数字信号处理第一章(4)解析
数字信号处理第一章课后答案
第 1 章 时域离散信号和时域离散系统
n
(7) y(n)= x(m) 令输入为m0
x(n-n0)
输出为
n
y′(n)= =0[DD)]x(m-n0)
m0
nn0
y(n-n0)= x(m)≠y′(n) m0
故系统是时变系统。 由于
n
T[ax1(n)+bx2(n)]=
[ax1(m)+bx2(m)
第 1 章 时域离散信号和时域离散系统
解:
x(n)=δ(n+4)+2δ(n+2)-δ(n+1)+2δ(n)+δ(n-1)
+2δ(n-2)+4δ(n-3)+0.5δ(n-4)+2δ(n-6)
2. 给定信号:
2n+5
-4≤n≤-1
(x(n)= 6 0
0≤n≤4 其它
(1) 画出x(n)序列的波形, 标上各序列值;
(2) y(n)=x(n)+x(n+1)
n n0
(3) y(n)= x(k) k nn0
(4) y(n)=x(n-n0) (5) y(n)=ex(n)
第 1 章 时域离散信号和时域离散系统
解:(1)只要N≥1, 该系统就是因果系统, 因为输出 只与n时刻的和n时刻以前的输入有关。
如果|x(n)|≤M, 则|y(n)|≤M, (2) 该系统是非因果系统, 因为n时间的输出还和n时间以 后((n+1)时间)的输入有关。如果|x(n)|≤M, 则 |y(n)|≤|x(n)|+|x(n+1)|≤2M,
第 1 章 时域离散信号和时域离散系统 题2解图(四)
数字信号处理第四版第一章知识点总结
数字信号处理第四版第一章知识点总结新一代信号处理技术正在快速发展,数字信号处理是在数字信号的获取和处理过程中极为重要的一块技术领域。
在本章中,我们将对《数字信号处理第四版》中第一章所介绍的知识进行总结和概述,使读者更加全面的了解这一技术领域。
首先,我们从数字信号处理的定义出发,数字信号处理是将数字信号从接收端开始,经过编解码、变换、修正、滤波等操作,使获取的信号更加清晰、更加准确,最终得到所需要的信号。
其次,我们要探讨的开发工具,在数字信号处理的过程中,采用的开发工具有软件开发和硬件开发,软件开发是指利用计算机语言、脚本、流程图等来编写出相应的程序,实现信号处理;硬件开发是指利用机器语言编写程序,使用基于定制的电路板、外部接口等部件,实现实时信号处理。
最后,我们要讨论的是信号处理技术,在数字信号处理中,涉及到诸多技术,例如:数字滤波、信号压缩、数据重构、编码错误纠正等技术。
数字信号处理的应用非常广泛,它的重要性不言而喻。
例如,在无线电、移动通信、数字电视、声音处理等领域都广泛采用数字信号处理技术。
它在雷达、声纳、无线电等系统的设计中也发挥着重要的作用,在这些系统中,采用数字信号处理技术,可以提高系统的灵活性、可靠性、可维护性,从而使系统更加省电、安全、准确。
此外,数字信号处理技术在医疗影像学和生物医学中也发挥着重要作用。
它可以利用数字化和计算机处理技术,通过分析影像信号,将影像信号以图像的形式表示出来,从而更好的观察人体的内部结构,从而更准确的诊断疾病。
可以看出,数字信号处理的技术对于改善我们的生活水平、改善治疗效果、提高诊断准确性等方面有着重要作用。
从上述简要介绍可以看出,数字信号处理是一门极其重要的新一代技术领域,它可以帮助我们更快更好的获取信号,更好的处理信号,更好的书写程序,更准确的分析信号,从而改善我们的生活、提高我们的生活水平。
未来,数字信号处理技术将会发挥更大的作用,届时将会有更广阔的应用前景和发展!。
《数字信号处理》教学课件1_4双边Z变换与反变换
a< z <b
双边z变换的主要性质
x1[k] X1(z) x2[k] X 2 (z)
ROC Rx1 {z; Rx1- < z < Rx1 } ROC Rx2 {z; Rx2- < z < Rx2 }
1.线性特性
ax1[k] bx2[k] aX1(z) bX2 (z)
2.位移特性
ROC包含 Rx1 Rx2
H2(z)
(1) |z|3 ,H1(z)和 H2(z)均对应右边序列
h[k ] (-2k1 3k1 )u[k ]
(2) 2<|z|<3,H1(z)对应右边序列, H2(z) 对应左边序列
h[k] -2k1u[k] - 3k1u[-k - 1]
(3) |z|<2 ,H1(z)和 H2(z)均对应左边序列
Z{rx[n]} x[k]X (z)zk X (z-1) X (z)
k
其中X (z-1) x[k](z-1)-k
k
例: 利用z变换性质,求ak u[-k -1]的z变换。
解:
由于
a-ku[k -1]Z
a -1 z -1 1 - a -1 z -1
z 1/ a
利用双边z变换的时域翻转性质,可得
a k1
a -
-1z a -1 z
1 - 1- az-1
z<a
双边z反变换
1
x[k ] 2πj C
X ( z) z k-1dz
C为X(z) 的ROC中的一闭合曲线。
部分分式法 留数法
z变换
双边z反变换
部分分式法求z反变换
将序列z变换分解为部分分式之和, 然后求解各部分分式对应的z反变换
数字信号处理第一章答案 朱冰莲
1-3 (1)解:05162/2/85 ,16ππωπ==∴是周期的周期为。
(2)解:80()() 2 /16, n j x n eT ππωπ-==∴是无理数是非周期的。
(3)解:0382/2/43,8ππωπ==∴是周期的周期为。
1-4()()()()00000000112120()()*()()(),()0(2)1, ()()()1,()1,(m nm n n nnnmm n n m n nm n m n n n n n n n n n n n n n y n x n h n x m h n m n n y n n n n N y n x m h n m y n n n βαββααβααβαβαβααβαβαβαα∞=-∞=----==+--+--+--==-<=≤≤+-=-==-=--=≠-=+-=∑∑∑∑(1)当时当时部分重叠)β()()()()()00-N 11111-12(3)1 ,()()().,1(),nm n n n nnm m n n m n nm n N m n N n N n N N n n n n n N n n n n n N y n x m h n m y n N βαββααβααβαβαβαβαβαβαβααβ=+----=-+=-+-++--+---≥+-=-==--==≠--==∑∑∑当时全重叠1-6[]1212120000()()[()()()()][()][()][()]()()()()()|x(n)|<=M y(n)|=|x(n)g(n)|<x T ax n bx n ag n x n bg n x m aT x n bT x n T x n n g n x n n g n n x n n x n +=+=+∴-=-≠--(1)解:y(n)=g(n)(n)系统是线性系统。
因此是移变的由于n 时刻的系统的输出只和n 时刻信号有关因此是因果的当输入x(n)满足是对应的输出|=M |()|()g n g n 因此若为有限信号则系统稳定,否则不稳定[]0012121212()()[()()]()()[()][()]nnnm n k n k n T ax n bx n ax m bx m ax k bx k aT x n bT x n ===+=+=+=+∴∑∑∑(2)解:系统是线性系统。
数字信号处理(吴镇扬)第一章习题解答
提示:与理想采样信号的频谱进行比较。上述过程是物理采样后的频谱。
1.6解:
(1) (性质1)
(2) (性质4)
(3)
(4)1.7(1)Fra bibliotek:(2)解:
(3)解:
(4)解:
(5)解:
1.8 (1)解:令
由题意可知,所求序列等效为 。
而
故:
(2)解:
因为:
所以,
1.10 (1)解:
,为双边序列
本小题采用部分分式法求逆Z变换,可以使用“留数法”…..
所以
(3)解:
1.18y(n)=1,n=0
y(n)=3*2-n,n≥1
解:
1.19
(1)解:
无论 还是 ,右边序列的围线C内包含 两个极点。
当 时
当 时
因此
思考:1、为何讨论当 时的情况;2、为何不用讨论 的情况
解答过程如下:
(2)解:
右边序列的围线C内包含 一个极点。故
当 时
因此,
思考:1、为何只讨论当 时的情况
(3) 当n0>0时,该系统是因果系统;当n0<0时,该系统是非因果系统;系统稳定。
(4)因果、稳定。
(5)因果、稳定。
(6)因果、稳定。
(7)因果,但由于 。
(8) 在 时刻有值,故非因果。由于 的值都在 的时刻内,那么 ,故系统稳定。
1.17解:由图可知:
所以
(1)解:
(2)解:
通解
特解
带入方程得:
(3)解:
当 时,右边序列的围线C内包含 两个极点。故
因此
第1章
1.解:由题意可知
则周期为: 其中 为整数,且满足使N为最小整数。
数字信号处理知识点总结
数字信号处理第0章绪论1.数字信号处理是利用计算机或专用处理设备,以数字形式对信号进行采集、变换、滤波、估值、增强、压缩、识别等处理,以得到符合人们需要的信号形式。
2.DSP系统构成输入抗混叠滤波A/DDSP芯片D/A平滑滤波输出输入信号首先进行带限滤波和抽样,然后进行A/D(Analog to Digital)变换将信号变换成数字比特流。
根据奈奎斯特抽样定理,为保证信息不丢失,抽样频率至少必须是输入带限信号最高频率的2倍。
DSP芯片的输入是A/D变换后得到的以抽样形式表示的数字信号。
3.信号的形式(1)连续信号在连续的时间范围内有定义的信号。
连续--时间连续。
(2)离散信号在一些离散的瞬间才有定义的信号。
离散--时间离散。
4.数字信号处理主要包括如下几个部分(1)离散时间信号与系统的基本理论、信号的频谱分析(2)离散傅立叶变换、快速傅立叶变换(3)数字滤波器的设计第一章离散时间信号一、典型离散信号定义1.离散时间信号与数字信号时间为离散变量的信号称作离散时间信号;而时间和幅值都离散化的信号称作为数字信号。
2.序列离散时间信号-时间上不连续上的一个序列。
通常定义为一个序列值的集合{x(n)},n 为整型数,x(n)表示序列中第n 个样值,{·}表示全部样本值的集合。
离散时间信号可以是通过采样得到的采样序列x(n)=x a (nT),也可以不是采样信号得到。
二.常用离散信号1.单位抽样序列(也称单位冲激序列))(n δ⎩⎨⎧≠==0,00,1)(n n n δδ(n):在n=0时取值为12.单位阶跃序列)(n u ,⎩⎨⎧<≥=0,00,1)(n n n u 3.矩形序列,⎩⎨⎧=-≤≤=其它n N n n R N ,010,1)(4.实指数序列,)()(n u a n x n =,a 为实数5.正弦型序列)sin()(φω+=n A n x 式中,ω为数字域频率,单位为弧度。
15On 1-10()0sin nω()t 0sin Ω16.复指数序列nj e n x )(0)(ωσ+=7.周期序列如果对所有n 存在一个最小的正整数N ,使下面等式成立:)()(N n x n x +=,则称x(n)为周期序列,最小周期为N 。
数字信号处理教程-程佩青-课后题答案
第一章 离散时间信号与系统2.任意序列x(n)与δ(n)线性卷积都等于序列本身x(n),与δ(n-n 0)卷积x(n- n 0),所以(1)结果为h(n) (3)结果h(n-2) (2(4)3 .已知 10,)1()(<<--=-a n u a n h n,通过直接计算卷积和的办法,试确定单位抽样响应为 )(n h 的线性移不变系统的阶跃响应。
4. 判断下列每个序列是否是周期性的,若是周期性的,试确定其周期:)6()( )( )n 313si n()( )()873cos()( )(ππππ-==-=n j e n x c A n x b n A n x a分析:序列为)cos()(0ψω+=n A n x 或)sin()(0ψω+=n A n x 时,不一定是周期序列,nmm m n n y n - - -∞ = - ⋅ = = ≥ ∑ 2 31 2 5 . 0 ) ( 01当 3 4n m nm m n n y n 2 2 5 . 0 ) ( 1⋅ = = - ≤ ∑ -∞ = - 当 aa a n y n a a an y n n h n x n y a n u a n h n u n x m m nnm mn -==->-==-≤=<<--==∑∑--∞=---∞=--1)(11)(1)(*)()(10,)1()()()(:1时当时当解①当=0/2ωπ整数,则周期为0/2ωπ;②;为为互素的整数)则周期、(有理数当 , 2 0Q Q P QP =ωπ ③当=0/2ωπ无理数 ,则)(n x 不是周期序列。
解:(1)0142/3πω=,周期为14 (2)062/13πω=,周期为6 (2)02/12πωπ=,不是周期的 7.(1)[][]12121212()()()()()()[()()]()()()()[()][()]T x n g n x n T ax n bx n g n ax n bx n g n ax n g n bx n aT x n bT x n =+=+=⨯+⨯=+所以是线性的T[x(n-m)]=g(n)x(n-m) y(n-m)=g(n-m)x(n-m) 两者不相等,所以是移变的y(n)=g(n)x(n) y 和x 括号内相等,所以是因果的。
数字信号处理 第1章习题答案
由于 x2 (n) x1 (n 1) ,而且 y2 (n) y1(n 1) 故当 y(-1)=0时,系统具有移不变性。
(c)设 x3 (n) (n) (n 1) 则 y3 (n) a y3 (n 1) x3 (n) 且 y3 (1) 0
根据 y3 (n) a y3 (n 1) x3 (n) ,当 n ≥ 0 时有
3 ( a ) x( n) A cos( n ) 7 8 (c ) x ( n ) e
j( n ) 6
;
13 (b) x( n) A sin n 3
π π 解 (a) 2 2 14 为有理数 3 π 3 ω
0
7
故 x(n)是周期的,周期 N=14
x(m)h(n m)
x(m) : m n0
h(n m) : n N 1 m n
① 当 n n0时, y(n) 0 ② 当 n0 n n0 N 1 时,
n n
n n y(n) x(m)h(n m) mn0 nm n 0 mn0 mn0 mn0
(b)设 x2 (n) (n 1) ,则 y2 (n) a y2 (n 1) x2 (n) 且 y2 (0) 0
根据 y2 (n) a y2 (n 1) x2 (n) ,当 n > 0 时有
y2 (1) a y2 (0) x2 (1) 1 ,
……
y2 (2) a y2 (1) x2 (2) a
y3 (1) a y3 (0) x3 (1) 1 , y3 (2) a y3 (1) x3 (2) a y3 (3) a y3 (2) x3 (3) a 2 , , y3 (n) a y3 (n 1) x3 (n) a n1
数字信号处理》第三版课后习题答案
数字信号处理课后答案教材第一章习题解答1.用单位脉冲序列()nδ及其加权和表示题1图所示的序列。
解:2.给定信号:25,41 ()6,040,n nx n n+-≤≤-⎧⎪=≤≤⎨⎪⎩其它(1)画出()x n序列的波形,标上各序列的值;(2)试用延迟单位脉冲序列及其加权和表示()x n序列;(3)令1()2(2)x n x n=-,试画出1()x n波形;(4)令2()2(2)x n x n=+,试画出2()x n波形;(5)令3()2(2)x n x n=-,试画出3()x n波形。
解:(1)x(n)的波形如题2解图(一)所示。
(2)(3)1()x n的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。
(4)2()x n的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。
(5)画3()x n时,先画x(-n)的波形,然后再右移2位,3()x n波形如题2解图(四)所示。
3.判断下面的序列是否是周期的,若是周期的,确定其周期。
(1)3()cos()78x n A n ππ=-,A 是常数;(2)1()8()j n x n e π-=。
解:(1)3214,73w w ππ==,这是有理数,因此是周期序列,周期是T=14;(2)12,168w wππ==,这是无理数,因此是非周期序列。
5.设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。
(1)()()2(1)3(2)y n x n x n x n =+-+-; (3)0()()y n x n n =-,0n 为整常数; (5)2()()y n x n =; (7)0()()nm y n x m ==∑。
解:(1)令:输入为0()x n n -,输出为'000'0000()()2(1)3(2)()()2(1)3(2)()y n x n n x n n x n n y n n x n n x n n x n n y n =-+--+---=-+--+--=故该系统是时不变系统。
(完整版)数字信号处理教程程佩青课后题答案
第一章 离散时间信号与系统2.任意序列x(n)与δ(n)线性卷积都等于序列本身x(n),与δ(n-n 0)卷积x(n- n 0),所以(1)结果为h(n) (3)结果h(n-2) (2(4)3 .已知 10,)1()(<<--=-a n u a n h n,通过直接计算卷积和的办法,试确定单位抽样响应为 )(n h 的线性移不变系统的阶跃响应。
4. 判断下列每个序列是否是周期性的,若是周期性的,试确定其周期:)6()( )( )n 313si n()( )()873cos()( )(ππππ-==-=n j e n x c A n x b n A n x a分析:序列为)cos()(0ψω+=n A n x 或)sin()(0ψω+=n A n x 时,不一定是周期序列,nmm m n n y n - - -∞ = - ⋅ = = ≥ ∑ 2 31 2 5 . 0 ) ( 01当 3 4n m nm m n n y n 2 2 5 . 0 ) ( 1⋅ = = - ≤ ∑ -∞ = - 当 aa a n y n a a an y n n h n x n y a n u a n h n u n x m m nnm mn -==->-==-≤=<<--==∑∑--∞=---∞=--1)(11)(1)(*)()(10,)1()()()(:1时当时当解①当=0/2ωπ整数,则周期为0/2ωπ;②;为为互素的整数)则周期、(有理数当 , 2 0Q Q P QP =ωπ ③当=0/2ωπ无理数 ,则)(n x 不是周期序列。
解:(1)0142/3πω=,周期为14 (2)062/13πω=,周期为6 (2)02/12πωπ=,不是周期的 7.(1)[][]12121212()()()()()()[()()]()()()()[()][()]T x n g n x n T ax n bx n g n ax n bx n g n ax n g n bx n aT x n bT x n =+=+=⨯+⨯=+所以是线性的T[x(n-m)]=g(n)x(n-m) y(n-m)=g(n-m)x(n-m) 两者不相等,所以是移变的y(n)=g(n)x(n) y 和x 括号内相等,所以是因果的。
数字信号处理教程 程佩青 课后题答案
第一章 离散时间信号与系统2.任意序列x(n)与δ(n)线性卷积都等于序列本身x(n),与δ(n-n 0)卷积x(n- n 0),所以(1)结果为h(n) (3)结果h(n-2) (2(4)3 .已知 10,)1()(<<--=-a n u a n h n,通过直接计算卷积和的办法,试确定单位抽样响应为 )(n h 的线性移不变系统的阶跃响应。
4. 判断下列每个序列是否是周期性的,若是周期性的,试确定其周期:)6()( )( )n 313si n()( )()873cos()( )(ππππ-==-=n j e n x c A n x b n A n x a分析:序列为)cos()(0ψω+=n A n x 或)sin()(0ψω+=n A n x 时,不一定是周期序列,nmm m n n y n - - -∞ = - ⋅ = = ≥ ∑ 2 31 2 5 . 0 ) ( 01当 3 4n m nm m n n y n 2 2 5 . 0 ) ( 1⋅ = = - ≤ ∑ -∞ = - 当 aa a n y n a a an y n n h n x n y a n u a n h n u n x m m nnm mn -==->-==-≤=<<--==∑∑--∞=---∞=--1)(11)(1)(*)()(10,)1()()()(:1时当时当解①当=0/2ωπ整数,则周期为0/2ωπ;②;为为互素的整数)则周期、(有理数当 , 2 0Q Q P QP =ωπ ③当=0/2ωπ无理数 ,则)(n x 不是周期序列。
解:(1)0142/3πω=,周期为14 (2)062/13πω=,周期为6 (2)02/12πωπ=,不是周期的 7.(1)[][]12121212()()()()()()[()()]()()()()[()][()]T x n g n x n T ax n bx n g n ax n bx n g n ax n g n bx n aT x n bT x n =+=+=⨯+⨯=+所以是线性的T[x(n-m)]=g(n)x(n-m) y(n-m)=g(n-m)x(n-m) 两者不相等,所以是移变的y(n)=g(n)x(n) y 和x 括号内相等,所以是因果的。
数字信号处理教案
数字信号处理教案第一章:数字信号处理概述1.1 数字信号处理的概念介绍数字信号处理的定义和特点解释信号的分类和数字信号的优势1.2 数字信号处理的发展历程回顾数字信号处理的发展历程和重要里程碑介绍数字信号处理的重要人物和贡献1.3 数字信号处理的应用领域概述数字信号处理在通信、音频、图像等领域的应用举例说明数字信号处理在实际应用中的重要性第二章:离散时间信号处理基础2.1 离散时间信号的概念介绍离散时间信号的定义和特点解释离散时间信号与连续时间信号的关系2.2 离散时间信号的运算介绍离散时间信号的基本运算包括翻转、平移、求和等给出离散时间信号运算的示例和应用2.3 离散时间系统的特性介绍离散时间系统的概念和特性解释离散时间系统的因果性和稳定性第三章:数字滤波器的基本概念3.1 数字滤波器的定义和作用介绍数字滤波器的定义和其在信号处理中的作用解释数字滤波器与模拟滤波器的区别3.2 数字滤波器的类型介绍不同类型的数字滤波器包括FIR、IIR、IIR 转换滤波器等分析各种类型数字滤波器的特点和应用场景3.3 数字滤波器的设计方法介绍数字滤波器的设计方法包括窗函数法、插值法等给出数字滤波器设计的示例和步骤第四章:离散傅里叶变换(DFT)4.1 离散傅里叶变换的定义和原理介绍离散傅里叶变换的定义和原理解释离散傅里叶变换与连续傅里叶变换的关系4.2 离散傅里叶变换的性质介绍离散傅里叶变换的性质包括周期性、对称性等给出离散傅里叶变换性质的证明和示例4.3 离散傅里叶变换的应用概述离散傅里叶变换在信号处理中的应用包括频谱分析、信号合成等举例说明离散傅里叶变换在实际应用中的重要性第五章:快速傅里叶变换(FFT)5.1 快速傅里叶变换的定义和原理介绍快速傅里叶变换的定义和原理解释快速傅里叶变换与离散傅里叶变换的关系5.2 快速傅里叶变换的算法介绍快速傅里叶变换的常用算法包括蝶形算法、Cooley-Tukey算法等给出快速傅里叶变换算法的示例和实现步骤5.3 快速傅里叶变换的应用概述快速傅里叶变换在信号处理中的应用包括频谱分析、信号合成等举例说明快速傅里叶变换在实际应用中的重要性第六章:数字信号处理中的采样与恢复6.1 采样定理介绍采样定理的定义和重要性解释采样定理在信号处理中的应用6.2 信号的采样与恢复介绍信号采样与恢复的基本概念解释理想采样器和实际采样器的工作原理6.3 信号的重建与插值介绍信号重建和插值的方法解释插值算法的原理和应用第七章:数字信号处理中的离散余弦变换(DCT)7.1 离散余弦变换的定义和原理介绍离散余弦变换的定义和原理解释离散余弦变换与离散傅里叶变换的关系7.2 离散余弦变换的应用概述离散余弦变换在信号处理中的应用包括图像压缩、信号分析等举例说明离散余弦变换在实际应用中的重要性7.3 离散余弦变换的快速算法介绍离散余弦变换的快速算法包括8x8 DCT算法等给出离散余弦变换快速算法的示例和实现步骤第八章:数字信号处理中的小波变换8.1 小波变换的定义和原理介绍小波变换的定义和原理解释小波变换与离散傅里叶变换的关系8.2 小波变换的应用概述小波变换在信号处理中的应用包括图像去噪、信号分析等举例说明小波变换在实际应用中的重要性8.3 小波变换的快速算法介绍小波变换的快速算法包括Mallat算法等给出小波变换快速算法的示例和实现步骤第九章:数字信号处理中的自适应滤波器9.1 自适应滤波器的定义和原理介绍自适应滤波器的定义和原理解释自适应滤波器在信号处理中的应用9.2 自适应滤波器的设计方法介绍自适应滤波器的设计方法包括最小均方误差法等给出自适应滤波器设计的示例和步骤9.3 自适应滤波器的应用概述自适应滤波器在信号处理中的应用包括噪声抑制、信号分离等举例说明自适应滤波器在实际应用中的重要性第十章:数字信号处理的综合应用10.1 数字信号处理在通信系统中的应用介绍数字信号处理在通信系统中的应用包括调制解调、信道编码等分析数字信号处理在通信系统中的重要性10.2 数字信号处理在音频处理中的应用介绍数字信号处理在音频处理中的应用包括声音合成、音频压缩等分析数字信号处理在音频处理中的重要性10.3 数字信号处理在图像处理中的应用介绍数字信号处理在图像处理中的应用包括图像滤波、图像增强等分析数字信号处理在图像处理中的重要性10.4 数字信号处理在其他领域的应用概述数字信号处理在其他领域的应用包括生物医学信号处理、地震信号处理等分析数字信号处理在其他领域中的重要性重点和难点解析重点环节1:数字信号处理的概念和特点数字信号处理是对模拟信号进行数字化的处理和分析数字信号处理具有可重复性、精确度高、易于存储和传输等特点需要关注数字信号处理与模拟信号处理的区别和优势重点环节2:数字信号处理的发展历程和应用领域数字信号处理经历了从早期研究到现代应用的发展过程数字信号处理在通信、音频、图像等领域有广泛的应用需要关注数字信号处理的重要人物和里程碑事件重点环节3:离散时间信号处理基础离散时间信号是数字信号处理的基础需要关注离散时间信号的定义、特点和运算方法理解离散时间信号与连续时间信号的关系重点环节4:数字滤波器的基本概念和类型数字滤波器是数字信号处理的核心组件需要关注数字滤波器的定义、类型和设计方法理解不同类型数字滤波器的特点和应用场景重点环节5:离散傅里叶变换(DFT)离散傅里叶变换是数字信号处理中的重要工具需要关注离散傅里叶变换的定义、性质和应用理解离散傅里叶变换与连续傅里叶变换的关系重点环节6:快速傅里叶变换(FFT)快速傅里叶变换是离散傅里叶变换的优化算法需要关注快速傅里叶变换的定义、算法和应用理解快速傅里叶变换与离散傅里叶变换的关系重点环节7:数字信号处理中的采样与恢复采样与恢复是数字信号处理的关键环节需要关注采样定理的重要性、信号的采样与恢复方法理解插值算法的原理和应用重点环节8:数字信号处理中的离散余弦变换(DCT)离散余弦变换是数字信号处理中的另一种重要变换需要关注离散余弦变换的定义、应用和快速算法理解离散余弦变换与离散傅里叶变换的关系重点环节9:数字信号处理中的小波变换小波变换是数字信号处理的另一种重要变换需要关注小波变换的定义、应用和快速算法理解小波变换与离散傅里叶变换的关系重点环节10:数字信号处理中的自适应滤波器自适应滤波器是数字信号处理中的高级应用需要关注自适应滤波器的定义、设计方法和应用领域理解自适应滤波器在信号处理中的重要性本教案涵盖了数字信号处理的基本概念、发展历程、离散时间信号处理、数字滤波器、离散傅里叶变换、快速傅里叶变换、采样与恢复、离散余弦变换、小波变换、自适应滤波器等多个重点环节。
数字信号处理-俞一彪-孙兵-课后习题答案
第一章習題參考解答1-1畫出下列序列の示意圖(1)(2)(3)(1)(2)(3)1-2已知序列x(n)の圖形如圖1.41,試畫出下列序列の示意圖。
圖1.41 信號x(n)の波形(1)(2)(3)(4)(5)(6)(修正:n=4處の值為0,不是3)(修正:應該再向右移4個采樣點)1-3判斷下列序列是否滿足周期性,若滿足求其基本周期(1)解:非周期序列;(2)解:為周期序列,基本周期N=5;(3)解:,,取為周期序列,基本周期。
(4)解:其中,為常數,取,,取則為周期序列,基本周期N=40。
1-4 判斷下列系統是否為線性の?是否為移不變の?(1)非線性移不變系統(2)非線性移變系統(修正:線性移變系統)(3)非線性移不變系統(4)線性移不變系統(5)線性移不變系統(修正:線性移變系統)1-5判斷下列系統是否為因果の?是否為穩定の?(1),其中因果非穩定系統(2)非因果穩定系統(3)非因果穩定系統(4)非因果非穩定系統(5)因果穩定系統1-6已知線性移不變系統の輸入為x(n),系統の單位脈沖響應為h(n),試求系統の輸出y(n)及其示意圖(1)(2)(3)解:(1)(2)(3)1-7若采樣信號m(t)の采樣頻率fs=1500Hz,下列信號經m(t)采樣後哪些信號不失真?(1)(2)(3)解:(1)采樣不失真(2)采樣不失真(3),采樣失真1-8已知,采樣信號の采樣周期為。
(1)の截止模擬角頻率是多少?(2)將進行A/D采樣後,の數字角頻率與の模擬角頻率の關系如何?(3)若,求の數字截止角頻率。
解:(1)(2)(3)1-9計算下列序列のZ變換,並標明收斂域。
(1)(2)(3)(4)(5)解:(1)(2)(3)(4),,收斂域不存在(5)1-10利用Z變換性質求下列序列のZ變換。
(1)(2)(3)(4)解:(1) ,(2) ,(3),(4),1-11利用Z變換性質求下列序列の卷積和。
(1)(2)(3)(4)(5)(6)解:(1),,,,(2) ,,,(3) , ,,(4),,(5),,,(6),,,1-12利用の自相關序列定義為,試用のZ變換來表示のZ變換。
数字信号处理习题及答案解析
==============================绪论==============================1. A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统==================1.①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用δ(n) 表示y (n )={2,7,19,28,29,15}2. ①求下列周期)54sin()8sin()4()51cos()3()54sin()2()8sin()1(n n n n n ππππ-②判断下面的序列是否是周期的; 若是周期的, 确定其周期。
(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。
(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。
③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。
3.加法乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。
移位翻转:①已知x(n)波形,画出x(-n)的波形图。
②尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。
卷积和:①h(n)*求x(n),其他02n 0n 3,h(n)其他03n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤= }23,4,7,4,23{0,h(n)*答案:x(n)=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15}③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=}{1,4,6,5,2答案:x(n)=4.如果输入信号为,求下述系统的输出信号。
数字信号处理第一章知识总结
数字信号处理第⼀章知识总结数字信号处理第⼀章总结1.1 引⾔ (3)1.2 时域离散信号 (3)1)离散信号: (3)2)常⽤序列: .................................................................... 错误!未定义书签。
3)正弦序列: (3)4)周期序列: (4)1.3 时域离散系统 (4)1.3.1 线性系统 (4)1.3.2 时不变系统 (5)1.3.3 线性时不变系统输⼊与输出之间的关系 (5)1.3.4 系统的因果性和稳定性 (5)1.4 时域离散系统的输⼊输出描述法——线性常系数差分⽅程 (6)1.4.1线性常系数差分⽅程: (6)1.4.2线性常系数差分⽅程的求解 (6)1.5 模拟信号数字处理⽅法 (7)摘要:信号通常是⼀个⾃变量或⼏个⾃变量的函数。
如果仅有⼀个⾃变量,则称为以维信号;如果有两个以上的⾃变量,则称为多维信号。
通常把信号看做时间的函数。
实际中遇到的信号⼀般是模拟信号,对它进⾏等间隔采样便可以得到时域离散信号。
关键词:模拟信号;等间隔采样;时域离散信号1.1 引⾔信号分为三类:1)模拟信号:⾃变量和函数值都是连续的。
2)时域离散信号:⾃变量离散,函数值连续。
它来源于对数字信号的采样。
3)数字信号:⾃变量和函数值都是离散的。
它是幅度化的时域离散信号。
1.2 时域离散信号离散信号:模拟信号(时域连续)经过“采样”变成时域离散信号,公式是:x(n)=x a (nT),-∞<n <∞这⾥,x(n)称为时域离散信号,式中的n 取整数,显然,x (n )是⼀串有序的数字的集合,因此时域离散信号也可以称为序列。
时域离散信号有三种表⽰⽅法:(1)⽤集合符号表⽰序列(2)⽤图形表⽰序列(3)⽤公式表⽰序列常⽤典型序列(时域离散信号):1)单位采样信号:0001n ≠==n n )(δ 2)单位阶跃信号:0001n u <≥?=n n )(3)(n R N =u )(n -u )(N n -:(N 是矩形序列的长度)实指数序列:a n x =)(n )(n u ,a 为实数。
数字信号处理-程佩青-PPT第一章
7)任意序列
x(n)能够表达成单位取样序列旳移位加权和,也可表达 成与单位取样序列旳卷积和。
x(n) x(m) (n m) x(n) (n)
m
例:x(n) 2 (n 1) (n) 1.5 (n 1) (n 2) 0.5 (n 3)
3、序列旳周期性
若对全部n存在一种最小旳正整数N,满足 x(n) x(n N ) n
m
x(m)T[ (n m)],线性性
T[ ai xi (n)] i
m
x(m)h(n m),
移不变性
aiT[xi (n)] i
m
x(n) h(n)
h(n) T[ (n)] h(n m) T[ (n m)]
x(n)
LSI y(n)
h(n)
y(n) x(n) h(n)
一种LSI系统能够用单位抽样响应h(n)来表征,任意输 入旳系统输出等于输入序列和该单位抽样响应h(n)旳 卷积和。
结论: 若有限长序列x(n)旳长度为N,h(n)旳长度为M, 则其卷积和旳长度L为:
L=N+M-1
互换律
4、LSI系统旳性质
x(n)
y(n)
h(n)
h(n)
y(n)
x(n)
y(n) x(n) h(n) h(n) x(n)
结合律
x(n) h1(n)
y(n) h2(n)
x(n) h2(n)
例:
x(n)=0.9
ne
j 3
n
6)正弦序列
x(n) Asin(0n )
模拟正弦信号:
xa (t) Asin(t )
x(n) xa (t) tnT Asin(nT )
0 T / fs 0:数字域频率
数字信号处理教程程佩青课后题答案
第一章 离散时间信号与系统2.任意序列x(n)与δ(n)线性卷积都等于序列本身x(n),与δ(n-n 0)卷积x(n- n 0),所以(1)结果为h(n) (3)结果h(n-2) (2x(m)()h n m -n1 1 1 0 0 0 0 y(n) 0 11 1 1 12 2 1 1 13 3 1 1 1 1 34 0 1 1 1 1 2 511111(4)3 .已知 10,)1()(<<--=-a n u a n h n,通过直接计算卷积和的办法,试确定单位抽样响应为 )(n h 的线性移不变系统的阶跃响应。
4. 判断下列每个序列是否是周期性的,若是周期性的,试确定其周期:)6()( )( )n 313si n()( )()873cos()( )(ππππ-==-=n j e n x c A n x b n A n x a分析:序列为)cos()(0ψω+=n A n x 或)sin()(0ψω+=n A n x 时,不一定是周期序列, nmm m n n y n - - -∞ = - ⋅ = = ≥ ∑ 2 31 2 5 . 0 ) ( 01当 3 4n m nm m n n y n 2 2 5 . 0 ) ( 1⋅ = = - ≤ ∑ -∞ = - 当 aa a n y n a a an y n n h n x n y a n u a n h n u n x m m nnm mn -==->-==-≤=<<--==∑∑--∞=---∞=--1)(11)(1)(*)()(10,)1()()()(:1时当时当解①当=0/2ωπ整数,则周期为0/2ωπ;②;为为互素的整数)则周期、(有理数当 , 2 0Q Q P QP =ωπ ③当=0/2ωπ无理数 ,则)(n x 不是周期序列。
解:(1)0142/3πω=,周期为14 (2)062/13πω=,周期为6 (2)02/12πωπ=,不是周期的 7.(1)[][]12121212()()()()()()[()()]()()()()[()][()]T x n g n x n T ax n bx n g n ax n bx n g n ax n g n bx n aT x n bT x n =+=+=⨯+⨯=+所以是线性的T[x(n-m)]=g(n)x(n-m) y(n-m)=g(n-m)x(n-m) 两者不相等,所以是移变的y(n)=g(n)x(n) y 和x 括号内相等,所以是因果的。
数字信号处理及其应用
数字信号处理及其应用第一章:引言数字信号处理(Digital Signal Processing,DSP)是指利用数字信号处理技术来处理信号的方法,主要就是针对时间上的连续变化的模拟信号进行数字化处理,在数字领域进行算法求解和数字信号输出。
数字信号处理技术主要应用于通信、音频、图像、视频等多种领域。
第二章:数字信号的基本原理数字信号是由一系列离散点所组成的信号,离散点的值可以用数字形式呈现。
数字信号来源于模拟信号,其数字化过程主要包括:采样、量化和编码。
其中,采样是指用固定的时间间隔对模拟信号进行取样,得到离散的信号点;量化是指将采样得到的连续信号点映射成有限个数值,称为量化值,该过程可以理解为数字信号的离散化过程,通常按照等间距离断线方式实现。
量化过程中引入的误差称为量化误差;编码是指将采样和量化得到的数字信号用二进制的形式表示,以便于存储和传输。
第三章:数字信号的处理方法数字信号处理包括时域处理和频域处理两种方法。
1. 时域处理:时域处理是指对信号的时间变化进行处理,如差分、滤波、卷积、变换等。
时域处理方法主要应用于时域相关信号,如音频信号、生物信号等。
2. 频域处理:频域处理是指对信号的频率成分进行处理,如傅里叶变换、小波变换等。
频域处理的主要应用场景是图像处理、视频处理等。
第四章:数字信号处理的应用数字信号处理应用于多个领域,包括通过数字信号处理进行音频信号处理、图像处理等。
1. 音频信号处理:数字信号处理技术可以应用于音频编码、语音识别、语音合成、数字音频播放等多个方面,包括对声音进行去噪、降噪、声音增强等。
2. 图像处理:数字信号处理技术可以应用于图像处理、视频处理等多个方面,包括对图像进行分析、重构、压缩等。
第五章:数字信号处理的未来发展趋势数字信号处理技术的未来发展可以从多个方面展开。
一方面,随着通信技术的发展,数字信号处理技术将更加深入地应用于通信领域,例如通过数字信号处理实现高速网络、信息安全等。
数字信号处理习题及解答
数字信号处理习题及解答
第三章 信号的傅里叶变换 4 已知长度为N=10的两个有限长序列:
1 x1(n) 0
0≤ n≤ 4 5≤ n≤ 9
1 x2 (n) 1
0≤ n ≤ 4 5≤ n ≤ 9
做图表示x1(n)、 x2(n)和y(n)=x1(n) * x2(n), 循环卷积区间长度L=10。
数字信号处理习题及解答
故系统是非时变系统。 由于
T[ax1(n)+bx2(n)]=[ax1(n)+bx2(n)]2 ≠aT[x1(n)]+bT[x2(n)] =ax21(n)+bx22(n)
因此系统是非线性系统。
数字信号处理习题及解答
第一章 离散时间信号与离散时间系统
2 给定下述系统的差分方程, 试判定系统是否是因果稳定系统, 并说明理由。
数字信号处理习题及解答
第二章 Z变换及离散时间系统分析
3 解答 (2) 收敛域0.5<|z|<2:
F(z) (5z 7)z n (z 0.5)(z 2)
n≥0时, c内有极点0.5,
x(n) Res[F(z), 0.5] 3 (1)n 2
n<0时, c内有极点 0.5、 0 , 但 0 是一个n阶极点, 改成求c 外极点留数, c外极点只有一个, 即2,
x( n)
3
1
n
2
2n u(n)
2
数字信号处理习题及解答
第三章 信号的傅里叶变换 1 设题图所示的序列x(n)的FT用X(ejω)表示, 不直接求出X(ejω), 完成 下列运算或工作:
X (e j0 )
π X (e j )d π
X (e jπ )
数字信号处理习题及解答
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
❖ 时域离散系统的描述方法:
单位采样响应 线性常系数差分方程
思考:线性常系数差分方程描述的系统是 否一定线性时不变?
例1.4.3 设系统用一阶差分方程 y(n)=ay(n-1)+x(n)描述,初始条件y(-1)=1, 试分析该系统是否是线性非时变系统。
解: 如果系统具有线性非时变性质,必须满足 (1.3.4) 和 (1.3.5) 两 式 。 设 输 入 信 号 x1(n)=δ(n),x2(n)=δ(n-1),x3(n)=δ(n)+δ(n-1)来 检验系统是否是线性非时变系统。
数字信号处理课件
第1章
上节内容回顾
❖ 时域离散系统性质
线性性 时不变性
❖ 线性时不变系统输入与输出之间的关系
❖ 线性时不变系统的性质
本节主要内容
❖ 线性常系数差分方程
❖ 模拟信号的数字处理方法
时域采样定理
1-4 时域离散系统的差分方程描述
1.4.1 差分方程描述
*表示法
M
N
y(n) bk x(n k ) ak y(n k )
由情况(1)和情况(2),得到
y1(n)=T[δ(n)] y2(n)=T[δ(n-1)] y2(n)≠y1(n-1) 因此该系统不是时不变系统。再由情
况(3)得到
y3(n) =T[δ(n)+δ(n-1)] ≠T[δ(n)]+T[δ(n-1)]
y3(n)≠y1(n)+y2(n)
❖ 注: 线性常系数差分方程描述的系统不一定都是 线性时不变的,与初始条件有关。
h(-2)=-a-2
h(n-1)=a-1h(-n+1)+ 0= -an-1 写成一般形式为 h(n)= -anu(-n-1) 为非因果系统
说明:
• 对于相同的差分方程和输入,当初始条件不 同时,得到的输出信号不同。
• 一个常系数线性差分方程是否因果系统,由 边界条件(初始)所决定。
➢ 当初始条件具有y(n)=0(n<0)的形式,且 有初始条件向n>0方向递推,其解一般为因 果的,反之为非因果。
y2(0)=ay2(-1)+δ(-1)=a y2(1)=a y2(0)+δ(0)=1+a2 y2(2)=a y2(1)+δ(1)=(1+ a2)a y2(n)=(1+ a2)a n-1 y2(n)=(1+ a2)a n-1 u(n-1)+aδ(n)
(3) x3(n)=δ(n)+δ(n-1); y3(-1)=1 y3(n)=a y3(n-1)+δ(n)+δ(n-1) n=0时,n=1时,n=2时, …n=n时,
由频域卷积定理得
Xˆ a (
j)
F
xa (t)
P(t)
1
2
Xa(
j)
P(
j)
其中
X a ( j) F xa (t)
xa
(t )e
jt dt
P( j) F[P(t)] s ( ks)
k
^
将Xa(jΩ)和P(jΩ)带入 X a ( j式) 中,得
Xˆ a (
j)
1
2
[s
xa(t)
最高频率为fc
0
t
P(t)
0
t
T
xˆa (t)
2T
0
t
T
理想采样过程示意图
采样信号与原模拟信号在时域的关系
用P(t)表示冲击函数串P(t)= (t nT ) n 则 xˆa (t) xa (t) P(t)
xa (t) (t nT ) m
xa (nT ) (t nT ) m
xa(t)为调制信号即输入的模拟信号, p(t)为 载波信号是一串周期为T,脉宽为τ的矩形脉冲
串,调制后输出的信号就是采样信号 xˆa (t)。
理想采样:当 τ 趋于零的极限情况时, 脉冲 序列p(t)变成了冲击函数串,称为理想采样。
xa (t)
S
xˆa (t)
T
xˆa (t) xa (t) P (t)
1.5.1 时域采样定理
采样是将连续时间信号离散化的过程, 它仅抽取信号波形某些时刻的样值。
采样分为均匀抽样和非均匀采样,当 采样是取均匀等间隔点时为均匀采样,否 则为非均匀采样。
1. 理想采样及其频谱
采样过程:均匀采样可以看作为一个脉冲调制过
程,数学表示为 xˆa (t) xa (t) p(t) 。
因此 xˆa (t) 实际上是xa(t)在离散时刻nT的 取值xa(nT)的集合。
(2) 采样信号xˆa (t) 的频谱
设模拟信号xa(t) ,冲击函数串P(t),采样脉冲
串以及采样信号 xˆa (t)的傅里叶变换分别为
X a ( j) F xa (t) P( j) F[P(t)]
Xˆ a j F xˆa t 其中F[•]表示傅里叶变换
当系统因果时,此时一定是线性时不变的。
1-5 模拟信号的数字处理方法
本节主要介绍模拟信号与数字信号 之间相互转换的基本数学原理。
为了利用数字系统来处理模拟信号, 必须先将模拟信号转换成数字信号,在数 字系统中进行处理后再转换成模拟信号。 其典型框图如下:
xa(t)
ya(t)
注:
❖ 本节重点与难点为时域采样定理其推导 过程以及物理意义。
y3(0)=a y3(-1)+δ(0)+δ(-1)=1+a y3(1)=a y3(0)+δ(1)+δ(0)=1+a+a2 y3(2)=a y3(1)+δ(2)+δ(1)=(1+a+ a2)a y3(n)=(+a+ a2)a n-1 y3(n)=(1+a+ a2)a n-1 u(n-1)+(1+a)δ(n)
k 0
k 1
N
M
ak y(n k ) bk x(n k ), a0 1
k 0
k 0
例 1-4-2 试求一阶差分方程y(n)= ay(n-1) +x(n) 的单位脉冲响应,初始条件为y(n)=0(n>0)。
解: h(n-1)=a-1 (h(n)-δ(n)) h(1)=0
h(0)= a-1 (h(1)-δ(1))=0 h(-1)=a-1 (h(0)-δ(0))=-a-1
m
(
ks )
Xa(
j)]
1 T
X a ( j )
(1)x1(n)=δ(n),y1(-1)=1 y1(n)=ay1(n-1)+δ(n)
这种情况和例1.4.1(2)相同,因此输出如下 式:
y1(n)=(1+a)anu(n)
(2) x2(n)=δ(n-1),y2(-1)=1 y2(n)=ay2(n-1)+δ(n-1) n=0时,n=1时,n=2时, …n=n时,