||MF 2 ≤⎝ ⎛⎭⎪⎫||MF 1+||MF 22 2=9(当且仅当||MF 1 =||MF 2 =3时,等号成立).2.答案:C答案解析:由题意可知c =2,b 2=4,∴a 2=b 2+c 2=4+22=8,则a =22 ,∴e =c a =222 =22 . 3.答案:B答案解析:由椭圆C 的离心率为13 ,可得e =c a =a 2-b 2a 2=13.化简,得8a 2=9b 2.易知A 1(-a ,0),A 2(a ,0),B (0,b ),所以BA 1·BA 2=(-a ,-b )·(a ,-b )=-a 2+b 2=-1.联立得方程组⎩⎪⎨⎪⎧8a 2=9b 2,-a 2+b 2=-1, 解得⎩⎪⎨⎪⎧a 2=9,b 2=8. 所以C 的方程为x 29 +y 28 =1.故选B.4.答案:A答案解析:A ()-a ,0 ,设P ()x 1,y 1 ,则Q ()-x 1,y 1 ,则k AP =y 1x 1+a ,k AQ =y 1-x 1+a, 故k AP ·k AQ =y 1x 1+a ·y 1-x 1+a =y 21 -x 21 +a 2 =14, 又x 21 a2 +y 21 b2 =1,则y 21 =b 2()a 2-x 21 a 2, 所以b 2()a 2-x 21 a 2-x 21 +a2 =14 ,即b 2a 2 =14 , 所以椭圆C 的离心率e =c a=1-b 2a 2 =32 .故选A. 5.答案:(3,15 )答案解析:不妨令F 1,F 2分别为椭圆C 的左、右焦点,根据题意可知c =36-20 =4.因为△MF 1F 2为等腰三角形,所以易知|F 1M |=2c =8,所以|F 2M |=2a -8=4.设M (x ,y ),则⎩⎪⎨⎪⎧x 236+y220=1,|F 1M |2=(x +4)2+y 2=64,x >0,y >0,得⎩⎨⎧x =3,y =15,所以M 的坐标为(3,15 ).6.答案:8答案解析:根据椭圆的对称性及|PQ |=|F 1F 2|可以得到四边形PF 1QF 2为对角线相等的平行四边形,所以四边形PF 1QF 2为矩形.设|PF 1|=m ,则|PF 2|=2a -|PF 1|=8-m ,则|PF 1|2+|PF 2|2=m 2+(8-m )2=2m 2+64-16m =|F 1F 2|2=4c 2=4(a 2-b 2)=48,得m (8-m )=8,所以四边形PF 1QF 2的面积为|PF 1|×|PF 2|=m (8-m )=8.四 经典大题强化篇1.答案解析:(1)由已知得b =4,且c a =55 ,即c 2a 2 =15,∴a 2-b 2a 2 =15,解得a 2=20,∴椭圆方程为x 220 +y 216=1. 则4x 2+5y 2=80与y =x -4联立,消去y 得9x 2-40x =0,∴x 1=0,x 2=409,∴所求弦长|MN |=1+12|x 2-x 1|=4029. (2)椭圆右焦点F 的坐标为(2,0),设线段MN 的中点为Q (x 0,y 0),由三角形重心的性质知BF → =2FQ →, 又B (0,4),∴(2,-4)=2(x 0-2,y 0), 故得x 0=3,y 0=-2, 即Q 的坐标为(3,-2). 设M (x 1,y 1),N (x 2,y 2), 则x 1+x 2=6,y 1+y 2=-4,且x 21 20 +y 21 16 =1,x 22 20 +y 2216=1, 以上两式相减得k MN =y 1-y 2x 1-x 2 =-45 ·x 1+x 2y 1+y 2 =-45 ×6-4 =65,故直线MN 的方程为y +2=65(x -3),即6x -5y -28=0.2.答案解析:(1)由题意得⎩⎪⎨⎪⎧a =2,c a =22,a 2=b 2+c 2,得b =2 ,所以椭圆C 的方程为x 24+y 22=1.(2)由⎩⎪⎨⎪⎧y =k (x -1),x 24+y22=1, 得(1+2k 2)x 2-4k 2x +2k 2-4=0.Δ=24k 2+16>0恒成立. 设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2),则y 1=k (x 1-1),y 2=k (x 2-1),x 1+x 2=4k 21+2k 2 ,x 1x 2=2k 2-41+2k 2 ,所以|MN |=(x 2-x 1)2+(y 2-y 1)2=(1+k 2)[(x 1+x 2)2-4x 1x 2]=2(1+k 2)(4+6k 2)1+2k 2. 又点A (2,0)到直线y =k (x -1)的距离d =|k |1+k2 ,所以△AMN的面积S=12|MN|·d=|k|4+6k21+2k2,由|k|4+6k21+2k2=103,得k=±1.所以当△AMN的面积为103时,k=±1.。

高考椭圆大题知识点公式

高考椭圆大题知识点公式

高考椭圆大题知识点公式椭圆是初中数学中的一个重要的几何概念,它也是高考中常见的题型之一。

椭圆的性质和计算方法在高考中一直以来都是考察的重点,掌握了椭圆的知识点和公式,对于解答相关题目有着至关重要的作用。

本文将详细介绍高考椭圆大题的知识点和公式。

1. 椭圆的定义和基本性质椭圆可以用一个特定的平面曲线来描述,它是一个离心率小于1的闭合曲线。

椭圆有两个特殊的焦点和一个长轴和短轴。

在求解椭圆的相关题目时,我们需要了解椭圆的四个基本性质:离心率、焦半径、焦距和准线。

2. 椭圆的方程和标准方程对于给定的椭圆,我们需要根据已知条件求解其方程。

椭圆的标准方程是(x-h)²/a² + (y-k)²/b² = 1(a>b>0),其中(h,k)是椭圆的中心坐标,a和b分别是椭圆的长轴和短轴长度。

3. 椭圆的焦点和准线椭圆的焦点是与椭圆的离心率相关的关键概念。

根据椭圆的标准方程,椭圆的焦点分别位于椭圆的长轴两侧,并与中心坐标的y坐标有一定的关系。

在求解与焦点相关的问题时,我们需要根据给定条件确定焦点的坐标和与焦点相关的长度。

4. 椭圆的参数方程和切线方程椭圆的参数方程是描述椭圆上任意一点的坐标与参数的关系。

根据椭圆的参数方程,我们可以求解椭圆上特定点的坐标,并进一步求解与椭圆相关的问题。

另外,椭圆的切线方程是求解椭圆上某一点的切线斜率和方程的重要手段。

5. 椭圆的面积和周长椭圆的面积和周长是解答椭圆相关题目时常见的考点。

椭圆的面积公式为πab,其中a是椭圆的长轴半径,b是椭圆的短轴半径。

椭圆的周长公式是2π√(a²+b²/2)。

6. 椭圆在平面几何中的应用椭圆不仅仅是一个抽象的数学概念,它在实际生活和工程领域中有着丰富的应用。

椭圆的轨迹和焦点特性在天体运动、建筑设计、电子工程等领域有着广泛的应用。

通过了解椭圆的应用,我们可以更好地理解椭圆的几何性质和相关计算方法。

高考数学总复习 椭圆、双曲线、抛物线单元测试题

高考数学总复习 椭圆、双曲线、抛物线单元测试题

高考数学总复习 椭圆、双曲线、抛物线单元测试题一.选择题(1) 抛物线24x y =上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为 ( )A 2B 3C 4D 5 (2) 若焦点在x轴上的椭圆2212x y m +=的离心率为12,则m=( )A B32 C83D23(3) 若方程x 2+ky 2=2表示焦点在y 轴上的椭圆, 那么实数k 的取值范围是 ( )A (0, +∞)B (0, 2)C (1, +∞)D (0, 1)(4) 设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为023=-y x ,F 1、F 2分别是双曲线的左、右焦点,若3||1=PF ,则=||2PF( )A 1或 5B 6C 7D 9(5) 对于抛物线y 2=2x 上任意一点Q, 点P(a, 0)都满足|PQ|≥|a |, 则a 的取值范围是( )A [0, 1]B (0, 1)C (]1,∞- D (-∞, 0)(6) 若椭圆)0(12222〉〉=+b a by a x 的左、右焦点分别为F 1、F 2,线段F 1F 2被抛物线y 2=2bx 的焦点分成5:3两段,则此椭圆的离心率为( )A1716B 17174C 54D 552(7) 已知双曲线)0(1222>=-a y ax 的一条准线与抛物线x y 62-=的准线重合,则该双曲线的离心率为 ( )A23 B23C 26D 332(8) 设A(x 1,y 1),B(x 2,y 2)是抛物线y 2=2px(p>0)上的两点,并且满足OA ⊥OB. 则y 1y 2等于( )A – 4p 2B 4p 2C – 2p 2D 2p 2(9) 已知双曲线1222=-y x 的焦点为F 1、F 2,点M 在双曲线上且120,MF MF ⋅=则点M 到x 轴的距离为( )A43B53C 3 (10) 设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P , 若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( )A2B C 2 1 二.填空题(11) 若双曲线的渐近线方程为x y 3±=,它的一个焦点是()0,10,则双曲线的方程是__________.(12)设中心在原点的椭圆与双曲线2 x 2-2y 2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 .(13) 过双曲线22221x y a b-=(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线相交于M 、N两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于_________.(14) 以下同个关于圆锥曲线的命题中 ①设A 、B 为两个定点,k 为非零常数,k PB PA =-||||,则动点P 的轨迹为双曲线;②过定圆C 上一定点A 作圆的动弦AB ,O 为坐标原点,若),(21OB OA OP +=则动点P 的轨迹为椭圆; ③方程02522=+-x x 的两根可分别作为椭圆和双曲线的离心率;④双曲线13519252222=+=-y x y x 与椭圆有相同的焦点.其中真命题的序号为 (写出所有真命题的序号) 三.解答题(15)点A 、B 分别是椭圆1203622=+y x 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PF PA ⊥.求点P 的坐标; .(16) 已知抛物线C: y=-21x 2+6, 点P (2, 4)、A 、B 在抛物线上, 且直线PA 、PB 的倾斜角互补. (Ⅰ)证明:直线AB 的斜率为定值;(Ⅱ)当直线AB 在y 轴上的截距为正数时, 求△PAB 面积的最大值及此时直线AB 的方程.(17) 双曲线12222=-by a x (a>1,b>0)的焦距为2c,直线l 过点(a,0)和(0,b),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥54c.求双曲线的离心率e 的取值范围(18) 已知抛物线)0(22>=p px y 的焦点为F ,A 是抛物线上横坐标为4、且位于x 轴上方的点,A 到抛物线准线的距离等于5.过A 作AB 垂直于y 轴,垂足为B ,OB 的中点为M.(1)求抛物线方程;(2)过M 作FA MN ⊥,垂足为N ,求点N 的坐标;(3)以M 为圆心,MB 为半径作圆M ,当)0,(m K 是x 轴上一动点时,讨论直线AK 与圆M 的位置关系.参考答案一选择题:1.D[解析]:点A 与抛物线焦点的距离就是点A 与抛物线准线的距离,即5)1(4=-- 2.B[解析]:∵焦点在x 轴上的椭圆2212x y m +=的离心率为12,∴2122=-m 则m=233.D[解析]: ∵方程x 2+ky 2=2,即12222=+ky x 表示焦点在y 轴上的椭圆 ∴22>k故10<<k 4.C[解析]:双曲线19222=-y ax 的一条渐近线方程为023=-y x ,故2=a 又P 是双曲线上一点,故4||||||21=-PF PF ,而3||1=PF ,则=||2PF 75.C[解析]:对于抛物线y 2=2x 上任意一点Q, 点P(a, 0)都满足|PQ|≥|a |,若,0≤a 显然适合若0>a ,点P(a, 0)都满足|PQ|≥|a |就是2222)2(y y a a +-≤ 即1142≤+≤y a ,此时10≤<a 则a 的取值范围是(]1,∞- 6.D[解析]:3522=-+b c bc ,5245222==∴=∴=a c e a c b c 7.D[解析]:双曲线)0(1222>=-a y a x 的准线为122+±=a a x抛物线x y 62-=的准线为23=x 因为两准线重合,故122+a a =23,2a =3,则该双曲线的离心率为328.A[解析]:∵A(x 1,y 1),B(x 2,y 2)是抛物线y 2=2px(p>0)上的两点,并且满足OA ⊥OB.∴04)(0,12122212121=+∴=+∴-=⋅y y py y y y x x k k OBOA 则y 1y 2 = – 4p 29.C[解析]:∵120,MF MF ⋅=∴点M 在以F 1F 2为直径的圆322=+y x 上故由32||1232222=⎪⎩⎪⎨⎧=-=+y y x y x 得 则点M 到x 轴的距离为332 10.D[解析]:不妨设点P 在 x 轴上方,坐标为),(2ab c ,∵△F 1PF 2为等腰直角三角形∴|PF 2|=|F 1F 2|,即c a b 22=,即e e a c ac a 2122222=-∴=- 故椭圆的离心率e1二填空题:11. 1922=-y x [解析]: 因为双曲线的渐近线方程为x y 3±=,则设双曲线的方程是λ=-922y x ,又它的一个焦点是()0,10 故1109=∴=+λλλ12. 1222=+y x [解析]:双曲线2 x 2-2y 2=1的焦点为()0,1±,离心率为2故椭圆的焦点为()0,1±,离心率为22, 则1,2,1===b a c ,因此该椭圆的方程是1222=+y x 13. 2[解析]:设双曲线22221x y a b-=(a >0,b >0)的左焦点F 1,右顶点为A ,因为以MN 为直径的圆恰好过双曲线的右顶点, 故|F 1M|=|F 1A|,∴c a ab +=2∴2112=∴+=-e e e 14. ③④[解析]:根据双曲线的定义必须有||||AB k ≤,动点P 的轨迹才为双曲线,故①错 ∵),(21OB OA OP +=∴P 为弦AB 的中点,故090=∠APC 则动点P 的轨迹为以线段AC 为直径的圆。

2024全国高考真题数学汇编:椭圆(1)

2024全国高考真题数学汇编:椭圆(1)

2024全国高考真题数学汇编椭圆一、单选题1.(2024全国高考真题)已知曲线C :2216x y (0y ),从C 上任意一点P 向x 轴作垂线段PP ,P 为垂足,则线段PP 的中点M 的轨迹方程为()A .221164x y(0y )B .221168x y (0y )C .221164y x (0y )D .221168y x (0y )二、解答题2.(2024天津高考真题)已知椭圆22221(0)x y a b a b椭圆的离心率12e .左顶点为A ,下顶点为B C ,是线段OB 的中点,其中ABC S △(1)求椭圆方程.(2)过点30,2的动直线与椭圆有两个交点P Q ,.在y 轴上是否存在点T 使得0TP TQ .若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.3.(2024北京高考真题)已知椭圆E : 222210x y a b a b,以椭圆E 的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点 0,t t 且斜率存在的直线与椭圆E 交于不同的两点,A B ,过点A 和 0,1C 的直线AC 与椭圆E 的另一个交点为D .(1)求椭圆E 的方程及离心率;(2)若直线BD 的斜率为0,求t 的值.4.(2024全国高考真题)已知(0,3)A 和33,2P 为椭圆2222:1(0)x yC a b a b上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.5.(2024全国高考真题)已知椭圆2222:1(0)x y C a b a b的右焦点为F ,点31,2M 在C 上,且MF x 轴.(1)求C 的方程;(2)过点 4,0P 的直线交C 于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y 轴.参考答案1.A【分析】设点(,)M x y ,由题意,根据中点的坐标表示可得(,2)P x y ,代入圆的方程即可求解.【详解】设点(,)M x y ,则0(,),(,0)P x y P x ,因为M 为PP 的中点,所以02y y ,即(,2)P x y ,又P 在圆2216(0)x y y 上,所以22416(0)x y y ,即221(0)164x y y ,即点M 的轨迹方程为221(0)164x y y .故选:A2.(1)221129x y (2)存在 30,32T t t,使得0TP TQ 恒成立.【分析】(1)根据椭圆的离心率和三角形的面积可求基本量,从而可得椭圆的标准方程.(2)设该直线方程为:32y kx, 1122,,,,0,P x y Q x y T t ,联立直线方程和椭圆方程并消元,结合韦达定理和向量数量积的坐标运算可用,k t 表示TP TQ,再根据0TP TQ 可求t 的范围.【详解】(1)因为椭圆的离心率为12e,故2a c,b ,其中c 为半焦距,所以2,0,0,,0,2A c B C,故122ABC S c △故ca ,3b ,故椭圆方程为:221129x y .(2)若过点30,2的动直线的斜率存在,则可设该直线方程为:32y kx ,设 1122,,,,0,P x y Q x y T t ,由22343632x y y kx可得223412270k x kx ,故 222Δ144108343245760k k k 且1212221227,,3434k x x x x k k而 1122,,,TP x y t TQ x y t,故121212123322TP TQ x x y t y t x x kx t kx t22121233122kx x k t x x t22222731231342342k k k t t kk2222222327271812332234k k k t t t k k22223321245327234t t k t k,因为0TP TQ 恒成立,故 223212450332702t t t,解得332t .若过点30,2的动直线的斜率不存在,则 0,3,0,3P Q 或 0,3,0,3P Q ,此时需33t ,两者结合可得332t.综上,存在 30,32T t t,使得0TP TQ 恒成立.【点睛】思路点睛:圆锥曲线中的范围问题,往往需要用合适的参数表示目标代数式,表示过程中需要借助韦达定理,此时注意直线方程的合理假设.3.(1)221,422x y e(2)2t 【分析】(1)由题意得b c a ,由此即可得解;(2)设 :,0,AB y kx t k t , 1122,,,A x y B x y ,联立椭圆方程,由韦达定理有2121222424,1221kt t x x x x k k ,而 121112:y y AD y x x y x x ,令0x ,即可得解.【详解】(1)由题意b c,从而2a ,所以椭圆方程为22142x y,离心率为e;(2)直线AB 斜率不为0,否则直线AB 与椭圆无交点,矛盾,从而设 :,0,AB y kx t k t , 1122,,,A x y B x y ,联立22142x y y kx t,化简并整理得222124240k x ktx t ,由题意 222222Δ1682128420k t k t k t ,即,k t 应满足22420k t ,所以2121222424,1221kt t x x x x k k ,若直线BD 斜率为0,由椭圆的对称性可设 22,D x y ,所以 121112:y y AD y x x y x x,在直线AD 方程中令0x ,得 2122112121221121212422214C k t x kx t x kx t kx x t x x x y x y y t x x x x x x kt ,所以2t ,此时k 应满足222424200k t k k,即k应满足2k或2k ,综上所述,2t满足题意,此时2k或2k .4.(1)12(2)直线l 的方程为3260x y 或20x y .【分析】(1)代入两点得到关于,a b 的方程,解出即可;(2)方法一:以AP 为底,求出三角形的高,即点B 到直线AP 的距离,再利用平行线距离公式得到平移后的直线方程,联立椭圆方程得到B 点坐标,则得到直线l 的方程;方法二:同法一得到点B 到直线AP 的距离,再设 00,B x y ,根据点到直线距离和点在椭圆上得到方程组,解出即可;法三:同法一得到点B 到直线AP 的距离,利用椭圆的参数方程即可求解;法四:首先验证直线AB 斜率不存在的情况,再设直线3y kx ,联立椭圆方程,得到点B 坐标,再利用点到直线距离公式即可;法五:首先考虑直线PB 斜率不存在的情况,再设3:(3)2PB y k x,利用弦长公式和点到直线的距离公式即可得到答案;法六:设线法与法五一致,利用水平宽乘铅锤高乘12表达面积即可.【详解】(1)由题意得2239941b a b,解得22912b a ,所以12e .(2)法一:3312032APk,则直线AP 的方程为132y x ,即260x y ,AP 1)知22:1129x y C ,设点B 到直线AP 的距离为d,则d则将直线AP 沿着与AP 此时该平行线与椭圆的交点即为点B ,设该平行线的方程为:20x y C ,6C 或18C ,当6C 时,联立221129260x y x y,解得03x y 或332x y ,即 0,3B 或33,2,当 0,3B 时,此时32l k,直线l 的方程为332y x ,即3260x y ,当33,2B时,此时12l k ,直线l 的方程为12y x ,即20x y ,当18C 时,联立2211292180x y x y得22271170y y ,227421172070 ,此时该直线与椭圆无交点.综上直线l 的方程为3260x y 或20x y .法二:同法一得到直线AP 的方程为260x y ,点B 到直线AP 的距离d设 00,B x y,则220012551129x y,解得00332x y 或0003x y ,即 0,3B 或33,2,以下同法一.法三:同法一得到直线AP 的方程为260x y ,点B 到直线AP的距离d设,3sin B ,其中 0,2联立22cos sin 1,解得cos 21sin 2或cos 0sin 1,即 0,3B 或33,2,以下同法一;法四:当直线AB 的斜率不存在时,此时 0,3B ,16392PAB S ,符合题意,此时32l k ,直线l 的方程为332y x ,即3260x y ,当线AB 的斜率存在时,设直线AB 的方程为3y kx ,联立椭圆方程有2231129y kx x y,则2243240k x kx ,其中AP k k ,即12k ,解得0x 或22443kx k,0k ,12k ,令22443k x k ,则2212943k y k ,则22224129,4343k k B k k同法一得到直线AP 的方程为260x y ,点B 到直线AP的距离d,解得32k =,此时33,2B,则得到此时12l k ,直线l 的方程为12y x ,即20x y ,综上直线l 的方程为3260x y 或20x y .法五:当l 的斜率不存在时,3:3,3,,3,2l x B PB A到PB 距离3d ,此时1933922ABP S 不满足条件.当l 的斜率存在时,设3:(3)2PB y k x,令 1122,,,P x y B x y ,223(3)21129y k x x y,消y 可得 22224324123636270k x k k x k k ,2222Δ24124433636270k kk k k ,且AP k k ,即12k ,21222122241243,36362743k k x x k PB k k x x k,A 到直线PB距离192PAB d S,12k或32,均满足题意,1:2l y x 或332y x ,即3260x y 或20x y .法六:当l 的斜率不存在时,3:3,3,,3,2l x B PB A到PB 距离3d ,此时1933922ABP S 不满足条件.当直线l 斜率存在时,设3:(2l y k x,设l 与y 轴的交点为Q ,令0x ,则30,32Q k,联立223323436y kx k x y,则有2223348336362702k x k k x k k ,2223348336362702k xk k x k k,其中22223Δ8343436362702k k k k k,且12k ,则2222363627121293,3434B B k k k k x x k k,则211312183922234P B k S AQ x x k k,解的12k 或32k =,经代入判别式验证均满足题意.则直线l 为12y x或332y x ,即3260x y 或20x y .5.(1)22143x y (2)证明见解析【分析】(1)设 ,0F c ,根据M 的坐标及MF x 轴可求基本量,故可求椭圆方程.(2)设:(4)AB y k x , 11,A x y , 22,B x y ,联立直线方程和椭圆方程,用,A B 的坐标表示1Q y y ,结合韦达定理化简前者可得10Q y y ,故可证AQ y 轴.【详解】(1)设 ,0F c ,由题设有1c 且232b a ,故2132a a ,故2a,故b ,故椭圆方程为22143x y .(2)直线AB 的斜率必定存在,设:(4)AB y k x , 11,A x y , 22,B x y,由223412(4)x y y k x 可得 2222343264120k x k x k ,故 422Δ102443464120k k k ,故1122k ,又22121222326412,3434k k x x x x k k ,而5,02N,故直线225:522y BN y x x ,故22223325252Qy y y x x,所以 1222112225332525Q y x y y y y y x x12224253425k x x k x x222212122264123225825834342525k k x x x x k k k kx x2222212824160243234025k k k k k x ,故1Q y y ,即AQ y 轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为 1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意 的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x 、12x x (或12y y 、12y y )的形式;(5)代入韦达定理求解.。

高考椭圆专题知识点总结

高考椭圆专题知识点总结

高考椭圆专题知识点总结椭圆作为数学中的一个重要概念,是高考数学中的一个重要考点。

本文将对椭圆的相关知识进行总结,从基本概念到具体应用进行阐述,探讨其在高考中的应对策略。

一、椭圆的基本概念椭圆是平面上的一个几何图形,其定义为到两个定点F₁、F₂的距离之和等于定值2a的点集合。

F₁、F₂称为椭圆的焦点,而直线段F₁F₂的长度为椭圆的主轴。

与主轴垂直的直径称为椭圆的次轴,两轴的交点称为椭圆的中心。

二、椭圆的数学描述椭圆的数学表示是(x/a)²+(y/b)²=1或(x/a)²/(y/b)²=1,其中a为椭圆的长半轴,b为椭圆的短半轴。

根据椭圆的性质,由于离心率e=√(a²-b²)/a<1,椭圆是离心率小于1的一类曲线。

三、椭圆的参数方程椭圆的参数方程是x=a*cosθ,y=b*sinθ,其中θ为参数。

通过参数方程,我们可以很方便地求得椭圆上的各个点的坐标。

此外,椭圆的参数方程还可以用来求椭圆中心、焦点等相关信息。

四、椭圆的常见性质1. 椭圆的离心率e满足0<e<1,离心率为0时即为圆。

2. 椭圆的长半轴a和短半轴b满足a>b>0。

3. 椭圆的焦距2c满足c²=a²-b²,其中c为焦点F₁F₂到中心的距离。

五、椭圆的相关定理1. 椭圆的切线定理:椭圆上任意一点处的切线斜率等于该点对应的椭圆的切线的倾角的正切值。

2. 椭圆的法线定理:椭圆上任意一点处的法线斜率等于该点对应的椭圆的切线的倾角的负倒数。

3. 椭圆的切线和法线的判定:切线和法线的直线方程满足x²/a²+y²/b²=1和bx/a²y+ay/b²x=1。

六、椭圆的应用椭圆在现实生活中有丰富的应用。

例如,椭圆的形状被广泛应用于汽车或自行车的轮胎、卫星的轨道等。

在高考数学中,椭圆的知识点也常常涉及到与其他几何图形的相互关系以及坐标变换等问题。

高考数学总复习——椭圆课件

高考数学总复习——椭圆课件

椭圆中的最值问题
运用基本不等式
解决椭圆中的最值问题时,可以运用基本不等式,通过合理转化,将问题转化为 容易处理的形式。
椭圆中的最值问题
数形结合
结合椭圆的几何图形,将问题转化为几何问题,利用几何性质求解最值,是解决这类问题的常用方法 。
椭圆中的最值问题
代数运算
02
01
在解决椭圆最值问题时,需要进 行一些代数运算,如配方、换元
2018年高考数学全国卷Ⅱ 椭圆题目:已知椭圆C的中 心在原点,焦点在x轴上, 椭圆C上的点P到焦点的距 离和为12,点P的横坐标是 3,且过点P作短轴的垂线
,垂足Q的轨迹为圆C。
01
2019年高考数学全国卷Ⅲ 椭圆题目:已知椭圆C的中 心在原点,焦点在x轴上, 椭圆C上的点P到焦点的距 离和为10,点P的横坐标是 4,且过点P作短轴的垂线
椭圆的参数方程
椭圆的参数方程是 $left{ begin{array}{l} x = a cos theta y = b sin theta end{array} right.$,其中 $theta$ 是参数。
该方程通过三角函数将椭圆上的点与角度 $theta$ 关联起来,方便进行角度和距离 的计算。
高频考点总结与预测
总结
通过对近五年高考真题的分析,可以发现椭 圆的离心率的计算、直线与椭圆的交点以及 弦长问题等知识点是高频考点。同时还需要 注意椭圆的几何意义和性质的应用。
预测
根据高频考点的规律和趋势,预测未来高考 中可能会出现的考点包括椭圆的切线问题、 椭圆的参数方程以及椭圆的对称性等知识点 。
椭圆的标准方程
椭圆的标准方程是 $frac{x^2}{a^2} + frac{y^2}{b^2} = 1$,其中 $a$ 和 $b$ 是椭圆的半长轴和半短轴。

高考数学椭圆知识点总结

高考数学椭圆知识点总结

高考数学椭圆知识点总结在高考数学中,椭圆是一个重要的几何图形,掌握椭圆的相关知识点对于解题非常有帮助。

下面将对高考数学中与椭圆相关的知识点进行总结。

一、椭圆的定义和性质椭圆是一个平面上的封闭曲线,其定义是到两个固定点(焦点)的距离之和等于常数的点所构成的集合。

椭圆具有以下性质:1. 焦点和准线:椭圆的两个焦点在椭圆的长轴上,准线则是连接两个焦点并且垂直于长轴的直线。

2. 焦距和半长轴:椭圆的两个焦点之间的距离称为焦距,焦距的一半称为半焦距。

椭圆的长轴是过焦点的直线,长轴的一半称为半长轴。

3. 直径:椭圆的直径是通过椭圆两个焦点的直线段,并且垂直于长轴的。

二、椭圆的标准方程椭圆的标准方程为(x-h)²/a² + (y-k)²/b² = 1,其中(h, k)是椭圆的中心坐标,a和b分别是椭圆的半长轴和半短轴的长度。

三、椭圆的参数方程和焦点坐标椭圆的参数方程为x = h + a*cosθ,y = k + b*sinθ,其中θ是0到2π的参数。

椭圆的焦点坐标为(h+c, k)和(h-c, k),其中c是半焦距的长度。

四、椭圆的离心率和短焦距椭圆的离心率是一个描述椭圆形状的重要指标,计算公式为e = c/a,其中c是焦距的长度,a是半长轴的长度。

离心率小于1的椭圆被称为椭圆形,离心率等于1的椭圆被称为抛物线,离心率大于1的椭圆被称为双曲线。

椭圆的短焦距的长度可以通过短焦距的平方等于长焦距的平方减去椭圆的半长轴的平方来计算。

五、椭圆和直线的方程椭圆的方程和直线的方程可以相交、相切或者相离。

椭圆和直线相交时,可以通过联立椭圆的方程和直线的方程求解交点的坐标。

六、椭圆的面积和周长椭圆的面积可以通过公式A = πab来计算,其中a和b分别是椭圆的半长轴和半短轴的长度。

椭圆的周长近似于公式C ≈ 2π√(2a²+b²)/2。

综上所述,掌握高考数学中与椭圆相关的知识点对于解题至关重要。

高考总复习数学(理科)第八章 第五节第1课时椭圆的概念及其性质(基础课)

高考总复习数学(理科)第八章 第五节第1课时椭圆的概念及其性质(基础课)
第八章 平面解析几何
第五节 椭圆
最新考纲
1.了解椭圆的实际背景, 了解椭圆在刻画现实世界 和解决实际问题中的作 用. 2.掌握椭圆的定义、几何 图形、标准方程及简单几 何性质. 3.理解数形结合思想. 4.了解椭圆的简单应用.
考情索引
2018·全国卷Ⅰ,
T19 2018·全国卷Ⅱ,
T12 2018·全国卷Ⅲ,
4.已知F1,F2是椭圆C:
x2 a2

y2 b2
=1(a>b>0)的两个
焦点,P为椭圆C上的一点,且
P→F1⊥
→ PF2
.若△PF1F2的面
积为解9,析则:b=由定__义__,___|P_F.1|+|PF2|=2a,且P→F1⊥P→F2, 所以|PF1|2+|PF2|2=|F1F2|2=4c2, 所以(|PF1|+|PF2|)2-2|PF1||PF2|=4c2, 所以2|PF1||PF2|=4a2-4c2=4b2, 所以|PF1||PF2|=2b2. 所以S△PF1F2=12|PF1||PF2|=12×2b2=9,因此b=3
A.x32+y2=1
B.x32+y22=1
C.x92+y42=1
D.x92+y52=1
(3)(2018·全国卷Ⅰ)已知椭圆C:
x2 a2

y2 4
=1的一个焦
点为(2,0),则C的离心率为( )
1
1
2
22
A.3
B.2
C. 2
D. 3
解析:(1)F1(- 3,0),因为PF1⊥x轴,
所以P-

3,±12,所以|PF1|=12,
P到x轴的距离为1,所以y=±1,把y=±1代入
x2 5

2025届高中数学一轮复习课件《椭圆(一)》ppt

2025届高中数学一轮复习课件《椭圆(一)》ppt

高考一轮总复习•数学
第6页
二 椭圆的标准方程和几何性质
标准方程
ax22+by22=1(a>b>0)
ay22+bx22=1(a>b>0)
图形
高考一轮总复习•数学
第7页
范围
-a ≤x≤ a -b ≤y≤ b
-b≤x≤b -a≤y≤a
性 对称性

对称轴:坐标轴 对称中心:原点
顶点
A1(-a,0),A2(a,0)
(2)my22+nx22=1(m≠n)表示焦点在 y 轴上的椭圆.(
)
(3)椭圆的离心率 e 越大,椭圆就越圆.( )
(4)方程 mx2+ny2=1(m>0,n>0)表示的曲线是椭圆.( )
高考一轮总复习•数学
第13页
2.(2024·重庆诊断)已知椭圆 C:16x2+4y2=1,则下列结论正确的是( )
A.长轴长为12
B.焦距为
3 4
C.短轴长为14
D.离心率为
3 2
解析:把椭圆方程
16x2+4y2=1
化为标准方程可得y12+
x2 1
=1,所以
a=12,b=14,c=
4 16
4 3,则长轴长 2a=1,焦距 2c= 2 3,短轴长 2b=12,离心率 e=ac= 2 3,故选 D.
解析 答案
高考一轮总复习•数学
高考一轮总复习•数学
第3页
01 理清教材 强基固本 02 重难题型 全线突破 03 限时跟踪检测
高考一轮总复习•数学
第4页
理清教材 强基固本
高考一轮总复习•数学
第5页
一 椭圆的概念 1.我们把平面内与两个定点 F1,F2 的距离的和等于常数(大于|F1F2|)的点的轨迹叫做 椭圆 .这两个定点叫做椭圆的 焦点 ,两焦点间的距离叫做椭圆的 焦距 ,焦距的一 半称为半焦距. 2.集合 P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中 a>0,c>0,且 a,c 为常数: (1)若 a>c ,则集合 P 为椭圆; (2)若 a=c ,则集合 P 为线段; (3)若 a<c ,则集合 P 为空集.

椭圆高考复习课件ppt

椭圆高考复习课件ppt

\leqslant
a$和$-b
\leqslant y \leqslant b$

椭圆的离心率
椭圆的焦距与长轴长度的
比叫做椭圆的离心率,记
作$e$,即$e
=
\frac{c}{a}$,其中$c$是
椭圆的焦距。
椭圆的参数方程
椭圆的参数方程
以焦点为极点,以长轴端点为极轴建立极坐 标系,则椭圆的极坐标方程为$\rho = \frac{2b^{2}}{1 - e^{2}\cos^{2}\theta}$ 。其中$\rho$为极径,$\theta$为极角。
详细描述
例题3:已知椭圆焦点 在x轴上,中心在原点 ,长轴长为4,短轴长 为2,并且一条切线方 程为y=x+1,求椭圆的 标准方程。
解答
根据椭圆的切线方程和 极坐标方程,可得到原 点为极点,极轴为x轴 ,进而求出椭圆的标准 方程。
谢谢
THANKS
践操作能力。
注重实际应用,培养综合素质
强化应用意识
在复习过程中要强化应用意识,引导考生将所学知识应用 到实际生活中,提高知识的实际应用能力。
提高应试技巧
在复习过程中要注重提高应试技巧,包括答题技巧、时间 分配、心态调整等方面,帮助考生在考试中更加从容应对 。
培养综合素质
在复习过程中要注重培养考生的综合素质,包括语言表达 、思维逻辑、人际交往、心理素质等方面,为未来的学习 和生活打下坚实的基础。
椭圆的参数方程与直角坐 标系下的方程转换
将$\rho = \fr乘$\rho$, 可得$\rho^{2} = \frac{2b^{2}\rho^{2}}{1 - e^{2}\cos^{2}\theta}$,再将其展开得到 $\rho^{2} = (1 - e^{2})x^{2} + y^{2}$,

椭圆课件-2025届高三数学一轮基础专项复习

椭圆课件-2025届高三数学一轮基础专项复习
2.[链接苏教选必一P88—P89知识]椭圆的右焦点为,椭圆上的两点, 关于原点对称,若,且椭圆的离心率为,则椭圆 的方程为( )
A
A. B. C. D.
【解析】由题意知,,关于原点对称,所以,得,又椭圆的离心率为,所以 ,得,故椭圆的方程为 ,选A.
解后反思若椭圆的左、右焦点分别为,,,两点在椭圆上,且关于坐标原点对称,则,,, 四点所构成的四边形为平行四边形,若或四边形有一个内角为 ,则该四边形为矩形.
10.[人A选必一P115习题3.1第4题变式]求满足下列条件的椭圆的标准方程.
(1)长半轴长为4,半焦距为,焦点在 轴上;
【答案】设椭圆方程为,(注意焦点在 轴上)由题意得,,,所以 ,所以其标准方程为 .
(2)与椭圆有相同的焦点,且经过点 ;
【答案】易知椭圆的焦点坐标为 ,设所求椭圆方程为,则 ,因为椭圆过点,所以,即 ,所以,所以所求椭圆的标准方程为 .
教材知识萃取
方法技巧利用椭圆的简单几何性质求最值或范围的思路
(1)将所求问题用椭圆上点的坐标表示,利用坐标范围构造函数或不等关系,利用函数或基本不等式求最值或范围;
(2)将所求范围用 , , 表示,利用 , , 自身的范围、关系求范围.
教材素材变式
1.[多选][苏教选必一P93习题3.1(2)第13题变式]如图所示,一个底面半径为 的圆柱被与其底面成 角的平面所截,截面是一个椭圆,则( )
3.[人B选必一P141练习A第4题变式]已知,分别是椭圆的左顶点和右焦点, 是椭圆上一点,直线与直线相交于点,且是顶角为 的等腰三角形,则该椭圆的离心率为( )
C
A. B. C. D.
【解析】如图,设直线与轴的交点为,由是顶角为 的等腰三角形,知, ,则在中, .又,所以.结合得,即 ,解得或 (舍去).故选C.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2008高考真题 分布
各省市均有命 题.如 2008年湖南12 ; 2008年辽宁20 ; 2008宁夏、海 南14; 2008年江苏18 等.
2009年高考真题分 布
高考展望
2009重庆20; 2009江西21. 2009全国Ⅱ,9; 2009四川20; 2009北京8. 2009四川9; 2009北京19; 2009陕西21; 2009湖南20.
的点的轨迹.
• 注意:定直线l叫椭圆的准线,点F叫椭圆的焦点.常数e叫椭圆 的离心率.
整理课件
11
2.椭圆方程:①焦点在 x 轴上的方程:ax22+by22= 1(a>b>0).②焦点在 y 轴上的方程:ay22+bx22=1(a>b>0).
整理课件
12
• 3.椭圆的简单几何性质:
标准 方 方程 程 参数
x轴,y轴;长轴 x轴,y轴;长轴
对称轴
:A1A2;短轴: B1B2,长轴长2a
:A1A2;短轴: B1B2,长轴长2a
,短整理轴课件长2b.
,短轴长2b. 14
焦距
离心率
准线 焦半径
通径 焦参数 (焦准距)
2c(c= a2-b2) e=ac(0<e<1) x=±ac2 r=a±ex0 2b2
a b2
c
2c(c= a2-b2) e=ac(0<e<1) y=±ac2 r=a±ey0 2b2
a b2
c
整理课件
15
4.焦点三角形应注意以下关系:
(1)定义:r1+r2=2a(r1、r2 表示焦半径). (2)焦半径公式:(见上表内).
(3)余弦定理:r21+r22-2r1r2cosθ=(2c)2.
(4)
• C.圆
D.线段
• [解析] 因为2a=4,所以|MF1|+|MF2|=4=2a • 由定义知该轨迹应是线段.
• [答案] D
整理课件
17
2.(2008 年江西卷理 6)过椭圆ax22+by22=1(a>b>0)的左
焦点 F1 作 x 轴的垂线交椭圆于点 P,F2 为右焦点,若
∠F1PF2=60°,则椭圆的离心率为
整理课件
4
高考 考点
2008高考真题 分布
2009年高考真题分布
高考展望
双曲 线的 性质
2008重庆8; 2008福建11; 2008天津21.
2009全国Ⅰ,4; 2009全国Ⅱ,11; 2009重庆12;
2009湖南12.
2.选择题主要以椭 圆、双曲线为考查 对象,解答题以直 线与圆锥曲线的位 置关系为考查对象 .
整理课件
1
• 一、本章知识网络结构
整理课件
2
• 二、最新考纲解读 • 1.掌握椭圆的定义、标准方程、简单的几何性质,了解椭圆
的参数方程.
• 2.掌握双曲线的定义、标准方程、简单的几何性质. • 3.掌握抛物线的定义、标准方程、简单的几何性质. • 4.了解圆锥曲线的初步应用.
整理课件
3
• 三、高考考点聚集
整理课件
9
整理课件
10
• 椭圆的定义与方程
• 1.椭圆第一定义:到两个定点F1、F2的距离之和等于定长 (>|F1F2|)的点的轨迹.
• 注:①当2a=|F1F2|时,P点的轨迹是线段F1F2. • ②当2a<|F1F2|时,P点的轨迹不存在. • 第二定义:到定点F与到定直线l的距离之比等于常数e(e∈(0,1))



S△PF1F2

1 2
r1r2sinθ

1 2
·2c|y0|(


P(x0,y0)为椭圆上一点,∠F1PF2=θ,r1、r2 表示焦 半径).
整理课件
16
• 一、选择题
• 1.已知F1、F2是两定点|F1F2|=4动点M满足|MF1|+|MF2|=4,
则动点M的轨迹是
()
• A.椭圆
B.直线
方程
ax22+by22=1(a>b>0)
ay22+bx22=1(a>b>0)
图形
整理课件
13
范围 -a≤x≤a, -b≤y≤b
点O(0,0)
顶点
A2(a,0),A1(- a,0),B2(0,b) ,B1(0,-b)
B2(b,0),B1(- b,0),A2(0,a) ,A1(0,-a)
2009全国Ⅱ,21; 2009湖北20.
4.特别近年 出现的解 析几何与 平面向量 结合的问 题,是常 考常新的 试题,将 是今后高 考命题的 一个趋势.
整理课件
6
整理课件
7
• 最新考纲解读 • 1.掌握椭圆的定义、标准方程. • 2.掌握椭圆的简单几何性质. • 3.了解椭圆的参数方程.
整理课件
19
• 4.(北京宣武区模拟题)已知F1、F2是椭圆
=1的两个焦点,
高考考 2008高考真题分 2009年高考真题分



高考展望
椭圆的 性质
直线与 椭圆的 位置关

椭圆的 综合问

2008天津5; 2008江西7; 2008四川21; 2008江苏21.
2009江西6; 2009北京12; 2009湖北7; 2009全国Ⅰ,12.
1.本章内容是高考 的重点,一般每年 高考试题中都会有 2~3道客观题和一 道解答题,难、中 、易三档题都有. 主要考查圆锥曲线 的定义、性质,直 线与圆锥曲线的位 置关系等.
抛物 线的 综合 应用
2008北京4; 2008四川12; 2008辽宁10; 2008年陕西20.
2009全国Ⅰ,21.
整理课件
3.求曲线方程和轨 迹的题目,高考一 般不给图形,便于 考查学生的想象能 力、分析问题的能 力.
5
高考考点
曲线轨迹 方程
直线与圆 锥曲线位 置关系
定值与最 值问题
存在性问 题
()
2 A. 2
3 B. 3
1
1
C.2
D.3
[答案] B
整理课件
18
3.(2009 年全国Ⅰ卷理 12 文 12)已知椭圆 C:x22+
y2=1 的右焦点为 F,右准线为 l,点 A∈l,线段 AF 交
C 于点 B,若F→A=3F→B,则|A→F|=
()
A. 2
B.2
C. 3
D.3
[答案] A
整理课件
8
• 高考考查命题趋势
• 1.从近几年高考看,椭圆的定义、标准方程、性质以及与直 线的关系是高考必考内容,既有选择题又有填空题、解答 题.其中直线与椭圆的位置关系常与向量综合考查,并且出现 在解答题中,难度中等或偏上.如2009年重庆20;2009江西21; 09全国Ⅱ21;09湖北21等.
• 2.在2009年高考中,有9套试题在此知识点上命题,估计2011 年对这一知识点的考查必不可少,复习时应重视.
相关文档
最新文档