33轴对称和坐标变换

合集下载

八年级数学上册教学课件《轴对称与坐标变化》

八年级数学上册教学课件《轴对称与坐标变化》

2. 点(﹣1,2)关于原点的对称点坐标是( B )
A.(﹣1,﹣2) B.(1,﹣2)
C.(1,2)
D.(2,﹣1)
课堂检测
基础巩固题
3.3 轴对称与坐标变化
1.如图,△ABC与△DFE关于y轴对称,已知A(-4,6), B(-6,2),E(2,1),则点D的坐标为( B ) A.(-6,4) B.(4,6) C.(-2,1) D.(6,2)
课堂检测
基础巩固题
3.3 轴对称与坐标变化
2.已知A、B两点的坐标分别是(-2,3)和(2,3),则下面四个结论: ①A、B关于x轴对称; ②A、B关于y轴对称;③A、B关于原 点对称;④A、B之间的距离为4,其中正确的有( B )
A.1个
B.2个
C.3个
D.4个
3.点(-4,9)与点(4,9)的关系是( C )
A.关于原点对称
B.关于x轴对称
C.关于y轴对称
D.不能构成对称关系
课堂检测
基础巩固题
3.3 轴对称与坐标变化
4.已知点P(2a-3,3),点A(-1,3b+2),
2
(1)如果点P与点A关于x轴对称,那么a+b= 3 ;
7
(2)如果点P与点A关于y轴对称,那么a+b= 3 .
课堂检测
能力提升题
3.3 轴对称与坐标变化
A: ( 1 , 2 ) B:( 5 , 1 ) C:( 3 , 4 )
A1:( 1 , 2) B1:( 5 , 1) C1:( 3 , 4 )
对应点的横 对应点的纵坐
坐标相同
标互为相反数
(3)如果点P(m,n)在△ABC内,那么它 在△A1B1C1内的对应点P1的坐标是 (m,-n) .

北师大版八年级上册数学轴对称与坐标变换

北师大版八年级上册数学轴对称与坐标变换

③由已知条件建立适当的直角坐标系,进而确定图形的点的坐标。
②等腰三角形
y
o
x
③平行四边线
y
o
x
④梯形
y
A
D
B
C
x
五两条坐标轴夹角平分线上的点的坐标特征 y
A(1,1)
点A到x轴、y轴的距离
相等
B A
点A横纵坐标 绝对值相等
o
C
x
D
3. 已知A、B两点的坐标分别是(-2,3)和(2,3), 则下面四个结论: ①A、B关于x轴对称;②A、B关于y轴对称;③A、B关 于原点对称;④A、B之间的距离为4,其中正确的有 ( ) A .1 个 B .2 个 C .3 个 D .4 个 4.一束光线从点A(3,3)出发,经过y轴上点C 反射后经过点B(1,0)则光线从A点到B点经过 的路线长是( )。 A.4 B.5 C.6 D.7
5.点 A(2,- 3)关 于 x 轴 对 称 的 点 的 坐 标 是(
6.点 B( - 2,1)关 于 y 轴 对 称 的 点 的 坐 标 是( 7.点(4,3)与点(4,- 3)的关系是( A.关于原点对称 C.关于 y轴对称 B.关于 x轴对称 D.不能构成对称关系 ).
).
).
8.点(m,- 1)和点(2,n)关于 x轴对称,则 mn等于(
-3 -4 -5
总结:
在平面直角坐标系中,关于原点对称的 点的横、纵都互为相反数。
例如:A(3,2) B(-3,-2)
第一、三象限的点
C(-3,2) D(3,-2)
第二、四象限的点
二、怎样找坐标系中图形定点的坐标 y
5
A
D
4 3 2

轴对称与坐标变化教学设计教案

轴对称与坐标变化教学设计教案

轴对称与坐标变化教学设计-教案第一章:引言1.1 课程背景本课程旨在帮助学生理解和掌握轴对称与坐标变化的概念,通过实例分析和练习,使学生能够熟练运用这些概念解决实际问题。

1.2 教学目标通过本章的学习,学生将能够:(1) 理解轴对称的定义和性质;(2) 理解坐标变化的概念;(3) 运用轴对称和坐标变化解决实际问题。

第二章:轴对称2.1 轴对称的定义本节将通过实例介绍轴对称的概念,使学生能够理解轴对称的定义。

2.2 轴对称的性质本节将通过几何图形来说明轴对称的性质,使学生能够熟练运用这些性质。

2.3 轴对称的实际应用本节将通过实例分析,使学生能够运用轴对称解决实际问题。

第三章:坐标变化3.1 坐标变化的定义本节将通过实例介绍坐标变化的概念,使学生能够理解坐标变化的定义。

3.2 坐标变化的性质本节将通过几何图形来说明坐标变化的性质,使学生能够熟练运用这些性质。

3.3 坐标变化的实际应用本节将通过实例分析,使学生能够运用坐标变化解决实际问题。

第四章:轴对称与坐标变化的关系4.1 轴对称与坐标变化的关系本节将通过实例分析,使学生能够理解轴对称与坐标变化之间的关系。

4.2 运用轴对称与坐标变化解决实际问题本节将通过实例分析,使学生能够综合运用轴对称和坐标变化解决实际问题。

第五章:总结与练习5.1 总结本节将通过总结本章内容,使学生能够巩固所学的知识。

5.2 练习本节将通过练习题,使学生能够检测自己的学习效果,并加深对轴对称与坐标变化的理解。

第六章:轴对称在几何中的应用6.1 轴对称与几何图形的对称性本节将通过几何图形来说明轴对称在几何中的应用,使学生能够理解轴对称与几何图形的对称性。

6.2 轴对称与几何图形的变换本节将通过实例分析,使学生能够运用轴对称与几何图形的变换。

第七章:坐标变化在数学中的应用7.1 坐标变化与函数图像的变换本节将通过函数图像的变换来说明坐标变化在数学中的应用,使学生能够理解坐标变化与函数图像的变换。

北师大版数学八年级上册3.3轴对称与坐标变换(教案)

北师大版数学八年级上册3.3轴对称与坐标变换(教案)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解轴对称与坐标变换的基本概念。轴对称是指一个图形可以沿着某条直线对折,对折后的两部分完全重合。它是几何学中的一种重要变换,广泛应用于艺术、建筑和工程设计等领域。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何通过坐标变换找到轴对称图形的对称点,以及它在解决实际问题中的应用。
3.重点难点解析:在讲授过程中,我会特别强调轴对称的概念和坐标变换的方法这两个重点。对于难点部分,比如对称点的坐标求解,我会通过举例和步骤分解来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与轴对称与坐标变换相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何通过坐标变换找到图形的轴对称点。
北师大版数学八年级上册3.3轴对称与坐标变换(教案)
一、教学内容
本节课选自北师大版数学八年级上册第三章第三节“轴对称与坐标变换”。教学内容主要包括以下两点:
1.轴对称:掌握轴对称的概念,了解轴对称的性质,能够判断一个图形是否为轴对称图形,并找出对称轴;能够利用轴对称设计简单的图案。
2.坐标变换:掌握平移、旋转等坐标变换的方法,了解坐标变换对图形的影响;能够运用坐标变换解决实际问题,如求解对称点的坐标。
结合本节课内容,通过实际操作、探索与思考,使学生更好地理解轴对称与坐标变换的概念,提高空间想象能力和解决问题的能力。
二、核心素养目标
1.培养学生的几何直观与空间想象能力:通过轴对称与坐标变换的学习,使学生能够观察、分析并描述几何图形及其运动,提高对图形的感知和认识,发展空间想象力。
2.提升学生的逻辑推理与问题解决能力:引导学生运用轴对称性质和坐标变换方法,进行严密的逻辑推理,解决实际问题,培养分析问题和解决问题的能力。

轴对称与坐标变化教学设计

轴对称与坐标变化教学设计

3.3《轴对称与坐标变化》第一环节:课前引入观察动画,这两面旗子具有怎样的关系?1.在如图所示的平面直角坐标系中,第一、二象限内各有一面小旗。

(1)两面小旗之间有怎样的位置关系?(2)分别写出点A、A',B、B',C、C'的坐标,A与A'的坐标有什么共同特点?(3)其他对应点也有这个特点吗?2.在这个坐标系里作出小旗ABCD关于x轴的对称图形,它的各个顶点的坐标与原来的点的坐标有什么关系?0),(5,1),(5,-1),(3,0),(4,-2),(0,0)做以下变化:(1)纵坐标保持不变,横坐标分别乘以-1,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?(2)横坐标保持不变,纵坐标分别乘以-1,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?先根据要求填写表格,再描点,连线式探索以上情况,培养学生合作学习的能力,在合作学习及小组分享的过程进一步感受轴对称与坐标变化之间的关系。

较多,学生可能跟不上老师。

第三环节:随堂练习1.点 A(3,- 3)关于y轴对称的点的坐标是_______2.点(5,3)与点(5,- 3)的关系是() . 独立计算,合理决策学以致用,解决问题及时巩固所学知识,进一步加大部分学生可以准确回答。

通过“坐标与轴对称”,经历图形坐标变化与图形的轴对称之间的关系的探索过程,掌握空间与图形的基础知识和基本技能,丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维,激发学生对数学学习的好奇心与求知欲,学生能积极参与数学学习活动;积极交流合作,体验数学活动充满着探索与创造。

教学中务必给学生创造自主学习与合作交流的机会,留给学生充足的动手机会和思考空间,教师不要急于下结论。

事先一定要准备好坐标纸等,提高课堂效率。

轴对称与坐标变化 (2)

轴对称与坐标变化 (2)
的坐标为
.
2 024

第13题图
14.如图,在10×10的网格中建立平面直角坐标系xOy,已知点A(-4,
2),B(-2,4),C(2,-4).
第14题图
(1)画出△ABC关于y轴对称的△A1B1C1(其中点A与点A1对应,点B与点B1
对应,点C与点C1对应);
第14题图
第14题解图
解:如解图,△A1B1C1是△ABC关于y轴对称得到的图形;
关于原点对称的点的坐标:对应点的横、纵
坐标互为相反数
B2
C2
A2 (-2,-6)
例2
在平面直角坐标系中依次
连接下列各点:
( 0 , 0 ),( 5 , 4 ),( 3 , 0 ),( 5 ,
1 ),( 5 , -1 ),( 3 , 0 ),( 4 , -2 ),
( 0 , 0 ),
你得到了一个怎样的图案?
这些对应点的坐标之间有什么关系?
A (2,6)
B (5,4)
C (2,4)
A1 ( -2 , 6 ) B1 ( -5 , 4 ) C1 ( -2 , 4 )
对应点的横坐
标互为相反数.
D (2,0)
D1 ( -2 , 0 )
对应点的纵
坐标相同.
关于y轴对称的点的坐标:横坐标互为相反
数,纵坐标相同
(3)在这个坐标系里画出小旗ABCD关于x
B3
C3
A3
C2
A2
B2
点坐标(-a,b)
点坐标(a,-b)
点坐标(-a,-b)
随堂练习
1.在平面直角坐标系中,若点A(x,1)与点B(-5,y)关于原点对称,
则x+y的值是( D )

北师大版八年级数学上册:3.3《轴对称与坐标变化》教学设计

北师大版八年级数学上册:3.3《轴对称与坐标变化》教学设计

北师大版八年级数学上册:3.3《轴对称与坐标变化》教学设计一. 教材分析北师大版八年级数学上册3.3《轴对称与坐标变化》是学生在学习了平面直角坐标系、坐标与图形的性质等知识的基础上,进一步研究图形的轴对称性质以及坐标变化规律。

本节内容通过具体实例让学生体会坐标变化与图形轴对称之间的关系,提高学生的空间想象能力和抽象思维能力。

二. 学情分析学生在七年级已经学习了平面直角坐标系的相关知识,对坐标与图形的性质有了初步了解。

但轴对称与坐标变化的知识较为抽象,需要通过具体实例和操作活动,让学生逐步理解和掌握。

三. 教学目标1.理解轴对称的定义,掌握坐标变化与轴对称之间的关系。

2.能够运用坐标变化规律,解决实际问题。

3.培养学生的空间想象能力和抽象思维能力。

四. 教学重难点1.教学重点:坐标变化与轴对称之间的关系。

2.教学难点:如何运用坐标变化规律解决实际问题。

五. 教学方法采用问题驱动法、案例分析法、合作学习法等,引导学生通过观察、思考、操作、交流等活动,理解坐标变化与轴对称的内在联系。

六. 教学准备1.准备相关的多媒体教学课件和教学素材。

2.准备坐标纸、剪刀、胶水等实验材料。

3.设计好课堂练习题和课后作业。

七. 教学过程1.导入(5分钟)通过一个简单的实例,如翻转一张纸片,让学生观察和描述其轴对称性质。

引导学生思考:如何用坐标来表示轴对称变换?2.呈现(10分钟)利用多媒体课件,展示一系列轴对称变换的图形,让学生观察和分析坐标变化规律。

引导学生发现:轴对称变换不改变图形的大小和形状,只改变图形的位置。

3.操练(10分钟)让学生分组进行实验,使用坐标纸、剪刀、胶水等材料,制作并观察轴对称变换的图形。

要求学生用自己的语言描述坐标变化规律。

4.巩固(10分钟)课堂练习:让学生独立完成教材中的相关练习题,巩固轴对称与坐标变化的知识。

教师巡回指导,解答学生的疑问。

5.拓展(10分钟)让学生思考:轴对称变换在实际生活中有哪些应用?引导学生举例说明,如建筑设计、艺术创作等。

3.3轴对称和平移的坐标表示(1)

3.3轴对称和平移的坐标表示(1)

《3.3轴对称和平移的坐标表示(1)》导学案课题 3.3轴对称和平移的坐标表示(1)主备人审核备课时间教学目标知识与技能:掌握一个点关于x轴或y轴对称的点的坐标变化规律,并能利用这种坐标的变化规律在平面直角坐标系中作出一个图形关于x轴或y轴对称的图形。

过程与方法:通过独立思考,小组合作,培养学生探索问题的能力, 发展学生数形结合的思维意识。

情感态度与价值观:体会数形结合思想的应用,体会学习的乐趣,提高学习数学的兴趣。

教学重点难点【重点】关于x轴、y轴对称的点的坐标特点【难点】用坐标表示轴对称教法学法:观察、比较、合作、交流、探索教具准备:教学过程:导案学案设计意图一创设情境,导入新课巡视,了解自学情况。

方法指导二合作交流,探究新知组织课堂一、自主学习预习教材P95-961.如图一(1)观察图中两个圆脸有什么关系?(2)已知右边圆脸右眼B的坐标为(4,3),左眼A的坐标为(2,3),嘴角两个端点,右端点C的坐标为(4,1),左端点D的坐标为(2,1).请根据图形写出左边圆脸上左眼,右眼及嘴角两端点的坐标A1________ ; B1__________; C1__________; D1__________(3)A与A1、B与B1、C与C1、D与D1分别关于_________对称。

二、合作探究探究一:点关于x轴、y轴对称的坐标变化的特点1. 请你在图中描出下列已知点及其对称点,并把坐标填入表格中,看看每对对称点的坐标有怎样的规律。

从学生已有的数学知识出发,回顾旧知,过渡到新课题的学习。

引导学生从文字语言、图形语言、坐标表示三种方图一讨论和展示。

难点点拨,讲解。

引导学生总结。

(1)关于x 轴对称的点的坐标的特点是: 横坐标_____,纵坐标____________ (2)关于y 轴对称的点的坐标的特点是:横坐标__ ___,纵坐标_________.归纳:点(x ,y )关于x 轴对称的点的作标是 ( );点(x ,y )关于y 轴对称的点的作标是( )探究二:利用坐标变换作关于x 轴、y 轴的对称图2.已知四边形ABCD 的四个顶点的坐标分别为A (-5,1),B (-1,1),C (-1,5),D(-5,3),在右图中先作出四边形ABCD ,然后再分别作出四边形ABCD 关于y 轴和x 轴对称的图形.归纳:对于这类问题,只要先求出已知图形中的一些特殊点(如多边形的 )的对称点的坐标,描出并连接这些点,就可以得到这个图形的轴对称图形。

轴对称和坐标变化

轴对称和坐标变化

第三章位置与坐标3. 轴对称与坐标变化一、学生起点分析学生的知识技能基础:学生已学习了运用多种方法确定物体的位置,使学生感受到了丰富的确定位置的现实背景;系统学习了平面直角坐标系的基本概念,能在平面直角坐标系中准确地表示物体的位置,清楚地认识了点和坐标之间的对应关系;能确定点的坐标及根据坐标描点、进而连线形成图形。

学生的活动经验基础:学生有了一定的合作学习的基础,有了一定的学习能力,教学中要安排一定的合作交流与自主学习的机会,加强学生之间的交流。

二、学习任务分析本节课学生通过“坐标与轴对称”这样一个趣味性较强的话题,深切感受图形坐标的变化与图形形状的变化之间的密切关系,也进一步加深对“数形结合思想”的认识.具体的教学目标如下:【知识目标】:1、在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.2、经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合意识。

【能力目标】:1.经历探究物体与图形的形状、大小、位置关系和变换的过程,掌握空间与图形的基础知识和基本技能,培养学生的探索能力。

【情感目标】1.丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维。

2.通过有趣的图形的研究,激发学生对数学学习的好奇心与求知欲,能积极参与数学学习活动。

3.通过“坐标与轴对称”,让学生体验数学活动充满着探索与创造。

教学重点:经历图形坐标变化与图形轴对称之间关系的探索过程,明确图形坐标变化与图形轴对称之间关系。

教学难点:由坐标的变化探索新旧图形之间的变化探索过程,发展形象思维能力和数形结合意识。

教学方法:引导发现法三、教学过程设计第一环节创设问题情境,引入新课『师』:在前几节课中我们学习了平面直角坐标系的有关知识,会画平面直角坐标系;能在方格纸上建立适当的直角坐标系,描述物体的位置;在给定的直角坐标系下,会根据坐标描出点的位置,由点的位置写出它的坐标。

我们知道点的位置不同写出的坐标就不同,反过来,不同的坐标确定不同的点。

3.3《轴对称与坐标变化》北师大版八年级数学上册精品教案

3.3《轴对称与坐标变化》北师大版八年级数学上册精品教案

第三章位置与坐标3 轴对称与坐标变化一、教学目标1.在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.2.经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合思想.3.通过“坐标与轴对称”,让学生体验数学活动充满着探索与创造.4.通过有趣的图形的研究,激发学生对数学学习的好奇心与求知欲,能积极参与数学学习活动.二、教学重难点重点:在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.难点:经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合思想.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计教学环节教师活动学生活动设计意图环节一创设情境【复习回顾】问题1:什么叫轴对称?教师活动:教师演示对应的课件,学生观看思考后回答.预设:如果两个平面图形沿一直线折叠后能够完全重合,那么称这两个图形成轴对称,这条直线叫做这两个图形的对称轴.问题2:如何在平面直角坐标系中确定点P的位置?预设:a称为点P的横坐标,b称为点P的纵学生回忆并积极回答.通过回忆已学知识,一方面加深记忆,另一方面为后面学习新知识坐标.做铺垫.环节二探究新知【探究】教师活动:通过问题1、2,引导学生探究两个点关于x、y轴对称的规律.探究过程由浅到深,循序渐进,符合学生的认知过程.情境1:问题1 如右图所示的平面直角坐标系中,第一、二象限内各有一面小旗.(1)两面小旗之间有怎样的位置关系?预设:关于y轴成轴对称(2)请在下表中填入点A与A1、点B与B1、点C与C1、点D与D1的坐标,并思考:这些对应点的坐标之间有什么关系?预设:找到对应点,列表、画图:对应点的横坐标互为相反数,对应点的纵观察两面小旗,尝试找到对应点的坐标,并交流、讨论对应坐标之间的特征.通过呈现两面关于y轴对称的小旗,问题1引领学生思考关于y轴对称的点的坐标的特征.(3)如果点P(m,n)在△ABC内,那么它在△A1B1C1内的对应点P1的坐标是_______ .预设:P与P1横坐标互为相反数,纵坐标相同,则P1(-m,n).情境2:△ABC与△A1B1C1在如图所示的直角坐标系中,仔细观察,完成下列各题:(1)△ABC与△A1B1C1有怎样的位置关系?预设:关于x轴成轴对称(2)请在下表中填入点A与A1、点B与B1、点C与C1的坐标,并思考:这些对应点的坐标之间有什么关系?预设:找到对应点,列表:对应点的横坐标相同,对应点的纵坐标互观察两个图形,尝试找到对应点的坐标,并交流、讨论对应坐标之间的特征.通过呈现两个关于x轴对称的三角形问题2,进一步研究关于x轴对称的点的坐标的特征.(3)如果点P(m,n)在△ABC内,那么它在△A1B1C1内的对应点P1的坐标是_______ .预设:P与P1横坐标互为相反数,纵坐标相同,则P1(-m,n).【议一议】通过以上学习,你知道关于x轴对称的两个点的坐标之间的关系吗?关于y轴对称的两个点的坐标之间的关系呢?预设:关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,横坐标互为相反数,纵坐标相同.友情提醒:关于横轴对称的点,横坐标相同;关于纵轴对称的点,纵坐标相同.交流讨论,与教师一起归纳目的是引导学生讨论关于坐标轴对称的点的坐标之间的关系,也可以更全面地认识轴对称与坐标变化之间的关系.环节三应用新知【典型例题】教师提出问题,学生先独立思考,解答.然后再小组交流探讨,如遇到有困难的学生适当点拨,最终教师展示答题过程.例(1)在平面直角坐标系中依次连接下列各点:(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0) ,(4,-2),(0,0),你得到了一个怎样的图案?(2)将所得图案的各个顶点的纵坐标保持不变,横坐标分别乘-1,依次连接这些点,那么图形会怎么变化?分析:(1)坐标轴上依次描出各点,顺次连接即可;(2)找出变化后的对应顶点的坐标,再顺次连接所的图形与原图形进行对比.解:(1)它像一条鱼.(2)顶点坐标的变化两个图案关于y轴对称.教师动画演示两个图案关于y轴对称,达到强化巩固的目的.【做一做】明确例题的做法,尝试独立解答,并交流讨论通过解决例题与做一做,明确图形的变化实际上是图形上点的坐标变化.(1)在平面直角坐标系中依次连接下列各点:(5,2),(4,4),(6,3),(7,6),(8,3),(10,2),(7,1) ,(5,2),你又能得到了一个怎样的图案?(2)将所得图案的各个顶点的横坐标保持不变,纵坐标分别乘-1,依次连接这些点,那么图形会怎么变化?解:(1)它像一片树叶.(2)顶点坐标的变化两个图案关于x轴对称.教师动画演示两个图案关于x轴对称,达到强化巩固的目的.【归纳】仿照例题的做法,尝试独立解答,并交流讨论(1)关于y轴对称的两个图形上点的坐标特征:横坐标互为相反数,纵坐标相同;(2)关于x轴对称的两个图形上点的坐标特征:横坐标相同,纵坐标互为相反数.与教师一起归纳总结总结归纳两个图形上点的坐标特征.环节四巩固新知教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1.平面直角坐标系中,点P(4,5)关于x轴对称的点的坐标为__________.2. 已知点A(a,2)与点A1(3,b)关于y轴对称,则a=__________,b=__________.3.如图,利用关于坐标轴对称的点的坐标的特点,请你试着分别作出△ABC关于x轴和y轴对称的图形.答案:1. (4,-5)2.-3,23.如下图:自主完成练习,然后进行集体交流、评价.通过课堂练习及时巩固本节课所学内容,并考查学生的知识应用能力,培养独立完成练习的习惯.红色图形是关于x轴对称的,绿色图形是关于y轴对称的.环节五课堂小结思维导图的形式呈现本节课的主要内容:学生尝试回顾本节课所讲的内容通过小结总结回顾本节课学习内容,帮助学生归纳、巩固所学知识.环节六布置作业教科书第70页习题3.5 第1、3题.学生课后自主完成.通过课后作业,教师能及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.。

八年级数学上册3.3轴对称与坐标变化说课稿 (新版北师大版)

八年级数学上册3.3轴对称与坐标变化说课稿 (新版北师大版)

八年级数学上册3.3轴对称与坐标变化说课稿(新版北师大版)一. 教材分析《八年级数学上册3.3轴对称与坐标变化》这一节的内容,主要介绍了轴对称的概念,以及如何利用坐标来表示轴对称的变换。

这部分内容是学生在学习了平面几何和坐标系的基础上,进一步深化对几何变换的理解,为后续学习函数、解析几何等内容打下基础。

教材通过具体的实例,引导学生认识轴对称,并学会用坐标来表示对称变换。

同时,通过练习题的设置,让学生在实际操作中掌握坐标变换的规律,提高解决问题的能力。

二. 学情分析学生在学习这一节内容时,已经有了一定的几何基础,对平面几何的概念和性质有所了解。

同时,学生也学习了坐标系,能够熟练地用坐标表示点的位置。

但是,学生对于轴对称的概念可能还比较陌生,对于如何利用坐标来表示轴对称的变换,可能还存在一定的困难。

三. 说教学目标1.知识与技能目标:学生能够理解轴对称的概念,掌握坐标变换的规律,能够用坐标来表示轴对称的变换。

2.过程与方法目标:通过实例的讲解和练习,培养学生解决问题的能力,提高学生的逻辑思维能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作精神。

四. 说教学重难点1.教学重点:轴对称的概念,坐标变换的规律。

2.教学难点:如何用坐标来表示轴对称的变换。

五. 说教学方法与手段1.教学方法:采用讲解法、演示法、练习法等教学方法,引导学生通过观察、思考、操作等活动,掌握轴对称的概念和坐标变换的规律。

2.教学手段:利用多媒体课件,直观地展示轴对称的变换过程,帮助学生理解和掌握。

六. 说教学过程1.导入:通过一个具体的实例,引导学生认识轴对称,激发学生的兴趣。

2.新课讲解:讲解轴对称的概念,引导学生通过观察、思考,发现坐标变换的规律。

3.练习:让学生通过实际操作,运用坐标变换的规律解决问题。

4.总结:对本节课的内容进行总结,强调轴对称的概念和坐标变换的规律。

5.作业布置:布置一些有关轴对称和坐标变换的练习题,巩固所学内容。

轴对称与坐标变化教学设计教案

轴对称与坐标变化教学设计教案

轴对称与坐标变化教学设计-教案一、教学目标1. 让学生理解轴对称的概念,并能识别生活中的轴对称图形。

2. 让学生掌握坐标系中点的对称变换方法,能运用轴对称变换解决实际问题。

3. 培养学生的观察能力、动手操作能力和解决问题的能力。

二、教学内容1. 轴对称的概念及性质2. 坐标系中点的对称变换方法3. 轴对称在实际问题中的应用三、教学重点与难点1. 教学重点:轴对称的概念,坐标系中点的对称变换方法。

2. 教学难点:坐标系中点的对称变换方法的运用。

四、教学方法1. 采用直观演示法,让学生直观地理解轴对称的概念。

2. 采用讲解法,讲解坐标系中点的对称变换方法。

3. 采用案例分析法,分析轴对称在实际问题中的应用。

4. 采用小组讨论法,培养学生的合作能力。

五、教学过程1. 导入:通过展示生活中的轴对称图形,引导学生发现并理解轴对称的概念。

2. 新课导入:讲解坐标系中点的对称变换方法,引导学生动手操作,体会对称变换的过程。

3. 案例分析:分析轴对称在实际问题中的应用,如平面几何中的对称问题,艺术设计中的对称美感等。

4. 小组讨论:让学生分组讨论,思考如何运用轴对称变换解决实际问题。

5. 总结与拓展:总结本节课的主要内容,布置课后作业,拓展学生的思维。

六、课后作业1. 复习本节课的内容,总结轴对称的概念及坐标系中点的对称变换方法。

2. 结合生活实际,寻找轴对称图形,并用坐标系表示其对称中心。

七、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,评价学生的学习态度。

2. 作业完成情况:检查课后作业的完成质量,评价学生对知识点的掌握程度。

3. 小论文:评估学生在实际问题中运用轴对称变换的能力,以及论文的质量。

八、教学反思根据学生的课堂表现、作业完成情况和评价结果,反思教学过程中的优点和不足,不断调整教学方法,提高教学质量。

九、教学资源1. 轴对称图形的生活实例图片。

2. 坐标系示意图。

3. 课后作业案例。

轴对称与坐标变化课件

轴对称与坐标变化课件

知识点复习:

1、坐标轴上的点的坐标有什么特点:
位于x轴上的点的坐标的特征是: 纵坐标等于 0;
位于y轴上的点的坐标的特征是:横坐标等于 0。
2、与x轴平行的直线上点的坐标的特征
是:

与y轴平行的直线上点的坐标的特征
是:

3、每一象限内的点的坐标有什么特征? 第一象限( , ) 第二象限( , )
第三象限( , ) 第四象限 ( , )
知识回顾:
2.在平面直角坐标系中,在第二象限内有一点P,且P点
到x轴的距离是4,到y轴的距离是5,则P点坐


知识回顾:
2.在平面直角坐标系中,在第二象限内有一点P,且P点
到x轴的距离是4,到y轴的距离是5,则P点坐


解析:因为P在第二象限, 所以横坐标为负,纵坐标为正 P点到x轴的距离是4---说明纵坐标为4 到Y轴的距离是5------说明横坐标为-5
(2)将所得图案的各个顶点的横坐标保持不变,纵坐标分 别乘-1,依次连接这些点,你会得到怎样的图案?视察坐标 系中的两条鱼的位置关系?
(3)将各坐标的纵坐标与横坐标都乘以-1,图形会变 成什么样?
探索坐标变化引起的图形变化
(1)将所得图案的各个顶点的纵坐标保持不变,横坐标 分别乘-1,依次连接这些点,你会得到怎样的图案?视察 坐标系中的两条鱼的位置关系?
探索两个关于坐标轴对称的图形的坐标关系
1.两面小旗之间有怎样的位置关系?
.
2.对应点A与A1的坐标有什么特点?
.
3.画出小旗ABCD关于x轴的对称图形,它的各个“顶点”的坐 标与本来的点的坐标有什么关系?
探索两个关于坐标轴对称的图形的坐标关系

轴对称和坐标变换

轴对称和坐标变换

3.5轴对称与坐标变换一、学习目标:1.经历轴对称变化与点的坐标的变化之间的探索过程,发展数形结合意识,初步建立几何直观。

2.经历图形在坐标系内的轴对称变化过程,能说出图形的坐标变化与轴对称之间的关系;学习重点:目标1,2学习难点:目标2二、预习检测(学生课前独立完成)1.(针对目标1)如左图所示的平面直角坐标系中,第一、二象限内各有一面小旗。

(1)两面小旗之间有怎样的位置关系?对应点A与A1的坐标又有什么共同特点?其他对应的点也有这个特点吗?(2)在这个坐标系里画出小旗ABCD关于x轴的对称图形,它的各个“顶点”的坐标与原来的点的坐标有什么关系?(1,3),(2,0), (3,3),(4,0),的点用线段依次连接,你得到了一个怎样的图案(在图案旁标上①)?(1)将所得图案的各个“顶点”的纵坐标保持不变,横坐标分别乘-1(在下边写出变化后各点的坐标,然后再描点),依次连接这些点,你会得到怎样的图案(在图案旁标上②)?这个图案与原图案又有怎样的位置关系呢?( , ),( , ),( , ), ( , ),( , )三、课堂探究(课堂上独立完成后,小组交流)1.(针对目标1,2 )将预习检测2题(1)中的图案各个“顶点”的横坐标保持不变,纵坐标分别乘-1(写出变化后各点的坐标),依次连接这些点,你会得到怎样的图案(在图案旁标上③)?这个图案与原图案又有怎样的位置关系呢?( , ),( , ),( , ), ( , ),( , )2.(针对目标1,2 )将预习检测2题(1)中的图案各个“顶点”的横、纵坐标同时分别乘-1(写出变化后各点的坐标),依次连接这些点,你会得到怎样的图案(在图案旁标上④)?这个图案与原图案又有怎样的位置关系呢?( , ),( , ),( , ), ( , ),( , )3.关于x轴对称的两个点的坐标之间有什么关系?关于y轴呢?关于原点对称呢?坐标具有这样关系的点,关于坐标轴或坐标原点对称吗?关于x轴对应的两个点的连线与坐标轴有什么关系?关于y轴呢?关于原点对称呢?四、训练达成(针对目标1,2)(独立完成,小组对改)(1)分别写出左图中所示三个点的坐标: P ,M ,G(2)写出P点关于x轴的对称点的坐标 P'(,),并把它描在坐标系内;(3)写出M点关于原点对称的点的坐标 M'(,),并把它描在坐标系内;(4)写出G点关于y轴的对称点的坐标G'(,),并把它描在坐标系内。

北师大版数学八年级上册3《轴对称与坐标变化》教案1

北师大版数学八年级上册3《轴对称与坐标变化》教案1

北师大版数学八年级上册3《轴对称与坐标变化》教案1一. 教材分析《轴对称与坐标变化》是北师大版数学八年级上册第三章的内容。

本节课主要介绍轴对称的概念,以及如何在坐标系中进行对称变换。

教材通过丰富的实例,让学生体会轴对称的性质,培养学生的空间想象能力。

同时,本节课还引导学生利用坐标系解决实际问题,提高学生的数学应用能力。

二. 学情分析学生在七年级已经学习了平面几何的基本知识,对图形的性质有一定的了解。

但是,对于轴对称的概念,以及如何在坐标系中进行对称变换,可能还比较陌生。

因此,在教学过程中,需要注重引导学生理解轴对称的性质,以及如何利用坐标系进行对称变换。

三. 教学目标1.理解轴对称的概念,掌握轴对称的性质。

2.学会在坐标系中进行对称变换,解决实际问题。

3.培养学生的空间想象能力,提高数学应用能力。

四. 教学重难点1.轴对称的概念及其性质。

2.在坐标系中进行对称变换的方法。

五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究轴对称的性质。

2.利用直观教具,如图形、模型等,帮助学生理解轴对称的概念。

3.通过实例分析,让学生掌握在坐标系中进行对称变换的方法。

4.注重启发式教学,引导学生运用坐标系解决实际问题。

六. 教学准备1.准备相关的图形、模型等直观教具。

2.准备一些实际问题,用于巩固和拓展学生的知识。

七. 教学过程1.导入(5分钟)通过展示一些生活中的轴对称现象,如剪纸、建筑等,引导学生关注轴对称的概念。

提问:什么是轴对称?学生在思考和讨论中初步理解轴对称的概念。

2.呈现(10分钟)教师展示一些轴对称的图形,如正方形、矩形等,引导学生观察和分析这些图形的性质。

提问:轴对称图形的性质有哪些?学生在思考和回答中进一步理解轴对称的性质。

3.操练(10分钟)教师引导学生利用坐标系进行对称变换。

示例:已知点A(2,3),求点A关于x 轴的对称点B的坐标。

学生独立完成,教师点评和讲解。

4.巩固(10分钟)教师给出一些实际问题,让学生运用坐标系进行解决。

轴对称与坐标变化

轴对称与坐标变化

第三章 位置与坐标 5.3 轴对称与坐标变化课程学习要求知识目标:1、经历图形坐标变化与图形的平移,轴对称,伸长,压缩之间的关系的探索过程,发展学生的形象思维能力和数形结合意识.2、在同一直角坐标系中,感受图形上点的坐标变化与图形的变化(平移,轴对称,伸长,压缩)之间的关系.能力目标:1、经历探究物体与图形的形状、大小、位置关系和变换的过程,掌握空间与图形的基础知识和基本技能。

2、通过图形的平移,轴对称等,培养学生的探索能力。

情感目标:1、丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维。

2、通过有趣的图形的研究,激发学生对数学学习的好奇心与求知欲,能积极参与数学学习活动。

3、通过“变化的鱼”,让学生体验数学活动充满着探索与创造。

重点难点剖析1. 经历图形坐标变化与图形的平移,轴对称,伸长,压缩之间关系的探索过程,发展学生的形象思维能力和数形结合意识.【剖析】(1)图形左右平移纵坐标不变,横坐标左减右加; (2)图形上下平移横坐标不变,纵坐标上加下减; 2. 由坐标的变化探索新旧图形之间的变化. 【剖析】(1)注意图形变化前后是平移、轴对称还是伸长压缩典型例题展示重难点题讲解1.会做一个图形关于x 轴、y 轴的对称图形【例1】作字母H 关于y 轴对称的图形,并写出所得图形相应各点的坐标-2-1432y x12341O-1-2-3-4A B CD E F【解】作出字母H 关于y 轴对称的图形如图所示,A 、B 、C 、、D 、E 、F 相对应的点的坐标分别是(3,3);(3,2);(3,1);(1,3);(1,2);(1,1);【点拨】 解决此类问题关键要找准相对应的点的坐标,并在坐标系中找点,并按要求做出图形.2.平移与对称【例2】左右两幅图案关于y 轴对称,右图案中的左右眼睛的坐标分别是(2,3),(4,3).嘴角左右端点的坐标分别是(2,1),(4,1).(1)试确定左图案中的左右眼睛和嘴角左右端点的坐标.【解】1)左图案中的左眼坐标为(-4,3),右眼坐标为(-2,3),嘴角的左端点坐标为(-4,1),右端点坐标为(-2,1).【变式】(1)如果将上图中的右图案沿x轴正方向平移1个单位长度,那么左右眼睛的坐标将发生什么变化?(2)如果作图中的右图案关于x轴的轴对称图形,那么左右眼睛的坐标将发生什么变化?(3)如果图中的右图案沿y轴正方向平移2个单位长度,那么左右眼睛的坐标将发生什么变化?【点拨】(1)根据题意可知,右图案沿x轴正方向平移1个单位长度,所以每一个点的横坐标都加1,纵坐标不变.因此左、右眼睛的坐标分别为(3,3),(5,3).(2)如果作右图案关于x轴的轴对称图形,根据关于x轴对称的两图形中对应点的特点可知,横坐标不变,纵坐标变为原纵坐标的相反数,所以右图案中左、右眼睛的坐标原来为(2,3),(4,3),现在应变为(2,-3),(4,-3).(3)如果图中的右图案沿y轴正方向平移2个单位长度,那么图案中的每一点的纵坐标都增加2,横坐标不变.所以左、右眼睛的坐标为(2,5),(4,5).易错题型讲解【易错点1】上下左右平移点的坐标变化特点【例1】将点A(3,-2)向左平移4个单位,再向上平移3个单位后点的坐标是(,)【正解】平移后点的坐标是(-1,1)【错因分析】把握不住坐标系内点的平移特点,左右平移时点的纵坐标不变,上下平移时点的横坐标不变.中考真题讲解A B,则【例1】(2009威海)如图,A,B的坐标为(2,0),(0,1)若将线段AB平移至11的值为()a bA.2 B.3 C.4 D.5【解】将线段AB 平移至11A B ,从坐标系中可以看出线段向上平移1个单位,向右平移1个单位,所以a=1,b=1,所以a+b=2,故应该选择A 【点拨】要看清楚图形在坐标系中是如何让变化的,依据图形在坐标系中的变化规律来解决问题.【例2】2009襄樊市)如图3,在边长为1的正方形网格中,将ABC △向右平移两个单位长度得到A B C '''△,则与点B '关于x 轴对称的点的坐标是( ) A .()01-, B .()11, C .()21-,D .()11-,【解】:本题考查坐标与平移,由图3可知点B 的坐标是(-1,1),将ABC △向右平移两个单位长度得到A B C '''△,所以点B '的坐标是(1,1),所以点B '关于x 轴对称的点的坐标是(1,-1),故选D.【点拨】在解决此类问题时,一是要先找准平移后点的坐标,二是要依据点的关于对称轴对称的变化规律写出坐标即可.综合技能探究【例1】在方格纸上建立直角坐标系,把下列点找出并依次用线段将这些点连接起来坐标是(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)-2-1O 14321xy23456【思考一】将上图中的点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),yO (01),(20)A ,1(3)A b ,1(2)B a ,x(4,-2),(0,0)做以下变化:(1)纵坐标保持不变,横坐标分别变成原来的2倍,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?(2)纵坐标保持不变,横坐标分别加3,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?-4-3-2-1O 14321xy2345657891011-4-3-2-1O 14321xy2345657891011【思考二】将第一个图形中的点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)做如下变化:(1)横坐标保持不变,纵坐标分别乘-1,所得的图案与原来的图案相比有什么变化? (2)横、纵坐标分别变成原来的2倍,所得的图案与原来的图案相比有什么变化?-4-3-2-1O 14321xy2345657891011-4-3-2-1O 14321xy2345678910115678【点拨】上面的两种变化情况来看,当横坐标分别加3,纵坐标不变时,整个图案向右平移了3个单位;当横坐标分别变成原来的2倍,纵坐标不变时,整条鱼被横向拉长为原来的2倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.点A(a, 3)和点B(2,b)关于y轴对称, 则 a+b= 1 。
5. 完成P69习题3、5
1(做在书上)
6.点A(4,-3)关于x轴的对称点是点B,则线段 AB的长是_____6_____个单位,点A(4,-3)关 于 原 点 的 对 称 点 是 点 C , 则 线 段 AC 的 长 是 ____1_0___个单位。
y 5 4 3 2 1
-5 -4 -3 -2 -1 0 1 2 3 4 5 x -1 -2 -3 -4 -5
讨论点拨更正(5分钟)
刚才通过轴左右两“鱼” 的轴对称的对应“顶点” 坐标的观察发现:
关于x轴对称的两个图形 对应点的坐标:_横__坐__标___
(-x,y)
不变,_纵__坐__标___互为相反
学生自学,老师巡视(6)
自学检测(12分钟)
1、下图中左右两“鱼”能通过( D )变换得到
A.平移、B.压缩、C.拉伸、D.轴对称
2、根据图形在表中填对应点的坐标继而填空。
关于y轴对称点的 (0,0)
(0,0)
坐标,纵__坐标_相
(-5,4)
(5,4)
同,横__坐__标互为相 (-3 ,0)
(3 ,0)
△OA1B1 ,第二次将△OA1B1变换成△OA2B2 ,第三次将 △OA2B2变换成△OA3B3 。已知:A(1,3),A1 (2,3),A2 (4, 3),A3 (8,3),B(2,0),B1 (4,0), B2 (8,0),B3(16, 0)。
(1)观察每次变换前后 y
的三角形有何变化,找出
规律,按此变换规律再将 A A1 A2
反数,即: 点(x,y)关于y 轴对称点的坐标
(-5,1) (-5,-1) (-3,0) (-4,-2)
(5,1) (5,-1) (3,0) (4,-2)
是_(_-x_,_y_)_
(-x,y)
(x,y)
横坐标不变,纵坐标变为原来的-1倍,得到“鱼”与 原来的“鱼”关于__X___轴___对称即:点(x,y)与(x,-y) 是关于__X__轴____对称的点。
(x,y) (0,0) (5,4) (3 ,0) (5,1) (5,-1) (3,0) (4,-2)
(x,-y) (0,0) (5,-4) (3 ,-0) (5, -1) (5,1) (3,0) (4,2)
y 5 4 3 2 1
-5 -4 -3 -2 -1 0 1 2 3 4 5 x -1 -2 -3 -4 -5
7.如右图,将梯形绕点O旋转180度,请写出所得图案 各点的坐标。
解:依题意得:
A(0,0);
B(- 4,0);
C( - 3, - 3); D( - 1, - 3)
8己知两点A(0,4),B(8,2),点P是轴 上的一点,求PA+PB的最小值。 10
A B
P B’
9.(选做)如图,在直角坐标系中,第一次将△OAB变换成
推测An 的坐标是__(_2_n_,_3_)__,Bn的坐标是__(_2_n_1_,0_)_____。
数;
yy
5 4
(x,y)
3
2
关于y轴对称的两个图形
1
ห้องสมุดไป่ตู้
对应点的坐标:_纵__坐__标___ 不变,_横__坐__标___互为相反
-5 -4 -3 -2
-1 0 -1
1
2
3
4
5x
x
数;
-2
关于原点中心对称的两个
-3
图形对应点的坐标: (-x,-y) -4
__横__坐__标__互为相反数,
-5
__纵__坐__标__互为相反数;
3.3 轴对称与坐标变化B
学习目标(1分钟)
1、掌握轴对称变换的技巧与规律 2、掌握图形坐标的变化与图形轴对称变换
之间的关系
自学指导(2分钟)
阅读课本P68~P69的内容: 1、观察图3-18中的两面小旗,回答(1)(2)
中的问题。 2、根据例一思考:
图形上的所有点的横坐标不变,纵坐标分别乘以 -1,所得图形和原来的图形关于_X_轴___对称; 若纵坐标不变,横坐标分别乘以-1,所得新图形 与 原图形关于_y_轴____对称; 若横、纵坐标均乘以-1,所得新图形与原图形关 于_原__点_____对称. 3、参考P69议一议,思考:坐标具有这样的关系的点 关于坐标轴对称吗?
横、纵坐标都变为原来的-1倍,得到“鱼”与 原来的“鱼”关于__原__点__对称,即:点(x,y)与 (-x,-y)是关于__原__点___对称的点。
(x,y) (0,0) (5,4) (3 ,0) (5,1) (5,-1) (3,0) (4,-2)
(-x,-y) (0,0) (-5,-4) (-3 ,0) (-5, -1) (-5,1) (-3,0) (-4,2)
(x,-y)
当堂训练(18分钟)
1.已知在第二象限的点M到x轴的距离为2,到y轴 的距离为3,则M点关于原点对称点的坐标为(A)
A.(3,-2)B.(-3,-2)C.(2,3)D.(-3,2)
2.点P(-2,5)关于原点的对称点的坐标(__2_,__-5_)_.
3.把点A(4,-5 )的横坐标不变,纵坐标乘以 1得到的点的坐标为(__4_,__5_)__,这个点和点A关 于__X__轴__对称
A3
△那么OAA34B的3变坐换标成是△_(_O1_A6_4_B, _43_,),32
B4的坐标是_(_3__2_,_0__)。 1
B B1
B2
B3
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 x
(2)若按第(1)题找到的规律,将△OAB进行n次变换,得到 △OAnBn,比较每次变换中三角形顶点有何变化,找出规律,
相关文档
最新文档