仪器分析第五章知识点总结

合集下载

仪器分析知识点总结大全

仪器分析知识点总结大全
取代基为含孤对电子,如-NH2、-OH、-Cl,可使分子红移;取代基 为斥电子基,如-R,-OCOR,则使分子蓝移。
苯环或烯烃上的H被各种取代基取代,多产生红移。 5)pH值:红移或蓝移 6)溶剂效应:红移或蓝移
由n-*跃迁产生的吸收峰,随溶剂极性增加,形成 H 键的能力增加, 发生蓝移;由-*跃迁产生的吸收峰,随溶剂极性增加,激发态比基态
应时,可以试样作参比(不能加显色剂)。
第四章 原子发射光谱分析
4.1 概述 4.2 基本原理 4.3 AES 仪器 4.4 定性定量分析方法
关键词: 1)分析对象为大多数金属原子; 2)物质原子的外层电子受激发射产生特征谱线(线光谱); 3)谱线波长——定性分析;谱线强度——定量分析。
定义:AES是据每种原子或离子在热或电激发下,发射出特征的电磁 辐射而进行元素定性和定量分析的方法。
标准曲线法; 标准加入法; 内标法。
第二章 光学分析方法导论
光学分析方法: 利用光电转换或其它电子器件测定“辐射与物质相互作用”之后的辐射 强度等光学特性,进行物质的定性和定量分析的方法。
电磁辐射具有波动性和微粒性;E = hν = h c /λ 发射光谱
吸收光谱
线光谱: 由处于气相的单个原子发生电子能级跃迁所产生的锐线,线宽大约
定义,概念,名词解释 方法原理、特点 仪器 定性、定量分析 误差来源及消除
仪器分析方法及分类
仪器分析
光分析法
原子 光谱
分子 光谱
电化学分析法
电 电库 伏 导 位仑 安
色谱分析法
气相 色谱
液相 色谱
热分析法, 质谱分析法, 分析仪器联用技术
原 原原 子 子子 发 吸荧 射 收光
紫分 红 外子 外 可荧 见 光、

(完整版)仪器分析知识点整理..

(完整版)仪器分析知识点整理..

(完整版)仪器分析知识点整理..教学内容绪论分子光谱法:UV-VIS、IR、F原子光谱法:AAS电化学分析法:电位分析法、电位滴定色谱分析法:GC、HPLC质谱分析法:MS、NRS第一章绪论⒈经典分析方法与仪器分析方法有何不同?经典分析方法:是利用化学反应及其计量关系,由某已知量求待测物量,一般用于常量分析,为化学分析法。

仪器分析方法:是利用精密仪器测量物质的某些物理或物理化学性质以确定其化学组成、含量及化学结构的一类分析方法,用于微量或痕量分析,又称为物理或物理化学分析法。

化学分析法是仪器分析方法的基础,仪器分析方法离不开必要的化学分析步骤,二者相辅相成。

⒉仪器的主要性能指标的定义1、精密度(重现性):数次平行测定结果的相互一致性的程度,一般用相对标准偏差表示(RSD%),精密度表征测定过程中随机误差的大小。

2、灵敏度:仪器在稳定条件下对被测量物微小变化的响应,也即仪器的输出量与输入量之比。

3、检出限(检出下限):在适当置信概率下仪器能检测出的被检测组分的最小量或最低浓度。

4、线性范围:仪器的检测信号与被测物质浓度或质量成线性关系的范围。

5、选择性:对单组分分析仪器而言,指仪器区分待测组分与非待测组分的能力。

⒊简述三种定量分析方法的特点和应用要求一、工作曲线法(标准曲线法、外标法)特点:直观、准确、可部分扣除偶然误差。

需要标准对照和扣空白应用要求:试样的浓度或含量范围应在工作曲线的线性范围内,绘制工作曲线的条件应与试样的条件尽量保持一致。

二、标准加入法(添加法、增量法)特点:由于测定中非待测组分组成变化不大,可消除基体效应带来的影响应用要求:适用于待测组分浓度不为零,仪器输出信号与待测组分浓度符合线性关系的情况三、内标法特点:可扣除样品处理过程中的误差应用要求:内标物与待测组分的物理及化学性质相近、浓度相近,在相同检测条件下,响应相近,内标物既不干扰待测组分,又不被其他杂质干扰第2章光谱分析法引论习题1、吸收光谱和发射光谱的电子能动级跃迁的关系吸收光谱:当物质所吸收的电磁辐射能与该物质的原子核、原子或分子的两个能级间跃迁所需要的能量满足ΔE=hv的关系时,将产生吸收光谱。

仪器分析 知识点总结

仪器分析 知识点总结

仪器分析知识点总结一、基本原理1. 仪器分析的基本原理仪器分析是通过利用物理、化学、生物等现代科学技术的原理,将样品中所含的各种化学成分,或隐性特征转化为测定结果的工作过程。

其基本原理是将样品与仪器设备相结合,通过检测样品的光学、电学、热学、声学等性质,从而分析出样品中所含的成分、结构和性质。

2. 仪器分析的应用范围仪器分析广泛应用于生产、科研、医疗、环保、食品安全等领域。

在食品安全领域,通过仪器分析可以检测食品中的化学污染物、毒素、添加剂等,确保食品安全。

在医疗领域,可以使用仪器分析对生物样品进行分析,诊断疾病。

在环保领域,可以利用仪器分析监测环境中的污染物含量,保护环境。

二、常见的仪器设备1. 红外光谱仪红外光谱仪是一种分析化学仪器,主要用于分析样品的结构和成分。

其原理是通过测量样品对红外辐射的吸收情况,从而对样品进行分析。

红外光谱仪可以用于有机物、无机物、生物大分子等样品的分析,广泛应用于化学、医学、生物等领域。

2. 质谱仪质谱仪是一种高灵敏度、高分辨率的分析仪器,可以用于分析样品中的各种化合物和元素。

其原理是通过对样品离子化、分子裂解和质谱分析,从而获得样品的成分和结构信息。

质谱仪广泛应用于化学、生物、环境等领域,可以用于检测样品中的有机物、无机物、生物大分子等。

3. 气相色谱仪气相色谱仪是一种用于分离和分析样品中化合物的仪器设备。

其原理是通过气相色谱柱对样品中的化合物进行分离,再通过检测器对分离后的化合物进行检测。

气相色谱仪可以用于分析样品中的有机物、小分子有机化合物、环境中的污染物等,是化学、环境等领域中常用的仪器设备。

4. 离子色谱仪离子色谱仪是一种用于离子分析的仪器设备,主要用于分析水样中的离子成分和浓度。

其原理是通过离子交换柱对水样中的离子进行分离,再通过检测器对分离后的离子进行检测。

离子色谱仪广泛应用于环境、食品安全、医疗等领域,可以对水样中的无机离子、有机离子进行分析。

三、样品处理技术1. 样品前处理样品前处理是仪器分析中一个重要的环节,其目的是提高仪器分析的准确度和可靠性。

仪器分析总结

仪器分析总结

第二章光学分析法: 基于电磁辐射与待测物质的相互作用而建立的分析方法。

物质粒子总是处于特定的、不连续的能量状态(能级),即能量是量子化的;通常粒子处在能量最低的状态(基态);较高的能量状态(激发态)是不稳定状态;当粒子的能量状态从一个能级变到另一个能级时(跃迁),将吸收或发射完全等于两个能级之差的能量 E=E1-E0,反之亦然;系统以电磁辐射的形式吸收(形成吸收光谱)或发射(形成发射光谱)能量时,光谱仪器通常包括五个基本单元:光源;单色器;吸收池;检测器;显示与数据处理依据光源性质不同,分为:连续光源:在较大范围提供连续波长的光源,氢灯、氘灯、钨丝灯、加热的固体等;锐线光源:提供特定波长的光源,金属蒸气灯(汞灯、钠蒸气灯)、空心阴极灯、激光等;激光光源:单色性好、方向性强,高亮度及相干性好;有气体激光器、固体激光器、染料激光器、半导体激光第三章原子吸收分光光度法具有以下特点:(1)灵敏度高(2)精密度好(3)选择性好,方法简便(4)准确度高,分析速度快(5)应用广泛基态原子吸收其共振辐射,外层电子由基态跃迁至激发态而产生原子吸收光谱。

原子吸收光谱位于光谱的紫外区和可见区。

影响谱线宽度的因素(1)自然宽度(2)多普勒(Doppler)变宽(3)洛伦兹(Lorentz)变(4)自吸与自蚀1. 积分吸收在吸收线轮廓内,吸收系数的积分称为积分吸收系数,简称为积分吸收,它表示吸收的全部能量。

从理论上可以得出,积分吸收与原子蒸气中吸收辐射的原子数成正比。

锐线光源1955年,Walsh提出在原子吸收分析中使用发射线半宽度很窄的锐线光源,测量谱线的峰值吸收;锐线光源需要满足的条件:(1)光源的发射线与吸收线的ν0一致。

(2)发射线的Δν1/2小于吸收线的Δν1/2。

1. 火焰原子化器2. 非火焰原子化器火焰原子化器它是由喷雾器、雾化器和燃烧器三部分组成。

B.火焰类型富燃火焰化学计量火焰贫燃火焰燃烧速度是指由着火点向可燃烧混合气其它点传播的速度。

仪器分析各章知识点

仪器分析各章知识点

各章知识要点第2章气相色谱分析1.色谱法的分类(按两相状态)2.何为GC法,GC定性定量的依据、定量方法及优缺点3.GC分离原理(包括GSC法和GLC法)4.气相色谱仪的构造5.色谱流出曲线及其作用、色谱术语及换算关系6.分配系数K和分配比k的定义、二者的异同点及相关计算7.塔板理论的作用(包括H的n计算)8.速率理论方程的作用(包括U最佳、Hmin的计算)9.R的含义、作用10.检测器的性能指标、四种检测器的适用特点及英文缩写11.归一化法的使用条件、原理12.内标法及内标物具备的条件13.外标法的具体操作第4章电位分析法1.电化学分析法、电位分析法、电位滴定法的定义。

2.电位分析法的测定依据。

3.电位测定法如何测定溶液的pH值(包括计算)。

4.指示电极、参比电极。

5.电位滴定法的原理及终点确定方法(重点掌握E/V曲线法和ΔE/ΔV—V 法及相关计算)。

6.电位滴定法的优点。

第5章伏安分析法1.极谱分析法及其特殊条件2.极谱图及作用、极谱图上的各参数的定义及意义和作用3.极谱分析定性定量的依据,半波电位的特性4.极谱分析中的干扰及其消除方法5.迁移电流6、极谱分析的底液及其组成,各种物质的作用7、极谱分析定量方法及其相关计算8、单扫描极谱图的特征,单扫描极谱法定性、定量的依据(包括定性定量参数)第8章原子吸收光谱分析1.AAS及基本原理2.与其它光谱分析法相比,AAS的干扰少,具有相对高选择性。

为什么?3.何为共振线?在AAS中,是否一定以共振线为分析线?选择分析线的原则是什么?4.在AAS中,被测物质是何微粒形式?5.原子吸收分光光度计的基本组成部件有哪些?各部件的作用,常用何种光源?6.何为光电倍增管的疲劳现象?如何防止或消除?7.影响空心阴极灯发射特性的因素有哪些?关系如何?8.在火焰原子化中,影响火焰温度的因素、火焰温度与原子化效率的关系?9.AAS法定量的基础、定量方法及相关计算10.AAS法适宜于常量分析还是微量分析?11.AAS分析中,需控制哪些测定条件?12.AAS分析中,常见的干扰有哪些?13.何为化学干扰?有哪些具体形式?如何消除?14.何为释放剂、保护剂、消电离剂?15.何为原子分析中的灵敏度、特征浓度、检出限?它们与仪器的检测性能有何关系?16.干扰形式的判断a.在进行原子吸收分析,若在试样前处理时使用了硫酸或磷酸,从而导致其对测定元素的干扰,此干扰属于何种干扰形式?b.待测元素与试样中共存元素的分析线重叠,引起什么干扰?c.分析试液的粘度太大,使试液喷入火焰的速度不稳或降低,造成什么干扰?第9章紫外吸收光谱分析1.UV法的概念2.UV吸收光谱是怎样产生的?在UV光谱分析中,物质处于何种微粒状态?3.按物质微粒形式,紫外光谱属何种光谱?若按产生机理,紫外光谱又称何种光谱?4.分子内价电子及其跃迁类型;哪些跃迁产生的吸收光谱在紫外可见光区?紫外可见光区的波长范围?5.助色团、生色团、红移、蓝移6.K吸收带、R吸收带及它们的跃迁类型、强度。

仪器分析各章重点

仪器分析各章重点
途径是什么?有何区别?熟悉
2、掌握荧光、磷光定义,区别比较 ΔE 波长 3、φ F概念: λ
成因
E激≥E荧光>E磷
激≤λ 荧光<λ 磷
4、激发光谱、荧光光谱定义及镜像关系.
5、了解如何找λ
激λ 发
6、Raman光、Reyligh光定义及影响。
7、F=KC使用范围Ecl≤0.05(了解)
8、了解影响荧光强度的因素。
9、仪器部件及其光路特点。
作业: 复习基本理论

1、了解IR与UV区别

电子光谱 振转光谱 2、 掌握几个概念:基频峰、泛频峰、特征峰、相关峰 特征区:4000~1250 指纹区:1250~400 3、了解振动形式、会计算振动自由度(线、非线性) 4、熟悉基本振动频率与k、u’关系
三 仪器及实验条件:
了解:固定液,担体,液担比等选择(高分子多孔小球等) 掌握两种检测器: 浓度型 TCD
质量型 FID
了解灵敏度和检测限的意义。
四 掌握定性定量分析方法:
全出峰用归一法 不全出峰用内标法,外标法。 峰宽与半峰宽的关系:W=1.699W1/2
P430 2,4,5,6,7

1、 了解HPLC三个突破。

2、 掌握范氏方程与气相中的区别。 3、 掌握分离度影响因素。 4、 掌握各色谱的原理(l~s,l-l—正,反……),流出顺序
5、 固定液与流动相的选择
6、 仪器: 重点:泵、六通阀、检测器
7、 定性、定量计算:
8、 色谱(气、液、)两个理论


1 了解气相色谱的分类及一般流程。 2 基本理论: ①差速迁移 tR,k,K,α 等 要改变 K, α 主要改变固定液。 ②塔板理论:重点掌握n,H的计算(理论假设一般了解), 分离度的计算。 ③速率理论: 掌握 H = A + B/μ + Cμ H = B/μ + Cμ 各项的解释 H 与 μ 的关系; H与柱温的关系。 填充柱 空心柱

仪器分析各章复习内容和要求

仪器分析各章复习内容和要求

微纳尺度分析技术
总结词
高灵敏度、高分辨率、纳米技术
详细描述
微纳尺度分析技术是近年来仪器分析领域的重要发展方 向。这类技术利用纳米材料和纳米结构的高比表面积、 高活性等特点,实现了高灵敏度和高分辨率的分析。纳 米孔、纳米通道和纳米薄膜等新型检测器件的研发,为 生物分子和离子的快速、准确检测提供了新的手段。此 外,纳米材料在光谱、质谱和色谱等领域的应用也取得 了重要进展,为复杂样品的高效分离和检测提供了有力 支持。
VS
操作误差
操作过程中由于人为因素导致的误差。
误差来源与控制
• 环境因素误差:如温度、湿度等环境条件对分析结果的影 响。
误差来源与控制
01
误差控制
02
03
04
定期校准仪器设备,确保其精 度和稳定性。
培训操作人员,提高操作技能 和规范性。
对环境条件进行监控和调整, 确保其在适宜的范围内。
质量评价与标准物质
详细描述
在进行仪器分析时,需要按照仪器操作规程正确操作仪器,确保仪器处于良好的工作状态。同时,仪器的日常维 护和保养也必不可少,如定期清洗、检查、校准等,以保持仪器的准确性和稳定性。对于仪器的常见故障和问题, 也需要了解并掌握相应的解决方法。
数据处理ቤተ መጻሕፍቲ ባይዱ分析
总结词
数据处理与分析是仪器分析实验的重要环节,涉及数据采集、整理、处理和解释等步骤。
详细描述
质谱分析法主要包括气相色谱-质谱联用、液相色谱-质谱联用等,广 泛应用于化合物鉴定和复杂混合物分析。
复习内容
掌握各种质谱分析法的原理、操作和解析方法。
要求
能够根据不同情况选择合适的质谱分析方法,并能够进行实验操作和 结果解析。

·仪器分析(第三版)课后题答案第五章.

·仪器分析(第三版)课后题答案第五章.

9.比较方波极谱及脉冲极谱的异同点.
解:充电电流限制了交流极谱灵敏度的提高,将叠加的交流正 弦波称为方波,使用特殊的时间开关,利用充电电流随时间很 快衰减的特性(指数特性),在方波出现的后期,记录交流极 化电流信号,而此时电容电流已大大降低,故方波极谱的灵敏 度比交流极谱要高出两个数量级.
方波极谱基本消除了充电电流,将灵敏度提高到10-7 mol.L-1 以上,但灵敏度的进一步提高则受到毛细管噪声的影响.脉冲 极谱是在滴汞电极的每一滴汞生长后期,叠加一个小振幅的周 期性脉冲电压,在脉冲电压后期记录电解电流.由于脉冲极谱 使充电电流和毛细管噪声电流都得到了充分衰减,提高了信噪 比,使脉冲极谱成为极谱方法中测定灵敏度最高的方法之 一.根据施加电压和记录电流方式的不同,脉冲极谱分为常规 脉冲极谱和微分脉冲极谱两种.
3.在极谱分析中,为什么要加入大量支持电解质?加入 电解质后电解池的电阻将降低,但电流不会增大,为什么?
解:加入支持电解质是为了消除迁移电流.由于极谱分析中 使用滴汞电极,发生浓差极化后,电流的大小只受待测离子 扩散速度(浓度)的影响,所以加入支持电解后,不会引起 电流的增大.
4.当达到极限扩散电流区域后,继续增加外加电压,是 否还引起滴汞电极电位的改变及参加电极反应的物质在电 极表面浓度的变化?
10.在0.1mol.L-1氢氧化钠溶液中,用阴极溶出伏安法测定S2-, 以 悬汞电极为工作电极,在-0.4V时电解富集,然后溶出:
(1)分别写出富集和溶出时的电极反应式.
(2)画出它的溶出伏安图.
解: (1)电极反应式: 富集: S2- +Hg - 2e =HgS↓ 溶出:HgS + 2e = S2- + Hg
解:极谱分析中,由于滴汞电极的电位受外加电压所控制, 所以当达到极限扩散电流区域后,继续增加外加电压,会引 起滴汞电极电位的改变.但由于滴汞电极表面待测离子浓度 已经降低到很小,甚至为零,而溶液本体中待测离子尚来不 及扩散至极化电极表面,所以不会引起电极表面待测离子浓 度的变化.

仪器分析第5章习题答案

仪器分析第5章习题答案

仪器分析第5章习题答案仪器分析第5章习题答案第一题:在仪器分析中,为什么要进行校准?校准是仪器分析中非常重要的一步,它可以确保仪器的准确性和可靠性。

通过校准,我们可以确定仪器的响应与所测量的物理量之间的关系,并进行相应的修正,从而提高测量结果的准确性。

同时,校准还可以帮助我们发现仪器的偏差,及时进行维护和调整,保证仪器的正常运行。

第二题:仪器分析中的质量保证是什么意思?质量保证是指在仪器分析过程中采取的一系列措施,以确保分析结果的准确性和可靠性。

这些措施包括校准、质量控制、标准化等。

通过质量保证,我们可以有效地控制仪器的误差和变异性,提高分析结果的可重复性和可比性。

第三题:仪器分析中的线性范围是什么意思?线性范围是指仪器在一定的测量范围内,仪器的响应与所测量的物理量之间呈线性关系的范围。

在线性范围内,仪器的响应可以通过简单的线性方程来描述,从而方便我们进行测量和计算。

超出线性范围的测量结果可能会引入较大的误差,因此在实际应用中,我们需要选择适当的测量范围,以保证测量结果的准确性。

第四题:仪器分析中的检出限是什么意思?检出限是指仪器在测量过程中能够检测到的最低浓度或最低浓度变化的限制。

检出限与仪器的灵敏度和噪声水平有关,通常用信噪比来表示。

检出限的确定对于分析结果的可靠性和准确性非常重要,它可以帮助我们判断分析结果是否达到了要求的检测水平,并进行相应的修正和改进。

第五题:仪器分析中的选择性是什么意思?选择性是指仪器在测量过程中对目标物质的识别和测量能力。

在实际应用中,往往会存在其他干扰物质的存在,选择性可以帮助我们区分目标物质和干扰物质,并准确地测量目标物质的浓度。

选择性的提高可以通过选择合适的测量方法、优化仪器参数等方式来实现,从而提高分析结果的准确性和可靠性。

第六题:仪器分析中的精密度和准确度有什么区别?精密度是指在相同条件下,多次重复测量所得结果的一致性和稳定性。

精密度可以通过计算测量值的标准偏差来评估,它反映了仪器的稳定性和测量结果的可重复性。

仪器分析知识点复习汇总

仪器分析知识点复习汇总

仪器分析知识点复习汇总研究必备,欢迎下载。

第一章:绪论1.灵敏度是指被测物质单位浓度或单位质量的变化引起响应信号值变化的程度。

检出限是一定置信水平下检出分析物或组分的最小量或最小浓度。

2.检出限指恰能鉴别的响应信号至少应等于检测器噪声信号的3倍。

3.根据表里给的数据,标准曲线方程为y=5.7554x+0.1267,相关系数为0.9716.第二章:光学分析法导论1.原子光谱是由原子外层或内层电子能级的变化产生的,表现形式为线光谱。

分子光谱是由分子中电子能级、振动和转动能级的变化产生的,表现为带光谱。

吸收光谱是当电磁辐射通过固体、液体或气体时,具一定频率(能量)的辐射将能量转移给处于基态的原子、分子或离子,并跃迁至高能态,从而使这些辐射被选择性地吸收。

发射光谱是处于激发态的物质将多余能量释放回到基态,若多余能量以光子形式释放,产生电磁辐射。

带光谱除电子能级跃迁外,还产生分子振动和转动能级变化,形成一个或数个密集的谱线组,即为谱带。

线光谱是物质在高温下解离为气态原子或离子,当其受外界能量激发时,将发射出各自的线状光谱,其谱线的宽度约为10-3nm,称为自然宽度。

2.UV-Vis和IR属于带状光谱,AES、AAS和AFS属于线性状光谱。

第三章:紫外-可见吸收光谱法1.朗伯-比尔定律的物理意义是样品溶液中吸收光的强度与样品浓度成正比。

透光度是指样品溶液透过光束后的光强度与入射光强度之比。

吸光度是指样品溶液吸收光束后的光强度与入射光强度之比。

两者之间的关系是吸光度等于-log(透光度)。

2.有色配合物的XXX吸收系数与入射光波长有关。

3.物质的紫外-可见吸收光谱的产生是由于原子核外层电子的跃迁。

4.最大能量跃迁需要最大能量,因此跃迁所需能量最大的是电子从基态到最高激发态的跃迁。

A.样品加入量和仪器响应的不确定性B.谱线重叠的问题C.光谱干扰的问题D.样品制备的不确定性改写:1.电感耦合等离子体光源由高频发射器、等离子炬管、雾化器等三部分组成,具有稳定性好、机体效应小、线性范围宽、检出限低、应用范围广、自吸效应小、准确度高等优点。

仪器分析各个章节小结

仪器分析各个章节小结

仪器分析各个章节小结仪器分析是对于物质进行定性、定量和结构分析的一种方法。

它是近几十年来发展迅猛的一门科学,已经成为当代化学、生物学、药学和地球科学等各类研究工作中不可缺少的分析技术。

在仪器分析课程中,涵盖了许多章节,如下。

第一章:分光光度法分光光度法是利用物质对光的吸收作用来分析物质的一种方法。

该方法是一种非常常用、快速准确的分析方法,可以用于测定有机和无机物质,例如测量肝素、胆固醇、蛋白质、染料、金属离子等的浓度。

分光光度法的测定方法有单波长法、多波长法和倒置分光光度法等。

单波长法测定速度快,但多波长法测定的结果更加准确。

第二章:原子吸收光谱法原子吸收光谱法利用物质吸收特定波长的光来分析物质的成分和浓度,这种方法是一种分析化学的经典技术。

原子吸收光谱法的主要优势是其选择性、准确性和精确程度都比较高。

原子吸收光谱法的应用范围广泛,可以用于测定钠、钾、镁、铜、铅、锌等元素的含量。

第三章:荧光分析法荧光分析法是利用物质对光的荧光特性来分析物质的一种方法。

这种方法对于非常微小的样本也具有极高的灵敏度,可以用于检测基于荧光信号的分子诊断,荧光标记的细胞和生物分子等。

在荧光分析法的范畴中,有几种不同的方法,包括比色融合法、固相光谱法和时间分辨荧光光谱法等。

每种方法都有其独特的应用领域和优劣点。

第四章:分析色谱法分析色谱法是一种广泛应用于分析化学、生物化学和环境科学中的方法。

该方法是通过将样品通过色谱柱来分离各种成分,再用检测器来检测成分的浓度来进行分析。

分析色谱法包括气相色谱法、液相色谱法和毛细管电泳法等。

它们的使用范围广泛,涉及到生物和药物的分析、环境监测等方面。

第五章:电化学分析法电化学分析方法是利用电化学反应的原理进行定量分析的方法。

在电化学分析领域中,包括电位滴定法、极谱法和循环伏安法等多种方法。

电化学分析法的优点在于对物质进行非常精确的定量分析,对样品的形状和大小没有要求。

这种方法可以应用于分析化学、电化学和材料科学中的很多方面。

仪器分析重点

仪器分析重点

第一章:绪论1,互补色:常指白光通过某物质,此物质吸收一定波长的光,而我们看到的物质的颜色是没被吸收的波长的光的颜色;我们看到的波长光的颜色习惯上称为被吸收光的互补色。

紫—黄绿,蓝—黄,绿蓝—橙,蓝绿—红,绿—紫红相对应的几种颜色互为互补色。

2.光的微粒性光子能量与波长的关系:E=hv = hc /λh:普朗克常数C:光速λ:波长由此可知,波长越长,能量越低第三章:紫外-可见分光光谱法1,吸收光谱怎么产生的?由分子中电子能级的跃迁引起。

当电磁辐射照射分子时,如果其能量正等于分子较低能级与较高能级的差,则该分析会吸收辐射能,形成分子吸收光谱。

2,紫外-可见吸收光谱怎么样产生的?能量的吸收依赖于基态和激发态之间的能级差异,能量差越小,吸收光的波长越长。

电子能级跃迁产生的吸收光谱主要处于紫外-可见光区(100-800)的分子光谱成为紫外-可见吸收光谱。

3,跃迁包括哪几种?分子中分子轨道有成键轨道与反键轨道:它们的能级高低为:σ<π<n <π*<σ*①σ→σ* 跃迁:引起此跃迁所需的能量很大,λ<150nm②n →σ* 跃迁:较上类跃迁所需能量小,λ范围:150~250nm③n→π*和π→π*跃迁:有机化合物最有用的吸收光谱是基于此两种跃迁所产生的。

4,为什么紫外-可见吸收光谱是带状光谱而不是线状光谱?由于分子中每个电子能级上耦合有许多的振-转能级,所以处于紫外-可见光区的电子跃迁而产生的吸收光谱具有“带状吸收” 的特点。

形成带状光谱5,什么叫生色团、助色团?生色团:能吸收紫外-可见光的基团叫生色团。

使物质具有颜色的基团,具有不饱和键。

助色团:本身无紫外吸收,不会使物质具有颜色,但当与发色团相连接时可以使生色团吸收峰加强同时使吸收峰向长波方向移动的基团。

为连有杂原子的饱和基团。

当出现几个发色团共轭,则几个发色团所产生的吸收带将消失,而代之出现的是新的共轭吸收带,其波长将比单个发色团的吸收波长长,强度也增强。

仪器分析 课件 第五章:HNMR

仪器分析 课件 第五章:HNMR

H H C H C H H O H O C C H H
小, δ 大, H0 低, δ >15
正丁烯-2-醇 δ 位移值增大。
1% 1
纯液体 5
氢键的形成使氢键中质子信号移向低场,化学
五、各种环境中质子的化学位移
酚-OH 醇-OH 硫醇-SH 氨-NH2 羧酸-OH 醛 杂环 芳香

HO Ar
C
OH
核能级相同的磁场(晶格场),就可以进行能量转
移的驰豫过程。
2) 自旋-自旋驰豫(横向驰豫)同类核具有相同的核
能级,高能态的核可以通过磁场释放能量给低能
态的同类核;结果没有改变 n*/n0 ,但是通过自
旋-自旋驰豫降低了激发态的寿命。
§5.2 屏蔽效应与化学位移
一、屏蔽效应与化学位移
1、屏蔽效应:理想化的、裸露的
δ=3.5
δ>9, 低场
与质子相连元素的电负性越强,吸电子作用越强,
价电子偏离质子,屏蔽作用减弱,NMR吸收峰在低场、
高化学位移处。
例3:CH3X的-CH
CHCl3 CH2Cl2 CH3F CH3OH CH3Cl CH3Br CH3I CH4 Si(CH3)4
3Cl
电负性:
2Cl
F
4.0
O
3.5
Cl
驰豫现象:高能态的核以非辐射形式释放能量,回到低能
态,维持n0略大于n*,致使核磁共振信号存在,
这种过程称为“驰豫”由于核外电子的屏蔽效应, 不能通过碰撞释放能量。 驰豫现象是NMR现象发生后得以得以保持的必要 条件。
1) 自旋-晶格驰豫(纵向驰豫):分子的各种运动形成
许多不同频率的磁场(晶格场);如果其中存在与

现代仪器分析第五章

现代仪器分析第五章

第五章红外吸收光谱分析5.1红外光谱法概述5.11红外光谱与红外光谱分析法红外吸收光谱:又称分子振动-转动光谱,是物质的分子在吸收了红外辐射后引起分子的振动-转动能级跃迁而形成的光谱,因为出现在红外区,所以称之为红外光谱。

红外吸收光谱分析法:是根据物质对红外辐射的选择性吸收特性而建立起来的一种光谱分析方法,即利用红外光谱进行定性、定量分析的方法。

5.12红外光区的划分红外辐射(即红外光)是波长接近于可见光但能量比可见光低的电磁辐射,其波长范围约为0.75μm〜1000μm。

根据所采用的实验技术和获得信息的不同,可将红外光按波长分为三个区(表),其中大多数有机物和无机物的基频吸收带都出现在中红外区,因此中红5.13红外光谱的表示方法当用一定波长的红外光作用于物质时,物质分子将吸收一定频率的红外辐射。

将分子吸收红外辐射的情况用仪器纪录下来,即得到红外光谱图。

红外光谱图一般用T-σ或T-λ曲线来表示,其中横坐标为波长λ(μm) 及波数σ(cm-1) ,表示吸收峰所在的位置;纵坐标一般为透射比T(%)。

波数σ和波长λ的关系为:5.14红外光谱法的特点①. 红外光谱是分子振动-转动光谱,主要研究在分子振动中伴随有偶极矩变化的化合物。

因此,除单原子分子和同核分子(如Ne、He、O2、N2、Cl2等少数分子)外,几乎所有的化合物均可用红外光谱法进行研究。

②.气态、液态和固态样品均可进行红外光谱测定。

③.分析速度快、灵敏度高、样品用量少(可减少到微克级)且不破坏样品。

④.常规红外光谱仪价格低廉,易于购置。

⑤. 针对特殊样品的测试要求,发展了多种测量新技术,如光声光谱(PAS)、衰减反射光谱(ATR)、漫反射、红外显微镜等。

5.15红外光谱的应用红外光谱法还广泛应用于化学、化工、催化、石油、地矿、材料、生物、医药和环境保护等许多领域。

红外光谱的应用大体上可分为两个方面:用于分子结构的技术研究:如应用红外光谱可以测定分子的键长、键角,以此推断出分子的立体结构;根据所得的力学常数可以知道化学键的强弱;由简正振动的频率来计算热力学函数等。

《现代仪器分析》考试知识点总结

《现代仪器分析》考试知识点总结

《现代仪器分析》考试知识点总结第一篇:《现代仪器分析》考试知识点总结《现代仪器分析》考试知识点总结一、填空易考知识点1.仪器分析的分类:光学分析,电化学分析,色谱分析,其他仪器分析。

2.紫外可见分光光度计组成:光源,单色器,样品室接收检测放大系统,显示器或记录器。

常用检测器:光电池,光电管,光电倍增管,光电二极管3.吸收曲线的特征值及整个吸收曲线的形状是定性鉴别的重要依据。

4.定量分析的方法:标准对照法,标准曲线法。

5.标准曲线:配置一系列不同浓度的标准溶液,以被测组分的空白溶液作参比,测定溶液的标准系列吸光度,以吸光度为纵坐标,浓度为横坐标绘制吸光度,浓度关系曲线。

6.原子吸收分光光度法的特点:(优点)灵敏度高,测量精度好,选择性好,需样量少,操作简便,分析速度快,应用广泛。

(缺点)由于分析不同的元素需配备该元素的元素灯,因此多元素的同时测定尚有困难;测定难熔元素,和稀土及非金属元素还不能令人满意。

7.在一定条件下,被测元素基态原子蒸汽的峰值吸收与试液中待测元素的浓度成正比,固可通过峰值吸收来定量分析。

8.原子化器种类:火焰原子化器,石墨炉原子化器,低温原子化器。

9.原子吸收分光光度计组成:空心阴极灯,原子化系统,光学系统,检测与记录系统。

10.离子选择性电极的类型:(1)PH玻璃膜电极(2)氟离子选择性电极(3)流动载体膜电极(4)气敏电极。

11.电位分析方法:直接电位法(直接比较法,标准曲线法,标准加入法)电位滴定法。

12.分离度定义:相邻两色谱峰保留时间的差值与两峰基线宽度和之间的比值13.气象色谱仪组成:载气系统,进样系统,分离系统,检测系统,信号记录或微机数据处理系统,温度控制系统。

14.监测器分类:浓度型检测器(热导池检测器)质量型检测器(氢火焰离子化检测器)15.基态:原子通常处于稳定的最低能量状态即基态激发:当原子受到外界电能,光能或者热能等激发源的激发时,原子核外层电子便跃迁到较高的能级上而处于激发态的过程叫激发。

仪器分析课程知识点总结

仪器分析课程知识点总结

仪器分析课程知识点总结一、仪器分析的基本原理1. 仪器分析的概念和分类仪器分析是指利用各种仪器设备对化学物质进行分析的方法。

其主要分类包括光谱分析、色谱分析、电化学分析、质谱分析、热分析等。

2. 仪器分析的基本原理仪器分析的基本原理包括光谱原理、色谱原理、电化学原理、质谱原理、热分析原理等。

其中,光谱原理是利用物质与光的相互作用来进行分析,色谱原理是利用色谱柱对化合物进行分离和检测,电化学原理是利用电化学方法进行分析,质谱原理是利用质谱仪对化合物进行分析,热分析原理是利用热量变化对样品进行分析。

3. 仪器分析的基本步骤仪器分析的基本步骤包括样品的前处理、仪器的选择和使用、数据的处理和结果的解释。

其中,样品的前处理包括样品的制备、提取和预处理,仪器的选择和使用包括仪器的操作和参数的设置,数据的处理包括数据的采集和处理,结果的解释包括对分析结果的解释和判断。

二、光谱分析1. 紫外-可见光谱分析紫外-可见光谱分析是利用化合物对紫外和可见光的吸收特性进行分析的方法。

其原理是根据分子的电子跃迁能级差异来对化合物进行定性和定量分析。

2. 荧光光谱分析荧光光谱分析是利用化合物发射荧光信号的特性进行分析的方法。

其原理是激发分子到高能级态后发射特定波长的光信号,利用这一特性对化合物进行分析。

3. 红外光谱分析红外光谱分析是利用化合物对红外光的吸收特性进行分析的方法。

其原理是根据分子的振动和转动引起的电偶极矩变化来对化合物进行定性和定量分析。

4. 核磁共振光谱分析核磁共振光谱分析是利用化合物对核磁共振信号的特性进行分析的方法。

其原理是根据核磁共振现象来对化合物进行定性和定量分析。

5. 质谱分析质谱分析是利用化合物对质谱仪的质荷比进行分析的方法。

其原理是根据化合物在质谱仪中的质荷比特性来对化合物进行定性和定量分析。

6. X射线光谱分析X射线光谱分析是利用化合物对X射线的衍射特性进行分析的方法。

其原理是根据化合物对X射线的衍射角度和强度来对化合物进行定性和定量分析。

仪器分析(第三版)朱明华编课后题答案第5章

仪器分析(第三版)朱明华编课后题答案第5章

10.在0.1mol.L-1氢氧化钠溶液中,用阴极溶出伏安法测定S2-, 以 悬汞电极为工作电极,在-0.4V时电解富集,然后溶出:
(1)分别写出富集和溶出时的电极反应式.
(2)画出它的溶出伏安图.
解: (1)电极反应式: 富集: S2- +Hg - 2e =HgS↓ 溶出:HgS + 2e = S2- + Hg
解:极谱催化波属于一种极谱动力波,其中化学反应与电极
反应平行: A + ne-
B Electrode reaction)
k B +X
A + Z(Chemical reaction)
当氧化剂X在电极上具有很高的超电位时,就可以保证上述 催化循环进行下去,由于大量消耗的氧化剂是X,它可以在 溶液中具有较高浓度,A则被不断地消耗和再生,总浓度基 本保持不变,产生的催化电流与催化剂A的浓度成正比.
解:残余电流的产生主要有两个原因,一为溶液中存在微量 的可以在电极上还原的杂质,二为充电电流引起.
它对极谱分析的影响主要是影响测定的灵敏度.
6.极谱分析用作定量分析的依据是什么?有哪几种定量方 法?如何进行?
解:根据极谱扩散电流方程式:id=607nD1/2m2/3t1/6C,当温度、 底液及毛细管特性不变时,极限扩散电流与浓度成正比, 这既是极谱定量分析的依据。
极谱定量方法通常有直接比较法,标准曲线法,标准加入 法等三种。
(1)
cx=
hx hs
cs
(2)绘制标准曲线,然
(3)
hx = Kc x
H
=
K
Vc x V
+ Vscs + Vs
cx
=
c sVs hx H (V + Vs ) − hxV

现代仪器分析知识点总结

现代仪器分析知识点总结

现代仪器分析绪论:1仪器分析定义:现代仪器分析是以物质的物理性质或物理化学性质及其在分析过程中所产生的分析信号与物质的内在关系为基础,借助比较复杂或特殊的现代仪器,对待测物质进行定性、定量及结构分析和动态分析的一类分析方法。

2仪器分析的特点:灵敏度高,试样用量少;选择性好;操作简便,分析速度快,自动化程度高;用途广泛,能适应各种分析要求;相对误差较大。

需要价格比较昂贵的专用仪器。

3仪器分析包括:光分析法;分离分析法;电化学分析法;分析仪器联用技术;质谱法。

4光分析:光分析法是利用待测组分的光学性质(如光的发射、吸收、散射、折射、衍射、偏振等)进行分析测定的一种仪器分析方法。

5光谱法包括:紫外/可见吸收光谱法;原子吸收光谱法;原子发射光谱法;分子发光分析法;拉曼光谱法;红外光谱法。

6电化学分析法:电化学分析法是利用待测组分在溶液中的电化学性质进行分析测定的一种仪器分析方法。

7电化学分析法包括:电导分析法;电位分析法;极谱与伏安分析法;电解和库仑分析法。

8分离分析法:利用物质中各组分间的溶解能力、亲和能力、吸附和解吸能力、渗透能力、迁移速率等性能的差异,先分离后分析测定的一类仪器分析方法。

分离分析法包括:超临界流体色谱法;气相色谱法;高效液相色谱法;离子色谱法;高效毛细管电泳法;薄层色谱法。

9质谱法:质谱法是将待测物质置于离子源中电离形成带电离子,让离子加速并通过磁场或电场后,离子将按质荷比(m/z)大小分离,形成质谱图。

依据质谱线的位置和质谱线的相对强度建立的分析方法称为质谱法。

10联用分析技术:已成为当前仪器分析的重要发展方向。

将几种方法结合起来,特别是分离方法(如色谱法)和检测方法(红外吸收光谱法、质谱法、原子发射光谱法等)的结合,汇集了各自的优点,弥补了各自的不足,可以更好地完成试样的分析任务。

气相色谱—质谱法(GC —MS)、气相色谱—质谱法—质谱法(GC—MS—MS)、液相色谱—质谱法(HPLC—MS)。

仪器分析知识点总结各章

仪器分析知识点总结各章

仪器分析知识点总结各章第一章仪器分析的基本概念和原理1.1 仪器分析的定义仪器分析是利用仪器设备对样品进行检测、分析和测量,以获取样品中特定组分的含量、性质和结构等信息的一种分析方法。

1.2 仪器分析的分类仪器分析按照分析方法的不同可以分为物理分析、化学分析和生物分析三大类,其中每类又分为多个不同的分支。

1.3 仪器分析的基本原理仪器分析的基本原理是根据目标分析物的性质和特点,选用合适的分析仪器进行检测和分析。

常用的仪器分析原理包括光谱分析原理、色谱分析原理、质谱分析原理等。

第二章光谱分析2.1 光谱分析的基本概念光谱分析是利用样品对电磁波的吸收、散射、发射或者透射特性进行分析的方法,分析样品中的成分、结构和性质。

2.2 原子吸收光谱分析原子吸收光谱分析(AAS)是利用原子对特定波长的光的吸收特性来测定样品中金属元素的含量的分析方法。

原子吸收光谱分析的原理是利用吸收特性和比例计算出样品中目标元素的含量。

2.3 紫外可见光谱分析紫外可见光谱分析(UV-Vis)是利用样品对紫外和可见光的吸收特性进行分析的方法,常用于测定有机物和某些无机物的含量和结构。

2.4 荧光光谱分析荧光光谱分析是利用样品对激发光的发射特性进行分析的方法,荧光光谱常用于生物分析、环境分析和材料科学等领域。

第三章色谱分析3.1 色谱分析的基本概念色谱分析是利用色谱仪器对样品中的组分进行分离、检测和定量测定的方法,主要包括气相色谱分析、液相色谱分析和超临界流体色谱分析等。

3.2 气相色谱分析气相色谱分析(GC)是将样品分离为各个成分,再通过气相色谱柱进行分离和检测的方法,主要用于分析有机物、气体和挥发性物质。

3.3 液相色谱分析液相色谱分析(HPLC)是将样品分离为各个成分,再通过液相色谱柱进行分离和检测的方法,主要用于分析生物化学物、药物和小分子有机化合物等。

3.4 色谱联用技术色谱联用技术是将不同色谱方法和检测手段结合起来,以达到更高的分离能力和检测灵敏度,常见的色谱联用技术包括气相色谱-质谱联用(GC-MS)和液相色谱-质谱联用(LC-MS)等。

仪器分析第五章知识点总结

仪器分析第五章知识点总结

仪器分析第五章知识点总结第五章高效液相色谱分析法5-3高效液相色谱分析法中常用哪些检测器?各有什么特点?哪些适合梯度淋洗?答: 常用的检测器有:(l)紫外检测器(2)荧光检测器(3)示差折光率检测器(4)电导检测器各检测器特点(1)紫外检测器:应用最广,对大部分有机化合物有响应。

特点:灵敏度高;线形范围高;流通池可做的很小(1mm ×10mm ,容积8μL);对流动相的流速和温度变化不敏感;波长可选,易于操作;可用于梯度洗脱。

(2)荧光检测器:高灵敏度、高选择性对多环芳烃,维生素B、黄曲霉素、卟啉类化合物、农药、药物、氨基酸、甾类化合物等有响应.(3)示差折光率检测器:除紫外检测器之外应用最多的检测器;可连续检测参比池和样品池中流动相之间的折光指数差值。

差值与浓度呈正比;灵敏度低、对温度敏感、不能用于梯度洗脱;(4)电导检测器:电导检测器是离子色谱法应用最多的检测器,它是根据物质在某些介质中电离后所产生的电导变化来测定电离物质的含量。

其主要部件是电导池。

电导检测器的响应受温度的影响较大,因此要求放在恒温箱中。

电导检测器的缺点是PH>7时不够灵敏。

适合梯度淋洗的检测器有:紫外检测器、荧光检测器5-8正相柱和反相柱是如何界定的?适合哪类物质的分离?●正相分配色谱(柱称正相柱):采用亲水性固定液、疏水性流动相的色谱称正相~。

极性小的组分先流出,极性大的后流出。

适合极性化合物的分离。

●反相分配色谱(柱称反相柱):采用疏水性固定液、亲水性流动相的色谱称反相~。

极性大的组分先流出,极性小的后流出。

适合非极性化合物的分离。

5-11离子色谱与离子交换色谱有什么差别?答:离子色谱与离子交换色谱的区别是其采用了特制的、具有极低交换容量的离子交换树脂作为柱填料,并采用淋洗液本底电导抑制技术和电导检测器,是测定混合阴离子的有效方法。

5-16指出下列物质分别在正相柱和反相柱上的流出顺序:(1)乙酸乙酯、乙醚、硝基丁烷(2)正己烷、正己醇、苯5-17毛细管电泳中,电流是如何产生的?朝何方向移动?对阴离子分离是否有利?答; 石英或玻璃毛细管内壁表面上的硅羟基在pH>3的水溶液中,可电离产生-Si-O-负离子,使毛细管内壁带上负电荷,因此,溶液中的一部分正离子(如H+)依靠静电作用而吸附于毛细管内壁表面上,在毛细管内壁与溶液接触表面间形成一个双电层。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章高效液相色谱分析法
5-3高效液相色谱分析法中常用哪些检测器?各有什么特点?哪些适合梯度淋洗?
答: 常用的检测器有:
(l)紫外检测器
(2)荧光检测器
(3)示差折光率检测器
(4)电导检测器
各检测器特点
(1)紫外检测器:应用最广,对大部分有机化合物有响应。

特点:灵敏度高;线形范围高;流通池可做的很小(1mm ×10mm ,容积8μL);对流动相的流速和温度变化不敏感;波长可选,易于操作;可用于梯度洗脱。

(2)荧光检测器:高灵敏度、高选择性
对多环芳烃,维生素B、黄曲霉素、卟啉类化合物、农药、药物、氨基酸、甾类化合物等有响应.
(3)示差折光率检测器:除紫外检测器之外应用最多的检测器;可连续检测参比池和样品池中流动相之间的折光指数差值。

差值与浓度呈正比;
灵敏度低、对温度敏感、不能用于梯度洗脱;
(4)电导检测器:电导检测器是离子色谱法应用最多的检测
器,它是根据物质在某些介质中电离后所产生的电导变化来测定电离物质的含量。

其主要部件是电导池。

电导检测器的响应受温度的影响较大,因此要求放在恒温箱中。

电导检测器的缺点是PH>7时不够灵敏。

适合梯度淋洗的检测器有:紫外检测器、荧光检测器
5-8正相柱和反相柱是如何界定的?适合哪类物质的分离?
●正相分配色谱(柱称正相柱):采用亲水性固定液、疏水
性流动相的色谱称正相~。

极性小的组分先流出,极性大的
后流出。

适合极性化合物的分离。

●反相分配色谱(柱称反相柱):采用疏水性固定液、亲
水性流动相的色谱称反相~。

极性大的组分先流出,极性小
的后流出。

适合非极性化合物的分离。

5-11离子色谱与离子交换色谱有什么差别?
答:离子色谱与离子交换色谱的区别是其采用了特制的、具有极低交换容量的离子交换树脂作为柱填料,并采用淋洗液本底电导抑制技术和电导检测器,是测定混合阴离子的有效方法。

5-16指出下列物质分别在正相柱和反相柱上的流出顺序:
(1)乙酸乙酯、乙醚、硝基丁烷(2)正己烷、正己醇、苯5-17毛细管电泳中,电流是如何产生的?朝何方向移动?对阴离子分离是否有利?
答; 石英或玻璃毛细管内壁表面上的硅羟基在pH>3的水溶液中,可电离产生-Si-O-负离子,使毛细管内壁带上负电荷,因此,
溶液中的一部分正离子(如H+)依靠静电作用而吸附于毛细管内壁表面上,在毛细管内壁与溶液接触表面间形成一个双电层。

其中一层是带负电荷的内壁,另一层是带正电荷的溶液层。

在电场的作用下,溶液表层聚集的正电荷向负极移动,由于溶剂化作用,将带动毛细管中的溶液整体向阴极移动,形成了电渗流,即溶剂流。

对阴离子的分离有利。

相关文档
最新文档