高中数学抽样方法总结练习含答案解析

合集下载

高中数学统计抽样方法精选题目(附答案)

高中数学统计抽样方法精选题目(附答案)

高中数学统计抽样方法精选题目(附答案)一、抽样方法1.简单随机抽样(1)特征:①一个一个不放回的抽取;②每个个体被抽到可能性相等.(2)常用方法:①抽签法;②随机数表法.2.系统抽样(1)适用环境:当总体中个数较多时,可用系统抽样.(2)操作步骤:将总体平均分成几个部分,再按照一定方法从每个部分抽取一个个体作为样本.3.分层抽样(1)适用范围:当总体由差异明显的几个部分组成时可用分层抽样.(2)操作步骤:将总体中的个体按不同特点分成层次比较分明的几部分,然后按各部分在总体中所占的比实施抽样.1.(1)采用系统抽样方法从960人中抽取32人做问卷调查.为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为()A.7B.9C.10 D.15(2)某地区有小学150所,中学75所,大学25所.现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取________所学校,中学中抽取________所学校.[解析](1)从960人中用系统抽样方法抽取32人,则每30人抽取一人,因为第一组抽到的号码为9,则第二组抽到的号码为39,第n组抽到的号码为a n=9+30(n-1)=30n-21,由451≤30n-21≤750,得23615≤n≤25710,所以n=16,17,…,25,共有25-16+1=10人.(2)小学中抽取30×150150+75+25=18所学校;从中学中抽取30×75150+75+25=9所学校.[答案](1)C(2)189注:1.系统抽样的特点(1)适用于元素个数很多且均衡的总体. (2)各个个体被抽到的机会均等.(3)总体分组后,在起始部分抽样时采用的是简单随机抽样. (4)如果总体容量N 能被样本容量n 整除,则抽样间隔为k =Nn . 2.与分层抽样有关问题的常见类型及解题策略(1)确定抽样比.可依据各层总数与样本数之比,确定抽样比.(2)求某一层的样本数或总体个数.可依据题意求出抽样比,再由某层总体个数(或样本数)确定该层的样本(或总体)数.(3)求各层的样本数.可依据题意,求出各层的抽样比,再求出各层样本数. 2.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( )A .抽签法B .系统抽样法C .分层抽样法D .随机数法解析:选C 根据年级不同产生差异及按人数比例抽取易知应为分层抽样法. 3.某学校高一、高二、高三3个年级共有430名学生,其中高一年级学生160名,高二年级学生180名,为了解学生身体状况,现采用分层抽样方法进行调查,在抽取的样本中高二学生有32人,则该样本中高三学生人数为________.解析:高三年级学生人数为430-160-180=90,设高三年级抽取x 人,由分层抽样可得32180=x90,解得x =16. 答案:164.某单位有职工960人,其中青年职工420人,中年职工300人,老年职工240人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为14人,则样本容量为________.解析:因为分层抽样的抽样比应相等,所以420960=14样本容量,样本容量=960×14420=32.答案:32二、用样本的频率分布估计总体的频率分布1.频率分布直方图2.茎叶图5.(1)如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5].样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5 ℃的城市个数为11,则样本中平均气温不低于25.5 ℃的城市个数为________.(2)某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].①求图中a的值;②根据频率分布直方图,估计这100名学生语文成绩的平均分;③若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.分数段[50,60)[60,70)[70,80)[80,90)x∶y 1∶12∶13∶44∶5 [为50×0.18=9.答案:9(2)解:①由频率分布直方图可知(0.04+0.03+0.02+2a)×10=1.所以a=0.005.②该100名学生的语文成绩的平均分约为x=0.05×55+0.4×65+0.3×75+0.2×85+0.05×95=73.③由频率分布直方图及已知的语文成绩、数学成绩分布在各分数段的人数比,可得下表:分数段[50,60)[60,70)[70,80)[80,90)x 5403020x∶y 1∶12∶13∶44∶5y 5204025100-(5+20+40+25)=10.注:与频率分布直方图有关问题的常见类型及解题策略(1)已知频率分布直方图中的部分数据,求其他数据,可根据频率分布直方图中的数据求出样本与整体的关系,利用频率和等于1就可求出其他数据.(2)已知频率分布直方图,求某种范围内的数据,可利用图形及某范围结合求解.6.如图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为()A.0.2 B.0.4C.0.5 D.0.6解析:选B由茎叶图可知数据落在区间[22,30)内的频数为4,所以数据落在区间[22,30)内的频率为410=0.4,故选B.7.为了了解某学校学生的身体发育情况,抽查了该校100名高中男生的体重情况,根据所得数据画出样本的频率分布直方图如图所示.根据此图,估计该校2 000名高中男生中体重大于70.5公斤的人数为()A .300B .360C .420D .450解析:选B 样本中体重大于70.5公斤的频率为: (0.04+0.034+0.016)×2=0.090×2=0.18.故可估计该校2 000名高中男生中体重大于70.5公斤的人数为:2 000×0.18=360(人). 8.某商场在庆元宵节促销活动中,对元宵节9时至14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时至12时的销售额为________万元.解析:总销售额为2.50.1=25(万元),故11时至12时的销售额为0.4×25=10(万元).答案:10三、用样本的数字特征估计总体的数字特征有关数据的数字特征9.(1)对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A .46,45,56B .46,45,53C .47,45,56D .45,47,53(2)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差(3)由正整数组成的一组数据x 1,x 2,x 3,x 4,其平均数和中位数都是2,且标准差等于1,则这组数据为________.(从小到大排列)[解析] (1)从茎叶图中可以看出样本数据的中位数为中间两个数的平均数,即45+472=46,众数为45,极差为68-12=56,故选择A.(2)由题意可知,甲的成绩为4,5,6,7,8,乙的成绩为5,5,5,6,9.所以甲、乙的成绩的平均数均为6,A 错;甲、乙的成绩的中位数分别为6,5,B 错;甲、乙的成绩的方差分别为15×[(4-6)2+(5-6)2+(6-6)2+(7-6)2+(8-6)2]=2,15×[(5-6)2+(5-6)2+(5-6)2+(6-6)2+(9-6)2]=125,C 对;甲、乙的成绩的极差均为4,D 错.故选C.(3)假设这组数据按从小到大的顺序排列为x 1,x 2,x 3,x 4,则⎩⎨⎧x 1+x 2+x 3+x44=2,x 2+x32=2,∴⎩⎪⎨⎪⎧x 1+x 4=4,x 2+x 3=4, 又s = 14[(x 1-2)2+(x 2-2)2+(x 3-2)2+(x 4-2)2] =12(x 1-2)2+(x 2-2)2+(x 3-2)2+(x 4-2)2=122[(x 1-2)2+(x 2-2)2]=1, ∴(x 1-2)2+(x 2-2)2=2. 同理可求得(x 3-2)2+(x 4-2)2=2.由x 1,x 2,x 3,x 4均为正整数,且(x 1,x 2),(x 3,x 4)均为圆(x -2)2+(y -2)2=2上的点,分析知x 1,x 2,x 3,x 4应为1,1,3,3.[答案] (1)A (2)C (3)1,1,3,3 注:平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述其波动大小.10.为比较甲、乙两地某月14时的气温情况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温; ②甲地该月14时的平均气温高于乙地该月14时的平均气温; ③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差; ④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差. 其中根据茎叶图能得到的统计结论的编号为( ) A .①③ B .①④ C .②③D .②④解析:选B 法一:∵x 甲=26+28+29+31+315=29,x 乙=28+29+30+31+325=30,∴x 甲<x 乙,又s 2甲=9+1+0+4+45=185,s 2乙=4+1+0+1+45=2,∴s 甲>s 乙.故可判断结论①④正确.法二:甲地该月14时的气温数据分布在26和31之间,且数据波动较大,而乙地该月14时的气温数据分布在28和32之间,且数据波动较小,可以判断结论①④正确,故选B.11.甲和乙两个城市去年上半年每月的平均气温(单位:℃)用茎叶图记录如图所示,根据茎叶图可知,两城市中平均温度较高的城市是__________,气温波动较大的城市是__________.解析:根据题中所给的茎叶图可知,甲城市上半年的平均温度为9+13+17×2+18+226=16,乙城市上半年的平均温度为12+14+17+20+24+276=19,故两城市中平均温度较高的是乙城市,观察茎叶图可知,甲城市的温度更加集中在峰值附近,故乙城市的温度波动较大.答案:乙 乙12.甲、乙两台机床同时加工直径为100 mm 的零件,为了检验产品的质量,从产品中各随机抽取6件进行测量,测得数据如下(单位:mm):甲:99,100,98,100,100,103; 乙:99,100,102,99,100,100.(1)分别计算上述两组数据的平均数和方差;(2)根据(1)的计算结果,说明哪一台机床加工的这种零件更符合要求. 解:(1)x 甲=99+100+98+100+100+1036=100(mm),x 乙=99+100+102+99+100+1006=100(mm),s 2甲=16[(99-100)2+(100-100)2+(98-100)2+(100-100)2+(100-100)2+(103-100)2]=73(mm 2), s 2乙=16[(99-100)2+(100-100)2+(102-100)2+(99-100)2+(100-100)2+(100-100)2]=1(mm 2).(2)因为s 2甲>s 2乙,说明甲机床加工零件波动比较大,因此乙机床加工零件更符合要求.四、线性回归1.两个变量的线性相关(1)散点图:将样本中n 个数据点(x i ,y i )(i =1,2,…,n )描在平面直角坐标系中得到的图形.(2)正相关与负相关:①正相关:散点图中的点散布在从左下角到右上角的区域. ②负相关:散点图中的点散布在从左上角到右下角的区域. 2.回归直线的方程(1)回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)线性回归方程:方程y ^=b ^x +a ^是两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的线性回归方程,其中a ,b 是待定参数.⎩⎪⎨⎪⎧b ^=∑i =1n(x i-x )(y i-y )∑i =1n(x i-x )2=∑i =1nx i y i-n x y ∑i =1nx 2i-n x 2,a ^=y -b x .13.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:(1)求回归直线方程y =b x +a ,其中b =-20,a =y -b x ;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)[解] (1)由于x =16(8+8.2+8.4+8.6+8.8+9)=8.5,y =16(90+84+83+80+75+68)=80.所以a ^=y -b ^x =80+20×8.5=250,从而回归直线方程为y ^=-20x +250. (2)设工厂获得的利润为L 元,依题意得 L =x (-20x +250)-4(-20x +250) =-20x 2+330x -1 000 =-20(x -8.25)2+361.25.当且仅当x =8.25时,L 取得最大值.故当单价定为8.25元时,工厂可获得最大利润. 注:(1)线性回归分析就是研究两组变量间线性相关关系的一种方法,通过对统计数据的分析,可以预测可能的结果,这就是线性回归方程的基本应用,因此利用最小二乘法求线性回归方程是关键,必须熟练掌握线性回归方程中两个重要估计量的计算.(2)回归直线方程恒过点(x ,y ).14.某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10日的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:回归方程,再用被选取的2组数据进行检验.(1)求选取的2组数据恰好是相邻两个月的概率;(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y 关于x 的线性回归方程y ^=b ^x +a ^;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?解:(1)将6组数据按月份顺序编号为1,2,3,4,5,6,从中任取两组数据,基本事件构成的集合为Ω={(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)}共15个基本事件,设抽到相邻两个月的事件为A ,则A ={(1,2),(2,3),(3,4),(4,5),(5,6)}共5个基本事件,∴P (A )=515=13.(2)由表中数据求得x =11,y =24,∑i =14x i y i =1 092,∑i =14x 2i =498.代入公式可得b ^=187.再由a ^=y -b ^x ,求得a ^=-307,所以y 关于x 的线性回归方程为 y ^=187x -307.(3)当x =10时,y ^=1507,⎪⎪⎪⎪1507-22=47<2; 同样,当x =6时,y ^=787,⎪⎪⎪⎪787-12=67<2. 所以该小组所得线性回归方程是理想的.。

高三数学抽样试题答案及解析

高三数学抽样试题答案及解析

高三数学抽样试题答案及解析1.某学校高一、高二、高三年级的学生人数之比为4:3:3,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为80的样本,则应从高一年级抽取名学生.【答案】32【解析】设从高一年级抽取4n名学生,则从高二、高三年级分别抽取3n,3n名学生,因此【考点】分层抽样2.从甲、乙、丙、丁4位同学中随机选出2名代表参加学校会议,则甲被选中的概率是.【答案】【解析】从甲、乙、丙、丁4位同学中随机选出2名代表共有种基本事件,甲被选中包含种,基本事件,因此甲被选中的概率是【考点】古典概型概率3.春节前,有超过20万名广西,四川等省籍的外来务工人员选择驾乘摩托车沿321国道长途跋涉返乡过年,为防止摩托车驾驶人员因长途疲劳驾驶,手脚僵硬影响驾驶操作而引发交通事故,肇庆市公安交警部门在321国道沿线设立了多个长途行驶摩托车驾驶人员休息站,让过往返乡过年的摩托车驾驶人员有一个停车休息的场所.交警小李在某休息站连续5天对进站休息的驾驶人员每隔50辆摩托车就进行省籍询问一次,询问结果如图所示.(1)问交警小李对进站休息的驾驶人员的省籍询问采用的是什么抽样方法;(2)用分层抽样的方法对被询问了省籍的驾驶人员进行抽样,若广西籍的被抽取了5名,则四川籍的应抽取几名?(3)在上述抽出的驾驶人员中任取2名,求至少有1名驾驶人员是广西籍的概率.【答案】(1)系统抽样方法(2)2(3)【解析】解:(1)交警小李对进站休息的驾驶人员的省籍询问采用的是系统抽样方法.(2)从图中可知,被询问了省籍的驾驶人员是广西籍的有5+20+25+20+30=100名,四川籍的有15+10+5+5+5=40名.设四川籍的驾驶人员应抽取x名,依题意得=,解得x=2,即四川籍的应抽取2名.(3)用a1,a2,a3,a4,a5表示被抽取的广西籍驾驶人员,b1,b2表示被抽取的四川籍驾驶人员,则所有基本事件有{a1,a2},{a1,a3},{a1,a4},{a1,a5},{a1,b1},{a1,b2},{a2,a3},{a2,a4},{a2,a5},{a2,b1},{a2,b2},{a3,a4},{a3,a5},{a3,b1},{a3,b2},{a4,a5},{a4,b1},{a4,b 2},{a5,b1},{a5,b2},{b1,b2},共21个,其中2名驾驶人员都是四川籍的基本事件有{b1,b2},1个.所以抽取的2名驾驶人员都是四川籍的概率P1=,至少有1名驾驶人员是广西籍的概率P=1-P1=1-=.4.某单位有职工52人,现将所有职工随机编号,用系统抽样的方法抽取一个容量为4的样本,已知6号,32号,45号职工在样本中,则样本中另外一个职工的编号是()A.19B.20C.18D.21【答案】A【解析】设样本中另外一个职工的编号是x,则用系统抽样抽出的4个职工的号码从小到大依次为:6,x,32,45,它们构成等差数列,所以6+45=x+32,x=6+45-32=19,因此另外一个职工的编号是19.故选A.5.某工厂生产A,B,C三种不同型号的产品,产品的数量之比依次为3∶4∶7,现用分层抽样的方法抽出容量为n的样本,样本中A型产品有15件,那么样本容量n为()A.50B.60C.70D.80【答案】C【解析】n×=15,解得n=70.6.某中学采用系统抽样方法,从该校高一年级全体800名学生中抽50名学生做牙齿健康检查.现将800名学生从1到800进行编号.已知从33~48这16个数中取的数是39,则在第1小组1~16中随机抽到的数是()A.5B.7C.11D.13【答案】B【解析】间隔数k==16,即每16人抽取一个人.由于39=2×16+7,所以第1小组中抽取的数值为7.7.网络上流行一种“QQ农场游戏”,这种游戏通过虚拟软件模拟种植与收获的过程.为了了解本班学生对此游戏的态度,高三(6)班计划在全班60人中展开调查,根据调查结果,班主任计划采用系统抽样的方法抽取若干名学生进行座谈,为此先对60名学生进行编号为:01,02,03,…60,已知抽取的学生中最小的两个编号为03,09,则抽取的学生中最大的编号为________.【答案】57【解析】由最小的两个编号为03,09可知,抽取人数的比例为,即抽取10名同学,其编号构成首项为3,公差为6的等差数列,故最大编号为3+9×6=57.8.(本小题满分12分)海关对同时从三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如右表所示,工作人员用分层抽样的方法从这些商品中共抽取6件进行检测50150100(1)求这6件样品中来自各地区商品的数量;(2)若在这6件样品中随机抽取2件送往甲机构进一步检测,求这2件商品来自相同地区的概率.【答案】(1) A,B,C三个地区的商品被选取的件数分别为1,3,2.(2)这2件商品来自相同地区的概率为.【解析】(1)首先确定样本容量与总体中的个数的比是,从而得到样本中包含三个地区的个体数量分别是:,,.(2)设6件来自A,B,C三个地区的样品分别为,写出抽取的这2件商品构成的所有基本事件:,,,,共15个.记事件D:“抽取的这2件商品来自相同地区”,写出事件D包含的基本事件:共4个.由每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的,利用古典概型概率的计算公式得解.试题解析:(1)因为样本容量与总体中的个数的比是,所以样本中包含三个地区的个体数量分别是:,,,所以A,B,C三个地区的商品被选取的件数分别为1,3,2.(2)设6件来自A,B,C三个地区的样品分别为,则抽取的这2件商品构成的所有基本事件为:,,,,共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的,记事件D:“抽取的这2件商品来自相同地区”,则事件D包含的基本事件有:共4个.所有,即这2件商品来自相同地区的概率为.【考点】分层抽样,古典概型.9.已知某地区中小学生人数和近视情况分别如图1和如图2所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A.,B.,C.,D.,【答案】A【解析】由题意知,样本容量为,其中高中生人数为,高中生的近视人数为,故选A.【考点】本题考查分层抽样与统计图,属于中等题.10.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生.【答案】60.【解析】应从一年级抽取名.【考点】等概型抽样中的分层抽样方法.11.总体由编号为01,02,…,19,20的个体组成,利用下面的随机数表选取7个个体,选取方法是从随机数表第1行的第3列和第4列数字开始由左到右依次选取两个数,则选出的第7个个体的编号为【答案】04【解析】由随机数表可看出所选的数字依次为:16,08,02,14,07,02,01,04,去掉重复数字02,则第7个个体编号为04.故答案为04.【考点】简单随机抽样.12.[2013·唐山质检]将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为()A.26,16,8B.25,17,8C.25,16,9D.24,17,9【答案】B【解析】本题考查系统抽样.依题意及系统抽样可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k(k∈N*)组抽中的号码是3+12(k-1).令3+12(k-1)≤300得k≤,因此第Ⅰ营区被抽中的人数是25;令300<3+12(k-1)≤495得<k≤42,因此第Ⅱ营区被抽中的人数是42-25=17.13.高三(3)班共有学生56人,现根据座号,用系统抽样的方法,抽取一个容量为4的样本.已知3号、31号、45号同学在样本中,那么样本中还有一个同学的座号是()A.15B.16C.17D.18【答案】C【解析】∵用系统抽样的方法,抽取一个容量为4的样本,∴样本对应的组距为56÷4=14,∴3+14=17,故样本中还有一个同学的座号是17,故选:C.14.为了检查某超市货架上的奶粉是否含有三聚氰胺,要从编号依次为01到50的袋装奶粉中抽取5袋进行检验,现将50袋奶粉按编号顺序平均分成5组,用每组选取的号码间隔一样的系统抽样方法确定所选取的袋奶粉的编号,若第4组抽出的号码为36,则第1组中用抽签的方法确定的号码是 .【答案】06【解析】因为按系统抽样方法选取的编号依次构成一个等差数列,且公差为10,所以由得:因此确定的号码是06.【考点】系统抽样15.某地区对两所高中学校进行学生体质状况抽测,甲校有学生800人,乙校有学生500人,现用分层抽样的方法在这1300名学生中抽取一个样本.已知在甲校抽取了48人,则在乙校应抽取学生人数为.【答案】30【解析】根据分层抽样的特点:按比例,可得,解得.【考点】分层抽样16.某校选修篮球课程的学生中,高一学生有名,高二学生有名,现用分层抽样的方法在这名学生中抽取一个样本,已知在高一学生中抽取了人,则在高二学生中应抽取__________人.【答案】【解析】设高二学生抽取人,则,解得.【考点】分层抽样.17.2013年湖北省宜昌市为了创建国家级文明卫生城市,采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为001,002,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷B的人数为()A.20B.19C.10D.9【答案】C【解析】采用系统抽样方法从960人中抽取32人,将整体分成32组,每组30人,即,第k组的号码为,令,而,解得,则满足的整数k有10个.【考点】系统抽样.18.某中学为了解学生数学课程的学习情况,在3 000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图推测,这3 000名学生在该次数学考试中成绩小于60分的学生数是________.【答案】600【解析】,,∴,所以在该次数学考试中成绩小于60分的学生数是600.【考点】1.频率分布直方图;2.分层抽样.19.2014年3月,为了调查教师对第十二届全国人民代表大会二次会议的了解程度,安庆市拟采用分层抽样的方法从三所不同的中学抽取60名教师进行调查.已知学校中分别有180,270,90名教师,则从学校中应抽取的人数为().A.10B.12C.18D.24【答案】A【解析】从学校中应抽取的人数为,选A.【考点】分层抽样.20.为了抽查某城市汽车尾气排放执行标准情况,在该城市的主干道上采取抽取车牌末位数字为5的汽车检查,这种抽样方法称为________.【答案】系统抽样【解析】由于这种抽样方法采用抽取车牌末位数字为5的汽车检查,可以看成是将所有的汽车车牌号分段为若干段(一个车牌末位数字从0到9为一段),每一段抽取一个个体,因此它符合系统抽样的特征,故答案为系统抽样.21.下列抽样中是系统抽样的有__________.(填序号)①从标有1~15的15个球中,任取3个作为样本,按从小号到大号排序,随机选起点i,以后i 0+5,i+10(超过15则从1再数起)号入样;②在用传送带将工厂生产的产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品进行检验;③搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止;④电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈.【答案】①②④【解析】系统抽样实际上是一种等距抽样,只要按照一定的规则(事先确定即可以).因此在本题中,只有③不是系统抽样,因为事先不知道总体,不能保证每个个体按事先规定的概率入样.22.将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003,这600名学生分住在三个营区.从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区.三个营区被抽中的人数依次为________.【答案】25,17,8【解析】根据系统抽样的特点可知抽取的号码间隔为=12,故抽取的号码构成以3为首项,公差为12的等差数列.在第Ⅰ营区001~300号恰好有25组,故抽取25人,在第Ⅱ营区301~495号有195人,共有16组多3人,因为抽取的第一个数是3,所以Ⅱ营区共抽取17人,剩余50-25-17=8人需从Ⅲ营区抽取.23.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本.用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是________.若用分层抽样方法,则40岁以下年龄段应抽取________人.【答案】37,20【解析】由系统抽样知识可知,将总体分成均等的若干部分指的是将总体分段,且分段的间隔相等.在第1段内采用简单随机抽样的方法确定一个起始编号,在此编号的基础上加上分段间隔的整数倍即为抽样编号.由题意,第5组抽出的号码为22,因为2+(5-1)×5=22,则第1组抽出的号码应该为2,第8组抽出的号码应该为2+(8-1)×5=37.由分层抽样知识可知,40岁以下年龄段的职工占50%,按比例应抽取40×50%=20(人).24.某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93①这种抽样方法是一种分层抽样;②这种抽样方法是一种系统抽样;③这五名男生成绩的方差大于这五名女生成绩的方差;④该班男生成绩的平均数小于该班女生成绩的平均数,则以上说法一定正确的是________.【答案】③【解析】若抽样方法是分层抽样,男生、女生分别抽取6人、4人,所以①错;由题目看不出是系统抽样,所以②错;这五名男生成绩的平均数,男=(86+94+88+92+90)=90,这五名女生成绩的平均数=(88+93+93+88+93)=91,故这五名男生成绩的方差为=(42+42女+22+22+02)=8,这五名女生成绩的方差为=(32+22+22+32+22)=6.显然③正确,④错25.某单位有职工160名,其中业务人员120名,管理人员16名,后勤人员24名.为了解职工的某种情况,要从中抽取一个容量为20的样本.若用分层抽样的方法,抽取的业务人员、管理人员、后勤人员的人数应分别为________.【答案】15、2、3【解析】分层抽样应按各层所占的比例从总体中抽取.∵120∶16∶24=15∶2∶3,又共抽出20人,∴各层抽取人数分别为20×=15(人),20×=2(人),20×=3(人).26.某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.【答案】15【解析】由已知,高二人数占总人数的,所以抽取人数为×50=15.27.高三(1)班共有48人,学号依次为1,2,3,…,48,现用系统抽样的方法抽取一个容量为4的样本,已知学号5,29,41在样本中,那么还有一个同学的学号应为________.【答案】17【解析】根据系统抽样是“等距离”抽样的特点解题.将48人分成4组,每组12人,所以用系统抽样抽出的学生学号构成以12为公差的等差数列,所以还有一个学生的学号是17.28.一支田径队有男女运动员98人,其中男运动员有56人.按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是________.【答案】12【解析】设应抽取的女运动员人数是x,则=,易得x=12.29.某学校有男、女学生各500名,为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是().A.抽签法B.随机数法C.系统抽样法D.分层抽样法【答案】D【解析】总体(100名学生)中的个体(男、女学生)有明显差异,应采用分层抽样.30.为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是().A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样【答案】C【解析】不同的学段在视力状况上有所差异,所以应该按照学段分层抽样.31.北京市各级各类中小学每年都要进行“学生体质健康测试”,测试总成绩满分为分,规定测试成绩在之间为体质优秀;在之间为体质良好;在之间为体质合格;在之间为体质不合格.现从某校高三年级的名学生中随机抽取名学生体质健康测试成绩,其茎叶图如下:(Ⅰ)试估计该校高三年级体质为优秀的学生人数;(Ⅱ)根据以上名学生体质健康测试成绩,现采用分层抽样的方法,从体质为优秀和良好的学生中抽取名学生,再从这名学生中选出人.(ⅰ)求在选出的名学生中至少有名体质为优秀的概率;(ⅱ)求选出的名学生中体质为优秀的人数不少于体质为良好的人数的概率.【答案】(Ⅰ)100;(Ⅱ)(ⅰ),(ⅱ)【解析】(Ⅰ)由茎叶图可知抽取的30名学生中体质优秀的有10人,所以优秀率为,用总数乘以优秀率即可得优秀的总人数。

高一数学抽样试题答案及解析

高一数学抽样试题答案及解析

高一数学抽样试题答案及解析1.某商场想通过检查发票及销售记录的2℅来快速估计每月的销售总额,现采用系统抽样,从某本50张的发票存根中随机抽取1张,如15号,然后按顺序往后抽,依次为15,65,115…,则第五个号是.【答案】215【解析】采用系统抽样抽取样本首先是在第一组中随机抽取一张,然后按照组距50抽出所有样本.所以由此可得第五个号是215.【考点】系统抽样.2.总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表1选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )A.08 B.07 C.02 D.01【答案】C【解析】由题意可得:利用随机数表选取个体时,选取的第一个数字为65,但是不在这个范围内舍去,按照这种方法一直选取直到选出所有数字;所以选出来的第5个个体的编号为02.【考点】随机数表.3.我校高中生共有2700人,其中高一年级900人,高二年级1200人,高三年级600人,现采取分层抽样法抽取容量为135的样本,那么高一、高二、高三各年级抽取的人数分别为A.45,75,15B.45,45,45C.30,90,15D.45,60,30【答案】D【解析】高一年级应抽取的人数为人,高二年级应抽取的人数为人,高三年级应抽取的人数为人.【考点】分层抽样的特点.4.为了解某校教师使用多媒体辅助教学的情况,采用简单随机抽样的方法,从该校200名授课教师中抽取20名教师,调查了解他们上学期使用多媒体辅助教学的次数,结果用茎叶图表示(如图所示),据此可估计该校上学期200名教师中,使用多媒体辅助教学的次数在[15,25)内的人数为_________ .【答案】80人【解析】由茎叶图可知:在抽取的20名教师中使用多媒体辅助教学的次数在[15,25)内的频数是8,所以其频率为:,据此我们估计该校的200名授课教师中使用多媒体辅助教学的次数在[15,25)内的概率为0.4,所以该校的200名授课教师中使用多媒体辅助教学的次数在[15,25)内的人数约为:2000.4=80人;故应填入:80人.【考点】茎叶图.5.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为_________人.【答案】15.【解析】抽样比例为,设样本容量为,因此,解得.【考点】分层抽样的特点.6.从五件正品,一件次品中随机取出两件,则取出的两件产品中恰好是一件正品,一件次品的概率是()A .1B .C .D .【答案】C【解析】把五件正品分别记为、、、、,次品记为,从中随机抽取两件共有, ,,,,,,,,,,,,,共15种情况,取出的恰好是一件正品一件次品的情况有,,,,共有5种情况,所以概率为。

高考数学简单随机抽样专项练习(带答案)

高考数学简单随机抽样专项练习(带答案)

2019届高考数学简单随机抽样专项练习(带答案)设一个总体含有N个个体, 如果通过逐个抽取的方法从中抽取一个样本, 且每次抽取时各个个体被抽到的概率相等, 则这样的抽样方法叫做简单随机抽样。

以下是2019届高考数学简单随机抽样专项练习, 请考生及时练习。

一、选择题1.对于简单随机抽样, 下列说法中正确的有()它要求被抽取样本的总体的个数有限, 以便对其中各个个体被抽取的概率进行分析;它是从总体中逐个地进行抽取, 以便在抽取实践中进行操作;它是一种不放回抽样;它是一种等概率抽样, 不仅每次从总体中抽取一个个体时, 各个个体被抽取的概率相等, 而且在整个抽样过程中, 各个个体被抽取的概率也相等, 从而保证了这种方法抽样的公平性.A.B.C.D.[答案] D[解析] 由简单随机抽样定义得D正确.2.下面的抽样方法是简单随机抽样的是()A.在某年的明信片销售活动中, 规定每100万张为一个开奖组, 通过随机抽样的方式确定号码的后四位为2 709的为三等奖B.某车间包装一种产品, 在自动包装的传送带上, 每隔30分钟抽一包产品, 称其重量是否合格C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解学校机构改革的意见D.用抽签法从10件产品中选取3件进行质量检验[答案] D[解析] A.B不是简单随机抽样, 因为抽取的个体间的间隔是固定的, 不具有随意性;C不是简单随机抽样, 因为总体的个体之间差别比较大, 抽取的个体不一定具有代表性;D是简单随机抽样.二、填空题3.某总体共有60个个体, 并且编号为00,01, , 59, 现需从中抽取一个容量为8的样本, 请从随机数表的倒数第5行(下表为随机数表的最后5行)第11.12列的18开始, 依次向下读数, 到最后一行后向右, 直到取足样本为止(大于59及与前面重复的数字跳过), 则抽取样本的号码是________.95 33 95 22 00 18 74 72 00 18 38 79 58 69 32 81 76 80 26 92 82 80 84 25 3990 84 60 79 80 24 36 59 87 38 82 07 53 89 35 56 35 23 79 18 05 98 90 07 3546 40 62 98 80 54 97 20 56 95 15 74 80 08 32 16 46 70 50 80 67 72 16 42 7920 31 89 03 43 38 46 82 68 72 32 14 82 99 70 80 60 47 18 97 63 49 30 21 3071 59 73 05 50 08 22 23 71 77 91 01 93 20 49 82 96 59 26 94 66 39 67 98 60[答案] 18,24,54,38,08,22,23,01[解析] 由随机数表法可得.4.下列抽样方法属于简单随机抽样的有________.①从1000个个体中一次性抽取50个个体作为样本;将1000个个体编号, 并把编号写在形状、大小相同的签上, 然后将号签放在一个足够大的不透明的容器内搅拌均匀,从中逐个抽取50个个体作为样本;从10个乒乓球中抽取3个进行质量检验.首先将乒乓球进行编号0,1,2, , 9, 再将转盘分成10等份, 分别标上整数0,1,2, , 9, 转动转盘, 指针指向的数字是几就取几号个体, 直到抽出3个个体为止.[答案][解析] 简单随机抽样是逐个抽取, 不能是一次性抽取, 所以不属于简单随机抽样;属于简单随机抽样中的抽签法;属于简单随机抽样中的随机数法.故填.三、解答题5.某车间工人加工一种轴共100件, 为了了解这种轴的直径, 要从中抽取10件在同一条件下测量, 如何采用简单随机抽样的方法抽取样本?[分析] 由于本题的调查对象较少, 可采用简单随机抽样方法.简单随机抽样有两种方法:抽签法和随机数法, 所以有两种思路.[解析] 方法一: 抽签法:(1)将100件轴编号为1,2, , 100;(2)做好大小、形状相同的号签, 分别写上这100个号码;(3)将这些号签放在一个不透明的容器内, 搅拌均匀;(4)逐个抽取10个号签;(5)然后测量这10个号签对应的轴的直径.方法二: 随机数法:(1)将100件轴编号为00,01, , 99;(2)在教材表1-2的随机数表中选定一个起始位置, 如从第21行第1个数9开始;(3)规定读数的方向, 如向右读;(4)依次选取10个数为93,12,47,79,57,37,89,18,45,50,则与这10个编号相对应的个体即为所要抽取的样本.6.某次音乐颁奖典礼上, 欲邀请20名内地、港台艺人参加演出, 其中从30名内地艺人中随机挑选10人, 从18名香港艺人中随机挑选6人, 从10名台湾艺人中随机挑选4人, 试用抽签法确定选中的艺人并确定他们的演出顺序.[解析] 第一步: 确定演出人员: 将30名内地艺人从1到30编号, 然后将1到30这30个号码分别写到形状、大小相同的号签上, 然后放在一个不透明的容器中摇匀, 从中逐个抽出10个号签, 相应编号的艺人参加演出, 再运用相同的办法分别从18名香港艺人中抽取6人, 从10 名台湾艺人中抽取4人.第二步: 确定演出顺序: 确定了演出人员后, 再将1到20这20个号码分别写到形状、大小相同的号签上, 用来代表演出的顺序, 然后让每名演出者抽取1个号签, 抽到的号签上的数字就是这名演员的演出顺序.7.为了了解高一(10)班53名同学的牙齿健康状况, 需从中抽取10名做医学检验, 现已对53名同学编号00,01,02, , 50,51,52.从下面所给的随机数表的第1行第3列的5开始从左向右读下去.则选取的号码依次为多少?随机数表如下:0154 3287 6595 4287 53467953 2586 5741 3369 83244597 7386 5244 3578 6241[解析] 从数5, 开始从左向右读下去, 两位两位地读, 在00~52范围内前面没有出现过的记下, 否则跳过, 直到取满10人为止.如下表01 54 32 87 65 95 42 87 53 4679 53 25 86 57 41 33 69 83 2445 97 73 86 52 44 3578 6241选取的号码依次为32,42,46,25,41,33,24,45,52,44.。

寒假专题突破练高二数学专题3抽样方法(含答案解析)

寒假专题突破练高二数学专题3抽样方法(含答案解析)

专题3 抽样方法1.简单随机抽样(1)定义:设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.(2)最常用的简单随机抽样的方法:抽签法和随机数法.2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本.(1)先将总体的N 个个体编号;(2)确定分段间隔k ,对编号进行分段,当N n (n 是样本容量)是整数时,取k =N n; (3)在第1段用简单随机抽样确定第一个个体编号l (l ≤k);(4)按照一定的规则抽取样本,通常是将l 加上间隔k 得到第2个个体编号(l +k),再加k 得到第3个个体编号(l +2k),依次进行下去,直到获取整个样本.3.分层抽样(1)定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法叫做分层抽样.(2)分层抽样的应用范围:当总体是由差异明显的几个部分组成时,往往选用分层抽样.例1 要从某汽车厂生产的30辆汽车中随机抽取3辆进行测试,请选择合适的抽样方法,写出抽样过程.变式1 现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数表法设计抽样方案?例2 为了解参加某种知识竞赛的10 000名学生的成绩,从中抽取一个容量为500的样本,那么采用什么抽样方法比较恰当?简述抽样过程.变式2 某校高中二年级有250名学生,为了了解他们的视力情况,准备按1∶5的比例抽取一个样本,试用系统抽样方法进行抽取,并写出过程.例3 一个单位有职工500人,其中不到35岁的有125人,35岁至49岁的有280人,50岁以上的有95人,为了了解这个单位职工与身体状况有关的某项指标(职工年龄与这项指标有关),要从中抽取100名职工作为样本,应该怎样抽取?变式3 某校有高中学生900人,其中高一年级300人,高二年级400人,高三年级200人,采用分层抽样的方法,从中抽取一个容量为45的样本,问各年级应抽取多少人?A级1.为了解1 000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A.50 B.40 C.25 D.202.为了了解参加一次知识竞赛的1 252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么总体应随机剔除的个体数目是( )A.2 B.4 C.5 D.63.要从1 000个球中抽取100个进行抽样分析,其中红球共有50个,如果用分层抽样的方法对球进行抽样,则应抽取红球( )A.33个B.20个C.5个D.10个4.某地区有300家商店,其中大型商店有30家,中型商店有75家,小型商店有195家,为了掌握各商店的营业情况,要从中抽取一个容量为20的样本,若采用分层抽样的方法,抽取的中型商店数是( )A.2B.3 C.5 D.135.某工厂生产A,B,C三种不同型号的产品,产品数量之比为2∶3∶5,现用分层抽样方法抽出一个容量为n的样本,样本中A型号产品有16件,那么此样本的容量n=________. 6.采用系统抽样从含有8 000个个体的总体(编号为0000,0001,…,7999)中抽取一个容量为50的样本,则最后一段的编号为____________,已知最后一个入样编号是7894,则开头5个入样编号是__________________.7.在120个零件中,一级品24个,二级品36个,三级品60个,用系统抽样方法从中抽取容量为20的样本,则三级品a被抽到的可能性为________.B级8.为规范学校办学,省教育厅督察组对某所高中进行了抽样调查.抽到的班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知7号、33号、46号同学在样本中,那么样本中还有一位同学的编号应为( )A.13 B.19 C.20 D.519.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为( )A.7 B.9 C.10 D.1510.某学校高一、高二、高三三个年级共有学生3 500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按1100的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为( )A.8 B.11 C.16 D.1011.一支田径运动队有男运动员56人,女运动员42人,现用分层抽样的方法抽取若干人,若抽取的男运动员有8人,则抽取的女运动员有________人.12.一个总体中有90个个体,随机编号0,1,2,…,89,依从小到大的编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现用系统抽样方法抽取一个容量为9的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同,若m=8,则在第8组中抽取的号码是________.13.某学校有8 000名学生,需从中抽取100个进行健康检查,采用何种抽样方法较好,并写出过程.14.某校500名学生中,O型血有200人,A型血有125人,B型血有125人,AB型血有50人,为了研究血型与色弱的关系,需从中抽取一个容量为20的样本.怎样抽取样本?详解答案典型例题例1 解利用抽签法,步骤如下:(1)将30辆汽车编号,号码是01,02, (30)(2)将号码分别写在一张纸条上,揉成团,制成号签;(3)将得到的号签放入一个不透明的袋子中,并搅拌均匀;(4)从袋子中依次抽取3个号签,并记录上面的编号;(5)所得号码对应的3辆汽车就是要抽取的对象.变式1 解(1)将元件的编号调整为010,011,012,...,099,100, (600)(2)在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7列数“9”,向右读;(3)从数“9”开始,向右读,每次读取三位,凡不在010~600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263;(4)以上号码对应的6个元件就是要抽取的样本.例2 解适宜选用系统抽样,抽样过程如下:(1)随机地将这10 000名学生编号为1,2,3,…,10 000.(2)将总体按编号顺序均分成500个部分,每部分包括20个个体.(3)在第一部分的个体编号1,2,3,…,20中,利用简单随机抽样抽取一个号码,比如是18.(4)以18为起始号码,每间隔20抽取一个号码,这样得到一个容量为500的样本:18,38,58,…,9 978,9 998.变式2 解抽样过程如下:(1)随机把250名学生编号为1,2,3, (250)(2)将总体按编号顺序均分成50个部分,每部分包括5个个体;(3)在第一部分的个体编号1,2,3,4,5中用简单随机抽样抽取一个号码,比如是4;(4)以4为起始号码,每间隔5抽取一个号码,可得到一个容量为50的样本:4,9,14,19,…,244,249.例3 解 为了使抽出的100名职工更充分地反映单位职工的整体情况,应保证各个年龄段的职工中都有个体入样,且组成样本的结构与总体结构基本相同.所以可按抽取职工人数(样本容量)与职工总数的比进行抽样.由于抽取人数与职工总数的比为100∶500=1∶5,所以在各年龄段抽取的职工人数依次是1255,2805,955,即25,56,19. 在各个年龄段分别抽取时,可采用简单随机抽样的方法,最后将各年龄段抽取的职工合在一起,就是所要抽取的100名职工.变式3 解 由题意知:高一年级所占比例为300900=13,高二年级所占比例为400900=49,高三年级所占比例为200900=29,所以高一年级应抽取13×45=15(人),高二年级应抽取49×45=20(人),高三年级应抽取29×45=10(人). 强化提高1.C [根据系统抽样的特点可知分段间隔为1 00040=25,故选C.] 2.A 3.C 4.C 5.806.7840~7999 0054,0214,0374,0534,06947.16解析 每一个个体被抽到的概率都是样本容量除以总体,即20120=16. 8.C [抽样间隔为46-33=13,故另一位同学的编号为7+13=20,选C.]9.C [由系统抽样的特点知:抽取号码的间隔为96032=30,抽取的号码依次为9,39,69,…,939.落入区间[451,750]的有459,489,…,729,所以做问卷B 的有10人.]10.A [若设高三学生数为x ,则高一学生数为x 2,高二学生数为x 2+300,所以有x +x 2+x 2+300=3 500,解得x =1 600.故高一学生数为800,因此应抽取高一学生数为800100=8.] 11.6解析 设抽取的女运动员有x 人,则x 42=856,解得x =6. 12.76解析 由题意知:m =8,k =8,则m +k =16,也就是第8组抽取的号码个位数字为6,十位数字为8-1=7,故抽取的号码为76.13.解 总体中个体个数达8 000,样本容量也达到100,用简单随机抽样中的抽签法与随机数法都不易进行操作,所以,采用系统抽样方法较好.于是,我们可以用系统抽样法进行抽样.具体步骤是:(1)将总体中的个体编号为1,2,3,…,8 000;(2)把整个总体分成100段,每段长度为k =8 000100=80; (3)在第一段1~80中用简单随机抽样确定起始编号l ,例如抽到l =25;(4)将编号为l ,l +80,l +160,l +240,…,l +80×99(即25,105,185,…,7 945)的个体抽出,得到样本容量为100的样本.14.解 用分层抽样抽取样本.∵20500=250,即抽样比为250. ∴200×250=8,125×250=5,50×250=2. 故O 型血抽8人,A 型血抽5人,B 型血抽5人,AB 型血抽2人.抽样步骤:①确定抽样比250;②按比例分配各层所要抽取的个体数,O型血抽8人,A型血抽5人,B型血抽5人,AB 型血抽2人.③用简单随机抽样法分别在各种血型中抽取样本,直至取出容量为20的样本.感谢您的下载!快乐分享,知识无限!由Ruize收集整理!。

高考数学总复习知识点训练:抽样方法(含答案)

高考数学总复习知识点训练:抽样方法(含答案)

高考数学总复习知识点训练:抽样方法(含答案)第71练抽样方法1.要完成下列两项调查:①从某社区125户高收入家庭、280户中等收入家庭、95户低收入家庭中选出100户调查社会购买力的某项指标;②从某中学的15名艺术特长生中选出3名调查学习负担情况,宜采用的抽样方法依次为( )A.①随机抽样法,②系统抽样法B.①分层抽样法,②随机抽样法C.①系统抽样法,②分层抽样法D.①②都用分层抽样法2.为了检查某超市货架上的饮料是否含有塑化剂,要从编号依次为1到50的塑料瓶装饮料中抽取5瓶进行检验,用每部分选取的号码间隔一样的系统抽样法确定所选取的5瓶饮料的编号可能是( )A.5,10,15,20,25 B.2,4,6,8,10C.1,2,3,4,5 D.7,17,27,37,473.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬菜类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是( )A.4 B.5 C.6 D.74.2015年11月11日的“双十一”又掀购物狂潮,某购物网站对购物情况做了一项调查,收回的有效问卷共500 000份,其中购买下列四种商品的人数统计如下:服饰鞋帽198 000人;家居用品94 000人;化妆品116 000人;家用电器92 000人.为了解消费者对商品的满意度,该网站用分层抽样的方法从中选出部分问卷进行调查,已知在购买“化妆品”这一类中抽取了116份,则在购买“家居用品”这一类中应抽取的问卷份数为( )A.92 B.94C.116 D.1185.某中学有高中生3 500人,初中生1 500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为( )A.100 B.150C.200 D.2506.(2017·海口调研)某校三个年级共有24个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到24,现用系统抽样法,抽取4个班进行调查,若抽到的最小编号为3,则抽取的最大编号为( )A.15 B.18C.21 D.227.从2 015名学生中选取50名学生参加全国数学联赛,若采用下面的方法选取:先用简单随机抽样从2 015人中剔除15人,剩下的2 000人再按系统抽样的方法抽取,则每人入选的概率( )A.不全相等B.均不相等C.都相等,且为502 015D.都相等,且为1408.交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为( )A.101 B.808C.1 212 D.2 015二、填空题9.为了实现素质教育,某校开展“新课改”动员大会,参会的有100名教师,1 500名学生,1 000名家长,为了解大家对推行“新课改”的认可程度,现采用恰当的方法抽样调查,抽取了n个样本,其中教师与家长共抽取了22名,则n=________.10.(2016·潍坊模拟)某校对高三年级1 600名男女学生的视力状况进行调查,现用分层抽样的方法抽取一个容量是200的样本,已知样本中女生比男生少10人,则该校高三年级的女生人数是________.11.利用简单随机抽样的方法,从样本的n(n>13)个数据中抽取13个,依次抽取,若第二次抽取后,余下的每个数据被抽取的概率为136,则在整个抽取过程中,每个数据被抽取的概率为________.12.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本.用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号, (196)200号).若第5组抽出的号码为22,则第8组抽出的号码应是________.若用分层抽样法,则40岁的以下的年龄段应抽取__________人.答案精析1.B [①为了调查社会购买力的某项指标,应按人数比例在高收入家庭、中等收入家庭和低收入家庭中抽取样本,故应采用分层抽样法;②从15名艺术特长生中选出3名应采用随机抽样法.]2.D [利用系统抽样,把编号分为5段,每段10个,每段抽取1个,号码间隔为10.]3.C [由已知得抽样比为2040+10+30+20=15, 所以抽取植物油类与果蔬类食品种数之和为15×(10+20)=6.] 4.B [在购买“化妆品”这一类中抽取了116份,则在购买“家居用品”这一类中应抽取的问卷份数为x ,则116116 000=x 94 000,解得x =94.] 5.A [方法一 由题意可得70n -70=3 5001 500,解得n =100. 方法二 由题意,抽样比为703 500=150,总体容量为3 500+1 500=5 000, 故n =5 000×150=100.] 6.C [由已知得间隔数k =244=6,则抽取的最大编号为3+(4-1)×6=21.] 7.C [从N 个个体中抽取M 个个体,则每个个体被抽到的概率都等于M N .]8.B [1296=12+21+25+43N⇒N =808.] 9.52解析 根据题意可知采用分层抽样的方法最为合适,参会人数为100+1 500+1 000=2 600,设抽取教师x 名,家长y 名,则x +y =22,又x 100=y 1 000=n 2 600, 即x +y 1 100=n 2 600,故n =52. 10.760解析 设样本中女生有x 人,则男生有(x +10)人,所以x +x +10=200,得x =95,设该校高三年级的女生有y 人,则根据分层抽样的定义可知y 1 600=95200,解得y =760. 11.13398解析 由题意知11n -2=136,解得n =398, 所以在整个抽取过程中,每个数据被抽取的概率为13398. 12.37 20解析 方法一 由系统抽样法知,第1组抽出的号码为2,则第8组抽出的号码为2+5×7=37;若用分层抽样法抽取,则40岁以下的年龄段应抽取12×40=20(人). 方法二 由系统抽样法知,第5组抽出的号码为22,而分段间隔为5,则第6组抽取的号码应为27,第7组抽取的号码应为32,第8组抽取的号码应为37.由图知40岁以下的人数为100,抽取的比例为40200=15,所以100×15=20为应抽取的人数.。

江苏省宿迁中学高中数学必修三练习:2-1抽样方法一 含答案 精品

江苏省宿迁中学高中数学必修三练习:2-1抽样方法一 含答案 精品

2.1抽样方法(一)【新知导读】1.某校期中考试后,为了分析该校高一年级1000名学生的学习成绩,从中随机抽取了100名学生的成绩单,就这个问题而言,下面说法正确的是( )A.1000名学生是总体 B.每名学生是个体C.每名学生的成绩是个体 D.样本的容量是100人2.某学校有2005名学生,从中选取20名参加学生代表大会,采用简单随机抽样方法进行抽样,是抽签法还是随机数表法?如何具体实施?【范例点睛】例1 .从100名学生中抽取20名学生进行抽样调查,写出抽取样本的过程.方法点评:当总体个数不多时,适宜采用抽签法.例2 .某个车间工人已加工一种轴100件,为了了解这种轴的直径,要从中抽取10件在同一条件下测量,如何采用简单随机抽样的方法抽取上述样本?方法点评:抽签法和随机数表法是常见的两种简单随机抽样法,具体问题应灵活使用这两种方法.【课外链接】1.有媒体称:中国记者的平均死亡年龄为45岁,这是该媒体由上海市新闻从业人员健康情况抽样调查报告中得出的结论,该调查中统计了5年中上海市10家主流新闻单位中新闻从业人员在职死亡(28人)的平均年龄.你对该媒体的这种说法有何看法?【随堂演练】1.关于简单的随机抽样,有下列说法:(1)它要求被抽样本的总体的个数有限,以便对其中各个个体被抽取的概率进行分析;(2)它是从总体中逐个地进行抽取,以便在抽样实践中进行操作;(3)它是一种不放回抽样;(4)它是一种等概率抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的概率相等,而且在整个抽样过程中,各个个体被抽取的概率也相等,从而保证了这种方法抽样的公平性.其中正确的命题有()A.(1)(2)(3) B.(1)(2)(4)C.(1)(3)(4) D.(1)(2)(3)(4)2.某学校有30个班,每班40个人,每班选派5人参加校运动会,在这个问题中,样本容量是 ( ) A.30 B.40 C.150 D.2003.对总数为N的一批零件,抽取一个容量为30的样本,若每个零件被抽取的概率均为14,则N的值为()A.150 B.200 C.120 D.1004.为了解某班50名同学的会考及格率,从中抽取10名进行考查分析,则在这次考查中,考查的总体内个体总数为__________,样本容量为_________.5.从个体数为N的总体中抽取一个容量为k的样本,采用简单随机抽样,当总体个数不多时,一般用__________进行抽样.6.采用简单随机抽样,从含有6个个体的总体中抽取一个容量为2的样本,每个个体被抽到的可能性为 ____________.7.下列抽取样本的方式是否属于简单随机抽样?试说明道理.(1)从无限多个个体中抽取100个个体作为样本;(2)盒子里共有80个零件,从中选出5个零件进行质量检验.在抽样操作时,从中任意拿出一个零件进行质量检验后,再把它放回盒子里.8.采用简单随机抽样从含有5个个体的总体{}a b c d e中抽取一个容量为3的样本,样本共有多,,,,少个?写出全部样本,每个个体出现多少次?9.某学校高一年级某班共有50名学生,为了了解这些学生的身高情况,试用抽签法从中抽取一个容量为15的样本,写出抽样过程.10.从个体总数N=500的总体中,抽取一个容量为20n 的样本,试用随机数表法进行抽选,要取三位数,写出你抽得的样本,并写出抽选过程.(起点在第几行,第几列,具体方法)2.1抽样方法(一)【新知导读】1.B2.解:因为学生数较大,制作号签比较麻烦,所以决定采用随机数表法.实施步骤:(1)对2005名学生进行编号,0000~2004;(2)在随机数表中随机地确定一个数作为开始,如21行45列的数字9开始的4位:9706;依次向下读数,5595,4904,...,如到最后一行,转到左边的四位数字号码,并向上读,凡不在0000~2004范围内的,则跳过,遇到已读过的数也跳过,最后得到的号码为0011,0570,1449,1072,1338,0076,1281,1886,1349,0864,0842,0161,1839,0895,1326,1454,0911,1642,0598,1855.编号为这些号码的学生组成容量为20的样本.【范例点睛】例1. (1)先将100名学生进行编号,从1编到100;(2)把号码写在形状、大小均相同的签上;(3)将号签放在某个箱子中进行搅拌,然后依次从箱子中取出20个号签,按这20号签上的号码选出样本,即得学生.例2.方法一:(抽签法)将100个轴进行编号1,2,...,100,并做好大小、形状相同的号签,分别写上这100个数,将这些号签放在一起,并进行搅拌,接着连续抽取10个号签,然后测量这10个号签对应的轴.方法二:(随机数表法)将100个轴进行编号00,01,...,99,据课本上的随机数表,如从第13行第一个数开始选取10个数(遇到重复的数跳过):23,42,40,64,74,82,97,77,81,07.【课外链接】解:媒体的这种说法是片面的.因为在职死亡者的平均死亡年龄并不是所有在职者的平均死亡年龄,这里统计的是在职死亡者的情况,并不是所有在职者抽样以后观察他们的死亡年龄得到的数据,两者不能混为一谈.而且还没有对退休记者的死亡年龄进行统计,同时,从上海一地的抽样调查得到的结论,一般情况下并不能推广到全国、全世界.【随堂演练】1.D 2.C 3.C 4.50,10 5.抽签法 6.1 37.解:(1)不是,因为样本容量是无限的,而不是有限的.(2)不是,因为它是放回抽样.8.解:样本共有10个,它们是,,,,,,,,,abc abd abe acd ace ade bcd bce bde cde.每个个体出现6次.9.解:(1)先将50名学生进行编号,从1编到50;(2)把号码写在形状、大小均相同的签上;(3)将号签放在某个箱子中进行搅拌,然后依次从箱子中取出15个号签,按这15个号签上的号码选出样本,即得学生.10.第一步:给总体中的每个个体编上号码:001,002,003, ...500.第二步:从随机数表的第13行第3列的4开始向右连续取数字,以3个数为一组,碰到右边线时向下错一行向左继续取.在取录时,遇到大于500或重复的数时,将它舍弃,再继续向下取.所抽取的样本号码如下:424 064 297 074 140 407 385 075 354 024 352 022 313 500 162 290 263 083 042 340.。

高中数学 第一章 统计 抽样方法(附答案)

高中数学 第一章 统计 抽样方法(附答案)

1.1 抽样方法一.选择题1.在统计中,从总体中抽取的部分个体叫做总体的一个( )A .对象B .个体C .样本D .容量 2. 对于简单随机抽样,每次抽到的概率( )A .相等B .不相等C .有时相等有时不相等D .无法确定3.采用简单随机抽样从含有6个个体的总体中抽取一个容量为3的样本,个体a 的前两次未被抽到,第三次被抽到的概率是( )A .21 B .31 C .61D .51 4.如果采用分层抽样,从一个个体数为N 的总体中抽出一个容量为n 的样本,则个体A被抽到的概率为( )A .N1B .N nC .n 1D .nN 5.在120个零件中,一级品24个,二级品36个,三级品60个,从中抽取容量为20的一个样本,则每个个体被抽到到概率为( )A .1201 B .201 C .601D .61 6.一个年级有12个班级,每个班同学从1~50排学号,为了交流学习经验,要求每班学号为14的同学参加交流活动,这里用的抽样方法为 ( )A .分层抽样B .抽签法C .随机数表法D .系统抽样法二.填空题7.简单随机抽样适用于___________的总体.8.系统抽样也称为_____________抽样.9.从1000名参加竞赛的成绩中,采用系统抽样抽取容量为50的一个样本,则每个个体本抽到的概率是__________.10.某机关有老、中、青人数分别为18,12,6,要抽取一个容量为n的样本,如果采用系统抽样和分层抽样,则不用剔除个体,如果容量增加一个个体,则采用系统抽样时,需要在总体中剔除一个个体,则样本容量n=____________.三.解答题11.采用系统抽样法,从121人中抽取1个容量为12的样本,求每人被抽取的概率12.某市的4个区共有20000名学生,且4个区的学生人数之比为3∶2.8∶2.2∶2,现要用分层抽样的方法从所有学生中抽取一个容量为200的样本,这4个区分别应抽多少人?13.一个工厂有若干个车间,今采用分层抽样的方法从全厂某天的2048件新产品中抽取一个容量为128的样本进行质量检查.若一车间这一天生产256产品,则从该车间抽取的产品数是多少?1.1 抽样方法1.C 2.A 3.C 4.D 5.D 6.D 7.总体个数较小 8.等距 9.20110.6 11.1212112.60,56,44,40 13.16个。

高中数学必修二 9 1 1 简单随机抽样 练习(含答案)

高中数学必修二  9 1 1 简单随机抽样 练习(含答案)

9.1.1 简单随机抽样一、选择题1.关于简单随机抽样,下列说法正确的是( )①它要求被抽取样本的总体的个数有限;②它是从总体中逐个地进行抽取;③不做特殊说明时它是一种不放回抽样;④它是一种等可能性抽样A.①②③④B.③④C.①②③D.①③④【答案】A【解析】根据简单随机抽样的定义和性质知:①它要求被抽取样本的总体的个数有限,正确;②它是从总体中逐个地进行抽取,正确;③不作特殊说明时它是一种不放回抽样,正确;④它是一种等可能性抽样,正确;故选:A2.某班50名学生中有30名男生,20名女生,用简单随机抽样抽取1名学生参加某项活动,则抽到女生的可能性为()A.40% B.50% C.60% D.2 3【答案】A【解析】在简单随机抽样中,由于每个个体被抽到的可能性是相等的,所以抽到一名女生的可能性为20100%40%50⨯=.选A.3.利用随机数表法对一个容量为500编号为000,001,002,…,499的产品进行抽样检验,抽取一个容量为10的样本,若选定从第12行第5列的数开始向右读数(下面摘取了随机数表中的第11 行至第15行),根据下表,读出的第3个数是18 18 07 92 45 44 17 16 58 09 79 83 86 19 62 06 76 50 03 10 55 23 64 05 0526 62 38 97 75 84 16 07 44 99 83 11 46 32 24 20 14 85 88 45 10 93 72 88 7123 42 40 64 74 82 97 77 77 81 07 45 32 14 08 32 98 94 07 72 93 85 79 10 7552 36 28 19 95 50 92 26 11 97 00 56 76 31 38 80 22 02 53 53 86 60 42 04 5337 85 94 35 12 83 39 50 08 30 42 34 07 96 88 54 42 06 87 98 35 85 29 48 39A.841 B.114 C.014 D.146【答案】B【解析】从随机数表中的第12行第5列的数3开始向右读数,每次读三位,读数时要做到不重不漏,不超范围,依次得到的三位数分别为389,449,114,…,因此第三个数为114.选B.4.用简单随机抽样的方法从含有6个个体的总体中,抽取一个容量为2的样本,某一个体a“第一次被抽取”的可能性、“第二次被抽取”的可能性分别是()A.16,16B.13,16C.16,13D.13,13【答案】D【解析】由于简单随机抽样中每个个体每次被抽到的机会均等,所以个体a“第一次被抽取”的可能性与“第二次被抽取”的可能性是相同的,都为2163.故选D.5.(多选题)下列调查中,适宜采用抽样调查的是()A.调查某市中小学生每天的运动时间B.某幼儿园中有位小朋友得了手足口病,对此幼儿园中的小朋友进行检查C.农业科技人员调查今年麦穗的单穗平均质量D.调查新冠病毒疫区感染人员情况【答案】AC【解析】因为B中要对所有小朋友进行检查,所以用普查的方式;D中需要用普查的方式。

高中抽样方法练习题及讲解

高中抽样方法练习题及讲解

高中抽样方法练习题及讲解一、简单随机抽样题目:某高中共有1000名学生,需要从中随机抽取100名学生进行问卷调查。

请设计一个简单随机抽样方案。

解答:1. 为每位学生分配一个唯一的编号,从1到1000。

2. 使用随机数生成器生成100个不重复的随机数,这些数字应在1到1000的范围内。

3. 根据生成的随机数,从学生名单中选择对应的100名学生。

二、分层抽样题目:一所高中有1000名学生,分为三个年级,每个年级的学生人数相等。

现在需要从全校学生中抽取100名学生进行研究,要求每个年级的学生被抽中的概率相等。

解答:1. 将学生分为三个年级层,每个年级层有333名学生。

2. 在每个年级层中进行简单随机抽样,每个年级层抽取33名学生。

3. 将三个年级层中抽取的学生合并,得到100名学生的样本。

三、系统抽样题目:一个班级有50名学生,需要从这个班级中抽取5名学生进行研究。

请设计一个系统抽样方案。

解答:1. 将学生名单编号,从1到50。

2. 确定抽样间隔。

由于需要抽取5名学生,抽样间隔为50/5=10。

3. 从编号1到10中随机选择一个起始点,假设选择5。

4. 从编号5开始,每隔10编号选择一名学生,即5、15、25、35、45。

四、整群抽样题目:某高中有10个班级,需要从全校学生中抽取10名学生进行研究,每个班级抽取1名学生。

解答:1. 将10个班级视为10个群体。

2. 从10个班级中随机选择一个班级作为样本班级。

3. 从选中的班级中选择一名学生作为样本。

五、多阶段抽样题目:某高中有10个班级,每个班级有50名学生。

需要从全校学生中抽取50名学生进行研究。

请设计一个多阶段抽样方案。

解答:1. 第一阶段:从10个班级中随机抽取5个班级。

2. 第二阶段:在每个选中的班级中进行简单随机抽样,抽取10名学生。

3. 将5个班级中抽取的学生合并,得到50名学生的样本。

注意:以上练习题仅为示例,实际应用中应根据具体情况设计抽样方案。

高中数学(人教A版)必修第二册课后习题:简单随机抽样【含答案及解析】

高中数学(人教A版)必修第二册课后习题:简单随机抽样【含答案及解析】

第九章统计9.1随机抽样9.1.1简单随机抽样课后篇巩固提升必备知识基础练1.为抽查汽车排放尾气的合格率,某环保局在一路口随机抽查,这种抽查是()A.放回简单随机抽样B.抽签法C.随机数法D.以上都不对(包括总体个数),因此不属于简单随机抽样.2.高三某班有34位同学,座位号记为01,02,…,34,用下面的随机数表选取5组数作为参加青年志愿者活动的五位同学的座号.选取方法是从随机数表第一行的第6列和第7列数字开始,由左向右依次选取两个数字,则选出来的第4个志愿者的座号为()495443548217379323788735209643842634916457245506887704744767217633502583921206A.23B.09C.16D.02,依次抽取的样本数据为:21,32,09,16,17,所以第4个数据是16.3.总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()78166572080263140702436997280198 32049234493582003623486969387481A.08B.07C.02D.01,选出的5个个体的编号为:08,02,14,07,01,故第5个个体的编号是01.4.某总体容量为M ,其中带有标记的有N 个,现用简单随机抽样的方法从中抽取一个容量为m 的样本,则抽取的m 个个体中带有标记的个数估计为( )A.mN MB.mM NC.MN mD.N总体中带有标记的比例是N M ,则抽取的m 个个体中带有标记的个数估计为mN M .5.“XX 彩票”的中奖号码是从分别标有01,02,…,30的30个小球中逐个不放回地选出7个小球来按规则确定中奖情况,这种从30个号码中选7个号码的抽样方法是 .个小球相当于号签,搅拌均匀后逐个不放回地抽取,这是典型的抽签法.6.用随机数法从100名学生(男生25人)中抽选20人进行评教,某男学生被抽到的可能性是 ,某女学生被抽到的可能性是 ..2 0.220,总体数量为100,所以总体中每个个体被抽到的可能性都为20100=0.2.7.已知数据x 1,x 2,…,x n 的平均数为x =4,则数据3x 1+7,3x 2+7,…,3x n +7的平均数为 .数据x 1,x 2,…,x n 的平均数为x =4,即数据(x 1+x 2+…+x n )=4n ,则数据3x 1+7,3x 2+7,…,3x n +7的平均数3(x 1+x 2+…+x n )+7nn =3×4n+7n n=19. 8.学校举办元旦晚会,需要从每班选10名男生,8名女生参加合唱节目,某班有男生32名,女生28名,试用抽签法确定该班参加合唱节目的同学.,将32名男生从00到31进行编号.第二步,用相同的纸条制成32个号签,在每个号签上写上这些编号.第三步,将写好的号签放在一个不透明的容器内摇匀,不放回地从中逐个抽出10个号签.第四步,相应编号的男生参加合唱.第五步,用相同的办法从28名女生中选出8名,则此8名女生参加合唱.关键能力提升练9.(2021江西南昌二模)从编号依次为01,02,…,20的20人中选取5人,现从随机数表的第一行第3列和第4列数字开始,由左向右依次选取两个数字,则第五个编号为( ) 5308 3395 5502 6215 2702 4369 3218 1826 099478465887 3522 2468 3748 1685 9527 1413 8727 14955656A.09B.02C.15D.183列和第4列数字开始,依次读取:08,33(舍),95(舍),55(舍),02,62(舍),15,27(舍),02(舍),43(舍),69(舍),32(舍),18,18(舍),26(舍),09,则第五个编号为09.故选A.10.用放回简单随机抽样的方法从含有10个个体的总体中抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性与“第二次被抽到”的可能性分别是()A.110,110B.310,15C.1 5,310D.310,310,个体a每次被抽中的概率是相等的,因为总体容量为10,故个体a“第一次被抽到”的可能性与“第二次被抽到”的可能性均为110.故选A.11.从一群游戏的小孩中随机抽出k人,一人分一个苹果,让他们返回继续游戏.过了一会儿,再从中任取m人,发现其中有n个小孩曾分过苹果,估计参加游戏的小孩的人数为()A.knmB.k+m-nC.kmnD.不能估计x人,则kx =nm,解得x=kmn.12.(多选题)下列调查中,适宜采用抽样调查的是()A.调查某市中小学生每天的运动时间B.某幼儿园中有位小朋友得了手足口病,对此幼儿园中的小朋友进行检查C.农业科技人员调查今年麦穗的单穗平均质量D.调查某快餐店中8位店员的生活质量情况B中要对所有小朋友进行检查,所以用普查的方式;D中共8名店员,可采用普查的方式;A,C 中总体容量大,难以做到普查,故采用抽样调查的方式.13.(多选题)下列抽样方法是简单随机抽样的是()A.从50个零件中随机抽取5个做质量检验B.从50个零件中每次抽取一个有放回地共抽取5次做质量检验C.从整数集中随机抽取10个分析奇偶性D.运动员从8个跑道中随机选取一个跑道不是,因为整数集是无限集.14.(多选题)下列抽取样本的方式,不是简单随机抽样的是()A.从无限多个个体中抽取100个个体作为样本B.盒子里共有80个零件,从中逐个不放回地选出5个零件进行质量检验C.从80件玩具中一次性随机抽取3件进行质量检验D.某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛不是简单随机抽样,原因是简单随机抽样中总体的个数是有限的,而题中是无限的;B,C是简单随机抽样;D不是简单随机抽样,原因是指定个子最高的5名同学是56名同学中特指的,不存在随机性,不是等可能抽样.15.假设要抽查某种品牌的900颗种子的发芽率,抽取60粒进行实验.利用随机数法抽取种子时,先将900颗种子按001,002,…,900进行编号,如果从随机数表第8行第7列的数字7开始向右读,请你依次写出最先检测的3颗种子的编号.(下面摘取了随机数表第7行至第9行)84 42 17 53 3157 24 55 06 8877 04 74 47 6721 76 33 50 2583 92 12 06 7663 01 63 78 5916 95 55 67 1998 10 50 71 7512 86 73 58 0744 39 52 38 7933 21 12 34 2978 64 56 07 8252 42 07 44 3815 51 00 13 4299 66 02 79 548行第7列的数字7开始向右读,第一个符合条件的是785,916要舍去,955要舍去,第二个符合条件是567,第三个符合条件是199,故最先检测的3颗种子的编号为785,567,199.16.某工厂抽取50个机械零件检验其直径大小,得到如下数据:估计这个工厂生产的零件的平均直径大约为..84 cm y=12×12+13×34+14×4=12.84(cm).50学科素养创新练17.选择合适的抽样方法抽样,并写出抽样过程.(1)现有一批电子元件600个,从中抽取6个进行质量检测;(2)现有甲厂生产的30个篮球,其中一箱21个,另一箱9个,抽取3个入样.总体中个体数较大,用随机数法.第一步,给元件编号为001,002,003,...,099,100, (600)第二步,用随机数工具产生1~600范围内的整数随机数,把产生的随机数作为抽中的编号,使与编号对应的电子元件进入样本;第三步,依次操作,如果生成的随机数有重复,则剔除并重新产生随机数,直到样本量达到6;第四步,以上这6个号码对应的元件就是要抽取的对象.(2)总体中个体数较小,用抽签法.第一步,将30个篮球,编号为01,02, (30)第二步,将以上30个编号分别写在外观、质地等无差别的小纸条上,制成号签; 第三步,把号签放入一个不透明的盒子中,充分搅拌;第四步,从盒子中不放回地逐个抽取3个号签,并记录上面的号码;第五步,找出和所得号码对应的篮球.。

高中数学必修3(北师版)第一章1.2 抽样方法(与最新教材完全匹配)知识点总结含同步练习题及答案

高中数学必修3(北师版)第一章1.2 抽样方法(与最新教材完全匹配)知识点总结含同步练习题及答案

600 = 10 ,故可确定间隔为 10 . 60 ③从 1 ∼ 10 中利用简单随机抽样方法抽取一个号码,如 004 . ④从 004 开始,每隔 10 个编号确定一个号码,即 004 ,014 ,024 ,034 ,⋯,594 ,这样就 得到一个容量为 60 的样本.
用系统抽样法从 160 名学生中抽取容量为 20 的样本,将 160 名学生从 1 ∼ 160 编号,按编 号顺序平均分成 20 组( 1 ∼ 8 号,9 ∼ 16 号,⋯,153 ∼ 160 号)若第 16 组应抽出的号码 为 126 ,则第一组中用抽签法确定的号码是( ) A.2 B.3 C.6 D.7 解:C 间隔相等,所以 126 − 8 × 15 = 6 .
ቤተ መጻሕፍቲ ባይዱ
3.分层抽样 描述: 将总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层在 总体中所占比例进行简单随机抽样或系统抽样,这种抽样的方法叫做分层抽样.当总体由明显差 别的几部分组成时,为了使抽取样本更好地反映总体的情况,常采用分层抽样. 分层抽样的步骤: ①分层;
n ; N ③确定第 i 层应该抽取的个体数为 ni = Ni ⋅ k(Ni (i = 1, 2, 3, ⋯ , k) 为第 i 层所包含的个体 数),使得各 ni 之和为 n;
抽样方法 简单随机抽样 系统抽样 分层抽样 例题: 一个单位有职工
适用范围 总体个数较少或总体个数较多,样本个数较少 总体个数较多, 个体差异不明显 总体由差异明显的几部分组成
160 人,其中业务人员 96 人,管理人员 40 人,后勤服务人员 24 人,为了了解职工的某种情
况,要从中抽取一个容量为 20 的样本,有下列三种方法: 方法一:将 160 人从 1 ∼ 160 编号,然后用白纸做成 1 ∼ 160 的号签 160 个放入箱内搅拌均匀,然后从中抽取

【精品】高中数学 必修3_随机抽样_知识点讲解+巩固练习(含答案)_基础

【精品】高中数学 必修3_随机抽样_知识点讲解+巩固练习(含答案)_基础

随机抽样【学习目标】1、了解简单随机抽样的概念,掌握实施简单随机抽样的常用方法:抽签法和随机数表法;2、了解系统抽样的意义,并会用系统抽样的方法从总体中抽取样本;3、了解分层抽样的概念与特征,清楚简单随机抽样、系统抽样、分层抽样的区别和联系.【要点梳理】要点一、简单随机抽样简单随机抽样是一种最简单、最基本的抽样方法.抽样中选取个体的方法有两种:放回和不放回.我们在抽样调查中用的是不放回抽取.1、简单随机抽样的概念:一般地,从元素个数为N的总体中不放回地抽取容量为n的样本,如果每一次抽取时总体中的各个个体被抽到的可能性是相同的,那么这种抽样方法叫简单随机抽样,这样抽取的样本,叫做简单随机样本.2、简单随机抽样的特点:(1)被抽取样本的总体个数N是有限的;(2)简单随机样本数n小于等于样本总体的个数N;(3)从总体中逐个进行抽取,使抽样便于在实践中操作;(4)它是不放回抽取,这使其具有广泛应用性;(5)每一次抽样时,每个个体等可能的被抽到,保证了抽样方法的公平性.3、实施抽样的方法:(1)抽签法:抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力又不方便,若标号的纸片或小球搅拌得不均匀还可能导致抽样的不公平.抽签法的一般步骤:①将总体中的N个个体编号;②把这N个号码写在形状、大小相同的号签上;③将号签放在同一箱中,并搅拌均匀;④从箱中每次抽取一个号签,连续抽取n次;⑤将总体中与抽到的号签的编号一致的n个个体取出.(2)随机数表法:要理解好随机数表,即表中每个位置上等可能出现0,1,2,…,9这十个数字的数表.随机数表中各个位置上出现各个数字的等可能性,决定了利用随机数表进行抽样时抽取到总体中各个个体序号的等可能性.随机数表法的步骤:①将总体的个体编号(每个号码的位数一致);②在随机数表中任选一个数字作为开始;③从选定的数开始按一定的方向读下去,若得到的数码在编号中,则取出;若得到的号码不在编号中或前面已经取出,则跳过,如此继续下去,直到取满为止.注意:①选定开始数字,要保证所选数字的随机性;②确定读数方向获取样本号码时,读数方向可向左、向右、向上、向下,样本号码不能重复,否则舍去.要点诠释:1、简单随机抽样是一种最简单、最基本的抽样方法,简单随机抽样有两种选取个体的方法:放回和不放回,我们在抽样调查中用的是不放回抽样,常用的简单随机抽样方法有抽签法和随机数法.2、抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,又不方便,如果标号的签搅拌得不均匀,会导致抽样不公平,随机数表法的优点与抽签法相同,缺点上当总体容量较大时,仍然不是很方便,但是比抽签法公平,因此这两种方法只适合总体容量较少的抽样类型.3、简单随机抽样每个个体入样的可能性都相等,均为Nn ,但是这里一定要将每个个体入样的可能性、第n 次每个个体入样的可能性、特定的个体在第n 次被抽到的可能性这三种情况区分开来,避免在解题中出现错误.要点二、系统抽样1、系统抽样的概念:当总体中的个体比较多时,将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分中抽取一个个体,得到所需要的样本,这样的抽样方法称为系统抽样,也称作等距抽样.2、系统抽样的特征:(1)当总体容量N较大时,采用系统抽样;(2)将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此,系统抽样又称等距抽样;(3)预先制定的规则指的是:在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号.3、系统抽样的一般步骤:(1)采用随机的方法将总体中的N个个体编号;(2)将编号按间隔k分段,当Nn是整数时,取Nkn=,当Nn不是整数时,从总体中剔除一些个体,使剩下的总体中个体的个数'N能被n整除,这时取'Nkn=,并将剩下的总体重新编号;(3)在第一段用简单随机抽样确定起始个体的编号()l l N l k∈≤,;(4)按照一定的规则抽取样本,通常是将编号为2(1)l l k l k l n k+++-L L,,,,的个体取出.要点诠释:1、从系统抽样的步骤可以看出,系统抽样是把一个问题划分成若干部分分块解决,从而把复杂问题简单化,体现了数学转化思想.2、系统抽样与简单随机抽样之间存在着密切联系,即在将总体中的个体均分后的每一段中进行抽样时,采用的是简单随机抽样.要点三、分层抽样1、分层抽样的概念:当总体由有明显差别的几部分组成时,为了使抽取的样本更好地反映总体的情况,可将总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层在总体中所占比例进行简单随机抽样或系统抽样,这种抽样方法叫做分层抽样.2、分层抽样的特点:(1)适用于总体是由有明显差别的几部分组成时的情况;(2)分层抽样对各个个体来说被抽取的可能性相同.3、分层抽样的优点:(1)样本具有较强的代表性;(2)在各层抽样时,可灵活地选用不同的抽样方法.4、分层抽样的步骤:(1)将总体按一定的标准分层;(2)计算各层的个体数与总体的个体数的比;(3)按各层个体数占总体的个体数的比确定各层应抽取的样本容量;(4)在每一层进行抽样(各层可以按简单随机抽样或系统抽样的方法抽取)要点诠释:1、应用分层抽样应遵循以下要求:(1)分层:将相似的个体归入一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则.(2)分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比与这层个体数量与总体容量的比相等.2、分层抽样是当总体有差异明显的几部分组成时采用的抽样方法,进行分层抽样时应注意以下几点:(1)分层抽样中分多少层,如何分层要视具体情况而定,总的原则是,层内样本的差异要小,而层之间的样本差异要大,且互不重叠.(2)为了保证每个个体等可能入样,所有层应采用同一抽样比等可能抽样.(3)在每层抽样时,应采用简单随机抽样或系统抽样的方法进行抽样.3、分层抽样的优点是:使样本具有较强的代表性,并且抽样过程中可综合选用各种抽样方法,因此分层抽样是一种实用、操作性强、应用比较广泛的抽样方法.要点四、三种抽样方法的比较【典型例题】类型一:简单随机抽样例1.下面的抽样方法是简单随机抽样吗?为什么?(1)从无数个个体中抽取50个个体作为样本;(2)仓库中有l万支奥运火炬,从中一次性抽取100支火炬进行质量检查;(3)某连队从200名党员官兵中,挑选出50名最优秀的官兵赶赴四川参加抗震救灾工作;(4)一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地抽出6个号签.【解析】(1)不是简单随机抽样.因为简单随机抽样要求被抽取的样本总体的个数是有限的.(2)不是简单随机抽样.虽然“一次性抽取”和“逐个抽取”不影响个体被抽到的可能性,但简单随机抽样要求的是“逐个抽取”.(3)不是简单随机抽样.因为这50名官兵是从中挑选出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单随机抽样中“等可能抽样”的要求.(4)是简单随机抽样.因为总体中的个体数是有限的,并且是从总体中逐个进行抽取的,是不放回、等可能的抽样.【总结升华】要判断所给的抽样方法是否是简单随机抽样.关键是看它们是否符合简单随机抽样的定义,即简单随机抽样的四个特点:(1)总体的个数有限;(2)逐个抽取;(3)是不放回的抽取;(4)每个个体被抽到的可能性必须是相同的.举一反三:【变式1】下面的抽样方法是简单随机抽样吗?为什么?(1)某班45名同学,指定个子最高的5名同学参加学校组织的某项活动.(2)从20个零件中一次性抽出3个进行质量检验.(3)一小孩从玩具箱中的20件玩具中随意拿出一件来玩.玩后放回再拿下一件,连续玩了5件.【解析】(1)不是简单随机抽样.因为这不是等可能抽样.(2)不是简单随机抽样.因为这是“一次性”抽取,而不是“逐个”抽取.(3)不是简单随机抽样.因为这是有放回抽样.例2.某大学为了支援西部教育事业,现从报名的18名志愿者中选取6人组成志愿小组.请用抽签法设计抽样方案.【解析】方案如下:第一步:将18名志愿者编号,号码是01,02, (18)第二步:将号码分别写在形状、大小相同的纸条上,揉成团,制成号签;第三步:将得到的号签放入一个不透明的袋子中,并充分搅匀;第四步:从袋子中依次抽取6个号签,并记录上面的编号:第五步:所得号码对应的志愿者就是志愿小组的成员.【总结升华】一个抽样试验能否用抽签法,关键看两点:一是制签是否方便;二是号签是否容易被搅匀.一般地,当样本容量和总体容量较小时可用抽签法.举一反三:【变式1】一个学生在一次竞赛中要回答的8道题是这样产生的:从15道物理题中随机抽3道;从20道化学题中随机抽3道;从12道生物题中随机抽2道.使用合适的方法确定这个学生所要回答的三门学科问题的序号(物理题的编号为01~15,化学题的编号为16~35,生物题的编号为36~47).【解析】第一步:将试题的编号01~47分别写在形状、大小相同的纸条上,将纸条揉成团制成号签,并将物理、化学、生物题的号签分别放在三个不透明的袋子中,充分搅匀.第二步:从装有物理题的袋子中逐个抽取3个号签,从装有化学题的袋子中逐个抽取3个号签,从装有生物题的袋子中逐个抽取2个号签,并记录所得号签上的编号.这便是所要回答的三门学科问题的序号.例3.现有120台机器,请用随机数表法抽取10台机器,写出抽样过程.【思路点拨】已知N=120,n=10,用随机数表法抽样时编号000,001,…,119,抽取10个编号(都是三位数),对应的机器组成样本.【解析】使用随机数表法步骤如下:第一步,先将120台机器编号,可以编为000,001,002, (119)第二步,在随机数表中任选一个数作为开始,任选一个方向作为读数方向,例如选出第9行第7列的数3,向右读;第三步,从选定的数3开始向右读,每次读取三位,凡不在000~119中的数跳过去不读,前面已经读过的也跳过去不读.依次可得到074,100,094,052,080,003,105,107,083,092;第四步,以上这10个号码074,100,094,052,080,003,105,107,083,092所对应的10台机器就是要抽取的对象.【总结升华】用随机数表法抽取样本,编号时要注意使号码的位数相同.如本题将个体编号的位数统一为3位,即在位数较少的数前添加“0”,方便读表.举一反三:【变式1】某校有学生1200人,为了调查某种情况,打算抽取一个样本容量为50的样本,问此样本若采用简单随机抽样将如何进行?【解析】首先将该校学生都编上号码:0001,0002,0003,…,1200,如用随机数表法,则先在随机数表中选定一个数,如第5行第9列的数字6,从6开始向右连续读取数字,以4个数为一组,遇到右边线时向下错一行向左继续读取,所得数字如下:6438,5482,4622,3162,4309,9006,1844,3253,2383,0130,3046,1943,6248,3469,0253,7887,3239,737l,2845,3445,9493,4977,2261,8442,…,所抽取的数字如果小于或等于1 200,则对应此号的学生就是被抽取的个体;如果所抽取的数字大于1200,而小于或等于2400,则减去1200,剩余数字即是被抽取的学生号码;如果所抽取的数字大于2400,而小于或等于3600,则减去2400;依此类推.如果遇到相同的号码,则只留取第一次读取的数字,其余的舍去,这样被抽取的学生所对应的号码依次是:0438,0682,1022,0762,0709,0606,0644,0853,1183,0130,0646,0743.0248,1069,0253,0687,0839,0171,0445,1045,1093,0177,1061,0042,…,一直取足50人为止.【变式2】要从10架钢琴中抽取4架进行质量检验,请你设计抽样方案.【解析】解法一:(随机数表法)第一步,将10架钢琴编号,号码是0,1, (9)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第3行第6列的数“2”,向右读.第三步,从数“2”开始,向右读,每次读取1位,重复数字只记录一次,依次可得到2,7,6,5.第四步,以上号码对应的4架钢琴就是要抽取的对象.解法二:(抽签法)第一步,将10架钢琴编号,号码是0,1, (9)第二步,将号码分别写在一张纸条上,揉成团,制成号签第三步,将得到的号签放入一个不透明的袋子中,并充分搅匀.第四步,从袋子中逐个抽取4个号签,并记录上面的编号.第五步,所得号码对应的4架钢琴就是要抽取的对象.【总结升华】(1)将钢琴编号从0开始,10架钢琴用0—9就可表示,这样总体中的所有个体可用一位数表示,便于使用随机数表.(2)用抽签法抽样关键是将号签搅匀.类型二:系统抽样例4.下列抽样中不是系统抽样的是().A.从号码为1~15的15个球中任选3个作为样本,先在1~5号球中用抽签法抽出i0号,再将号码为i0+5,i0+10的球也抽出B.工厂生产的产品,用传送带将产品送入包装车间的过程中,检查人员从传送带上每5 min 抽取一件产品进行检验C.弄某项市场调查,规定在商店门口随机地抽一个人进行询问,直到调查到事先规定的调查人数为止D.某电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈【答案】C【解析】本题的判定依据是系统抽样方法的特征:系统抽样适用于个体数目较多但均衡的总体.判断一种抽样是不是系统抽样,首先看是否在抽样前知道总体是由什么构成的,抽样的方法能否保证每个个体按事先规定的条件等可能入样,再看抽样过程中是否将总体分成了几个均衡的部分,是否在每个部分中进行简单随机抽样.本题C显然不是系统抽样,因为事先不知道总体,抽样方法也不能保证每个个体等可能入样,总体也没有分成均衡的几部分,故C不是系统抽样.【总结升华】系统抽样的特点:①适用于总体容量较大的情况;②剔除多余个体及第一段抽样都用简单随机抽样,因而与简单随机抽样有密切联系;③是等可能抽样,每个个体被抽到的可能性都是n/N.【变式1】下列抽样中,最适宜用系统抽样法的是()A.某市的4个区共有2000名学生,且4个区的学生人数之比为3∶8∶8∶2,从中抽取200名学生做样本B.从某厂生产的2000个电子元件中随机抽取5个做样本C.从某厂生产的2000个电子元件中随机抽取200个做样本D.从某厂生产的20个电子元件中随机抽取5个做样本【答案】 C【解析】A中各区学生有区别,不好分成均衡的几部分,不适宜,B中抽取样本容量太小,不适宜.D中总体个数较少,不适宜.故选C【总结升华】系统抽样适合总体容量较大且个体间差异较小的情况.例5.为了了解某大学一年级新生英语学习的情况,拟从503名大学一年级学生中抽取50名作为样本,如何采用系统抽样方法完成这一抽样?【思路点拨】由题设条件可知总体的个数为503,样本容量为50,不能整除,可采用随机抽样的方法从总体中剔除3个个体,使剩下的个体数500能被样本容量50整除,然后再采用系统抽样方法进行抽样.【解析】第一步,将503名学生用随机方式编号为1,2,3, (503)第二步,用抽签法或随机数表法剔除3个个体,这样剩下500名学生,对剩下的500名学生重新编号为1,2,3, (500)第三步,确定分段间隔k,将总体分为50个部分,每一部分包括10个个体,这时,第l 部分的个体编号为1,2,...,10;第2部分的个体编号为11,12,...,20;依此类推,第50部分的个体编号为491,492, (500)第四步:在第1部分用简单随机抽样的方法确定起始的个体编号,例如5.第五步:依次在第2部分,第3部分,…,第50部分取出号码为15,25,…,495的个体,这样就得到一个容量为50的样本.【总结升华】总体中的每个个体都必须等可能的入样,为了实现“等距”入样且又等概率,应先剔除,再“分段”,后定起始位.采用系统抽样是为了减少工作量,提高其可操作性,减少人为误差.【变式1】为了了解某年级学习情况,计划从该年级504名学生中抽取50名学生作为样本,问如何采用系统抽样的方法完成这一抽样?【解析】第一步:将504名学生随机编号为1,2,3,…,503,504;第二步:用抽签法或者随机数表法,剔除4个个体.这样剩下500名学生,对剩下的500名学生重新编号为1,2,3, (500)第三步:由于样本容量与总体容量的比为50:500=1:10,我们可将总体平均分成50部分,其中每一部分包含10 个个体,这样第一部分的个体编号为1,2,3,...,10;第二部分的个体编号为11,12,13,...,20;依次类推,第50 部分的个体编号为491,492,493, (500)第四步:从1到10号进行简单随机抽样,抽取一个号码,比如是5;第五步,依次在第2部分,第3部分,…,第50部分,取出号码分别为15,25,35,…,495.这样就得到了一个样本容量为50的样本.【变式2】某校高中三年级有学生322名,为了了解学生的某种情况,按1∶8的比例抽取一个样本,请用系统抽样的方法进行抽取,并写出抽样过程.【解析】因为322÷8=40余2,故先剔除2名学生,把剩下的320名学生编号为1,2,3,…,320.把总体分为40个部分,每一个部分都有8个个体,例如第一部分的个体编号为:1,2,3,…,8.然后在第一部分随机抽取一个号码,比如6号,那么从6号开始,每隔8个号码抽取1个,得到号码6,14,22,30,…,310,318,这样就得到一个容量为40的样本.类型三:分层抽样例6.在下列问题中,各采用什么抽样方法抽取样本?(1)从20台彩电中抽取4台进行质量检验;(2)科学会堂有32排座位,每排有40个座位(座号为1~40),一次报告会坐满了听众,会后为听取意见留下了座号为18的所有32名听众进行座谈;(3)光远中学有180名教职工,其中教师136名,管理人员20名,后勤服务人员24名,为征求某项意见,现从中抽取一个容量为15的样本.【答案】(1)简单随机抽样;(2)系统抽样;(3)分层抽样.【解析】(1)所述问题中总体中的个体数和样本容量均较少,故宜用简单随机抽样法;(2)所述问题具有总体中的个体数较多,且每个个体无明显差异的特点,所以适宜用系统抽样法;(3)所述问题的总体中的个体具有明显差异,即出现了3个层次,因此适宜用分层抽样法.【总结升华】总体容量较小宜用抽签法;总体容量较大,而样本容量较小宜用随机数表法;总体容量较大,样本容量也较大的宜用系统抽样法;总体是由差异明显的几个层次组成,宜用分层抽样法.举一反三:【变式1】一个单位有职工160人,其中业务人员96人,管理人员40人,后勤服务人员24人,为了了解职工的收入情况,要从中抽取一个容量为20的样本,如何去抽取?方法一:将160人从1到160编上号,然后将用白纸做成的有1~160号的160个号签放入箱内搅匀,最后从中抽取20个签,与签号相同的20个人被选出.方法二:将160人从1至160编号,按编号顺序分成20组,每组8人,令1~8号为第一组,9~16号为第二组,……,153~160号为第20组.从第一组中用抽签方式抽到一个为k 号(1≤k≤8),其余组是(k+8n)号(n=1,2,3,…,19),以此抽取20人.方法三:按20∶160=1∶8的比例,从业务员中抽取12人,从管理人员中抽取5人,从后勤服务人员中抽取3人,都用简单随机抽样法从各类人员中抽取所需人数,他们合在一起恰好抽到20人.以上的抽样方法,依次是简单随机抽样、分层抽样、系统抽样的顺序是().A.方法一、方法二、方法三B.方法二、方法一、方法三C.方法一、方法三、方法二D.方法三、方法一、方法二【答案】C例7.一个单位有职工500人,其中不到35岁的有125人,35岁至49岁的有280人,50岁及50岁以上的有95人,为了了解这个单位职工与身体状态有关的某项指标,要从中抽取100名职工作为样本,职工年龄与这项指标有关,应该怎样抽取?【思路点拨】总体由不到35岁、35岁至49岁与50岁及50岁以上的个体构成,个体的差异较大,适合用分层抽样法.【解析】用分层抽样来抽取样本,步骤是:(1)分层.按年龄将职工分成三层:不到35岁的职工;35岁至49岁的职工;50岁及50岁以上的职工.(2)确定每层抽取个体的个数.抽样比为10015005,则在不到35岁的职工中抽125×15=25(人);在35岁至49岁的职工中抽280×15=56(人);在50岁及50岁以上的职工中抽95×15=19(人).(3)在各层分别按抽签法或随机数表法抽取样本.(4)综合每层抽样,组成样本.【总结升华】本小题主要考查分层抽样的概念和运算以及抽样过程. 求解总体由差异明显的个体构成的问题时,适合用分层抽样法.分层后,各层的个体数较多时,可采用系统抽样或随机数表法抽取出各层中的个体,一定要注意按比例抽取.举一反三:【高清课堂:随机抽样400439 例1】【变式1】某学院的A,B,C三个专业共有1200名学生,为了调查这些学生勤工俭学的情况,拟采用分层抽样的方法抽取一个容量为120的样本.已知该学院的A专业有380名学生,B专业有420名学生,则在该学院的C专业应抽取____名学生.【答案】40【变式2】某单位200名职工的年龄分布情况如图所示,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是________.若用分层抽样方法,则40岁以下年龄段应抽取________人.【答案】37 20【变式3】某地为了调查职业满意度,决定用分层抽样的方法从公务员、教师、自由职业者三个群体的相关人员中,抽取若干人组成调查小组,有关数据见下表,则调查小组的总人数为.相关人员数抽取人数公务员32 x教师48 y自由职业者64 4【解析】采用分层抽样,抽样比为2:3:4,由题可知x=2,y=3.则调查小组的总人数为2+3+4=9人,即为9人.【巩固练习】1.某校期末考试后,为了解该校高一年级1 000名学生的学习成绩,从中抽取了100名学生的成绩单进行分析,就这个问题来说,下面说法中正确的是()A.1000名学生是总体B.每个学生是个体C.100名学生的成绩是一个个体D.样本容量是1002.抽签法中确保样本代表性的关键是().A.抽签B.搅拌均匀C.逐一抽取D.抽取不放回3.下列抽样方法是简单随机抽样的是().A.从50个零件中一次性抽取5个做质量检验B.从50个零件中有放回地抽取5个做质量检验C.从实数集中逐个抽取10个做奇偶性分析D.运动员从8个跑道中随机选取一个跑道4.从总数为N的一批零件中抽取一个容量为30的样本,若每个零件被抽取的可能性为25%,则N为().A.150 B.200 C.100 D.1205.为了了解1 200名学生对学校某项校改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k为().A.40 B.30 C.20 D.126.从已编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是().A.5,10,15,20,25 B.3,13,23,33,43C.1,2,3,4,5 D.2,4,6,16,327.某林场有树苗30 000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为().A.30 B.25 C.20 D.15。

高中数学(人教A版)必修第二册课后习题:分层随机抽样、获取数据的途径【含答案及解析】

高中数学(人教A版)必修第二册课后习题:分层随机抽样、获取数据的途径【含答案及解析】

第九章统计9.1随机抽样9.1.2分层随机抽样9.1.3获取数据的途径课后篇巩固提升必备知识基础练1.为了了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男、女生视力情况差异不大,在下面抽样方法中,最合理的抽样方法是()A.不放回简单随机抽样B.按性别分层随机抽样C.按学段分层随机抽样D.放回简单随机抽样,而男、女生视力情况差异不大,故选用按学段分层随机抽样的抽样方法.2.2020年某省将实行新高考,考试及录取发生了很大的变化.为了报考理想的大学,小明需要获取近年来我国各大学会计专业录取人数的相关数据,他获取这些数据的最好途径是()A.通过调查获取数据B.通过试验获取数据C.通过观察获取数据D.通过查询获取数据,所以小明获取这些数据的最好途径是通过查询获取数据.3.甲校有3 600名学生,乙校有5 400名学生,丙校有1 800名学生,为统计三校学生某方面的情况,计划采用分层随机抽样的方法抽取一个容量为90的样本,应在这三校分别抽取学生个数为()A.30,30,30B.30,45,15C.20,30,10D.30,50,10,n N =903600+5400+1800=1120,再各层分别抽取,甲校抽取的人数为3 600×1120=30,乙校抽取的人数为5 400×1120=45,丙校抽取的人数为1 800×1120=15,故选B.4.某中学有高中生3 000人,初中生2 000人,男、女生所占的比例如图所示.为了解学生的学习情况,用分层随机抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取女生21人,则从初中生中抽取的男生人数是()A.12B.15C.20D.21,得该中学有高中生3 000人,其中男生人数为3 000×30%=900,女生人数为3000×70%=2 100,初中生2 000人,其中男生人数为2 000×60%=1 200,女生人数为2 000×40%=800,用分层随机抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取女生21人,则n5000=212100,解得n=50,∴从初中生中抽取的男生人数为50×12005000=12.故选A.5.从某地区15 000位老人中按性别分层随机抽取一个容量为500的样本,调查其生活能否自理的情况如下表所示.则该地区生活不能自理的老人中男性比女性多的人数约为()A.60B.100C.1 500D.2 000由分层随机抽样方法知所求人数为23-21500×15 000=60.6.某学校进行数学竞赛,将考生的成绩分成90分及以下、91~120分、121~150分三种情况进行统计,发现三个成绩段的人数之比依次为5∶3∶1.现用分层随机抽样的方法抽取一个容量为m的样本,其中分数在91~120分的人数是45,则此样本的容量m的值为()A.75B.100C.125D.135由已知得35+3+1=45m,得m=135.7.某单位有男、女职工共600人,现用分层随机抽样的方法从所有职工中抽取容量为50的样本,已知从女职工中抽取的人数为15,那么该单位的女职工人数为.n ,则1550=n600,解得n=180,即该单位的女职工人数为180.8.古代科举制度始于隋而成于唐,完备于宋、元.明代则处于其发展的鼎盛阶段,其中表现之一为会试分南卷、北卷、中卷按比例录取,其录取比例为11∶7∶2.若明宣德五年会试录取人数为100.则中卷录取人数为 .,明宣德五年会试录取人数为100,则中卷录取人数为100×211+7+2=10.9.某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参加活动总人数的14,且该组中,青年人占50%,中年人占40%,老年人占10%.为了了解各组不同的年龄层次的职工对本次活动的满意程度,现用分层随机抽样的方法从参加活动的全体职工中抽取一个容量为200的样本.试确定:(1)游泳组中,青年人、中年人、老年人分别所占的比例; (2)游泳组中,青年人、中年人、老年人分别应抽取的人数.设参加活动的总人数为x ,游泳组中,青年人、中年人、老年人所占比例分别为a ,b ,c ,则 a=42.5%x -x4×50%(1-14)x=40%, b=47.5%x -x4×40%(1-14)x =50%, c=10%x -x4×10%(1-14)x =10%, 故游泳组中青年人、中年人、老年人所占的比例分别为40%,50%,10%.(2)因为是分层随机抽样,所以,游泳组中青年人抽取的人数为200×34×40%=60;中年人抽取的人数为200×34×50%=75;老年人抽取的人数为200×34×10%=15.关键能力提升练10.某校做了一次关于“感恩父母”的问卷调查,从8~10岁,11~12岁,13~14岁,15~16岁四个年龄段回收的问卷依次为:120份,180份,240份,x 份.因调查需要,从回收的问卷中按年龄段分层抽取容量为300的样本,其中在11~12岁学生问卷中抽取60份,则在15~16岁学生中抽取的问卷份数为( ) A.60 B.80C.120D.180~12岁回收180份,其中在11~12岁学生问卷中抽取60份,抽样比为13,因为分层抽取的样本容量为300,故回收问卷总数为30013=900(份),故x=900-120-180-240=360(份),360×13=120(份).11.我国古代数学名著《九章算术》中有如下问题“今有北乡算八千七百五十八,西乡算七千二百三十六,南乡算八千三百五十六,凡三乡,发役三百七十八人,欲以算数多少出之,问各几何?”意思是:北乡有8 758人,西乡有7 236人,南乡有8 356人,现要按人数多少从三乡共征集378人,问从各乡征集多少人?在上述问题中,需从西乡征集的人数是( ) A.102 B.112 C.130 D.1368 758人,西乡有7 236人,南乡有8 356人,现要按人数多少从三乡共征集378人,故需从西乡征集的人数是378×7 2368 758+7 236+8 356≈112.12.已知某地区中小学生人数和近视情况分别如图①和图②所示.为了解该地区中小学生的近视形成原因,用分层随机抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )A.200,20B.100,20C.200,10D.100,103 500+2 000+4 500=10 000,则样本容量为10 000×2%=200,其中抽取的高中生近视人数为2 000×2%×50%=20.13.下列调查方案中,抽样方法合适、样本具有代表性的是 ( )A.用一本书第1页的字数估计全书的字数B.为调查某校学生对航天科技知识的了解程度,上学期间,在该校门口,每隔2分钟随机调查一位学生C.在省内选取一所城市中学,一所农村中学,向每个学生发一张卡片,上面印有一些科学家的名字,要求每个学生只能在一个喜欢的科学家名字下面画“√”,以了解全省中学生最喜欢的科学家是谁D.为了调查我国小学生的健康状况,共抽取了100名小学生进行调查中,样本缺少代表性(第1页的字数一般较少);B 中,抽样保证了随机性原则,样本具有代表性;C 中,城市中学与农村中学的规模往往不同,学生喜欢的科学家也未必在所列的名单之中,这些都会影响数据的代表性;D 中,总体数量很大,而样本容量太少,不足以体现总体特征.14.研究下列问题:①某城市元旦前后的气温;②某种新型电器元件使用寿命的测定;③电视台想知道某一个节目的收视率.一般通过试验获取数据的是()A.①②B.③C.②D.②③通过观察获取数据,③通过调查获取数据,只有②通过试验获取数据.15.(多选题)某公司生产三种型号的轿车,产量分别为1 200辆,6 000辆和2 000辆.为检验该公司的产品质量,公司质监部门要抽取46辆进行检验,则()A.应采用分层随机抽样抽取B.应采用抽签法抽取C.三种型号的轿车依次抽取6辆、30辆、10辆D.这三种型号的轿车,每一辆被抽到的概率都是相等的,所以应采用分层随机抽样抽取,A正确;设三种型号的轿车依次抽取x辆,y辆,z辆,则有{x1200=y6000=z2000,x+y+z=46,解得{x=6,y=30,z=10.所以三种型号的轿车依次抽取6辆、30辆、10辆,故C正确;由分层随机抽样的意义可知D也正确.16.(多选题)某工厂生产A,B,C三种不同型号的产品,其相应产品数量之比为2∶5∶3,现用分层随机抽样方法抽出一个容量为n的样本,样本中A型号产品有16件,则()A.此样本的容量n为20B.此样本的容量n为80C.样本中B型号产品有40件D.样本中B型号产品有24件A,B,C三种不同型号的产品,其相应产品数量之比为2∶5∶3,现用分层随机抽样方法抽出一个容量为n的样本,样本中A型号产品有16件,设样本为n,则n=16÷2k2k+5k+3k=80,故A错误,B正确;样本中B型号产品有80×5k2k+5k+3k=40件,故C正确,D错误.故选BC.17.某高中针对学生发展要求,开设了富有地方特色的“泥塑”与“剪纸”两个社团,已知报名参加这两个社团的学生共有800人,按照要求每人只能参加一个社团,各年级参加社团的人数情况如下表:其中x ∶y ∶z=5∶3∶2,且“泥塑”社团的人数占两个社团总人数的35,为了了解学生对两个社团活动的满意程度,从中抽取一个50人的样本进行调查,则从高二年级“剪纸”社团的学生中应抽取 人.“泥塑”社团的人数占总人数的35,故“剪纸”社团的人数占总人数的25,所以“剪纸”社团的人数为800×25=320.因为“剪纸”社团中高二年级人数比例为y x+y+z=32+3+5=310,所以“剪纸”社团中高二年级人数为320×310=96.由题意知,抽样比为50800=116,所以从高二年级“剪纸”社团中抽取的人数为96×116=6.18.某机构对某镇的学生的身体素质状况按年级段进行分层随机抽样调查,得到了如下表所示的数据,则xy z = .,得80016=x15=yz ,即x=750,yz =50,则xyz =37 500.19.为制定本市七、八、九年级男学生校服的生产计划,有关部门准备对180名初中男生的身高做调查,现有三种调查方案:(1)测量少年体校中180名男子篮球、排球队员的身高; (2)网上查阅有关我国其他地市180名男生身高的统计资料;(3)按本市七、八、九年级男学生数目的比例分别从三个年级共抽取180名男生调查其身高. 为了达到估计本市初中这三个年级男生身高分布的目的,则上述调查方案不合理的是 ,合理的是 .(填序号)(3)中,少年体校的男子篮球、排球的运动员的身高一般高于平均水平,因此不能用测量的结果去估计总体的结果,故方案(1)不合理;(2)中,用外地学生的身高也不能准确地反映本地学生身高的实际情况,故方案(2)不合理;(3)中,由于初中三个年级的男生身高是不同的,所以应该用按比例分别抽取的方法从初中三个年级抽取180名男生调查其身高,方案(3)合理. 20.某地气象台记录了本地6月份的日最高气温(如下表所示):气象台获取数据的途径是 ,本地6月份的日最高气温的平均数约为 ℃.(结果保留一位小数)24.3;本地6月份的日最高气温的平均数为y =130×(20×5+22×4+24×6+25×6+26×4+28×2+29×2+30×1)≈24.3(℃).21.一工厂生产了16 800件某种产品,它们分别来自甲、乙、丙3条生产线.为检查这批产品的质量,决定采用分层随机抽样的方法进行抽样.已知从甲、乙、丙3条生产线抽取的产品个数分别是a ,b ,c ,且2b=a+c ,则乙生产线生产了 件产品.3条生产线各生产了T 甲、T 乙、T 丙件产品,则a ∶b ∶c=T 甲∶T 乙∶T 丙,即aT 甲=b T乙=c T丙.又因为2b=a+c ,所以{T 甲+T 丙=2T 乙,T 甲+T 乙+T 丙=16 800,所以T 乙=16 8003=5 600.22.某市四个区共有20 000名学生,且四个区的学生人数之比为3∶2.8∶2.2∶2.现要用分层随机抽样的方法从所有学生中抽取一个容量为200的样本,那么在这四个区中,抽取人数最多的区与抽取人数最少的区的人数差是多少? 抽取人数最多的区的人数为33+2.8+2.2+2×200=310×200=60,抽取人数最少的区的人数为23+2.8+2.2+2×200=210×200=40,则抽取人数最多的区与抽取人数最少的区的人数差为60-40=20.23.某校高中学生有900人,校医务室想对全体高中学生的身高情况做一次调查,为了不影响正常教学活动,准备抽取50名学生作为调查对象.校医务室若从高一年级中抽取50名学生的身高来估计全校高中学生的身高,你认为这样的调查结果会怎样?,校医务室想了解全校高中学生的身高情况,在抽样时应当关注高中各年级学生的身高,并且还要分性别进行抽查.如果只抽取高一的学生,结果是片面的.学科素养创新练24.一个地区共有5个乡镇,共计3万人,其人口比例为3∶2∶5∶2∶3,从这3万人中抽取一个300人的样本,分析某种疾病的发病率.已知这种疾病与不同的地理位置及水土有关,则应采取什么样的抽样方法?并写出具体过程.,所以不同乡镇的发病情况差异明显,因而应采用分层随机抽样的方法.具体过程如下:(1)将3万人分成5层,一个乡镇为一层.(2)按照各乡镇的人口比例随机抽取各乡镇的样本:300×315=60(人),300×215=40(人),300×515=100(人),300×215=40(人),300×315=60(人). 各乡镇分别用分层随机抽样抽取的人数分别为60,40,100,40,60. (3)将抽取的这300人组到一起,即得到一个样本.。

高中数学系统抽样总结有习题有答案解析

高中数学系统抽样总结有习题有答案解析

系统抽样判断题①系统抽样在起始部分抽样时采用简单随机抽样.( )②系统抽样时总体中的每个个体被剔除的机会均等.( )不是整数时,剔除多余的个体会影响抽样的公平性.( )③用系统抽样抽取样本,当Nn④全班54个人,若采用系统抽样的方法从中选取3人,则每个学生被抽到的可能性为1.( )18⑤搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止,是系统抽样.( )系统抽样的应用1.一个年级有12个班,每个班的同学从1至50排学号,为了交流学习经验,要求每班学号为14的同学留下进行交流,这里运用的是( )A.系统抽样B.分层抽样C.抽签法D.随机数表法2.我校三个年级共有24个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到24,现用系统抽样方法,抽取4个班进行调查,若抽到的编号之和为48,则抽到的最小编号为( )A.2B.3C.4D.5思路点拨求出抽样的间隔,设抽到的最小编号为x,根据编号的和为48列方程求解即可.3.为了解1 000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A.50B.40C.25D.20思路点拨根据系统抽样的定义确定分段的间隔.4.采用系统抽样的方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9,若抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷C的人数为.思路点拨先确定分段的间隔,再求出编号分别落在区间[1,450]和[451,750]的人数,最后确定做问卷C 的人数.题组一系统抽样及系统抽样的特点1.某会议室有50排座位,每排有30个座位.一次报告会坐满了听众.会后留下座号为15的所有听众50人进行座谈.这是运用了( )A.抽签法B.随机数表法C.系统抽样D.有放回抽样2.下列抽样中,最适宜用系统抽样的是( )A.从某厂生产的15件产品中随机抽取5件入样B.从某厂生产的1 000件产品中随机抽取10件入样C.从某厂生产的1 000件产品中随机抽取100件入样D.某市的4个区共有2 000名学生,这4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样3.为调查某产品的销售情况,销售部门从下属的92家连锁店中用系统抽样的方法抽取了30家进行调查,那么剔除的个体数为( )A.2B.3C.4D.54.某厂将从64名员工中用系统抽样的方法抽取4名参加2015年职工劳技大赛,将这64名员工编号为1~64,若已知编号为8、24、56的员工在样本中,那么样本中另外一名员工的编号是.题组二系统抽样的应用5.为了解1 200名学生对学校教改实验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k为( )A.40B.30C.20D.126.某客运公司为了了解客车的耗油情况,现采用系统抽样的方法按1∶10的比例抽取一个样本进行检测,将200辆客车依次编号为1,2,…,200,则其中抽取的4辆客车的编号可能是( )A.3,23,63,102B.31,61,87,127C.103,133,153,193D.57,68,98,1087.将参加数学夏令营的100名同学编号为001,002,…,100.现采用系统抽样方法抽取一个容量为25的样本,且第一段中随机抽得的号码为004,则在046至078号中,被抽中的人数为.8.一个总体中的100个个体的号码分别为0,1,2,…,99,依次将其均分为10个小组.要用系统抽样的方法抽取一个容量为10的样本,规定:如果在第1组(号码为0~9)中随机抽取的号码为m,那么依次错位地得到后面各组的号码,即第k 组中抽取的号码的个位数字为m+k-1或m+k-11(如果m+k≥11).若第6组中抽取的号码为52,则m= .9.某单位有在岗职工共624人,为了调查职工用于上班途中的时间,决定抽取68名职工进行调查.如何采用系统抽样的方法完成这一抽样?模拟(时间:30分钟;分值:35分)一、选择题(每小题5分,共25分)1.有20位同学,编号从1至20,现在从中抽取4人的作文卷进行调查,用系统抽样方法确定所抽取的编号为( )A.5,10,15,20B.2,6,10,14C.2,4,6,8D.5,8,11,142.从2 010名学生中选50人组成参观团,先用简单随机抽样方法剔除10人,再将其余2 000人从0到1999编号,按等距系统抽样方法选取,若第一组采用抽签法抽到的号码是30,则最后一组入选的号码是( )A.1 990B.1 991C.1 989D.1 9883.从2 008名学生中选取50名学生参加数学竞赛,若采用下面的方法选取:先用简单随机抽样从2 008人中剔除8人,剩下的2 000人再按系统抽样的方法抽取50人,则在2 008人中,每人入选的概率( )A.不全相等B.均不相等C.都相等,且为251004D.都相等,且为1404.为了解2 000名学生对学校食堂的意见,准备从中抽取一个容量为50的样本.若采用系统抽样,则分段间隔k 为( )A.20B.30C.40D.50 5.高三(1)班有学生52人,现将所有学生随机编号,用系统抽样的方法,抽取一个容量为4的样本,已知5号,31号,44号学生在样本中,则样本中还有一个学生的编号是( )A.8B.13C.15D.18二、填空题(每小题5分,共10分)6.一个总体的60个个体的编号为0,1,2,3,…,59,现采用系统抽样的方法从中抽取一个容量为10的样本,请根据编号被6除余数为3的方法抽取样本,则抽取的样本中最大的一个号码为.7.某校为了了解参加某次知识竞赛的1 252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么从总体中应随机剔除的个体数目为.知识清单①很大 ②一个个体 ③等距抽样①√ ②√ ③× ④√ ⑤×1.A 把每个班级学生从1到50号编排,要求每班编号为14的同学留下进行交流,这样选出的样本是采用系统抽样的方法,故选A.2.B 抽样的间隔为244=6.设抽到的最小编号为x,则x+(6+x)+(12+x)+(18+x)=48,所以x=3.故选B.3.C 由系统抽样的定义知,分段间隔为1 00040=25.故答案为C. 4.答案 7解析 根据系统抽样的方法知分段的间隔为30,所以编号落入区间[1,450]的有15人, 编号落入区间[451,750]的有10人,所以做问卷C 的人数为32-15-10=7.基础过关1.C2.C C 总体容量大,个体无明显差异,样本容量较大,适宜用系统抽样,故选C.3.A 由92=3×30+2可知,应剔除2个个体,故选A.4.答案 40解析 由系统抽样的知识知,将64名员工对应的编号分成4组,每组16个号码,由题意8、24、56在样本中,知8、24、56分别是从第1,2,4组中抽取的,则第3组中抽取的号码是8+2×16=40.5.A ∵1 20030=40,∴分段的间隔k 为40.故选A.6.C 由于抽样比为110,所以共抽取110×200=20(辆).将200辆客车对应的编号分成20段,每段10个,从第一段(编号为1~10)中抽取一个号码l,则所抽取的号码为l,10+l,20+l,…,190+l,故所有抽取的号码的个位数字相同.故选C.7.答案 8解析 分段间隔为4,第一个号码为004,故001~100中是4的整数倍的号码被抽出,在046至078号中有048,052,056,060,064,068,072,076,共8个.8.答案 7解析 当k=6时,m+6-1=2或m+6-11=2(m+6≥11),解得m=-3(舍)或m=7(m+6≥11),故m=7.9.解析 抽样过程如下:S1 将624名职工用随机方式编号;S2 剔除12人(剔除方法可用随机数表法),将剩下的612名职工重新编号(分别为000,001,002,…,611),并均分成68段;S3 在第一段000,001,002,…,008这九个编号中用简单随机抽样抽出一个(如003)作为起始号码; S4 将编号为003,012,021,…,606的个体抽出,组成样本.模拟一、选择题1.A 根据题意知抽取间隔为20÷4=5,只有A 满足条件,故选A.2.A 抽样间隔为2 000÷50=40,若第一组采用抽签法抽到的号码是30,则最后一组入选的号码是30+49×40=1 990,故选A.3.C ∵在系统抽样中,若所给的总体的个体数不能被样本容量整除,则要先剔除几个个体,然后再分组,在剔除过程中,每个个体被剔除的概率相等,∴每个个体被抽到的概率为502 008=251 004,故选C.4.C 2 00050=40,故分段间隔k 为40.5.D 44-31=13,5+13=18.二、填空题6.答案 57解析 由题意知,抽取的第一个号码为3,抽样间隔为6,∴抽取的10个号码依次为:3,9,15,21,27,33,39,45,51,57,∴抽取的样本中最大的一个号码为57.7.答案 2解析 因为1 252=50×25+2,所以应随机剔除2个个体.。

高中数学统计抽样方法精选题目(附答案)

高中数学统计抽样方法精选题目(附答案)

高中数学统计抽样方法精选题目(附答案)一、抽样方法1.简单随机抽样(1)特征:①一个一个不放回的抽取;②每个个体被抽到可能性相等.(2)常用方法:①抽签法;②随机数表法.2.系统抽样(1)适用环境:当总体中个数较多时,可用系统抽样.(2)操作步骤:将总体平均分成几个部分,再按照一定方法从每个部分抽取一个个体作为样本.3.分层抽样(1)适用范围:当总体由差异明显的几个部分组成时可用分层抽样.(2)操作步骤:将总体中的个体按不同特点分成层次比较分明的几部分,然后按各部分在总体中所占的比实施抽样.1.(1)采用系统抽样方法从960人中抽取32人做问卷调查.为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为()A.7B.9C.10 D.15(2)某地区有小学150所,中学75所,大学25所.现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取________所学校,中学中抽取________所学校.[解析](1)从960人中用系统抽样方法抽取32人,则每30人抽取一人,因为第一组抽到的号码为9,则第二组抽到的号码为39,第n组抽到的号码为a n=9+30(n-1)=30n-21,由451≤30n-21≤750,得23615≤n≤25710,所以n=16,17,…,25,共有25-16+1=10人.(2)小学中抽取30×150150+75+25=18所学校;从中学中抽取30×75150+75+25=9所学校.[答案](1)C(2)189注:1.系统抽样的特点(1)适用于元素个数很多且均衡的总体. (2)各个个体被抽到的机会均等.(3)总体分组后,在起始部分抽样时采用的是简单随机抽样. (4)如果总体容量N 能被样本容量n 整除,则抽样间隔为k =Nn . 2.与分层抽样有关问题的常见类型及解题策略(1)确定抽样比.可依据各层总数与样本数之比,确定抽样比.(2)求某一层的样本数或总体个数.可依据题意求出抽样比,再由某层总体个数(或样本数)确定该层的样本(或总体)数.(3)求各层的样本数.可依据题意,求出各层的抽样比,再求出各层样本数. 2.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( )A .抽签法B .系统抽样法C .分层抽样法D .随机数法解析:选C 根据年级不同产生差异及按人数比例抽取易知应为分层抽样法. 3.某学校高一、高二、高三3个年级共有430名学生,其中高一年级学生160名,高二年级学生180名,为了解学生身体状况,现采用分层抽样方法进行调查,在抽取的样本中高二学生有32人,则该样本中高三学生人数为________.解析:高三年级学生人数为430-160-180=90,设高三年级抽取x 人,由分层抽样可得32180=x90,解得x =16. 答案:164.某单位有职工960人,其中青年职工420人,中年职工300人,老年职工240人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为14人,则样本容量为________.解析:因为分层抽样的抽样比应相等,所以420960=14样本容量,样本容量=960×14420=32.答案:32二、用样本的频率分布估计总体的频率分布1.频率分布直方图2.茎叶图5.(1)如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5].样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5 ℃的城市个数为11,则样本中平均气温不低于25.5 ℃的城市个数为________.(2)某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].①求图中a的值;②根据频率分布直方图,估计这100名学生语文成绩的平均分;③若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.分数段[50,60)[60,70)[70,80)[80,90)x∶y 1∶12∶13∶44∶5 [为50×0.18=9.答案:9(2)解:①由频率分布直方图可知(0.04+0.03+0.02+2a)×10=1.所以a=0.005.②该100名学生的语文成绩的平均分约为x=0.05×55+0.4×65+0.3×75+0.2×85+0.05×95=73.③由频率分布直方图及已知的语文成绩、数学成绩分布在各分数段的人数比,可得下表:分数段[50,60)[60,70)[70,80)[80,90)x 5403020x∶y 1∶12∶13∶44∶5y 5204025100-(5+20+40+25)=10.注:与频率分布直方图有关问题的常见类型及解题策略(1)已知频率分布直方图中的部分数据,求其他数据,可根据频率分布直方图中的数据求出样本与整体的关系,利用频率和等于1就可求出其他数据.(2)已知频率分布直方图,求某种范围内的数据,可利用图形及某范围结合求解.6.如图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为()A.0.2 B.0.4C.0.5 D.0.6解析:选B由茎叶图可知数据落在区间[22,30)内的频数为4,所以数据落在区间[22,30)内的频率为410=0.4,故选B.7.为了了解某学校学生的身体发育情况,抽查了该校100名高中男生的体重情况,根据所得数据画出样本的频率分布直方图如图所示.根据此图,估计该校2 000名高中男生中体重大于70.5公斤的人数为()A .300B .360C .420D .450解析:选B 样本中体重大于70.5公斤的频率为: (0.04+0.034+0.016)×2=0.090×2=0.18.故可估计该校2 000名高中男生中体重大于70.5公斤的人数为:2 000×0.18=360(人). 8.某商场在庆元宵节促销活动中,对元宵节9时至14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时至12时的销售额为________万元.解析:总销售额为2.50.1=25(万元),故11时至12时的销售额为0.4×25=10(万元).答案:10三、用样本的数字特征估计总体的数字特征有关数据的数字特征9.(1)对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A .46,45,56B .46,45,53C .47,45,56D .45,47,53(2)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差(3)由正整数组成的一组数据x 1,x 2,x 3,x 4,其平均数和中位数都是2,且标准差等于1,则这组数据为________.(从小到大排列)[解析] (1)从茎叶图中可以看出样本数据的中位数为中间两个数的平均数,即45+472=46,众数为45,极差为68-12=56,故选择A.(2)由题意可知,甲的成绩为4,5,6,7,8,乙的成绩为5,5,5,6,9.所以甲、乙的成绩的平均数均为6,A 错;甲、乙的成绩的中位数分别为6,5,B 错;甲、乙的成绩的方差分别为15×[(4-6)2+(5-6)2+(6-6)2+(7-6)2+(8-6)2]=2,15×[(5-6)2+(5-6)2+(5-6)2+(6-6)2+(9-6)2]=125,C 对;甲、乙的成绩的极差均为4,D 错.故选C.(3)假设这组数据按从小到大的顺序排列为x 1,x 2,x 3,x 4,则⎩⎨⎧x 1+x 2+x 3+x44=2,x 2+x32=2,∴⎩⎪⎨⎪⎧x 1+x 4=4,x 2+x 3=4, 又s = 14[(x 1-2)2+(x 2-2)2+(x 3-2)2+(x 4-2)2] =12(x 1-2)2+(x 2-2)2+(x 3-2)2+(x 4-2)2=122[(x 1-2)2+(x 2-2)2]=1, ∴(x 1-2)2+(x 2-2)2=2. 同理可求得(x 3-2)2+(x 4-2)2=2.由x 1,x 2,x 3,x 4均为正整数,且(x 1,x 2),(x 3,x 4)均为圆(x -2)2+(y -2)2=2上的点,分析知x 1,x 2,x 3,x 4应为1,1,3,3.[答案] (1)A (2)C (3)1,1,3,3 注:平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述其波动大小.10.为比较甲、乙两地某月14时的气温情况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温; ②甲地该月14时的平均气温高于乙地该月14时的平均气温; ③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差; ④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差. 其中根据茎叶图能得到的统计结论的编号为( ) A .①③ B .①④ C .②③D .②④解析:选B 法一:∵x 甲=26+28+29+31+315=29,x 乙=28+29+30+31+325=30,∴x 甲<x 乙,又s 2甲=9+1+0+4+45=185,s 2乙=4+1+0+1+45=2,∴s 甲>s 乙.故可判断结论①④正确.法二:甲地该月14时的气温数据分布在26和31之间,且数据波动较大,而乙地该月14时的气温数据分布在28和32之间,且数据波动较小,可以判断结论①④正确,故选B.11.甲和乙两个城市去年上半年每月的平均气温(单位:℃)用茎叶图记录如图所示,根据茎叶图可知,两城市中平均温度较高的城市是__________,气温波动较大的城市是__________.解析:根据题中所给的茎叶图可知,甲城市上半年的平均温度为9+13+17×2+18+226=16,乙城市上半年的平均温度为12+14+17+20+24+276=19,故两城市中平均温度较高的是乙城市,观察茎叶图可知,甲城市的温度更加集中在峰值附近,故乙城市的温度波动较大.答案:乙 乙12.甲、乙两台机床同时加工直径为100 mm 的零件,为了检验产品的质量,从产品中各随机抽取6件进行测量,测得数据如下(单位:mm):甲:99,100,98,100,100,103; 乙:99,100,102,99,100,100.(1)分别计算上述两组数据的平均数和方差;(2)根据(1)的计算结果,说明哪一台机床加工的这种零件更符合要求. 解:(1)x 甲=99+100+98+100+100+1036=100(mm),x 乙=99+100+102+99+100+1006=100(mm),s 2甲=16[(99-100)2+(100-100)2+(98-100)2+(100-100)2+(100-100)2+(103-100)2]=73(mm 2), s 2乙=16[(99-100)2+(100-100)2+(102-100)2+(99-100)2+(100-100)2+(100-100)2]=1(mm 2).(2)因为s 2甲>s 2乙,说明甲机床加工零件波动比较大,因此乙机床加工零件更符合要求.四、线性回归1.两个变量的线性相关(1)散点图:将样本中n 个数据点(x i ,y i )(i =1,2,…,n )描在平面直角坐标系中得到的图形.(2)正相关与负相关:①正相关:散点图中的点散布在从左下角到右上角的区域. ②负相关:散点图中的点散布在从左上角到右下角的区域. 2.回归直线的方程(1)回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)线性回归方程:方程y ^=b ^x +a ^是两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的线性回归方程,其中a ,b 是待定参数.⎩⎪⎨⎪⎧b ^=∑i =1n(x i-x )(y i-y )∑i =1n(x i-x )2=∑i =1nx i y i-n x y ∑i =1nx 2i-n x 2,a ^=y -b x .13.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:(1)求回归直线方程y =b x +a ,其中b =-20,a =y -b x ;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)[解] (1)由于x =16(8+8.2+8.4+8.6+8.8+9)=8.5,y =16(90+84+83+80+75+68)=80.所以a ^=y -b ^x =80+20×8.5=250,从而回归直线方程为y ^=-20x +250. (2)设工厂获得的利润为L 元,依题意得 L =x (-20x +250)-4(-20x +250) =-20x 2+330x -1 000 =-20(x -8.25)2+361.25.当且仅当x =8.25时,L 取得最大值.故当单价定为8.25元时,工厂可获得最大利润. 注:(1)线性回归分析就是研究两组变量间线性相关关系的一种方法,通过对统计数据的分析,可以预测可能的结果,这就是线性回归方程的基本应用,因此利用最小二乘法求线性回归方程是关键,必须熟练掌握线性回归方程中两个重要估计量的计算.(2)回归直线方程恒过点(x ,y ).14.某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10日的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:回归方程,再用被选取的2组数据进行检验.(1)求选取的2组数据恰好是相邻两个月的概率;(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y 关于x 的线性回归方程y ^=b ^x +a ^;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?解:(1)将6组数据按月份顺序编号为1,2,3,4,5,6,从中任取两组数据,基本事件构成的集合为Ω={(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)}共15个基本事件,设抽到相邻两个月的事件为A ,则A ={(1,2),(2,3),(3,4),(4,5),(5,6)}共5个基本事件,∴P (A )=515=13.(2)由表中数据求得x =11,y =24,∑i =14x i y i =1 092,∑i =14x 2i =498.代入公式可得b ^=187.再由a ^=y -b ^x ,求得a ^=-307,所以y 关于x 的线性回归方程为 y ^=187x -307.(3)当x =10时,y ^=1507,⎪⎪⎪⎪1507-22=47<2; 同样,当x =6时,y ^=787,⎪⎪⎪⎪787-12=67<2. 所以该小组所得线性回归方程是理想的.。

高中数学:必修第二册第九章-统计教学教案:随机抽样(习题含答案)

高中数学:必修第二册第九章-统计教学教案:随机抽样(习题含答案)

高中数学:第二册第九章:随机抽样教案一、基础知识梳理1.抽样的必要性在实际中要全面了解总体的情况,往往难以做到,一般也不可能或没有必要对每个个体逐一进行研究.因为:①一些总体中包含的个体数通常是大量的甚至是无限的.如不可能对所有的灯泡进行试验,记录每一个灯泡的使用寿命;②一些总体具有破坏性.如不可能对所有的炮弹进行试射;③一些调查具有破坏性.如不可能对地里所有的种子是否发芽都挖出来检验;④全面调查(普查)往往要浪费大量的人力、物力和财力.所以常通过从总体中抽取一部分个体,根据对这一部分个体的观察研究结果,再去推断和估计总体情况,即用样本估计总体一一这是统计学的一个基本思想.2.相关概念回顾(1)总体:统计中所考察对象的某一数值指标的全体构成的集合称为总体.(2)个体:构成总体的每一个元素叫做个体.(3)样本:从总体中抽取若干个个体进行考察,这若干个个体所构成的集合叫做总体的一个样本,样本中个体的数目叫做样本容量.3.简单随机抽样(1)概念),如果每一般地,设一个总体含有N个个体,从中逐个___________地抽取n个个体作为样本(n N次抽取时总体内的各个个体被抽到的机会都___________,就把这种抽样方法叫做简单随机抽样.这样抽取的样本,叫做简单随机样本.(2)两种常用的简单随机抽样方法①抽签法(抓阄法):一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.抽签法简单易行,当总体中的个体数___________时,使总体处于“搅拌均匀”的状态比较容易,这时,每个个体有均等的机会被抽中,从而能够保证样本的代表性.②随机数法:随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样.这里仅介绍随机数表法.随机数表由数字0,1,2,…,9组成,并且每个数字在表中各个位置出现的机会都是一样的.随机数表法简单易行,不论总体容量是多少都可以使用,它很好地解决了用抽签法当总体容量较多时制签难的问题.但是当总体容量很大时,需要的样本容量也很大时,利用随机数法抽取样本仍不方便. 注意:为了保证所选数字的随机性,需在查看随机数表前就指出开始数字的横、纵位置.(3)简单随机抽样的特征:①有限性:简单随机抽样要求被抽取的样本的总体个数是有限的,便于通过样本对总体进行分析 ②逐一性:简单随机抽样是从总体中逐个地进行抽取,便于实践中操作.③不放回性:简单随机抽样是一种不放回抽样,便于进行有关的分析和计算.④等可能性:简单单随机抽样中各个个体被抽到的机会都相等,从而保证了抽样方法的公平性.4.系统抽样(1)概念在抽样中当总体个体数___________时,可将总体分成___________的若干部分,然后按照预先制定的规则,从每一部分抽取___________个体,得到所需的样本,这种抽样方法叫做系统抽样.(2)步骤一般地,假设要从容量为N 的总体中抽取容量为n 的样本,可以按下列步骤进行系统抽样:①先将总体的N 个个体编号,有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等. ②确定分段间隔k ,对编号进行分段.当N n (n 是样本容量)是整数时,取N k n=. ③在第1段用简单随机抽样的方法确定第一个个体编号()l l k ≤.④按照一定的规则抽取样本,通常是将l 加上间隔k 得到第2个个体编号()l k +,再加k 得到第3个个体编号(2)l k +,依次进行下去,直到获取整个样本.注意:若N n不是整数,可以先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量整除.另外,系统抽样适用于总体容量较大,且个体之间无明显差异的情况.5.分层抽样一般地,在抽样时,将总体分成___________,然后按照___________,从各层独立地抽取一定数量的个体,将___________取出的个体合在一起作为样本,这种抽样方法叫做分层抽样.分层抽样适用于已知总体是由差异明显的几部分组成的.6.三种抽样方法的区别和联系三种抽样方法的特点及其适用范围如下表:习题参考答案:3.(1)不放回相等(2)①不多4.(1)较多均衡一个5.互不交叉的层一定的比例各层二、重点知识梳理一、简单随机抽样要判断所给的抽样方法是否是简单随机抽样,关键是看它们是否符合简单随机抽样的定义,即简单随机抽样的四个特点:有限性、逐一性、不放回性、等可能性.(1)总体是数值指标的全体,例如,要考察某班男生的身高,则总体为该班全部男生的身高数据,而不是该班的男生.(2)个体是总体的一个元素,因此构成总体的每一个数值指标都为个体.(3)样本是总体的一部分,因此样本中所含个体的数量不能超过总体的数量,样本中个体的来源为总体中的个体.1.抽签法(1)对于抽签法,注意:①号签的大小、形状要完全相同.②抽签前需将号签搅拌均匀.(2)抽签法的优点:抽签法简单易行,当总体中的个体数不多时,使总体处于“搅拌均匀”的状态比较容易,这时,每个个体有均等的机会被抽到,从而能够保证样本的代表性(3)抽签法的缺点:①当总体中的个体数较多时,制作号签的成本就会增加,使得抽签的成本增加;②)号签很多时,把它们搅拌均匀就比较困难,很难保证每个个体人选样本的等可能性,从而产生坏样本(即代表性差的样本)的可能性增加.2.随机数表法(1)对于随机数表法,注意:①抽样过程中选定的初始数和读数的方向是任意的.②若用题中所给的编号,但编号位数不统一时,可在位数少的数前添加“0”来调整.③读数时应结合编号特点进行读取,如:编号为两位,则两位、两位地读取;编号为三位,则三位、三位地读取.(2)随机数表的形成随机数表由数字0,1,2,…,9组成,并且每个数字在表中各个位置出现的机会都是一样的(随机数表不是唯一的,只要符合各个位置出现各个数字的可能性相同的要求,就可以构成随机数表.常用的方法是通过随机数生成器,例如使用计算器或计算机的应用程序生成随机数的功能,可以生成一张随机数表,通常根据实际需要和方便使用的原则,将几个数组合在一起,如5个数一组,然后通过随机数表抽取样本)(3)随机数表法的步骤①编号.将N个个体编号,这里所谓的编号,实际上是编数字号码.例如:将100个个体编号成00,01,02,...,99,而不是编号成0,1,2, (99)此外,将起始号码选为00,而不是01,这样可使100个个体都可用两位数字号码表表示,便于运用随机数表取数.②选定初始值(数).为了保证所选数字的随机性,在查看随机数表前就指出开始数字的横、纵位置.③选号.从选定的数字开始按照一定的方向读下去,得到的号码若不在编号中或已被选用,则跳过,直到选满n个为止.④确定样本.按步骤③选出的号码从总体中找出与其对应的个体,组成样本.(4)随机数表法的优缺点优点:简单易行,不论总体容量是多少都可以使用,它很好地解决了用抽签法当总体容量较大时制签难的问题.缺点:当总体容量很大,需要的样本容量也很大时,利用随机数表法抽取样本仍不方便.【例1】某单位举办一场活动,共有50名志愿者参与了报名,现要从中随机抽出6人参加一项活动,请用抽签法进行抽样,并写出过程.【答案】答案详见解析.【解析】抽样过程:第一步,将50名志愿者编号,号码为1,2,3, (50)第二步,将号码分别写在号签上;第三步,将所有号签放入一个不透明的箱子中,充分搅匀;第四步,依次不放回地抽取6次,并记录其编号,对应编号的志愿者参加活动。

人教版高中数学精讲精练必修二9.1 随机抽样(精讲)(解析版)

人教版高中数学精讲精练必修二9.1 随机抽样(精讲)(解析版)

4 行到第 6 行,若从表中第 5 行第 6 列开始向右读取数据,则得到的第 6 个样本编号是( )
3221183429 7864540732 5242064438 1223435677 3578905642
8442125331 3457860736 2530073286 2345788907 2368960804
n
9 1
D.从某厂生产的 3000 件产品中抽取 10 件进行质量检验
【答案】B
【解析】对于选项 A、D:由于总体的个体数较多,不适合抽签法,故选项 A、D 错误;
对于选项 C:由于甲、乙两厂生产的产品质量可能差别较大,也不适合抽签法,故选项 C 错误;
对于选项 B:总体容量和样本容量都较小,适合抽签法,故选项 B 正确.
A.中央电视台《开学第一课》 的收视率 B.某城市居民 6 月份人均网上购物的次数
C.即将发射的气象卫星的零部件质量
D.某品牌新能源汽车的最大续航里程
【答案】C
【解析】普查的适用条件是:总体数量较小,调查的工作量较小时适用,
而抽查的适用条件是:总体数量较大,调查的工作量较大时适用,
故 ABD 选项的总体数量和工作量都较大,适用抽查;C 选项总体数量较少,工作量较少适用普查.
们的视力情况.在此过程中,这 40 名同学的视力情况是( )
A.总体
B.个体
C.样本容量
D.样本
【答案】D
【解析】从 4 个班级中每个班级抽取了 10 名同学,记录了他们的视力情况,这 40 名同学的视力情况是样
本.故选:D
3.(2023·高一课时练习)小明想要比较去学校是骑自行车快还是乘地铁快,因此他记录了 30 次骑自行车所
【一隅三反】
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2抽样方法1.简单随机抽样:设一个总体的个体数为N.如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时每个个体被抽到的概率相等,就称这样的抽样方法为简单随机抽样.实现简单随机抽样,常用①和②.2.分层抽样:将总体按其属性特征分成若干类型,然后在每个类型中按照所占的比例随机抽取一定的样本,这种抽样方法通常叫作③,其中分成的若干类型叫作④.3.当总体中的个体数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样方法叫作⑤(也称为机械抽样或等距抽样).一、三种抽样方法的各自特点、适用范围、相互联系及共同点1.(2014湖南,2,5分,★☆☆)对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则( )A.p1=p2<p3B.p2=p3<p1C.p1=p3<p2D.p1=p2=p3思路点拨三种抽样方法都是科学抽样,每个个体被抽中的概率都相等.2.(2013课标全国Ⅰ,3,5分,★☆☆)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( )A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样思路点拨本题主要考查分层抽样方法的概念,有差异可以考虑利用分层抽样.3.(2013湖南,2,5分,★★☆)某学校有男、女学生各500名.为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是( )A.抽签法B.随机数法C.系统抽样法D.分层抽样法思路点拨为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,适于选用分层抽样方法.4.(2013江西,4,5分,★★☆)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )7816 6572 0802 6314 0702 4369 9728 01983204 9234 4935 8200 3623 4869 6938 7481A.08B.07C.02D.01思路点拨本题考查随机数表,要结合所给的数表,按所给的规则选取数字.二、三种抽样方法在应用中应注意的问题5.(2012浙江,11,4分,★☆☆)某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为.思路点拨分层抽样利用总体中不同类型所占的比例确定样本中不同类型的样本容量.6.(2012天津,9,5分,★☆☆)某地区有小学150所,中学75所,大学25所.现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取所学校,中学中抽取所学校.思路点拨本题考查分层抽样,样本容量是30,共有学校150+75+25=250所,按照分层抽样的比例即可求解.7.(2012湖北,11,5分,★☆☆)一支田径运动队有男运动员56人,女运动员42人.现用分层抽样的方法抽取若干人,若抽取的男运动员有8人,则抽取的女运动员有人.思路点拨本题考查分层抽样的应用.充分展示数学知识在生活中的应用.分层抽样时,各部分抽取的比例应该是一样的,即抽样比,利用抽样比求解即可.8.(2011天津,9,5分,★☆☆)一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为.思路点拨考查分层抽样中抽取人数的基本运算.9.(2014天津,9,5分,★★☆)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取名学生.思路点拨抽取的学生在各层都是成比例的.10.(2013陕西渭南月考,★★☆)某公司生产三种型号的轿车,产量分别为1 200辆、6 000辆和2 000辆,为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取辆、辆、辆.思路点拨本题的考点是分层抽样,样本的结构和总体的结构保持一致,按照比例在各层抽取.基础巩固训练1.下列关于简单随机抽样的叙述不正确的是( )A.一定要逐个抽取B.它是一种最简单、最基本的抽样方法C.总体中的个数必须是有限的D.先被抽取的个体被抽到的可能性要大2.下面的抽样方法是简单随机抽样的个数为( )①某班45名同学,学校指定个子最高的5名同学参加学校的一项活动;②从连续生产的20个产品中一次性抽取3个进行质检;③一儿童从玩具箱中的20件玩具中随意拿出一件玩,玩儿完放回再拿一件,连续玩了5次.A.1B.2C.3D.03.在10 000个有机会中奖的号码(编号为0 000~9 999)中,有关部门按照随机抽样的方式确定后两位数字是68的号码为中奖号码,这是运用哪种抽样方法来确定中奖号码的( )A.抽签法B.系统抽样C.随机数法D.其他抽样方法4.从N个编号中抽取n个号码作样本,考虑用系统抽样方法,抽样距为( )A.Nn B.n C.[Nn] D.[Nn]+15.某高中有学生900人,其中高一年级240人,高二年级260人,为做某项调查,拟采用分层抽样法抽取容量为45的样本,则在高三年级中抽取的人数是.6.某电视台为调查某地方的收视率,分别在400名大学生,300名高中生以及200名初中生中做问卷调查,如果要在所有答卷中抽出90份,那么如何抽取才能得到比较客观的答案?能力提升训练7.为了保证分层抽样时,每个个体等可能地被抽取,必须( )A.不同层以不同的抽样比抽样B.每层等可能地抽样C.每层等可能地抽取一样多的个体,即若有k层,每层抽样x0个,n=xkD.每层等可能地抽取不一样多的个体,样本容量为ni =n N iN(i=1,…,k),即按比例分配样本容量,其中:N是总体的个体数,Ni是第i层的个体数8.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段.如果抽到的号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270.关于上述样本的下列结论中,正确的是( )A.②、③都不能为系统抽样B.②、④都不能为分层抽样C.①、④都可能为系统抽样D.①、③都可能为分层抽样9.一个工厂有若干条流水线,现采用分层抽样方法从全厂某天的2 048件产品中抽取一个容量为128的样本进行质量检验.若某一条流水线上这一天生产256件产品,则从该条流水线上抽取的产品件数为.10.某学校共有在校学生624人,为了调查学生上学时从家到学校的平均距离,决定抽取10%的学生调查这一情况,如何采用系统抽样方法完成这一抽样?11.某电视台在网络上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12 000人,其中持各种态度的人数如下表所示:很喜爱喜爱一般不喜爱2 435 4 5373 956 1 072该电视台为进一步了解观众的具体想法和意见,打算从中抽选出60人进行更为详细的问卷调查,请你帮助设计合理的抽样方法.知识清单①抽签法 ②随机数法 ③分层抽样 ④层 ⑤系统抽样链接高考1.D 因为采取简单随机抽样、系统抽样和分层抽样抽取样本时,总体中每个个体被抽中的概率相等,故选D.2.C 因为男女视力情况差异不大,而不同学段的视力情况有较大差异,所以应按学段分层抽样,故选C.3.D 从全体学生中抽取100名学生应用分层抽样法,按男、女学生所占的比例抽取.故选D.4.D 由题意知依次选取的编号为08,02,14,07,01,…(第2个02需剔除),所以选出来的第5个个体的编号为01,选D.5.答案 160解析 样本中男生人数为280×560560+420=160. 6.答案 18;9 解析 共有学校150+75+25=250所,抽取30所,所以从小学抽取30250×150=18所,从中学抽取30250×75=9所.7.答案 6解析 设抽取的女运动员的人数为a,则根据分层抽样的特性,有a 42=856,解得a=6.故抽取的女运动员为6人.8.答案 12解析 设抽取男运动员的人数为n,则n 48=2148+36,解得n=12.9.答案 60解析 420×300=60(名).10.答案 6;30;10解析 设三种轿车分别抽取x 辆,y 辆,z 辆,则x 46=1 2009 200,y 46=6 0009 200,z 46=2 0009 200,解得x=6,y=30,z=10.基础过关基础巩固训练1.D 由简单随机抽样的特点可以判断A 、B 、C 都正确,并且在抽样过程中,每个个体被抽到的可能性都相等,不分先后.2.D ①不是,因为它不是等可能抽取;②不是,因为它是“一次性”抽取;③不是,因为它是有放回的.3.B 隔相同“距离”抽取,显然是系统抽样.4.C 系统抽样的间隔为N n 的整数部分.5.答案 20解析 高三年级学生共有900-240-260=400人,则在高三年级抽取的人数是45900×400=20. 6.解析 由于大学生、高中生、初中生看电视的情况差异较大,可以采用分层抽样的方式进行抽样.因为样本容量与总体中个体数的比是90∶(400+300+200)=1∶10,所以分别在大学生、高中生、初中生中抽取的个体数是40、30、20,然后可以采用简单随机抽样的方式,分别在大学生的400份答卷中抽取40份,高中生的300份答卷中抽取30份,初中生的200份答卷中抽取20份,就完成了整个过程,也就得到了比较客观的答案.能力提升训练7.B 分层抽样,每个个体等可能地被抽取,每层等可能抽样.8.D 由分层抽样知一年级抽4人,二、三年级各抽3人,由系统抽样知,抽样距为27,然后选编号.9.答案 16解析 设从该条流水线上抽取的产品件数为x,按比例计算为2 048128=256x ⇒x=16.10.解析 第一步,将在校学生624人用随机方式编号(如按出生年月日顺序)000,001,002,…,623.第二步,由题知,应抽取62人的样本,因为62462不是整数,所以应从总体中剔除4人(剔除方法用随机数法).将余下的620人,按编号顺序补齐000,001,002,…,619,并分成62段,每段10人,即抽样距为10.第三步,在第一段000,001,002,…,009这十个编号中,随机定一个起始号a,则编号a,a+10,a+20,…,a+61×10为所抽取的样本.11.解析 因为总体容量较大,所以不宜采用简单随机抽样法.又由于持不同态度的人数差异较大,故也不宜采用系统抽样法,所以采用分层抽样法较好.6012 000=1200,对持“很喜爱”“喜爱”“一般”和“不喜爱”态度的观众依次抽取的人数设为x,y,z,m,则x 2 435=1200,y 4 537=1200,z 3 956=1200,m 1 072=1200,解得x≈12,y≈23,z≈20,m≈5,即对持“很喜爱”“喜爱”“一般”和“不喜爱”态度的观众依次抽取12人、23人、20人和5人.。

相关文档
最新文档