广东省2019届1月份普通高中学业水平考试数学试卷Word版含解析
2019 年1月浙江省普通高中学业水平考试数学试题含解析PDF
2019年浙江省1月学业水平统一考试数学解析一、选择题(每题3分,共18题,总计54分)1.已知集合{}5,3,1=A ,{}7,5,3=B ,则=B A A .{}7,5,3,1B .{}7,1C .{}5,3D .{}5【答案】C2.函数)1(log )(5-=x x f 的定义域是A .),1()1,(+∞-∞ B .)1,0[C .),1[+∞D .),1(+∞【答案】D3.圆9)2(22=-+y x 的半径是A .3B .2C .9D .6【答案】A4.一元二次不等式072<-x x 的解集是A .{}70<<x x B .{}70><x x x 或C .{}07<<-x x D .{}7>-<x x x 或【答案】A5.双曲线22194x y -=的渐近线方程是A .32y x =±B .23y x =±C .94y x =±D .49y x =±【答案】B6.已知空间向量(1,0,3),(3,2,)a b x =-=-,若a b ⊥ ,则实数x 的值是A .1-B .0C .1D .2【答案】C 7.cos15cos 75=A .2B .12C .4D .14【答案】D8.若实数,x y 满足不等式组10,0,3,x y x y +≥⎧⎪≥⎨⎪+≤⎩,则2x y -的最大值是A .9-B .1-C .3D .7【答案】C9.若直线l 不平行于平面α,且l α⊄,则下列结论成立的是A .α内的所有直线与l 异面B .α内不存在与l 平行的直线C .α内存在唯一的直线与l 平行D .α内的直线与l 都相交【答案】B10.函数2()22x xx f x -=+的图象大致是【答案】A11.若两条直线1l :260x y +-=与2l :70x ay +-=平行,则1l 与2l 之间的距离是B.C.2D.5【答案】D12.已知某几何体的三视图如图所示,则该几何体的表面积是A.π B.2πC.3π D.4π【答案】B13.已知,a b 是实数,则“||a b >”是“22a b >”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件【答案】A(第12题图)14.已知数列{}n a是正项等比数列,且3723+a a =,则5a 的值不可能是A.2 B.4C.85D.83【答案】C15.如图,四棱柱1111ABCD A B C D -中,平面11A B CD ⊥平面ABCD ,且四边形ABCD 和四边形11A B CD 都是正方形,则直线1BD 与平面11A B CD 所成角的正切值是A.2B.2【答案】C16.如图所示,椭圆的内接矩形和外切矩形的对角线所在的直线重合,且椭圆的两焦点在内接矩形的边上,则该椭圆的离心率是()A .2B .3C .2D .3(编辑与解析提供:浙江绍兴徐浙虞)【答案】A【解析】如图建立直角坐标系,易求2,b A c a ⎛⎫⎪⎝⎭,利用相似可知AF bOF a=,即b c =,所以2e =,故选A.17.数列{}n a ,{}n b 用图像表示如下,记数列{}n n a b 的前n 项和为n S ,则()(第15题图)浙江高中数学解题交流群出品:385405149A .141011,S S S S ><B .451013,S S S S ><C .141011,S S S S <>D .451013,S S S S <>【答案】B【解析】由图可知,当4n ≤时,0n a <,当5n ≥时,0n a >;当10n ≤时,0n b <,当11n ≥时,0n b >.令n n n c a b =,可得当4n ≤时,0n c >,当510n ≤≤时,0n c <,当11n ≥时,0n c >,故n S 在14n ≤≤上单调递增,510n ≤≤上单调递减,11n ≥上单调递增,所以选B.18.如图,线段AB 是圆的直径,圆内一条动弦CD 与AB 交于点M ,且MB=2AM=2,现将半圆ACB 沿直径AB 翻折,则三棱锥C-ABD 体积的最大值是()A .23B .13C .3D .1【答案】D【解析】记翻折后CM 与平面ABD 所成角为α,则三棱锥ABD C -的高为αsin CM 所以CM DM AB CM DMA DM AB V ABD C ⨯⨯≤⨯∠⨯⨯=-61sin )sin 21(31α,又2,3=⨯=⨯=BM AM CM DM AB ,所以体积的最大值为1二、填空题(本大题共4小题,每空3分,共15分)19.已知等差数列{}n a 中,131,5a a ==,则公差d =__________,5a =__________【答案】2,920.若平面向量,a b 满足||6,||4a b == ,a 与b 的夹角为060,则()a a b -= _________【答案】2421.如图,某市在进行城市环境建设中,要把一个四边形ABCD 区域改造成公园,经过测量得到km AD km CD km BC km AB 4,3,2,1====,且120=∠ABC ,则这个区域的面积是_________2km .【答案】2733+【解析】7cos 2222=∠⋅-+=ABC BC AB BC AB AC ,所以有222AD CD AC =+,即090=∠ACD ,所以区域面积为2733+=+∆∆ACD ABC S S 22.已知函数2212)(a x a x x x f ---+=,当[)+∞∈,1x 时,0)(≥x f 恒成立,则实数a 的取值范围是.【答案】]1,2[-【解析】方法一:设[1,)=+∞t ,则212+=t x ,则()0≥f x 等价于:222211022⎛⎫+++--≥ ⎪⎝⎭t t at a ,即42243440(1)++--≥≥t t at a t .一方面,由于当1=t 时,不等式28440--≥a a 成立,从而21-≤≤a .另一方面,设422()4344(1)=++--≥f t t t at a t ,则3'()48448440=+-≥+-≥>f t t t a a ,因此()f t 在[1,)+∞上单调递增,因此2()(1)8440≥=--≥f t f a a ,从而21-≤≤a .综合上述,所求的实数a 的范围为[2,1]-.方法二:必要性探路+主参换位首先进行必要性探路:0)1(≥f ,解得]1,2[-∈a ,再证明充分性,令12-=x t ,代入变形可知,只需证明04434224≥--++a at t t 在),1[+∞∈t 时恒成立即可,此时进行主参换位,把主元t 看成参数,a 看成变量,设3444)(242+++--=t t ta a a g ,即证明0)(≥a g ,]1,2[-∈a 恒成立,此时的),1[+∞∈t ;由二次函数可知=)1(g 0)135)(1(1442324≥+++-=--+t t t t t t t 1384)2(24-++=-t t t g 0)135)(1(23≥+++-=t t t t (此处关于四次式的因式分解,可通过试根再进行因式分解的方法进行操作;)所以对于任意的t ,]1,2[-∈a ,有0)(≥a g 成立综合上述,所求的实数a 的范围为[2,1]-.三、解答题(本大题共3小题,共31分)23.(本题满分10分)已知函数R x x x x x f ∈+-++=.cos 6sin()6sin()(ππ(1)求)0(f 的值.(2)求函数)(x f 的最小正周期(3)求函数)(x f 的最大值.解:由于()2sin cos cos cos 2sin()66=+=+=+f x x x x x x ππ.(1)(0)2sin16==f π.(2)()f x 的最小正周期为221==T ππ.(3)()f x 的的最大值为2,且当2,3=+∈x k k Z ππ时取最大值.24.如图,已知抛物线21:4C x y =和抛物线22:C x y =-的焦点分别为F 和F ',N 是抛物线1C 上一点,过N 且与1C 相切的直线l 交2C 于A 、B 两点,M 是线段AB 的中点(1)求FF ';(2)若点F 在以线段MN 为直径的圆上,求直线l 的方程【答案】(1)'5=4FF ;(2)233y x =±-解:(1)由题意的:()'10,10,4F F -⎛⎫ ⎪⎝⎭,所以'5=4FF (2)设直线l 的方程:y kx m =+,联立方程组24y kx mx y=+⎧⎨=⎩,消去y ,得2440x kx m --=因为直线l 与:C 相切,所以216160k m ∆=+=,得2m k =-且的坐标为()22.k k 联立方程组22y kx kx y⎧=-⎪⎨=-⎪⎩,消去y ,得220x kx k +-=设()()()112200,,,,,A x y B x y M x y ,则21212,x x k x x k +=-=- ,所以2120003,222x x k x y kx m k +-==-=+=因为点F 在线段MN 为直径的圆上,所以0FM FN = ,即,解得223k =故直线l的方程:233y x =±-25.设a R ∈,已知函数()2211f x x x ax x x=++-+(1)当0a =时,判断函数()f x 的奇偶性;(2)若()46f x x ≥-恒成立,求a 的取值范围;(3)设b R ∈,若关于x 的方程()8f x b =-有实数解,求22a b +的最小值【答案】(1)偶函数;(2)44a -≤≤+;(3)48【解析】(1)当0a =时,2211()=+-f x x x x x+,定义域为()(),00,-∞+∞ 且()()f x f x -=所以()f x 为偶函数;(2)由已知得222,12,01()2,102,1x ax x ax x xf x ax x x x ax x ⎧+≥⎪⎪+<<⎪=⎨⎪-+-<<⎪⎪+≤-⎩222261,24624422601,46422610,461261,2462+444x x ax x a x a xx ax x a a x x x x ax x a a x x xx x ax x a x a x ≥+≥-⇒≥--⇒≥-<<+≥-⇒≥--⇒≥--<<-+≥-⇒≤-⇒≥≤-+≥-⇒≤--⇒≤+综上可得44a -≤≤+(3)设0x 的方程()=8f x b -的根,则0()=8f x b -1.当01x ≥,22000028280x ax b ax b x +=-⇒-++=22≥=≥202x =取等2.当001x <<,000022880ax b ax b x x +=-⇒-++=≥≥>≥ ,当且仅当202x =取等即()22min48a b+=。
广东省2019届1月份普通高中学业水平考试数学试卷Word版含解析
广东省2019届1月份普通高中学业水平考试数学试卷一.选择题:本大题共15小题. 每小题4分,满分60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】B【解析】由题意可知故选B2. 对任意的正实数,下列等式不成立的是()A. B.C. D.【答案】B【解析】∵∴选项错误故选B3. 已知函数,设,则()A. B. C. D.【答案】C【解析】∵函数∵∴故选C4. 设是虚数单位,是实数,若复数的虚部是2,则()A. B. C. D.【答案】D∵复数的虚部为2∴∴故选D5. 设实数为常数,则函数存在零点的充分必要条件是()A. B. C. D.【答案】C【解析】∵若函数存在零点∴∴∴函数存在零点的充分必要条件是故选C6. 已知向量,,则下列结论正确的是()A. B. C. D.【答案】B【解析】对于,若∥,则,因为,故错误;对于,因为,所以,则,故正确;对于,,,故错误;对于,,故错误故选B7. 某校高一(1)班有男、女学生共50人,其中男生20人,用分层抽样的方法,从该班学生中随机选取15人参加某项活动,则应选取的男、女生人数分别是()A. 6和9B. 9和6C. 7和8D. 8和7【答案】A∴男女生的比例为,∵用分层抽样的方法,从该班学生中随机选取15人参加某项活动∴男生的人数为,女生的人数为故选A点睛:进行分层抽样的相关计算时,常利用以下关系式巧解:(1);(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.8. 如图所示,一个空间几何体的正视图和侧视图都是矩形,俯视图是正方形,则该几何体的体积为()A. B. C. D.【答案】C【解析】由图像可知该空间几何体为长方体,长和宽为2,高为1体积故选C点睛:本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点. 观察三视图并将其“翻译”成直观图是解题的关键,做题时不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.9. 若实数满足,则的最小值为()A. B. C. D.【答案】D【解析】根据已知作出可行域如图所示:,即,斜率为,在处截取得最小值为故选D点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题. 求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.10. 如图,是平行四边形的两条对角线的交点,则下列等式正确的是()A. B.C. D.【答案】D【解析】对于,,故错误;对于,,故错误;对于,,故错误。
广东省江门市2025届高三上学期10月调研测试 地理 Word版含答案
内部资料·注意保存试卷类型:A 江门市2025届普通高中高三调研测试地理本试卷共6 页,19 小题,满分 100 分。
考试时间75 分钟。
注意事项:1.2.做选择题时,必须用2B 铅笔将答题卷上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
3.答非选择题时,必须用黑色字迹钢笔或签字笔,将答案写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上作答无效。
5.考试结束后,将答题卡交回。
一、单项选择题(本题共16小题,每小题3分,共48分。
在每小题给出的四个选项中,只有一项是符合题目要求的)重庆,简称“渝”,别称山城、江城,地处长江上游与嘉陵江的交汇处,拥有 3000 余年的建城史。
作为巴蜀地区的门户关口,重庆在历史上发挥了重要的作用。
图1 为宋朝重庆古城位置图。
据此完成1-2 题。
图11.古代,重庆作为巴蜀地区主要门户关口的优势条件是①水运便利②良田充足③水源充沛④易守难攻A.①②B.②③C.①④D.③④2.推测古代商品贸易主要位于A.太平门B.朝天门C.洪崖门D.镇西门南京先锋书店以学术、文化沙龙、咖啡、创意等多种形式相结合的经营模式,为读者提供公共和独立阅读空间的民营书店。
近年该书店的业务拓展主要由城市转向乡村。
2023 年广东省首家先锋书店在开平市塘口镇建成---先锋天下粮仓书店(该书店由上世纪 60 年代的旧筒状粮仓改造而成)。
图2 为先锋天下粮仓书店改建前后对比图。
据此完成3-5 题。
图23.近年来,先锋书店的业务拓展主要由城市转向乡村的原因是,城市A.融资困难B.市场饱和C.政策收紧D.人口减少4.先锋书店选址开平市塘口镇的主要原因是当地A.消费人口多B.交通条件好C.资源价值高D.消费水平高5.先锋天下粮仓书店的成功运营,有利于①提高城镇化率②促进乡村振兴③保护历史建筑④改善人居环境A.①②B.②③C.①④D.③④中国正在逐步进入深度老龄化阶段,老年人口迁移已逐渐成为人口迁移流动的重要组成。
2019届广东省江门市高三调研测试数学(理)试题 word版
2019届广东省江门市高三调研测试数学(理科)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|230}A x x x =+-<,{|21}xB x =≥,则AB =( )A .(,3]-∞-B .(,1]-∞C .(3,0]-D .[0,1) 2. i 是虚数单位,R 是实数集,a R ∈,若12a iR i+∈-,则a =( ) A .12 B .12- C .2 D .-2 3.已知:0p a <;2:q a a >,则p ⌝是q ⌝的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要4. e 是自然对数的底数,若1(,1)x e -∈,ln a x =,1()2xb =,xc e =,则( )A .b c a >>B .a b c >> C. c b a >> D .c a b >> 5.若||1a =,||2b =,()(2)1a b a b +-=-,则向量a 与b 的夹角为( ) A .3π-B .6π- C. 3π D .6π 6.若抛物线22(0)y px p =>的焦点是双曲线222813x y p-=的右焦点,则此双曲线的离心率为( )A B 7.已知点(,)a b 在直线230x y ++=上运动,则24ab+有( )A .最大值16B 最小值16 D 8.已知两条直线,m n ,两个平面,αβ,给出下面四个命题:①//m n ,//m α ⇒ //n α ②//αβ,//m n , m α⊥⇒ n β⊥ ③m n ⊥,m α⊥⇒ //n α,或n α⊂ ④αβ⊥,//m α ⇒ m β⊥ 其中,正确命题的个数是( )A .1B .2 C.3 D .49.正项等比数列{}n a 的前n 项和n S ,若11a =,2635128a a a a +=,则下列结论正确的是( ) A .n N +∀∈,1n n S a +≤ B .n N +∃∈,312n n n n a a a a ++++=+ C. n N +∀∈,12n n n a a a ++≤ D .n N +∃∈,212n n n a a a +++= 10.已知函数()sin()(0,||)2f x x πωϕωϕ=+><的最小正周期为π,且其图像向左平移3π个单位后得到函数()cos g x x ω=的图像,则函数()f x 的图像( ) A .关于直线12x π=对称 B .关于直线512x π=对称 C. 关于点(,0)12π对称 D .关于点5(,0)12π对称 11.如图所示,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体最长的棱的长度为( )A .4B .3 C..12.设m R ∈,函数22()()()xf x x m e m =-+-(e 是自然对数的底数),若存在0x 使得01()2f x ≤,则m =( ) A .14 B .13 C. 12D .1 第Ⅱ卷二、填空题(每题5分,满分20分,将答案填在答题纸上)13.直线20x y +=被曲线222610x y x y +--+=所截得的弦长等于 .14.已知实数,x y 满足约束条件2211x y x y x y -≤⎧⎪-≥-⎨⎪+≥⎩,若目标函数2z x ay =+仅在点(3,4)取得最小值,则a 的取值范围是 .15.球O 是正方体1111ABCD A B C D -的外接球,若正方体1111ABCD A B C D -的表面积为1S ,球O 的表面积为2S ,则12S S = . 16.已知函数cos ,[,0]2()(0,1]x x f x x π⎧∈-⎪=∈,若12()f x dx π-=⎰ .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. ABC ∆的内角,,A B C 的对边分别为,,a b c ,2cos cos cos a A b C c B =+. (1)求A ;(2)若7,8a b ==,求c .18. 已知数列{}n a 的前n 项和n S ,n N +∀∈,11(21)44n n S n a =++. (1)求123,,a a a ;(2)猜想数列{}n a 的通项公式,并用数学归纳法给予证明.19. 如图,三棱柱111ABC A B C -中,侧面11BB C C 是菱形,1AB B C ⊥.(1)证明:1AC AB =; (2)若AB BC =,13CBB π∠=,12CAB π∠=,求直线1AB 与平面111A B C 所成角的正弦值.20. 在平面直角坐标系Oxy 中,(2,0)A -,(2,0)B ,P 为不在x 轴上的动点,直线PA 、PB 的斜率满足14PA PB k k =-.(1)求动点P 的轨迹Γ的方程;(2)若(3,0)T ,,M N 是轨迹Γ上两点,1MN k =,求TMN ∆面积的最大值. 21. 已知函数()ln f x x ax =-,a 是常数且a R ∈.(1)若曲线()y f x =在1x =处的切线经过点(1,0)-,求a 的值;(2)若10a e<<(e 是自然对数的底数),试证明:①函数()f x 有两个零点,②函数()f x 的两个零点12,x x 满足122x x e +>.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l的参数方程为122x y ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数),以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为4cos ρθ=. (1)写出直线l 的普通方程和曲线C 的直角坐标方程;(2)证明:直线l 与曲线C 相交于,A B 两点,并求点(1,2)M 到,A B 两点的距离之积. 23.选修4-5:不等式选讲已知函数()||2f x x a x =-+,a 是常数,且a R ∈. (1)求不等式()21f x x ≤+的解集;(2)若1x ≥-时恒有()0f x ≥,求a 的取值范围.试卷答案一、选择题1-5: DBACC 6-10:ADBAC 11、12:BC 二、填空题13. 4 14. (,2)-∞- 15. 2π16. 14π+三、解答题17.(1)由余弦定理222cos 2c a b B ac +-=,222cos 2a b c C ab+-=,得2cos cos acosA b C c B a =+= ∴1cos 2A =∵0A π<<,∴3A π=.(方法二)由正弦定理2sin a R A =,2sin b R B =,2sin c R C =, 得4sin cos 2sin cos 2sin cos 2sin()R A A R B C R C B R B C =+=+A B C π++=,所以1cos 2A =, ∵0A π<<,∴3A π=.(2)由余弦定理2222cos a b c bc A =+-, 得222178282c c =+-⨯⨯⨯ 即28150c c -+= 解得:3c =或5c =. 18.(1)分别取1,2,3n =得1113144S a a ==+,21225144S a a a =+=+,312337144S a a a a =++=+, 解得11a =,23a =,35a =. (2)猜想21n a n =-1n =时,由(1)知,11211a ==⨯-,猜想成立,假设()n k k N +=∈时,21k a k =-则1111111[(23)][(21)]4444k k k k k a S S k a k a +++=-=++-++111(23)(21)44k k k a k a +=+-+ 所以111(21)(21)44k k k a k a +-=+因为21k a k =-,所以1212(1)1k a k k +=+=+- 所以,1n k =+时21n a n =-成立, 综上所述,任意n N +∈,21n a n =-. 19.(1)连接1BC 交1B C 于点O ,连接AO ,∵四边形11BB C C 是菱形,∴11BC B C ⊥且O 为1B C 中点, ∵1AB B C ⊥,1ABBC B =,∴1B C ⊥平面1ABC ,AO ⊂平面1ABC ,∴1B C AO ⊥, O 为1B C 中点,AO 为1B C 的垂直平分线,∴1AC AB =.(2)不妨设2AB BC ==,则1BO C O =,11CO B O ==, ∵12CAB π∠=,∴1AO =,2224AB BO AO =+=,AO BO ⊥又1AO B C ⊥,1B C BO O =,∴AO ⊥平面11BB C C(方法一)以O 为原点,1,,OB OB OA 所在直线为坐标轴建立空间直角坐标系Oxyz , 则(0,0,1)A,B ,1(0,1,0)B ,(0,1,0)C - 设平面ABC 的一个法向量为(,,)n a b c =,则30n AB a c n ACb c ⎧=-=⎪⎨=--=⎪⎩, b c -==,设(1,3,n =-,直线1AB 与平面111A B C 所成角的正弦值,即直线1AB 与平面ABC 所成角的正弦值为111|||cos ,|7||||2n AB n AB n AB <>=== (方法二)设点1B 到平面ABC 的距离为h , 三棱锥1A BCB -的体积113BCB V S AO ∆=⨯⨯ 三棱锥1B ABC -的体积13ABCV S h ∆=⨯⨯ =,得h =直线1AB 与平面111A B C 所成角的正弦值,即直线1AB与平面ABC 所成角的正弦值为17h AB ==. 20.(1)设(,)P x y 为轨迹Γ上任意一点, 依题意,1224y y x x ⨯=-+-, 整理化简得:221(0)4x y y +=≠ (2)设:MN y x b =+由2214x y y x b⎧+=⎪⎨⎪=+⎩,得2252(1)04x bx b ++-=,250b ∆=->设1122(,),(,)M x y N xy ,则1285x x b+=-,2124(1)5x x b =-,12|||MN x x=-=T 到直线MN 的距离d =TMN ∆的面积1||2S MN d =⨯⨯==设22()(3)(5)f x x x =+-,'()2(3)(1)(25)f x x x x =-+-+ 解'()0f x =,得1x =或52x =-或3x =-因为250b ∆=->,即'()0f x =有且仅有一个解1x =,TMN ∆165=. 21.(1)切线的斜率'(1)1k f a ==-(1)f a =-,(1)01(1)2f ak -==---解12aa -=-,得2a = (2)①解1'()0f x a x =-=,得1x a=当10x a <<时,'()0f x >;当1x a>时,'()0f x <,所以()f x 在1x a =处取得最大值1()ln 1f a a=--(1)0f a =-<,因为10a e <<,所以1()ln 10f a a =-->,()f x 在区间1(1,)a有零点,因为()f x 在区间1(0,)a 单调递增,所以()f x 在区间1(0,)a有唯一零点.由幂函数与对数函数单调性比较及()f x 的单调性知,()f x 在区间1(,)a+∞有唯一零点,从而函数()f x 有两个零点. ②不妨设1210x x a <<<,作函数2()()()F x f x f x a =--,20x a<<, 则1()0F a=,222(1)'()'()'()0(2)ax F x f x f x a x ax -=+-=≥- 所以11()()0F x F a <=,即112()()0f x f x a --<,112()()f x f x a->又12()()f x f x =,所以122()()f x f x a->因为1210x x a <<<,所以1221,(,)x x a a -∈+∞,因为()f x 在区间1(,)a+∞单调递减,所以122x x a -<,122x x a+>又10a e <<,1e a>,所以122x x e +>22.(1)由122x ty ⎧=+⎪⎪⎨⎪=⎪⎩消去参数得直线l的普通方程为30x y +-=由4cos ρθ=,得24cos ρρθ=,曲线C 的直角坐标方程为2240x y x +-=(2)方法一:将直线l 的参数方程代入曲线C 的直角坐标方程,得22(1)(2)4(1)0+-=即210t -+=24140∆=-=>,方程有两个不同的根,即直线与曲线相交于两点由参数t 的几何意义得12||||||1MA MB t t ==(方法二)由224030x y x x y ⎧+-=⎨+-=⎩解得:x =,17y =,||||[1MA MB =+⨯-= 23.(1)依题意,||1x a -≤11x a -≤-≤,11a x a -≤≤+不等式的解集为{|11}x a x a -≤≤+(2)()0f x ≥即||20x a x -+≥等价于30x a x a ≥⎧⎨-≥⎩或0x ax a <⎧⎨+≥⎩等价于3x aa x ≥⎧⎪⎨≥⎪⎩或x a x a <⎧⎨≥-⎩ 当0a ≥时,原不等式的解集为{|}x x a ≥{|}x a x a -≤<{|}x x a =≥-当0a <时,原不等式的解集为{|}3ax x ≥因为1x ≥-时,()0f x ≥恒成立,所以01a a ≥⎧⎨-≤-⎩或013a a <⎧⎪⎨≤-⎪⎩解得1a ≥或3a ≤-,即a 的取值范围为(,3][1,)-∞-+∞(方法二)3,(),x a x af x x a x a-≥⎧=⎨+<⎩()f x 是单调递增函数,当1x ≥-时,()f x 的最小值为(1)|1|2f a -=+-()0f x ≥恒成立当且仅当|1|20a +-≥,即|1|2a +≥解得:1a ≥或3a ≤-,即a 的取值范围为(,3][1,)-∞-+∞.。
(完整word)2019年1月广东省普通高中学业水平考试数学试卷(含答案),
2019 年 1 月广东省高中学业水平考试数学一、选择题:本大题共15 小题,每题 4 分,满分60 分 .在每题给出的四个选项中,只有一项为哪一项切合题目要求的.1.已知会合A.{0,2}A={0,2,4}, B={-2,0,2}, 则B.{-2,4}C.[0,2]A∪ B=()D.{-2,0,2,4}1.D【分析】由并集的定义,可得A∪ B={-2,0,2,4}.应选 D.2.设i 为虚数单位,则复数i(3+i)=()A.1+3iB.-1+3iC.1-3iD.-1-3i2.B【分析】 i(3+i)=3i+i2=3i-1.应选 B.3.函数y=log 3(x+2)的定义域为()A.(- 2,+∞)B.(2,+∞)C.[- 2,+∞)D.[2,+∞)3.A【分析】要使y=log 3( x+2) 存心义,则x+2>0 ,解得 x>-2 ,即定义域为(-2,+∞故).选 A.4.已知向量 a=(2,-2), b=(2,-1), 则|a+b|=()A.1B.5C.5D.254.C【分析】由a=(2,-2), b=(2,-1), 可得 a+b=(4,-3), 则 |a+b|=42+(-3) 2=5.应选 C.5.直线 3x+2y-6=0 的斜率是 ()3322A. 2B.- 2C.3D.-3335.B【分析】直线3x+2 y-6=0 ,可化为 y=-2x+3,故斜率为 -2.应选 B.6.不等式x2-9<0的解集为()A.{ x|x<-3}B.{ x|x<3}C.{ x|x<-3或 x>3}D.{ x|-3<x<3}6.D【分析】由x2-9<0,可得 x2<9,的 -3< x<3. 应选 D.a7.已知 a>0 ,则=()3a21321 A. a2 B. a2 C.a3 D. a37.D2a21【分析】3a2=a ,则= a2=a1- =a .应选 D.3333a2a38.某地域连续六天的最低气温(单位 :℃ )为 :9,8,7,6,5,7,则该六天最低气温的均匀数和方差分别为()582A.7和3 B.8 和3 C.7 和 1 D.8 和3-121222228.A【分析】均匀数x=6×(9+8+7+6+5+7)=7, 方差s =6[(9-7)+(8-7)+(7-7) +(6-7)+(5-7)+(7-257)]= 3.应选 A.9.如图 ,长方体 ABCD -A1B1C1D1中 ,AB=AD =1,BD 1=2,则 AA1=()D1C1A1B1D CA BA.1B. 2C.2D. 39.B【分析】在长方体中,BD12=AB2+AD2+AA12,则 22=12+12+AA12,解得 AA1= 2.应选 B.10.命题“?x∈R , sinx+1≥ 0的”否认是 ()A. ?x0R sinx0+1<0B.? x R sinx+1<0C.?x0∈R , sinx0+1≥0D.? x∈ R, sinx+1≤010.A【分析】全称命题的否认是把全称量词改为存在量词,并否认结论,则原命题的否认为“? x0∈R, sinx0+1<0 ”故.选 A.x-y+3≥0,11.设 x,y 知足拘束条件x+y-1≤0,则 z=x-2y 的最大值为 ()y≥0,A.-5B.-3C.1D.411.C【分析】作出拘束条件表示的平面地区如下图,当直线z=x-2y 过点 A(1,0)时, z 取得最大值, z max=1-2 ×0=1.应选 C.yC 3 2 1B O A3 2 1 1 x12.已知圆 C 与 y 轴相切于点 (0,5) ,半径为5,则圆 C 的标准方程是()A.( x-5) 2+(y-5)2=25B.(x+5) 2+(y-5)2=25C.(x-5) 2+(y-5) 2=5 或 (x+5) 2+(y-5) 2=5D.( x-5) 2+(y-5)2=25 或 (x+5) 2+(y-5) 2=2512.D【分析】由题意得圆 C 的圆心为 (5,5)或 (-5,5),故圆C 的标准方程为 (x-5)2+(y-5) 2=25或( x+5) 2+(y-5)2=25.应选 D.→→→→→13.如图,△ABC 中, AB=a,AC=b, BC=4BD ,用 a,b 表示 AD ,正确的选项是 ()AB D C→ 1 3 → 5 1 A. AD =4a+4bB.AD =4a+4b→ 3 1 → 5 1C.AD =4a+4bD.AD =4a-4b→ → → →→ →→ 3 → 1 →→3 113.C 【分析】由 BC=4BD ,可得 AC-AB=4( AD -AB ),则 AD =4AB +4AC ,即 AD= 4a+4b.应选C.14.若数列 { a n } 的通项 a n =2n-6,设 b n =|a n |,则数列 { b n } 的前 7 项和为 () A.14 B.24 C.26 D.2814.C【 解 析 】 当 n ≤3时 , a n ≤0, b n =|a n |=-a n =6-2n, 即 b 1=4,b 2=2 , b 3=0. 当 n>3 时 ,a n >0,b n =|a n |=a n =2 n-6,即 b 4=2,b 5=4 ,b 6=6,b 7=8.因此数列 { b n } 的前 7 项和为 4+2+0+2+4+6+8=26.应选 C.x 2 y 215.已知椭圆 a 2+b 2=1( a>b>0) 的长轴为 A 1A 2, P 为椭圆的下极点,设直线 PA 1,PA 2 的斜率分别为 k 121 21,则该椭圆的离心率为(),k ,且 k ·k =-23 211A. 2B. 2C.2D.415.B 【分析】由题意得A 1(-a,0),A 2(a,0),P(0,-b),则 k 1=-b b b21a,k 2= ,则 k 1·k 2=- 2=- ,即 a 2=2b 2,aa2c c 2 b 22=2因此 c 2=a 2-b 2=b 2,离心率 e= =a 2=2b2.应选 B.a二、填空题:本大题共 4 小题,每题 4 分,满分 16 分 .16.已知角 α的极点与坐标原点重合,终边经过点P(4,-3) ,则 cos α=______.4x 416.5 【分析】由题意得x=4,y=-3 ,r = x 2+y 2=42+(-3) 2=5,cos α= r =5.17.在等比数列 { a n } 中, a 1=1, a 2=2,则 a 4=______.a 217.8 【分析】设等比数列{ a n } 的公比为 q,由题意得 q=a 1=2,则 a 4=a 1q 3=1×23=8.18.袋中装有五个除颜色外完整同样的球,此中 2 个白球, 3 个黑球, 从中任取两球, 则拿出的两球颜色同样的概率是 ______.18.5 【分析】记 2 个白球分别为白,白 2,3 个黑球分别为黑1,黑 2,黑 3,从这 5 个球中任21取两球,全部的取法有 { 白 1,白21 1 } , { 白 1 ,黑2 } ,{ 白1 ,黑3 } ,{ 白 2 ,黑 1} ,} ,{ 白 ,黑 { 白 2,黑 2} , { 白 2,黑 3} , { 黑 1 ,黑 2} , { 黑 1 ,黑 3} , { 黑 ,黑 } ,共 10 种 .此中拿出的 2 34 2两球颜色同样取法的有4 种,因此所求概率为 p=10=5.19.已知函数f(x)是定义在(- ∞, +∞)上的奇函数,当x ∈ [0,+∞)时,f( x)=x 2-4x ,则当 x ∈ (-∞,0)时, f(x)=______.19.-x2-4x【分析】 当x ∈ (-∞,0)时,-x ∈ (0,+∞由),奇函数可得f( x)=- f(-x)=-[(- x)2-4(- x)]=- x 2 -4x.三、解答题:本大题共2 小题,每题12 分,满分 24 分 .解答须写出文字说明、证明过程和演算步骤.20.△ABC 的内角A,B,C 的对边分别为a,b,c ,已知3cosA=5, bc=5.(1) 求 △ABC 的面积;(2) 若 b+c=6,求 a 的值 .20.【分析】 (1) ∵A 是 △ABC 的内角,即 A ∈ (0, π),cosA=3,∴ sinA= 1-cos 2A= 4.55 1 1 4 又 bc=5,∴ S △ABC =bcsinA= ×5× =2.225b 2+c 2- a 2 3(2) 由 cosA=2bc=5,bc=5 ,可得 b 2+c 2 -a 2=6.由 bc=5,b+c=6,可得 b 2+c 2=(b+c)2-2bc=26. ∴ 26-a 2=6,解得 a=2 5.21.如图,三棱锥P-ABC 中, PA ⊥ PB,PB ⊥ PC,PC ⊥ PA,PA=PB=PC=2,E 是 AC 的中点,点 F在线段 PC 上 .(1) 求证: PB ⊥ AC;(2) 若 PA ∥平面 BEF,求四棱锥 B-APFE 的体积 .1(参照公式:锥体的体积公式V=3Sh ,此中 S 是底面积, h 是高 .)PFA E CB21.【分析】 (1)∵ PA⊥ PB,PB⊥PC ,PA? 平面 PAC ,PC? 平面 PAC,PA∩PC=P,∴ PB⊥平面 PAC.又AC? 平面 PAC,∴ PB⊥ AC.(2) ∵ PA∥平面 BEF,PA? 平面 PAC,平面 BEF∩平面 PAC=EF,∴ PA∥EF .又 E 为 AC 的中点,∴ F 为 PC 的中点 .3∴S 四边形APFE=S△PAC- S△FEC=4S△PAC .∵PC ⊥PA,PA=PC=2,∴ S△PAC =12×2×2=2.3∴S 四边形APFE=2.由(1) 得 PB ⊥平面 PAC,∴PB =2 是四棱锥B-APFE 的高 .113∴V 四棱锥B-APFE= S 四边形APFE·PB =× ×2=1.332。
广东省汕头市金山中学2019届高三上学期期中考试 数学(理)试卷 Word版含解析
拼搏的你,背影很美! 2019届广东省汕头市金山中学 高三上学期期中考试 数学(理)试题 数学 注意事项: 1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、单选题1.若集合M ={x|x 2−x <0},N ={y|y =a x (a >0,a ≠1)},R 表示实数集,则下列选项错误的是A .M ∩N =MB .M ∪N =RC .M ∩C R N =ϕD .∁R M ∪N =R2.设复数z 1,z 2在复平面内对应的点关于实轴对称,若z 1=1+3i1−i ,则z 1+z 2等于A .4iB .−4iC .2D .−23.已知P 、M 、N 是单位圆上互不相同的三个点,且满足|PM ⃗⃗⃗⃗⃗⃗|=|PN ⃗⃗⃗⃗⃗⃗ |,则PM ⃗⃗⃗⃗⃗⃗ ⋅PN ⃗⃗⃗⃗⃗⃗的最小值是A .−14B .−12C .−34 D .−14.如图所示,某地一天6~14时的温度变化曲线近似满足函数,则这段曲线的函数解析式可以为( )A .,B .,C .,D ., 5.函数f(x)=x 2−2e |x|的图象大致是 A . B . C . D . 6.命题:p :∃x 0∈R ,x 4−x 2+1<0;命题q :∀α,β∈R ,sinα−sinβ≤sin(α−β),则下列命题中的假命题为 A .p ∨(¬q) B .(¬p)∨(¬q) C .(¬p)∧(¬q) D .p ∧q 7.设x ,y 满足约束条件{3x −y −6≤0x −y +2≥0x ≥0,y ≥0 若目标函数z =ax +y(a >0)的最大值为18,则a 的值为 A .3 B .5 C .7 D .9 8.已知函数()2sin 4f x x πω⎛⎫=+ ⎪⎝⎭(0ω>)的图象在区间[]0,1上恰有3个最高点,则ω的取值范围为 A .1927,44ππ⎡⎫⎪⎢⎣⎭ B .913,22ππ⎡⎫⎪⎢⎣⎭ C .1725,44ππ⎡⎫⎪⎢⎣⎭ D .[)4,6ππ 9.如图1所示,是一个棱长为2的正方体被削去一个角后所得到的几何体的直观图,其中11DD =, 12AB BC AA ===,若此几何体的俯视图如图2所示,则可以作为其正视图的是此卷只装订不密封级姓名准考证号考场号座位号A .B .C .D .101111ABCD A B C D -内部有一圆柱,此圆柱恰好以直线1AC 为轴,则该圆柱侧面积的最大值为ABC. D.11.已知函数()ln f x ax e x =+与()2ln x g x x e x =-的图象有三个不同的公共点,其中e 为自然对数的底数,则实数a 的取值范围为A .a e <-B .1a >C .a e >D .3a <-或1a >12.记{}min ,,a b c 为,,a b c 中的最小值,若,x y 为任意正实数,则11min 2,,M x y y x ⎧⎫=+⎨⎬⎩⎭的最大值是A.1 B .2 C.2 D二、填空题13.如图所示,在边长为1的正方形OABC 中任取一点M .则点M 恰好取自阴影部分的概率是 .14.向量a ⃗ ,b ⃗ ,c ⃗ 满足:|a ⃗ |=4,|b ⃗ |=4√2,b ⃗ 在a ⃗ 上的投影为4,(a ⃗ −c ⃗ )⋅(b ⃗ −c ⃗ )=0,则b ⃗ ⋅c ⃗ 的最大值是______.15.数列{a n }且a n ={1n 2+2n ,n 为奇数sin nπ4,n 为偶数 ,若S n 为数列{a n }的前n 项和,则S 2018=______. 16.已知函数f(x)(x ∈R)满足f(x)+f(−x)=6,函数g(x)=2x−3x−1+x x+1,若曲线y =f(x)与y =g(x)图象的交点分别为(x 1,y 1),(x 2,y 2),…,(x m ,y m ).则∑(m i=1x i +y i )=______ 三、解答题 17.已知等差数列{a n }的公差为d ,且关于x 的不等式a 1x 2−dx −3<0的解集为(−1,3), (Ⅰ)求数列{a n }的通项公式; (Ⅱ)若b n =2(a n +12)+a n ,求数列{b n }前n 项和S n . 18.如图,在ΔABC 中,内角A,B,C 所对的边分别为a,b,c ,且2acosC −c =2b . (1)求角A 的大小; (2)若∠ABC =π6,AC 边上的中线BD 的长为√35,求∆ABC 的面积. 19.已知函数f(x)=|x −1|+|x −3|. (1)解不等式f(x)≤x +1; (2)设函数f(x)的最小值为c ,实数a ,b 满足a >0,b >0,a +b =c ,求证:a 2a+1+b 2b+1≥1. 20.四棱锥S −ABCD 的底面ABCD 为直角梯形,AB//CD ,AB ⊥BC ,AB =2BC =2CD =2,△SAD 为正三角形. (Ⅰ)点M 为棱AB 上一点,若BC//平面SDM ,AM ⃗⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ ,求实数λ的值; (Ⅱ)若BC ⊥SD ,求二面角A −SB −C 的余弦值. 21.在平面直角坐标系xOy 中,已知圆C 1:(x +3)2+(y -1)2=4和圆C 2:(x -4)2+(y -5)2=4.拼搏的你,背影很美!(1)若直线l过点A(4,0),且被圆C1截得的弦长为l的方程;(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和圆C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,试求所有满足条件的点P的坐标.22.已知函数f(x)=(x+b)(e x−a),(b>0),在(−1,f(−1))处的切线方程为(e−1)x+ey+ e−1=0.(1)若n≤0,证明:f(x)≥nx2+x;..(2)若方程f(x)=m有两个实数根x1,x2,且x1<x2,证明:x2−x1≤1+m(1−2e)1−e拼搏的你,背影很美! 2019届广东省汕头市金山中学高三上学期期中考试 数学(理)试题数学 答 案参考答案1.B【解析】【分析】先化简M ,N ,再根据集合的运算和集合的之间的关系即可求出.【详解】∵集合M ={x|x 2−x <0}=(0,1),N ={y|y =a x (a >0,a ≠1)}=(0,+∞),∴M ∩N =M ,M ∪N =(0,+∞),∁R N =(−∞,0],∁R M =(−∞,0]∪[1,+∞),∴ M ∩C R N =ϕ,∁R M ∪N =R 故选:B .【点睛】本题考查集合的运算及包含关系的判断及应用,属于基础题.2.D【解析】【分析】利用复数的运算法则可得:z 1,再利用几何意义可得z 2.【详解】z 1=1+3i 1−i =(1+3i)(1+i)(1−i)(1+i)=−2+4i 2=−1+2i ,∵复数z 1,z 2在复平面内对应的点关于实轴对称,∴z 2=−1−2i ,则z 1+z 2=−2.故选:D .【点睛】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.3.B【解析】试题分析:解:根据题意,不妨设点P 的坐标为(1,0),点M 的坐标为(cosθ,sinθ),点N 的坐标为,其中0<θ<π则PM ⃗⃗⃗⃗⃗⃗ =(cosθ−1,sinθ),PN ⃗⃗⃗⃗⃗⃗ =(cosθ−1,−sinθ)所以PM ⃗⃗⃗⃗⃗⃗ ·PN ⃗⃗⃗⃗⃗⃗ =(cosθ−1,sinθ)⋅(cosθ−1,−sinθ)=(cosθ−1)2−sin 2θ =cos 2θ−2cosθ+1−sin 2θ=2cos 2θ−2cosθ=2(cosθ−12)2−12 所以当cosθ=12时,PM ⃗⃗⃗⃗⃗⃗ ·PN ⃗⃗⃗⃗⃗⃗ 有最小值−12 考点:1、单位圆与三角函数的定义;2、向量的数量积;3、一元二次函数的最值问题. 4.A 【解析】由于()2214616,8ππωω=-==, ()13010102A =-=, 20b =, 10sin 208y x πφ⎛⎫=++ ⎪⎝⎭,过点()14,30有: 3010sin 14208πφ⎛⎫=⨯++ ⎪⎝⎭, 7sin 14πφ⎛⎫+= ⎪⎝⎭, 7242k ππφπ+=+, 52,4k k Z πφπ=-∈,取31,4k πφ==, 得310sin 2084y x ππ⎛⎫=++ ⎪⎝⎭符合题意,选A. 5.D 【解析】 【分析】 根据函数的奇偶性和代入特殊点即可选出答案. 【详解】 函数f(x)=x 2−2e |x|,可得f(−x)=f(x),可知f(x)是偶函数,排除A ; e |x|>0,当x 2−2=0时,即x =±√2时,f(x)有两个零点,x =0时,可得f(0)=−2.;排除B ; 当x >√2或x <−√2时,可得e |x|>x 2−2,图象逐渐走低; 故选:D . 【点睛】 本题主要考查了函数奇偶性及图象变换,属于中档题. 6.D 【解析】 【分析】 利用配方法求得x 4−x 2+1>0说明p 为假命题,举例说明q 为假命题,再由复合命题的真假判断得答案. 【详解】∵x 4−x 2+1=(x 2−12)2+34>0,∴命题p 为假命题;∀α,β∈R ,sin(α−β)=sin α−sin β不正确,比如α=90∘,β=−90∘,sinα−sinβ=2,而sin(α−β)=0,故命题q 为假命题,则p ∨(¬q)为真命题;(¬p)∨(¬q)为真命题;(¬p)∧(¬q)为真命题;p ∧q 为假命题. 故选:D .【点睛】本题主要考查了复合命题的真假判断与应用,考查利用配方法求函数的最值,考查三角函数值的大小判断,属于中档题.7.A【解析】【分析】由线性约束条件画出可行域,然后结合目标函数的最大值,求出a 的值.【详解】画出约束条件{3x −y −6≤0x −y +2≥0x ≥0,y ≥0的可行域,如图:目标函数z =ax +y(a >0)最大值为18,即目标函数z =ax +y(a >0)在{x −y +2=03x−y−6=0 的交点M(4,6)处,目标函数z 最大值为18,所以4a +6=18,所以a =3.故选:A .【点睛】本题主要考查了线性规划问题,作出可行域是解题的关键,属于中档题.8.C【解析】因为函数()2sin 4f x x πω⎛⎫=+ ⎪⎝⎭(0ω>)的图象在区间[]0,1上恰有3个最高点,所以172541624244ππππππωπω+≤⨯+<+⇒≤< , ω的取值范围为1725,44ππ⎡⎫⎪⎢⎣⎭,故选C. 【方法点晴】本题主要考查三角函数的图象、三角函数的周期性,属于难题.三角函数的图象与性质是高考考查的热点之一,在复习时要注意基础知识的理解与落实.三角函数的性质由函数的解析式确定,在解答三角函数性质的综合试题时要抓住函数解析式这个关键,在函数解析式较为复杂时要注意使用三角恒等变换公式把函数解析式化为一个角的一个三角函数形式,然后利用正弦(余弦)函数的性质求解. 9.C 【解析】由题意,根据该几何体的直观图和俯视图知,其正视图的长应为底面正方形的对角线长,宽应为正方体的棱长,故排除B ,D ,而在三视图中看不见的棱用虚线表示,故排除A ,所以正确答案为C. 点睛:此题主要考查空间几何体的三视图等有关方面的知识,属于中低档题型,也是最近几年高考的必考题型.此题有与以往有不同之处,就是给出了空间几何体的三视图各俯视图,去寻找正视图,注意的是,由实物图画三视图或判断选择三视图时,需要注意“长对正、高平齐、宽相等”的原则,还看得见棱的画实线,看不见的棱要画虚线. 10.D 【解析】 如图由正方体的对称性可知,圆柱的上底面必与过A 点的三个面相切,拼搏的你,背影很美! 且切点分别在线段11,,AB AC AD 上,设线段1AB 上的切点为E , 1AC ⋂面12A BD O =,圆柱上底面的圆心为1O ,半径即为1O E 记为r,则21133O F DF ===,21113AO AC ==,由12//O E O F1111AO AO E =⇒=,则圆柱的高为1323AO -=-,()2423428r r S r r r π⎛⎫- ⎪⎛⎫ ⎪=-=-≤⋅== ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭侧.应选答案D 。
2019届浙江省高三上学期第一次月考数学试题Word版含答案
2019届浙江省高三上学期月第一次月考数学试题一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合}02|{2<--=x x x A ,}01|{≤-=x x B ,则=B A ( ) A. ]1,1(- B. )1,1(- C. ∅ D. ]2,1[-2. 已知焦点在x 轴上的椭圆1322=+y m x 的离心率为21,则=m ( ) A. 6 B.6 C. 4 D. 23. 已知实数y x ,满足⎪⎩⎪⎨⎧≤+≥≥200y x y x ,则y x z +=4的最大值为( )A. 10B. 8C. 2D. 0 4. 已知R b a ∈,,则“3||≤+b a ”是“3||||≤+b a ”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 5. 一个四面体的顶点在空间直角坐标系xyz O -中的坐标分别是)1,0,1(,)0,1,1(,)1,1,0(,)0,0,0(,画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( )A B C D 6. 当4π=x 时,函数)0)(sin()(>+=A x A x f ϕ取得最小值,则函数)43(x f y -=π是( ) A. 奇函数且图像关于点)0,2(π对称 B. 偶函数且图像关于点)0,(π对称C. 奇函数且图像关于直线2π=x 对称 D. 偶函数且图像关于点π=x 对称7. 已知}{n a 是等差数列,其公差为非零常数d ,前n 项和为n S ,设数列}{nS n的前n 项和为n T ,当且仅当6=n 时,n T 有最大值,则da 1的取值范围为( ) A. )25,(--∞ B. ),3(+∞- C. )25,3(-- D. ),25()3,(+∞---∞ 8. 把7个字符1,1,1,A ,A ,α,β排成一排,要求三个“1”两两不相邻,且两个“A ”也不相邻,则这样的排法共有( )A. 12种B. 30种C. 96种D. 144种9. 已知函数)(x f 的定义域为),2[+∞-,且1)2()4(=-=f f ,)(x f '为)(x f 的导函数,函数)(x f y '=的图像如图所示,则平面区域⎪⎩⎪⎨⎧<+≥≥1)2(00b a f b a 所围成的面积是( ) A. 2 B. 4 C. 5D. 810. 如图,矩形ADFE ,矩形CDFG ,正方形ABCD 两两垂直,且2=AB ,若线段DE 上存在点P 使得BP GP ⊥,则边CG 长度的最小值为( )A. 4B. 34C. 2D. 32二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.在ABC ∆中,若2=b ,120=A ,三角形的面积3=S ,则=c ________;三角形外接圆的半径为________.12.已知nxx )13(2-的展开式中所有二项式系数和为64,则=n _______;二项展开式中含3x 的系数为________.13.已知一个袋子中装有4个红球和2个白球,假设每一个球被摸到的可能性是相等的,若从袋子中摸出3个球,记摸到的白球的个数为ζ,则1=ζ的概率是_______;随机变量ζ的期望是_______.14.过点)1,0(M 且斜率为1的直线l 与双曲线)0,0(1:2222>>=-b a by a x C 的两渐近线交于点B A ,,且2=,则直线l 的方程为________;如果双曲线的焦距为102,则b 的值为________.15.已知函数⎪⎩⎪⎨⎧<≥-=0304)(2x xx x x x f ,,,若函数b x x f x g +-=3|)(|)(有三个零点,则实数b 的取值范围为_________.16.设y x ,为实数,若1422=++xy y x ,则y x +2的最大值是________.17.在平面内,6=⋅=⋅=⋅,动点M P ,满足2||=,=,则2||的最大值是_______.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤. 18.(本题满分14分)已知函数a x x x f +-=)3sin(cos 4)(π的最大值为2.(1)求a 的值及函数)(x f 的最小正周期;(2)在ABC ∆中,若B A <,且1)()(==B f A f ,求ABBC的值.19.(本题满分15分)在四棱锥ABCD P -中,侧面⊥PAD 底面ABCD ,底面ABCD 为梯形,CD AB //,90=∠=∠BCD ABC ,22===ABCD BC . (1)证明:PA BD ⊥;(2)若PAD ∆为正三角形,求直线PA 与平面PBD 所成角的余弦值.20.(本题满分15分)已知函数x x x f ln )(=,)1()(2-=x x g λ(λ为常数).(1)若函数)(x f y =与函数)(x g y =在1=x 处有相同的切线,求实数λ的值. (2)若21=λ,且1≥x ,证明:)()(x g x f ≤.21.(本题满分15分)已知正数数列}{n a 的前n 项和为n S ,满足)2(12≥+=-n S S a n n n ,11=a .(1)求数列}{n a 的通项公式;(2)设)1()1(2n n n a a a b ---=,若n n b b >+1对任意*∈N n 恒成立,求实数a 的取值范围.22.(本题满分15分)已知抛物线C 顶点在原点,焦点在y 轴上,抛物线C 上一点)2,(a Q 到焦点的距离为3,线段AB 的两端点),(11y x A ,),(22y x B 在抛物线C 上. (1)求抛物线C 的方程;(2)若y 轴上存在一点)0)(,0(>m m M ,使线段AB 经过点M 时,以AB 为直径的圆经过原点,求m 的值;(3)在抛物线C 上存在点),(33y x D ,满足213x x x <<,若ABD ∆是以角A 为直角的等腰直角三角形,求ABD ∆面积的最小值.2019届浙江省高三上学期月第一次月考数学试题答案二、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.三、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分. 11. 2;2 12. 6;540- 13.53;1 14. 1+=x y ;1 15.]0,41()6,(---∞ 16. 5102 17. 16 四、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.【解析】(1)a x x x x f +-=)cos 23sin 21(cos 4)( a x x x +-=2cos 32cos sin 2 32cos 32sin -+-=a x x 3)32sin(2-+-=a x π)(x f 最大值为2,3=∴a .)(x f 最小正周期为π;(2))32sin(2)(π-=x x f ,因为1)()(==B f A f ,4π=∴A ,π127=B 6π=∴C ,则22122sin sin ====CAc a AB BC .19.【解析】(1)因为2=DC ,2=BC ,4=AB ,又底面ABCD 为直角梯形,所以AD DB ⊥, 根据面⊥PAD 底面ABCD ,所以⊥DB 面PAD ,又⊂PA 面PAD ,所以PA DB ⊥. (2)如图所示,建立空间直角坐标系xyz D -,)0,0,0(D ,)0,0,22(A ,)6,0,2(P ,)0,22,0(B ,)6,0,2(-=,)6,0,2(=,)0,22,0(=,设面PBD 的法向量为),,(z y x =,所以⎩⎨⎧==+022062y z x ,取)1,0,3(-=n ,设线面角为θ,则2322262sin =⨯=θ,21cos =θ, 即直线PA 与平面PBD 所成角的余弦值为21.20.【解析】(1)1ln ln 11)(+=⨯+⋅='x x xx x f ,x x g λ2)(=', 因为在1=x 处有相同的切线,所以)1()1(g f '=',则λ21=,即21=λ. (2)若21=λ,则)1(21)(2-=x x g ,设)()()(x g x f x H -=, 则2121ln )(2+-=x x x x H ,x x x H -+='1ln )(,11)(-=''xx H ,因为1≥x ,所以0)(≤''x H ,即)(x H '单调递减,又因为0)1(='H ,所以0)(≤'x H ,即)(x H 单调递减,而0)1(=H ,所以0)(≤x H ,即)()(x g x f ≤.21.【解析】(1)因为)2(12≥+=-n S S a n n n ,所以n n n S S a +=++121,两式相减得: n n n n a a a a +=-++1221,化简得:11=-+n n a a ,可以得出}{n a 为等差数列,又11=a ,所以n a n =.(2)设)1()1(2n n n a a a b ---=,则)1()1(2n a n b n ---=a n a n -+-+=1)2(2,同理an n a n a n b n +=-++-++=+2211)1)(2()1(, 因为n n b b >+1恒成立,所以a n a n an n -+-+>+1)2(22n a 21->, 所以1->a .22.【解析】(1)设抛物线的方程为py x 22=,抛物线的焦点为F ,则223||pQF +==,所以1=p , 则抛物线C 的方程为y x 42=.(2)设直线AB 的方程为m kx y +=,要使以AB 为直径的圆经过原点,则只需0=⋅OB OA 即可,联立方程⎩⎨⎧+==mkx y yx 420442=--⇒m kx x ,则k x x 421=+,m x x 421-=, 221212212121)(m x x km x x k x x y y x x ++++=+=⋅0444222=++--=m m k m k m , 解得:4=m .(3)如图所示,设)4,(211x x A ,)4,(222x x B ,)4,(233x x C ,根据抛物线关于y 轴对称,取01≥x ,记1k k AB =,2k k AD =,则有4121x x k +=,4132x x k +=,所以1124x k x -=,1234x k x -=,121-=⋅k k , 又因为ABD ∆是以A 为顶点的等腰直角三角形,所以||||AD AB =,即||1||113221221x x k x x k -⋅+=-⋅+,将32,x x 代入得: |24|1|24|122221121x k k x k k -⋅+=-⋅+进而化简求出1x ,得:1213112244k k k x +-=, 则212121212)44()1(21||21k k k k AB S ABD ++⨯+⨯=⋅=∆,可以先求||AB 的最小值即可,1212121441||k k k k AB ++⋅+=,令t t t t t t t y ++=++⋅+=2232222)1(11,则222322212)()1)(12()(2)1(23t t t t t t t t y +++-+⋅⋅+='222321222233212)()1()1()()12233()1(t t t t t t t t t t t t t t +-+-+=+----++= 222212)()1)(1()1(t t t t t ++-+=, 所以可以得出当1=t 即11=k 时,||AB 最小值为24,此时01=x ,即当)0,0(A ,)4,4(B ,)4,4(-D 时,ABD ∆为等腰直角三角形,且此时面积最小,最小值为16.。
2019年1月广东省普通高中学业水平测试数学模拟测试卷6套及答案详细解析
2019年1月广东省普通高中学业水平测试数学模拟测试卷(一)(时间:90分钟满分:100分)一、选择题(共15小题,每小题4分,共60分)1.已知集合M={1,2,4,8},N={2,4,6,8},则M∩N=()A.{2,4}B.{2,4,8}C.{1,6}D.{1,2,4,6,8}2.复数z=i·(1+i)(i为虚数单位)在复平面上对应的点位于 ()A.第一象限B.第二象限C.第三象限D.第四象限3.下列函数中,与函数y=定义域相同的函数为()A.y=B.y=C.y=x-2D.y=ln x4.已知直线经过点A(0,4)和点B(1,2),则直线AB的斜率为()A.3B.-2C.2D.不存在5.设S n是等差数列{a n}的前n项和,已知a5=9,S2=4,则a2=()A.1B.2C.3D.56.函数f(x)=-x+2的零点所在的一个区间是()A.(-1,0)B.(0,1)C.(1,2)D.(2,3)7.如图所示,一个空间几何体的正视图和侧视图都是边长为2的等边三角形,俯视图是一个圆,那么这个几何体的体积为()A.πB.πC.πD.π8.已知向量a、b,|a|=2,b=(3,4),a与b夹角等于30°,则a·b等于()A.5B.C.5D.59.为了得到函数y=cos x的图象,只需要把y=cos x图象上所有的点的()A.横坐标伸长到原来的3倍,纵坐标不变B.横坐标缩小到原来的,纵坐标不变C.纵坐标伸长到原来的3倍,横坐标不变D.纵坐标缩小到原来的,横坐标不变10.在[-3,3]中取一实数赋值给a,使得关于x的方程4x2-4ax+2-a=0有两个实根的概率为()A.B.C.D.11.计算sin 240°的值为()A.-B.-C.D.12.在△ABC中,∠A、∠B、∠C所对的边长分别是2、3、4,则cos∠B的值为()A. B.C. D.-13.设x,y满足约束条件则z=x-y的最大值为()A.3B.1C.-1D.-514.函数f(x)=-cos2的单调增区间是()A.,k∈ZB.,k∈ZC.,k∈ZD.,k∈Z15.圆:x2+y2-2x-2y+1=0上的点到直线x-y=2的距离的最小值是()A.2B.1+C.-1D.1+2二、填空题(共4小题,每小题4分,共16分)16.不等式x2-3x+2<0的解集是.17.如图是某中学高二年级举办的演讲比赛上,七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的中位数为.18.计算log 28+log 2的值是.19.若双曲线=1(b>0)的渐近线方程为y=±x,则b等于.三、解答题(共2小题,每小题12分,共24分)20.在△ABC中,角A,B,C的对边分别是a,b,c,且a=10,b=8,A=60°.(1)求sin B的值;(2)求cos C的值.21.如图所示,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,PA=AB,点E为PB的中点.(1)求证:PD∥平面ACE;(2)求证:平面ACE⊥平面PBC.2019年1月广东省普通高中学业水平测试数学模拟测试卷(一)答案解析1.B【解析】由M={1,2,4,8},N={2,4,6,8},得M∩N={1,2,4,8}∩{2,4,6,8}={2,4,8}.2.B【解析】∵z=i·(1+i)=-1+i,∴选B.3.D【解析】函数y=的定义域是(0,+∞),A中函数的定义域是{x|x≠0},B中函数的定义域是{x|x≥0},C中函数的定义域是{x|x≠0},D中函数的定义域是(0,+∞).4.B【解析】由直线的斜率公式得直线AB的斜率为k==-2.5.C【解析】设等差数列{a n}的公差为d,则a5=a1+4d=9,S2=2a1+d=4,解得a1=1,d=2,∴a2=a1+d=3.6.D【解析】f(2)·f(3)==<0.7.B【解析】该几何体是底面直径和母线都为2的圆锥,其高为×2=,体积为·π·π.故选B.8.D【解析】b=(3,4)⇒|b|=5,a·b=|a|·|b|·cos<a,b>=2×5×=5.故选D.9.A【解析】观察周期2π6π,所以横坐标伸长到原来的3倍,又值域没变,所以纵坐标不变.故选A.10.D【解析】在[-3,3]中取一实数赋值给a,则-3≤a≤3,若方程4x2-4ax+2-a=0有两个实根,则判别式Δ=16a2-16(2-a)≥0,即a2+a-2≥0,解得x≥1或x≤-2,故满足条件的概率P=.故选D.11.A【解析】sin 240°=sin (180°+60°)=-sin 60°=-.故选A.12.B【解析】由余弦定理得:cos∠B=.故选B.13.B【解析】作出可行域如图所示,y=x-z,作l0:y=x,当l0移至l1,l2两直线交点H时截距-z最小,即z最大,H(-1,-2),z max=-1+2=1.故选B.14.C【解析】f(x)=-cos2==-sin 2x,即求sin 2x的单调递减区间:2kπ+≤2x≤2kπ+,k∈Z,kπ+≤x≤kπ+,k∈Z.故选C.15.C【解析】把圆的方程化为标准方程得:(x-1)2+(y-1)2=1,∴圆心坐标为(1,1),半径r=1,∴圆心到直线x-y=2的距离d=,则圆上的点到已知直线距离的最小值为d-r=-1.故选C.16.(1,2)【解析】∵x2-3x+2<0,∴(x-2)(x-1)<0,∴{x|1<x<2}.17.85【解析】去掉一个最高分93分和一个最低分79分后,余下的五个分数依次是:84,84,85,86,87,中位数是85.18.2【解析】log 28+log 2=log 2=log 24=log 222=2log 22=2×1=2.19.1【解析】由题意知,解得b=1.20.【解】(1)由正弦定理得,,∵a=10,b=8,A=60°,∴sin B=.(2)由(1)得,sin B=,且a>b,∴cos B=.又∵A=60°,∴sin A=,cos A=,∴cos C=-cos(A+B)=sin A sin B-cos A cos B==.21.【证明】(1)连接BD交AC于O,连接EO, ∵四边形ABCD为矩形,∴O为BD中点.∵E为PB的中点,∴EO∥PD.又EO⊂平面ACE,PD⊄平面ACE,∴PD∥平面ACE.(2)∵PA⊥平面ABCD,BC⊂底面ABCD,∴PA⊥BC.∵底面ABCD为矩形,∴BC⊥AB.∵PA∩AB=A,∴BC⊥平面PAB,∵AE⊂平面PAB,∴BC⊥AE.∵PA=AB,E为PB中点,∴AE⊥PB.∵BC∩PB=B,∴AE⊥平面PBC,而AE⊂平面ACE,∴平面ACE⊥平面PBC.2019年1月广东省普通高中学业水平测试数学模拟测试卷(二)(时间:90分钟满分:100分)一、选择题(共15小题,每小题4分,共60分)1.已知集合M={-1,0,1},N={x|x2=x},则M∩N=()A.{1}B.{0,1}C.{-1,0}D.{-1,0,1}2.已知等比数列{a n}的公比为2,则值为()A. B. C.2 D.43.命题“存在x0∈R,-1=0”的否定是()A.不存在x0∈R,-1=0B.存在x0∈R,-1≠0C.存在x0∈R,-1=0D.对任意的x0∈R,-1≠04.直线l过点(1,-2),且与直线2x+3y-1=0垂直,则l的方程是()A.2x+3y+4=0B.2x+3y-8=0C.3x-2y-7=0D.3x-2y-1=05.已知a、b是两条异面直线,c∥a,那么c与b的位置关系()A.一定是异面B.一定是相交C.不可能平行D.不可能垂直6.在平行四边形ABCD中,等于()A.B.C.D.||7.圆(x-1)2+y2=1与直线y=x的位置关系是 ()A.相交B.相切C.相离D.直线过圆心8.若AD为△ABC的中线,现有质地均匀的粒子散落在△ABC内,则粒子落在△ABD内的概率等于()A. B. C. D.9.一个简单几何体的正视图,侧视图如图所示,则其俯视图不可能为①长方形;②直角三角形;③圆;④椭圆.其中正确的是()A.①B.②C.③D.④10.从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1.则事件“抽到的不是一等品”的概率为()A.0.7B.0.65C.0.35D.0.311.函数f(x)=x3-2的零点所在的区间是()A.(-2,0)B.(0,1)C.(1,2)D.(2,3)12.已知实数x、y满足则z=x+y的最小值等于()A.0B.1C.4D.513.将函数y=cos x的图象向左平移个单位长度,得到函数y=f(x)的图象,则下列说法正确的是()A.y=f(x)的最小正周期为πB.y=f(x)是偶函数C.y=f(x)的图象关于点对称D.y=f(x)在区间上是减函数14.cos cos-sin sin=()A.1B.0C.-1D.15.已知函数f(x)是奇函数,且在区间[1,2]单调递减,则f(x)在区间[-2,-1]上是()A.单调递减函数,且有最小值-f(2)B.单调递减函数,且有最大值-f(2)C.单调递增函数,且有最小值f(2)D.单调递增函数,且有最大值f(2)二、填空题(共4小题,每小题4分,共16分)16.若A(1,-2,1),B(2,2,2),点P在z轴上,且|PA|=|PB|,则点P的坐标为.17.若函数f(x)=log a(x+m)+1(a>0且a≠1)恒过定点(2,n),则m+n的值为.18.已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边为射线l:y=-x(x≤0),则cos θ的值是.19.已知椭圆的中心在原点,焦点在x轴上,离心率为,且过点P(-5,4),则椭圆的方程为.三、解答题(共2小题,每小题12分,共24分)20.如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,E、F分别为DD1、DB的中点.(1)求证:EF∥平面ABC1D1;(2)求证:EF⊥B1C;(3)求三棱锥的体积.21.甲,乙两组各4名同学参加学校组织的“抗日战争历史知识知多少”抢答比赛,他们答对的题目个数用茎叶图表示,如图,中间一列的数字表示答对题目个数的十位数,两边的数字表示答对题目个数的个位数.(1)求甲组同学答对题目个数的平均数和方差;(2)分别从甲,乙两组中各抽取一名同学,求这两名同学答对题目个数之和为20的概率.2019年1月广东省普通高中学业水平测试数学模拟测试卷(二)答案解析1.B【解析】x2-x=0⇒x(x-1)=0⇒N={0,1},∴M∩N={0,1}.2.D【解析】=q2=4.3.D4.C【解析】设直线l:3x-2y+c=0,因为(1,-2)在直线上,代点的坐标到直线方程得c=-7.故选C.5.C【解析】a、b是两条异面直线,c∥a,那么c与b异面和相交均有可能,但不会平行.因为若c∥b,又c∥a,由平行公理得a∥b,与a、b是两条异面直线矛盾.故选C.6.A【解析】,故选A.7.A【解析】由圆的方程得到圆心坐标为(1,0),半径r=1,所以(1,0)到直线y=x的距离d=<1=r,则圆与直线的位置关系为相交.故选A.8.C【解析】P=.故选C.9.C【解析】其俯视图若为圆,则正视图中的长度与侧视图中的宽度应一样,由图中可知其主视图与侧视图的宽度不一样,因此其俯视图不可能是圆.故选C.10.C【解析】∵事件A={抽到一等品},且P(A)=0.65,∴事件“抽到的不是一等品”的概率为P=1-P(A)=1-0.65=0.35.故选C.11.C【解析】∵f(1)=(1)3-2=-1<0,f(2)=(2)3-2=6>0.故选C.12.B【解析】作出已知不等式组所表示的可行域,如图,可知目标z=x+y经过点(0,1)时,z 取最小值∴z=0+1=1.故选B.13.D【解析】将函数y=cos x的图象向左平移个单位长度,得到函数y=f(x)=cos=-sin x的图象,再结合正弦函数的图象特征.故选D.14.B15.B【解析】因为函数f(x)是奇函数,所以f(-2)=-f(2),f(-1)=-f(1),又f(x)在区间[1,2]单调递减,所以f(1)>f(2)⇒-f(1)<-f(2)⇒f(-1)<f(-2)f(x)在区间[-2,-1]上是单调递减函数,且有最大值-f(2).故选B.16.(0,0,3)【解析】设P(0,0,z),由|PA|=|PB|,得1+4+(z-1)2=4+4+(z-2)2,解得z=3,故点P的坐标为(0,0,3).17.0【解析】f(x)=log a(x+m)+1过定点(2,n),则log a(2+m)+1=n恒成立,∴∴m+n=0.18.-【解析】终边在y=-x(x≤0)上,∴cos θ<0.⇒cos θ=-.19.=1【解析】设椭圆的方程为=1(a>b>0),将点(-5,4)代入得=1,又离心率e=,即e2=,所以a2=45,b2=36,故椭圆的方程为=1.20.【解】(1)证明:连接BD1,如图,在△DD1B中,E、F分别为D1D,DB的中点,则⇒EF∥平面ABC1D1.⇒⇒EF⊥B1C.(3)∵CF⊥平面BDD1B1,∴CF⊥平面EFB1且CF=BF=,∵EF=BD1=,B1F=,B1E==3.∴EF2+B1F2=B1E2,即∠EFB1=90°,∴·CF=·EF·B1F·CF==1.21.【解】(1)由题图可得,甲组答对题目的个数:8,9,11,12,∴=10,×[(8-10)2+(9-10)2+(11-10)2+(12-10)2]=.(2)由题图可得,乙组答对题目的个数:8,8,9,11,设事件“两名同学答对题目个数之和为20”为事件A,以(x,y)记录甲,乙两组同学答对题目的个数,满足“从甲,乙两组中各抽取一名同学”的事件有:,共16种.满足事件A的基本事件为:,共4种,∴P(A)=.答:两名同学答对题目个数之和为20的概率为.2019年1月广东省普通高中学业水平测试数学模拟测试卷(三)(时间:90分钟满分:100分)一、选择题(共15小题,每小题4分,共60分)1.设集合A={1,2},B={2,3,4}则A∪B=()A.{1,2,3,4}B.{1,2,2,3,4}C.{2}D.{1,3,4}2.下列函数中,为偶函数的是()A.f(x)=xB.f(x)=sin xC.f(x)=D.f(x)=x23.若点P(-3,4)在角α的终边上,则cos α=()A.-B.C.-D.4.如果向量a=(2,1),b=(-3,4),那么向量3a+4b的坐标是()A.(19,-6)B.(-6,19)C.(-1,16)D.(16,-1)5.已知直线的点斜式方程是y-2=-(x-1),那么此直线的倾斜角为 ()A. B. C. D.6.在复平面内,复数i(i-1)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限7.要得到函数y=cos(2x+1)的图象,只要将函数y=cos 2x的图象()A.向左平移1个单位B.向右平移1个单位C.向左平移个单位D.向右平移个单位8.下列说法不正确的是()A.空间中,一组对边平行且相等的四边形一定是平行四边形B.同一平面的两条垂线一定共面C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内D.过一条直线有且只有一个平面与已知平面垂直9.函数f(x)=的零点所在的区间为()A.B.C.D.10.已知等差数列{a n}中,a2=2,a4=6,则前4项的和S4等于()A.8B.10C.12D.1411.某几何体的三视图及其尺寸如图所示,则这个几何体的体积是()A.6B.9C.18D.3612.双曲线=1的一个焦点为(2,0),则m的值为()A. B.1或3 C. D.13.设x,y满足约束条件则z=x-2y的最小值为()A.-10B.-6C.-1D.014.=()A.-B.-C.D.15.小李从甲地到乙地的平均速度为a,从乙地到甲地的平均速度为b(a>b>0),他往返甲、乙两地的平均速度为v,则()A.v=B.v=C.<v<D.b<v<二、填空题(共4小题,每小题4分,共16分)16.首项为1,公比为2的等比数列的前4项和S4=.17.要从165个人中抽取15人进行身体检查,现采用分层抽样的方法进行抽取,若这165人中老年人的人数为22人,则老年人中被抽到参加健康检查的人数是.18.已知函数f(x)=则f的值是.19.在△ABC中,A、B、C是三角形的三内角,a、b、c是三内角的对边,已知b2+c2-a2=bc.则∠A=.三、解答题(共2小题,每小题12分,共24分)20.已知圆C:(x-1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A、B两点.(1)当l经过圆心C时,求直线l的方程;(2)当弦AB被点P平分时,求直线l的方程;(3)当直线l的倾斜角为45°时,求弦AB的长.21.已知数列{a n}中,a1=1,a2=3,a n=3a n-1-2a n-2(n≥3).(1)求a3的值;(2)证明:数列{a n-a n-1}(n≥2)是等比数列;(3)求数列{a n}的通项公式.2019年1月广东省普通高中学业水平测试数学模拟测试卷(三)答案解析1.A2.D3.A4.B5.C【解析】∵k=tan α=-,∴α=π-.故选C.6.C【解析】i(i-1)=i2-i=-1-i,在复平面内对应的点的坐标为(-1,-1),位于第三象限.故选C.7.C【解析】y=cos 2x→y=cos(2x+1)=cos.故选C.8.D【解析】A.一组对边平行且相等就决定了是平行四边形,故A不符合题意;B.由线面垂直的性质定理知,同一平面的两条垂线互相平行,因而共面,故B不符合题意;C.由线面垂直的定义知,这些直线都在同一个平面内即直线的垂面,故C不符合题意;D.由实际例子,如把书本打开,且把书脊垂直放在桌上,则由无数个平面满足题意,故D符合题意.故选D.9.D10.C【解析】设等差数列{a n}的公差为d,则a4=a2+(4-2)d⇒d==2,a1=a2-d=2-2=0,所以S4==2(0+6)=12.故选C.11.C【解析】由题意可知:几何体是以正视图为底面的三棱柱,其底面面积S=×4×=6,高是3,所以它的体积为Sh=18.故选C.12.A【解析】∵双曲线的焦点为(2,0),在x轴上且c=2,∴m+3+m=c2=4.∴m=.13.B【解析】由z=x-2y得y=x-,作出不等式组对应的平面区域如图(阴影部分),平移直线y=x-,由图象可知当直线y=x-过点B时,直线y=x-的截距最大,此时z最小,由解得即B(2,4).代入目标函数z=x-2y,得z=2-8=-6,∴目标函数z=x-2y的最小值是-6.故选B.14.C【解析】===sin 30°=.故选C.15.D【解析】设甲地到乙地的距离为s.则他往返甲、乙两地的平均速度为v=,∵a>b>0,∴>1,∴v=>b.v=.∴b<v<.故选D.16.15【解析】S4==15.17.218.【解析】f=log2=-2,f=f(-2)=3-2=.19.60°20.【解】(1)已知圆C:(x-1)2+y2=9的圆心为C(1,0),因直线过点P、C,所以直线l的斜率为2,直线l的方程为y=2(x-1),即2x-y-2=0.(2)当弦AB被点P平分时,l⊥PC,直线l的方程为y-2=-(x-2),即x+2y-6=0.(3)当直线l的倾斜角为45°时,斜率为1,直线l的方程为y-2=x-2,即x-y=0.圆心到直线l的距离为,圆的半径为3,弦AB的长为.21.【解】(1)由已知a3=3a2-2a1=3×3-2×1=7.(2)证明:a n=3a n-1-2a n-2⇒a n-a n-1=2a n-1-2a n-2=2(a n-1-a n-2)⇒=2,所以,{a n-a n-1}(n≥2)是首项为3-1=2,公比也为2的等比数列.(3)由(2)可知,n≥2时,a n-a n-1=2·2(n-1)-1=2n-1,所以a n-a n-1=2n-1,a n-1-a n-2=2n-2,a n-2-a n-3=2n-3,…,a4-a3=23,a3-a2=22,a2-a1=21,所以a n-a1=2n-1+…+23+22+2==2×(2n-1-1)=2n-2,所以a n=2n-1(n≥2),又已知a1=1,a1=21-1=1,即a n=2n-1对于n=1也成立.故数列{a n}的通项公式是a n=2n-1(n∈N*).2019年1月广东省普通高中学业水平测试数学模拟测试卷(四)(时间:90分钟满分:100分)一、选择题(共15小题,每小题4分,共60分)1.已知集合M={1,2,3,4},集合N={1,3,5},则M∩N等于()A.{2}B.{2,3}C.{1,3}D.{1,2,3,4,5}2.函数f(x)=ln(x-3)的定义域为()A.{x|x>-3}B.{x|x>0}C.{x|x>3}D.{x|x≥3}3.下列命题中的假命题是()A.∀x∈R,2x-1>0B.∀x∈N*,(x-1)2>0C.∂x∈R,lg x<1D.∂x∈R,tan x=24.设i是虚数单位,若复数z=5(1+i)i,则z的共轭复数为()A.-5+5iB.-5-5iC.5-5iD.5+5i5.已知平面向量a=(0,-1),b=(2,2),|λa+b|=2,则λ的值为()A.1+B.-1C.2D.16.已知点A(1,2),B(3,1),则线段AB的垂直平分线的方程是()A.4x+2y=5B.4x-2y=5C.x+2y=5D.x-2y=57.如图(1)、(2)、(3)、(4)为四个几何体的三视图,根据三视图可以判断这四个几何体依次分别为()(1) (2) (3) (4)A.三棱台、三棱柱、圆锥、圆台B.三棱台、三棱锥、圆锥、圆台C.三棱柱、正四棱锥、圆锥、圆台D.三棱柱、三棱台、圆锥、圆台8.已知f(x)=x+-2(x>0),则f(x)有 ()A.最大值为0B.最小值为0C.最大值为-4D.最小值为-49.要完成下列两项调查:(1)某社区有100户高收入家庭,210户中等收入家庭,90户低收入家庭,从中抽取100户调查消费购买力的某项指标;(2)从某中学高二年级的10名体育特长生中抽取3人调查学习负担情况,应采取的抽样方法是()A.(1)用系统抽样法,(2)用简单随机抽样法B.(1)用分层抽样法,(2)用系统抽样法C.(1)用分层抽样法,(2)用简单随机抽样法D.(1)(2)都用分层抽样法10.在△ABC中,A∶B=1∶2,sin C=1,则a∶b∶c=()A.1∶2∶3B.3∶2∶1C.2∶∶1D.1∶∶211.等差数列{a n}中,a3+a4+a5=12,那么{a n}的前7项和S7=()A.22B.24C.26D.2812.抛物线y=x2的焦点到准线的距离是()A. B. C.2 D.413.=()A.-B.-C.D.14.已知某几何体的三视图都是边长为2的正方形,若将该几何体削成球,则球的最大表面积是()A.16πB.8πC.4πD.2π15.已知数列{a n}的前n项和为S n,且a1=-10,a n+1=a n+3(n∈N*),则S n取最小值时,n的值是()A.3B.4C.5D.6二、填空题(共4小题,每小题4分,共16分)16.若点(2,1)在y=a x(a>0,且a≠1)关于y=x对称的图象上,则a=.17.已知f(x)=x2+(m+1)x+(m+1)的图象与x轴没有公共点,则m的取值范围是(用区间表示).18.设f(x)=则f(f(-2))=.19.已知=1,且x>0,y>0,则x+y的最小值是.三、解答题(共2小题,每小题12分,共24分)20.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足a cos C-c sin A=0.(1)求角C的大小;(2)已知b=4,△ABC的面积为6,求边长c的值.21.已知圆C经过A(3,2)、B(1,6)两点,且圆心在直线y=2x上.(1)求圆C的方程;(2)若直线l经过点P(-1,3)且与圆C相切,求直线l的方程.2019年1月广东省普通高中学业水平测试数学模拟测试卷(四)答案解析1.C【解析】M∩N={1,2,3,4}∩{1,3,5}={1,3},故选C.2.C3.B【解析】当x=1∈N*时,x-1=0,不满足(x-1)2>0,所以B为假命题.故选B.4.B【解析】由复数z=5(1+i)i=-5+5i,得z的共轭复数为-5-5i.故选B.5.C【解析】λa+b=(2,2-λ),那么4+(2-λ)2=4,解得:λ=2.故选C.6.B【解析】线段AB的中点为,k AB==-,∴垂直平分线的斜率k==2,∴线段AB的垂直平分线的方程是y-=2(x-2)⇒4x-2y-5=0.故选B.7.C【解析】(1)三视图复原的几何体是放倒的三棱柱.(2)三视图复原的几何体是四棱锥.(3)三视图复原的几何体是圆锥.(4)三视图复原的几何体是圆台.所以(1)(2)(3)(4)的顺序为:三棱柱、正四棱锥、圆锥、圆台.故选C.8.B【解析】由x>0,可得>0,即有f(x)=x+-2≥2-2=2-2=0,当且仅当x=,即x=1时,取得最小值0.9.C10.D【解析】在△ABC中,A∶B=1∶2,sin C=1,可得A=30°,B=60°,C=90°.a∶b∶c=sin A∶sin B∶sin C=∶1=1∶∶2.故选D.11.D【解析】∵等差数列{a n}中,a3+a4+a5=12,∴3a4=a3+a4+a5=12,解得a4=4,∴S7==7a4=28.故选D.12.C【解析】方程化为标准方程为x2=4y.所以2p=4,p=2.所以焦点到准线的距离为2.故选C.13.D【解析】=cos2-sin2=cos.故选D.14.C【解析】∵三视图均为边长为2的正方形,∴几何体是边长为2的正方体, 将该几何体削成球,则球的最大半径为1,表面积是4π×12=4π.故选C.15.B【解析】在数列{a n}中,由a n+1=a n+3,得a n+1-a n=3(n∈N*),∴数列{a n}是公差为3的等差数列.又a1=-10,∴数列{a n}是公差为3的递增等差数列.由a n=a1+(n-1)d=-10+3(n-1)=3n-13≥0,解得n≥.∵n∈N*,∴数列{a n}中从第五项开始为正值.∴当n=4时,S n取最小值.故选B.16.2【解析】∵点(2,1)在y=a x(a>0,且a≠1)关于y=x对称的图象上,∴点(1,2)在y=a x(a>0,且a≠1)的图象上,∴2=a1,解得a=2.17.(-1,3)【解析】依题意Δ=(m+1)2-4(m+1)=(m+1)(m-3)<0⇒-1<m<3,故m的取值范围用区间表示为(-1,3).18.-2【解析】∵x=-2<0,∴f(-2)=1>0,∴f(10-2)=lg 10-2=-2,即f(f(-2))=-2.19.25【解析】∵=1,且x>0,y>0,∴x+y=(x+y)=13+≥13+2=25,当且仅当即x=10且y=15时取等号.20.【解】(1)在△ABC中,由正弦定理得sin A cos C-sin C sin A=0.因为0<A<π,所以sin A>0,从而cos C=sin C,又cos C≠0,所以tan C=,所以C=.(2)在△ABC中,由S△ABC=×4a×sin=6,得a=6,由余弦定理得c2=62+42-2×6×4cos=28,所以c=2.21.【解】(1)方法1:设圆C的方程为(x-a)2+(y-b)2=r2(r>0),依题意得:解得a=2,b=4,r2=5.所以圆C的方程为(x-2)2+(y-4)2=5.方法2:因为A(3,2)、B(1,6),所以线段AB中点D的坐标为(2,4), 直线AB的斜率k AB==-2,因此直线AB的垂直平分线l'的方程是y-4=(x-2),即x-2y+6=0.圆心C的坐标是方程组的解.解此方程组,得即圆心C的坐标为(2,4).圆C的半径长r=|AC|=.所以圆C的方程为(x-2)2+(y-4)2=5.(2)由于直线l经过点P(-1,3),当直线l的斜率不存在时,x=-1与圆C:(x-2)2+(y-4)2=5相离.当直线l的斜率存在时,可设直线l的方程为y-3=k(x+1),即:kx-y+k+3=0.因为直线l与圆C相切,且圆C的圆心为(2,4),半径为,所以有.解得k=2或k=-.所以直线l的方程为y-3=2(x+1)或y-3=-(x+1),即2x-y+5=0或x+2y-5=0.2019年1月广东省普通高中学业水平测试数学模拟测试卷(五)(时间:90分钟满分:100分)一、选择题(共15小题,每小题4分,共60分)1.已知集合M={-1,0,1},N={0,1,2},则M∪N=()A.{-1,0,1,2}B.{-1,0,1}C.{-1,0,2}D.{0,1}2.“sin A=”是“A=30°”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.(2016·衡阳校级模拟)已知a=(4,2),b=(6,y),且a⊥b,则y的值为()A.-12B.-3C.3D.124.若a<b<0,则下列不等式:①|a|>|b|;②;③>2;④a2<b2中,正确的有()A.1个B.2个C.3个D.4个5.已知α是第二象限角,sin α=,则cos α=()A.-B.-C.D.6.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是()A.y=x-2B.y=x-1C.y=x2-2D.y=lo x7.不等式组表示的平面区域是()8.(2016·衡阳校级模拟),则样本在(10,50]上的频率为()A.B.C.D.9.cos 40°sin 80°+sin 40°sin 10°=()A.B.-C.cos 50°D.10.函数y=log2(x2-3x+2)的递减区间是()A.(-∞,1)B.(2,+∞)C.D.11.为了大力弘扬中华优秀传统文化,某校购进了《三国演义》《水浒传》《红楼梦》和《西游记》若干套,如果每班每学期可以随机领取两套不同的书籍,那么该校高一(1)班本学期领到《三国演义》和《水浒传》的概率为()A. B. C. D.12.将函数y=sin的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移个单位,得到的图象对应的解析式是()A.y=sin xB.y=sinC.y=sinD.y=sin13.已知双曲线=1(a>0,b>0)的离心率为,则双曲线的渐近线方程为()A.y=±2xB.y=±xC.y=±xD.y=±x14.函数f(x)=log2x+x-2的零点所在的区间是 ()A.(0,1)B.(1,2)C.(2,3)D.(3,4)15.已知向量在正方形网格中的位置如图所示,若=λ+μ,则λ+μ=()A.2B.-2C.3D.-3二、填空题(共4小题,每小题4分,共16分)16.函数y=a x-1+1(a>0,且a≠1)的图象恒过定点.17.等差数列{a n}中,a2=3,a3+a4=9,则a1a6=.18.某学院A,B,C三个专业共有1 200名学生,为了调查这些学生勤工俭学的情况,拟用分层抽样的方法抽取一个容量为120的样本.已知该学院A专业有380名学生,B专业有420名学生,则该学院C专业应抽取名学生.19.设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C+c cos B=a sin A,则∠A的度数为.三、解答题(共2小题,每小题12分,共24分)20.已知向量a=,b=(sin x,cos 2x),x∈R,设函数f(x)=a·b.(1)求f(x)的最小正周期;(2)求f(x)在上的最大值和最小值.21.已知函数f(x)=1+-xα(α∈R),且f(3)=-.(1)求α的值;(2)求函数f(x)的零点;(3)判断f(x)在(-∞,0)上的单调性,并给予证明.2019年1月广东省普通高中学业水平测试数学模拟测试卷(五)答案解析1.A【解析】因为集合M={-1,0,1},N={0,1,2},所以M∪N={-1,0,1,2}.2.B【解析】因为sin 30°=,所以“sin A=”是“A=30°”的必要条件,又150°,390°等角的正弦值也是,故“sin A=”不是“A=30°”的充分条件.3.A【解析】因为a=(4,2),b=(6,y),且a⊥b,所以a·b=0,即4×6+2y=0,解得y=-12.故选A.4.C【解析】对于①,根据不等式的性质,可知若a<b<0,则|a|>|b|,故正确,对于②,若a<b<0,两边同除以ab,则,即,故正确,对于③,若a<b<0,则>0,>0,根据基本不等式即可得到>2,故正确,对于④,若a<b<0,则a2>b2,故不正确.故选C.5.B【解析】∵α是第二象限角,sin α=,∴cos α=-=-.故选B.6.A【解析】∵y=x-1是奇函数,y=lo x不具有奇偶性,故排除B,D,又函数y=x2-2在区间(0,+∞)上是单调递增函数,故排除C.故选A.7.B【解析】由题意可知(0,0)在x-3y+6=0的下方,满足x-3y+6≥0;(0,0)在直线x-y+2=0的下方,不满足x-y+2<0.故选B.8.D【解析】根据题意,样本在(10,50]上的频数为2+3+4+5=14,所求的频率为P=.故选D.9.D【解析】cos 40°sin 80°+sin 40°sin 10°=cos 40°cos 10°+sin 40°sin10°=cos(40°-10°)=.10.A【解析】由x2-3x+2>0,得x<1或x>2,又y=log2(x3-3x+2)的底数是2,所以在(-∞,1)上递减.故选A.11.D12.C【解析】将函数y=sin的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得函数y=sin,再将所得的图象向左平移个单位,得函数y=sin,即y=sin.故选C.13.D【解析】由双曲线的离心率为,则e=,即c=a,b=a,由双曲线的渐近线方程为y=±x,得其渐近线方程为y=±x.故选D.14.B【解析】函数f(x)=log2x+x-2在(0,+∞)上连续,f(1)=0+1-2<0,f(2)=1+2-2>0,故函数f(x)=log2x+x-2的零点所在的区间是(1,2).故选B.15.A【解析】如果以A为原点,AD所在直线为x轴,与AD垂直的直线为y轴建立直角坐标系,那么=(1,0),=(1,2),=(2,-2),那么解得λ=-1,μ=3,所以λ+μ=2.故选A.16.(1,2)【解析】当x-1=0,即x=1时,y=2.∴函数y=a x-1+1(a>0,且a≠1)的图象恒过定点(1,2).17.14【解析】由等差数列的通项公式可得,a3+a4=2a1+5d=9,a1+d=3,所以a1=2,d=1,所以a1a6=2×7=14.18.40【解析】抽样比为1∶10,而C学院的学生有1 200-380-420=400(名),所以按抽样比抽取40名.19.90°【解析】根据正弦定理可得2R sin B cos C+2R sin C cos B=2R sin 2A⇔sin(B+C)=sin 2A,而sin(B+C)=sin A,所以sin A=sin 2A,所以sin A=1,所以∠A=90°.20.【解】f(x)=·(sin x,cos 2x)=cos x sin x-cos 2x=sin 2x-cos 2x=cos sin 2x-sin cos 2x=sin.(1)f(x)的最小正周期为T==π,即函数f(x)的最小正周期为π.(2)∵0≤x≤,∴-≤2x-.由正弦函数的性质知,当2x-,即x=时,f(x)取得最大值1.当2x-=-,即x=0时,f(x)取得最小值-,因此,f(x)在上的最大值是1,最小值是-.21.【解】(1)由f(3)=-,得1+-3α=-,解得α=1.(2)由(1),得f(x)=1+-x.令f(x)=0,即1+-x=0,也就是=0,解得x=.经检验,x=是1+-x=0的根,所以函数f(x)的零点为.(3)函数f(x)=1+-x在(-∞,0)上是减函数.证明如下:设x1,x2∈(-∞,0),且x1<x2,则f(x1)-f(x2)==(x2-x1).因为x1<x2<0,所以x2-x1>0,x1x2>0,所以f(x1)-f(x2)>0,即f(x1)>f(x2),所以f(x)=1+-x在(-∞,0)上是减函数.2019年1月广东省普通高中学业水平测试数学模拟测试卷(六)(时间:90分钟满分:100分)一、选择题(共15小题,每小题4分,共60分)1.不等式x(x-2)≤0的解集是()A.[0,2)B.(-∞,0)∪(2,+∞)C.(-∞,0]∪[2,+∞)D.[0,2]2.全集为实数集R,M={x|-2≤x≤2},N={x|x<1},则(∁R M)∩N= ()A.{x|x<-2}B.{x|-2<x<1}C.{x|x<1}D.{x|-2≤x<1}3.命题“对任意的x∈R,x3-x2+1≤0”的否定是 ()A.不存在x0∈R,+1≤0B.存在x0∈R,+1≥0C.存在x0∈R,+1>0D.对任意的x0∈R,x3-x2+1>04.直线2x-y+2=0与坐标轴围成的三角形的面积是()A.B.1 C.2 D.45.函数f(x)=的定义域是()A.(-1,0)∪(0,+∞)B.[-1,0)∪(0,+∞)C.(-1,+∞)D.[-1,+∞)6.若复数(a∈R,i为虚数单位)是纯虚数,则实数a的值为()A.-6B.13C.D.7.设函数f(x)=则f的值为()A.18B.-C.D.8.一个几何体的三视图如图所示,则该几何体的体积是()A.πB.2πC.3πD.4π9.已知sin α=,则cos(π-2α)等于()A.-B.-C.D.10.实数x,y满足则z=x-y的最大值是()A.-1B.0C.3D.411.已知非零向量不共线,且,则向量=()A.B.C.D.12.函数f(x)=2x+3x的零点所在的一个区间是()A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)13.函数f(x)=A sin(ωx+φ)+b的图象如图所示,则f(x)的解析式为()A.f(x)=sin x+1B.f(x)=sin x+C.f(x)=sin+1D.f(x)=sin14.设α,β为钝角,且sin α=,cos β=-,则α+β的值为()A.B.C.D.15.已知数列{a n}满足a n+1=,若a1=,则a2 015=()A.2B.-2C.-1D.二、填空题(共4小题,每小题4分,共16分)16.函数y=+ln(2-x)的定义域是.17.抛物线y2=2px(p>0)上的动点Q到焦点的距离的最小值为1,则p=.18.若非零向量a,b满足|a|=|b|,(2a+b)·b=0,则a与b的夹角为.19.计算sin cos tan=.三、解答题(共2小题,每小题12分,共24分)20.在锐角三角形ABC中,角A,B所对的边长分别为a,b,且2a sin B= b.(1)求角A的大小;(2)若a=3,求△ABC周长l的最大值.21.如图,在四棱锥P-ABCD中,PC=AD=CD=AB=2,AB∥DC,AD⊥CD,PC⊥平面ABCD.(1)求证:BC⊥平面PAC;(2)若M为线段PA的中点,且过C,D,M三点的平面与线段PB交于点N,确定点N的位置,说明理由;并求三棱锥N-AMC的体积.2019年1月广东省普通高中学业水平测试数学模拟测试卷(六)答案解析1.D【解析】不等式x(x-2)≤0对应方程的两个实数根为0和2,所以该不等式的解集是[0,2].故选D.2.A【解析】∵M={x|-2≤x≤2},∴∁R M={x|x<-2,或x>2},又∵N={x|x<1},∴(∁R M)∩N={x|x<-2}.故选A.3.C【解析】已知命题为全称命题,其否定为特称命题.4.B【解析】∵2x-y+2=0中,由x=0,得y=2;由y=0,得x=-1.∴直线2x-y+2=0与坐标轴围成的三角形的面积是:S=×2×1=1.故选B.5.A【解析】解得:x>-1且x≠0,区间形式为(-1,0)∪(0,+∞),故选A.6.A7.D【解析】f(2)=22+2-2=4,则f=f=1-.故选D.8.C【解析】三视图复原的几何体是圆柱,底面半径为1、高为3,所以这个几何体的体积是π×12×3=3π.故选C.9.B【解析】由三角函数的诱导公式可知cos(π-2α)=-cos 2α,由倍角公式可得cos2α=1-2sin2α=1-2×,cos(π-2α)=-,故选B.10.C【解析】作出不等式对应的平面区域如图,由z=x-y,得y=x-z,平移直线y=x-z,由图象可知当直线y=x-z经过点B(3,0)时,直线y=x-z的截距最小,此时z 最大.此时z的最大值为z=3-0=3.故选C.11.A【解析】)⇔.故选A.12.B【解析】∵f(-1)=-3<0,f(0)=1>0,∴f(-1)·f(0)<0.又函数f(x)在(-1,0)上是连续的,故f(x)的零点所在的一个区间为(-1,0).故选B.13.C【解析】由函数f(x)=A sin(ωx+φ)+b的图象可知,A=,b==1,又最小正周期T=4=,∴ω=;又0×ω+φ=0,∴φ=0.∴f(x)的解析式为:f(x)=sin+1.故选C.14.C【解析】∵α,β为钝角,且sin α=,cos β=-,∴cos α=-,sin β=,∴cos(α+β)=cos αcos β-sin αsin β=-,又α,β为钝角,∴α+β∈(π,2π),∴α+β=.故选C.15.A【解析】∵a n+1=,a1=,∴a2==2,a3==-1,a4=,∴数列{a n}是以3为周期的周期数列,∵2 015=671×3+2,∴a2 015=a2=2.故选A.16.[1,2)【解析】要使函数有意义,须满足解得1≤x<2,∴函数y=+ln(2-x)的定义域是[1,2).17.2【解析】依题意,设抛物线的焦点为F,点Q的横坐标是x0(x0≥0),则有|QF|=x0+的最小值是=1,则p=2.18.120°【解析】(2a+b)·b=0⇔2ab cos<a,b>+b2=0,因为|a|=|b|,所以cos<a,b>=-,所以<a,b>=120°.19.-【解析】sin cos tan=sin cos tan=cos tan=-.20.【解】(1)由题及正弦定理得2sin A sin B=sin B,∵sin B≠0,∴sin A=,又A∈,∴A=.(2)由a=3,A=得=2,∴b=2sin B,c=2sin C,∴l=a+b+c=2sin B+2sin C+3=2sin B+2sin+3=3sin B+3sinB+3=6sin+3,当B=时,l取最大值9.∴△ABC的周长l的最大值为9.21.【解】(1)证明:在直角梯形ABCD中,AC==2,BC==2.∴AC2+BC2=AB2,即BC⊥AC.∵PC⊥平面ABCD,BC⊂平面ABCD,∴BC⊥PC.又AC∩PC=C,∴BC⊥平面PAC.(2)点N是PB的中点,理由如下;如图,∵点M为PA的中点,点N为PB的中点,∴MN∥AB.又∵AB∥DC,∴MN∥CD.∴M、N、C、D四点共面.即点N为过C、D、M三点的平面与线段PB的交点; ∵BC⊥平面PAC,N为PB的中点,∴点N到平面PAC的距离d=BC=,S△ACM=S△PAC=·PC·AC=×2×2.∴S△AMC·d=.。
2019年1月广东省学业水平考试数学试题
2019年1月广东省学业水平考试数学试题满分100分一、选择题(本大题共15小题,每小题4分,满分60分)1.已知集合M={0,2,4}, N={1,2,3}, P={0,3}, 则()M N P =( )A.{0,1,2,3,4}B.{0,3}C.{0,4}D.{0}2.函数lg(1)y x =+的定义域是( )A.(,)-∞+∞B. (0,)+∞C. (1,)-+∞D. [1,)-+∞3.设i 为虚数单位,则复数1i i-= ( ) A. 1+i B.1-i C. -1+i D. -1-i 4.命题甲:球的半径为1cm ,命题乙:球的体积为43πcm 3,则甲是乙的( )A.充分不必要条件B. 必要不充分条件C.充要条件D. 既不充分也不必要条件5.已知直线l 过点A(1,2),且与直线112y x =+垂直,则直线l 的方程是( ) A. y =2x B. y =-2x +4 C. 1322y x =+ D. 1522y x =+ 6.顶点在原点,准线为x =-2的抛物线的标准方程是( ) A.28y x = B. 28y x =- C. 28x y = D. 28x y =-7.已知三点A(-3, 3), B(0, 1), C(1,0),则||AB BC +=( )A. 5B. 4C.D.8.已知角α的顶点为坐标原点,始边为x 轴的正半轴,终边过点P )2-,下列等式不准确的是A. 2sin 3α=-B. 2sin()3απ+=C. cos 3α=D. tan 2α=- 9.下列等式恒成立的是( ) A. 23x -= (0x ≠) B. 22(3)3x x =C.22333log (1)log 2log (3)x x ++=+D. 31log 3xx =-10.已知数列{}n a 满足11a =,且12n n a a +-=,则{}n a 的前n 项之和n S =( )A. 21n +B. 2nC. 21n -D. 12n -11.已知实数x, y, z 满足32x y x x y ≤⎧⎪≤⎨⎪+≥⎩,则z =2x +y 的最大值为( )A. 3B. 5C. 9D. 1012.已知点A(-1, 8)和B(5, 2),则以线段AB 为直径的圆的标准方程是( )A.22(2)(5)x y +++=B. 22(2)(5)18x y +++=C. 22(2)(5)x y -+-=D. 22(2)(5)18x y -+-=13.下列不等式一定成立的是( ) A.12x x +≥ (0x ≠) B. 22111x x +≥+ (x R ∈) C. 212x x +≤ (x R ∈) D. 2560x x ++≥ (x R ∈)14.已知f (x )是定义在R 上的偶函数,且当(,0]x ∈-∞时, 2()sin f x x x =-,则当[0,)x ∈+∞时, ()f x =( )A. 2sin x x +B. 2sin x x --C. 2sin x x -D. 2sin x x -+15.已知样本12345,,,,x x x x x 的平均数为4, 方差为3, 则123456,6,6,6,6x x x x x +++++的平均数和方差分别为( )A. 4和3B. 4和9C. 10和3D. 10和9二、填空题(本大题共4小题,每小题4分,满分16分.)16.已知x >0, 且5,,153x 成等比数列,则x=17. 函数()sin cos(1)sin(1)cos f x x x x x =+++的最小正周期是18.从1,2,3,4这四个数字中任意选择两个不同的数字,将它们组成一个两位数,该两位数小于20的概率是19.中心在坐标原点的椭圆,其离心率为12,两个焦点F 1 和F 2在x 轴上,P 为该椭圆上的任意一点,若| PF 1 |+|PF 2|=4,则椭圆的标准方程是三、解答题(本大题共2小题,每小题12分,满分24分.)20.ABC ∆的内角A, B, C 的对边分别为a, b, c, 已知cos cos a b A B= (1)证明: ABC ∆为等腰三角形;(2)若a =2, c=3,求sin C 的值.21.如图,在四棱锥P -ABCD 中,PA AB ⊥, PA AD ⊥,AC CD ⊥,60o ABC ∠=, P A=AB=BC =2. E 是PC 的中点.(1)证明: PA CD ⊥;(2)求三棱锥P -ABC 的体积;(3) 证明: AE PCD ⊥平面P B C D A E。
2019年1月广东省普通高中学业水平考试数学试题及答案解析
2019年1月广东省普通高中学业水平考试数学试卷数学试卷(B 卷)一、选择题:本大题共15小题,每小题4分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}0,2,4A =,{}2,0,2B =-, 则A B =( )A.{}0,2B.{}2,4-C.[]0,2D.{}2,0,2,4-2.设i 为虚数单位,则复数()3i i += ( ) A.13i +B.13i -+C.13i -D.13i --3.函数()3log 2y x =+的定义域为( ) A.()2,-+∞B.()2,+∞C.[)2,-+∞D.[)2,+∞4.已知向量()()2,2,2,1a b =-=-,则a b += ( )A.1C.5D.255.直线3260x y +-=的斜率是( )A.32B.32-C.23D.23-6.不等式290x -<的解集为( ) A.{}3|x x <-B.{}3|x x <C.{}3|3x x x <->或D.{}3|3x x -<<7.已知0a >=( )A.12a B.32a C.23a D.13a8.某地区连续六天的最低气温(单位:℃)为: 9, 8, 7, 6, 5, 7, 则该六天最低气温的平均数和方差分别为( ) A.7和53B.8和83C.7和1D.8和239.如图,长方体1111ABCD A BC D -中,11,2AB AD BD ===,则1AA = ( )A.1C.210.命题“,sin 10x R x ∀∈+≥”的否定是( ) A.00,sin 10x R x ∃∈+< B.,sin 10x R x ∀∈+< C.00,sin 10x R x ∃∈+≥D.,sin 10x R x ∀∈+≤11.设,x y 满足约束条件30100x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则2z x y =-的最大值为( )A.-5B.-3C.1D.412.已知圆C 与y 轴相切于点()0,5,半径为5,则圆C 的标准方程是( ) A.()()225525x y -+-= B.()()225525x y ++-=C.()()22555x y -+-=或()()22555x y ++-= D.()()225525x y -+-=或()()225525x y ++-=13.如图,ABC △中,,AB a AC b ==,4BC BD =,用,a b 表示AD ,正确的是( ) A.1434AD a b =+B.5414AD a b =+ C.3414AD a b =+D.5414AD a b =- 14.若数列{}n a 的通项26n a n =-,设n n b a =,则数列{}n b 的前7项和为( ) A.14B.24C.26D.2815.已知椭圆()222210b x y a ba +>>=的长轴为12A A ,P 为椭圆的下顶点,设直线12,PA PA 的斜率分别为12,k k ,且D 1C 1B 1A 1D C BAB1212k k ⋅=-,则该椭圆的离心率为( )C.12D.14二、填空题:本大题共4小题,每小题4分,满分16分.16.已知角α的顶点与坐标原点重合,终边经过点()4,3P -,则cos α=______. 17.在等比数列{}n a 中,121,2a a ==,则4a =______.18.袋中装有五个除颜色外完全相同的球,其中2个白球,3个黑球,从中任取两球,则取出的两球颜色相同的概率是______.19.已知函数()f x 是定义在(),-∞+∞上的奇函数,当[)0,x ∈+∞时,()24f x x x =-,则当(),0x ∈-∞时,()f x =______.三、解答题:本大题共2小题,每小题12分,满分24分.解答须写出文字说明、证明过程和演算步骤. 20.ABC △的内角,,A B C 的对边分别为,,a b c ,已知3cos 5A =,5bc =. (1)求ABC △的面积; (2)若6b c +=,求a 的值.21.如图,三棱锥P ABC -中,PA PB ⊥,PB PC ⊥,PC PA ⊥ ,2PA PB PC ===,E 是AC 的中点,点F 在线段PC 上.(1)求证:PB AC ⊥;(2)若PA ∕∕平面BEF , 求四棱锥B APFE -的体积. (参考公式:锥体的体积公式13V Sh =,其中S 是底面积,h 是高.)2019年1月广东省普通高中学业水平考试数学试卷参考答案一、选择题:本大题共15小题,每小题4分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}0,2,4A =,{}2,0,2B =-, 则A B =( )A.{}0,2B.{}2,4-C.[]0,2D.{}2,0,2,4-FECBAP1.D 【解析】由并集的定义,可得{}2,0,2,4A B =-.故选D.2.设i 为虚数单位,则复数()3i i += ( ) A.13i +B.13i -+C.13i -D.13i --2.B 【解析】()23331i i i i i +=+=-.故选B.3.函数()3log 2y x =+的定义域为( ) A.()2,-+∞B.()2,+∞C.[)2,-+∞D.[)2,+∞3.A 【解析】要使()3log 2y x =+有意义,则20x +>,解得2x >-,即定义域为()2,-+∞. 故选A.4.已知向量()()2,2,2,1a b =-=-,则a b += ( )A.1C.5D.254.C 【解析】由()()2,2,2,1a b =-=-,可得()4,3a b +=-,则245a b +==+.故选C.5.直线3260x y +-=的斜率是( )A.32B.32-C.23D.23-5.B 【解析】直线3260x y +-=,可化为332y x =-+,故斜率为32-.故选B.6.不等式290x -<的解集为( ) A.{}3|x x <-B.{}3|x x <C.{}3|3x x x <->或D.{}3|3x x -<<6.D 【解析】由290x -<,可得29x <,解得33x -<<.故选D.7.已知0a >=( )A.12a B.32a C.23a D.13a7.D23a =2113323a aa a-===.故选D.8.某地区连续六天的最低气温(单位:℃)为: 9, 8, 7, 6, 5, 7, 则该六天最低气温的平均数和方差分别为( ) A.7和53B.8和83C.7和1D.8和238.A 【解析】平均数()987657167x +++++==⨯, 方差()()()()()()22222229787776757156377s -+-+-+-+-+⎡⎤==⎣⎦-.故选A.9.如图,长方体1111ABCD A BC D -中,11,2AB AD BD ===,则1AA = ( )A.1C.29.B 【解析】在长方体中,222211BD AB AD AA =++,则22221211AA =++,解得1AA =故选B.10.命题“,sin 10x R x ∀∈+≥”的否定是( ) A.00,sin 10x R x ∃∈+< B.,sin 10x R x ∀∈+< C.00,sin 10x R x ∃∈+≥D.,sin 10x R x ∀∈+≤10.A 【解析】全称命题的否定是把全称量词改为存在量词,并否定结论,则原命题的否定为“00,sin 10x R x ∃∈+<”.故选A.11.设,x y 满足约束条件30100x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则2z x y =-的最大值为( )D 1C 1B 1A 1D C BAA.-5B.-3C.1D.411.C 【解析】作出约束条件表示的平面区域如图所示,当直线2z x y =-过点()1,0A 时,z 取得最大值,1201max z =-⨯=.故选C.12.已知圆C 与y 轴相切于点()0,5,半径为5,则圆C 的标准方程是( ) A.()()225525x y -+-= B.()()225525x y ++-=C.()()22555x y -+-=或()()22555x y ++-= D.()()225525x y -+-=或()()225525x y ++-=12.D 【解析】由题意得圆C 的圆心为()5,5或()5,5-,故圆C 的标准方程为()()225525x y -+-=或()()225525x y ++-=.故选D.13.如图,ABC △中,,AB a AC b ==,4BC BD =,用,a b 表示AD ,正确的是( )A.1434AD a b =+B.5414AD a b =+ C.3414AD a b =+D.5414AD a b =-B13.C 【解析】由4BC BD =,可得4()AC AB AD AB -=-,则3414AD AB AC =+,即3414AD a b =+.故选C.14.若数列{}n a 的通项26n a n =-,设n n b a =,则数列{}n b 的前7项和为( ) A.14B.24C.26D.2814.C 【解析】当3n ≤时,0n a ≤,62n n n b a a n ==-=-,即124,2b b ==,30b =.当3n >时,0,26n n n n a b a a n >===-,即452,4b b ==,676,8b b ==.所以数列{}n b 的前7项和为420246826++++++=.故选C.15.已知椭圆()222210b x y a b a +>>=的长轴为12A A ,P 为椭圆的下顶点,设直线12,PA PA 的斜率分别为12,k k ,且1212k k ⋅=-,则该椭圆的离心率为( )C.12D.1415.B 【解析】由题意得()()()12,0,,0,0,A a A a P b --,则1k b a =-, 2k b a =,则212212b k k a ⋅=-=-,即222a b =,所以2222c a b b =-=,离心率c e a ====.故选B. 二、填空题:本大题共4小题,每小题4分,满分16分.16.已知角α的顶点与坐标原点重合,终边经过点()4,3P -,则cos α=______.16.45 【解析】由题意得4,3x y ==-,5r ===,4cos 5x r α==.17.在等比数列{}n a 中,121,2a a ==,则4a =______. 17.8 【解析】设等比数列{}n a 的公比为q ,由题意得212a q a ==,则3341128a a q ==⨯=.18.袋中装有五个除颜色外完全相同的球,其中2个白球,3个黑球,从中任取两球,则取出的两球颜色相同的概率是______. 18.25【解析】记2个白球分别为12,白白,3个黑球分别为123,,黑黑黑,从这5个球中任取两球,所有的取法有12{,}白白,11{,}白黑,12{,}白黑,13{,}白黑,21{,}白黑,22{,}白黑,23{,}白黑,12{,}黑黑,13{,}黑黑,23{,}黑黑,共10种.其中取出的两球颜色相同取法的有4种,所以所求概率为42105P ==.19.已知函数()f x 是定义在(),-∞+∞上的奇函数,当[)0,x ∈+∞时,()24f x x x =-,则当(),0x ∈-∞时,()f x =______.19.24x x -- 【解析】当(),0x ∈-∞时,()0,x -∈+∞),由奇函数可得()()()()2244f x f x x x x x ⎡⎤=--=----=--⎣⎦.三、解答题:本大题共2小题,每小题12分,满分24分.解答须写出文字说明、证明过程和演算步骤. 20.ABC △的内角,,A B C 的对边分别为,,a b c ,已知3cos 5A =,5bc =. (1)求ABC △的面积; (2)若6b c +=,求a 的值.20.【解析】(1)∵A 是ABC △的内角,即()0,A π∈,3cos 5A =,∴4sin 5A ==. 又5bc =,∴11sin 425522ABC S bc A ==⨯⨯=△. (2)由2223cos 25b c a A bc +-==, 5bc =,可得2226b c a +-=. 由5,6bc b c =+=,可得()222226b c b c bc +=+-=.∴2266a -=,解得a =21.如图,三棱锥P ABC -中,PA PB ⊥,PB PC ⊥,PC PA ⊥ ,2PA PB PC ===,E 是AC 的中点,点F 在线段PC 上.(1)求证:PB AC ⊥;(2)若PA ∕∕平面BEF , 求四棱锥B APFE -的体积. (参考公式:锥体的体积公式13V Sh =,其中S 是底面积,h 是高.)21.【解析】(1)∵PA PB ⊥,PB PC ⊥,PA ⊂平面PAC ,PC ⊂平面PAC ,PA PC P =,∴PB ⊥平面PAC .又AC ⊂平面PAC ,∴PB AC ⊥.(2)∵PA ∕∕平面BEF , PA ⊂平面PAC ,平面BEF 平面PAC EF =,∴PA EF ∕∕.又E 为AC 的中点,∴F 为PC 的中点. ∴34PAC FEC PAC APFE S S S S =-=四边形△△△. ∵PC PA ⊥, 2PA PC ==,∴12222PAC S ⨯⨯==△. ∴32APFE S =四边形. 由(1)得PB ⊥平面PAC ,∴2PB =是四棱锥B APFE -的高. ∴12113332B APFE APFE V S PB -==⋅⨯=⨯四棱锥四边形. FECBAP。
高考数学一轮复习 考点32 数列的综合问题必刷题 理(含解析)-人教版高三全册数学试题
考点32 数列的综合问题1.(市房山区2019年高考第一次模拟测试理)《九章算术》中有如下问题:今有蒲生一日,长三尺,莞生一日,长1尺.蒲生日自半,莞生日自倍.问几何日而长等?意思是:今有蒲第一天长高3尺,莞第一天长高1尺,以后蒲每天长高前一天的一半,莞每天长高前一天的2倍.若蒲、莞长度相等,则所需时间为()(结果精确到0.1.参考数据:lg2=0.3010,lg3=0.4771.)A.天B.天C.天D.天【答案】C【解析】设蒲的长度组成等比数列{a n},其a1=3,公比为,其前n项和为A n,则A n=.莞的长度组成等比数列{b n},其b1=1,公比为2,其前n项和为B n.则B n,由题意可得:,整理得:2n+=7,解得2n=6,或2n=1(舍去).∴n=≈2.6.∴估计2.6日蒲、莞长度相等.故选:C.2.(某某乌鲁木齐市2018届高三第三次诊断性测验)已知数列,满足,,,则数列的前10项的和为A.B.C.D.【答案】D【解析】由a n +1﹣a n 2,所以数列{a n }是等差数列,且公差是2,{b n }是等比数列,且公比是2. 又因为=1,所以a n =+(n ﹣1)d =2n ﹣1. 所以b 2n ﹣1=•22n ﹣2=22n ﹣2.设,所以=22n ﹣2,所以4,所以数列{∁n }是等比数列,且公比为4,首项为1.由等比数列的前n 项和的公式得:其前10项的和为(410﹣1).故选:D .3.(某某省“皖南八校”2018届高三第三次(4月)联考)删去正整数数列 中的所有完全平方数,得到一个新数列,这个数列的第2018项是( ) A .B .C .D .【答案】B 【解析】由题意可得,这些数可以写为:,第个平方数与第个平方数之间有个正整数,而数列共有项,去掉个平方数后,还剩余个数,所以去掉平方数后第项应在后的第个数,即是原来数列的第项,即为,故选B.4.(华大新高考联盟2018届高三上学期11月教学质量测评理)已知等比数列{}n a 的前n 项和为n S ,,则42S S =( ) A .2 B .3C .4D .5【答案】B 【解析】由可得312a a =,所以22q =,又因为,所以选B.5.(某某省2017届高三高考冲刺预测卷六理)最近各大城市美食街火爆热开,某美食店特定在2017年元旦期间举行特大优惠活动,凡消费达到88元以上者,可获得一次抽奖机会.已知抽奖工具是一个圆面转盘,被分为6个扇形块,分别记为1,2,3,4,5,6,其面积成公比为3的等比数列(即扇形块2是扇形块1面积的3倍),指针箭头指在最小的1区域内时,就中“一等奖”,则一次抽奖抽中一等奖的概率是( ) A .140B .1121C .1364D .11093【答案】C 【解析】由题意,可设1,2,3,4,5,6 扇形区域的面积分别为,则由几何概型得,消费88 元以上者抽中一等奖的概率,故选C.6.(某某省钟祥市2019届高三高考第一次模拟考试理)对于实数x ,[x]表示不超过x 的最大整数,已知正数列{a n }满足S n =12(a n n 1a +),n ∈N*,其中S n 为数列{a n }的前n 项的和,则[]=______.【答案】20 【解析】由题可知0n S >,当1n >时,化简可得,当所以数列2{}n S 是以首项和公差都是1的等差数列,即又1n >时,记一方面另一方面所以2021S << 即[]20S = 故答案为207.(市某某区2019届高三第一次(3月)综合练习一模)天坛公园是明、清两代皇帝“祭天”“祈谷”的场所.天坛公园中的圜丘台共有三层(如图1所示),上层坛的中心是一块呈圆形的某某石板,从中心向外围以扇面形石(如图2所示).上层坛从第一环至第九环共有九环,中层坛从第十环至第十八环共有九环,下层坛从第十九环至第二十七环共有九环;第一环的扇面形石有9块,从第二环起,每环的扇面形石块数比前一环多9块,则第二十七环的扇面形石块数是______;上、中、下三层坛所有的扇面形石块数是_______.【答案】2433402 【解析】第一环的扇面形石有9块,从第二环起,每环的扇面形石块数比前一环多9块, 则依题意得:每环的扇面形石块数是一个以9为首项,9为公差的等差数列, 所以,a n =9+(n -1)×9=9n , 所以,a 27=9×27=243, 前27项和为:=3402.8.(某某省某某师大附中2018届高三高考考前模拟考试)在数列{a n }中,若a 4=1,a 12=5,且任意连续三项的和都是15,则a 2018=______. 【答案】9【解析】分析:将a n +a n+1+a n+2=15中n 换为n+1,可得数列{a n }是周期为3的数列.求出a 2,a 1,即可得到a 2018 详解:由题意可得a n +a n+1+a n+2=15,将n 换为a n+1+a n+2+a n+3=15,可得a n+3=a n ,可得数列{a n 是周期为3的数列.故,由a n +a n+1+a n+2=15,n 取1可得,故,故答案为9.9.(某某省武昌2018届元月调研考试)对任一实数序列,定义新序列,它的第项为,假设序列的所有项都是,且,则__________. 【答案】100. 【解析】 设序列的首项为,则序列,则它的第n 项为,因此序列A 的第项,则是关于的二次多项式,其中的系数为,因为,所以必有,故。
2019届广东省普通高中学业水平考试一月数学试题Word版含解析
2019届广东省普通高中学业水平考试一月数学试题一、单选题1.已知集合,, 则( )A.B.C.D.【答案】D【解析】由并集运算求解即可【详解】由并集的定义,可得.故选D.【点睛】本题考查集合的并集运算,熟记并集定义是关键,是基础题2.设为虚数单位,则复数 ( )A.B.C.D.【答案】B【解析】利用复数的乘法运算即可【详解】.故选B.【点睛】本题考查复数的乘法运算,熟记运算律是关键,是基础题3.函数的定义域为( )A.B.C.D.【答案】A【解析】由具体函数定义列x的不等式求解即可【详解】要使有意义,则,解得,即定义域为. 故选A.本题考查函数的定义域,熟记基本函数有意义满足的条件是关键,是基础题4.已知向量,则 ( )A.1 B.C.5 D.25 【答案】C【解析】由向量坐标运算求再求模长即可【详解】由,可得,则. 故选C.【点睛】本题考查向量坐标运算,模长公式,熟记坐标运算性质是关键,是基础题5.直线的斜率是( )A.B.C.D.【答案】B【解析】化直线为斜截式即可求解【详解】直线,可化为,故斜率为.故选B.【点睛】本题考查直线的斜率,熟记直线方程各形式的互化是关键,是基础题6.不等式的解集为( )A.B.C.D.【答案】D【解析】解二次不等式求解即可【详解】由,可得,解得.【点睛】本题考查一元二次不等式的解法,准确计算是关键,是基础题7.已知,则( )A.B.C.D.【答案】D【解析】由指数幂运算即可求解【详解】,则.故选D.【点睛】本题考查指数幂运算,熟记运算性质是关键,注意运算的准确,是基础题8.某地区连续六天的最低气温(单位:℃)为: 9, 8, 7, 6, 5, 7, 则该六天最低气温的平均数和方差分别为( )A.7和B.8和C.7和1 D.8和【答案】A【解析】由平均数和方差公式计算即可【详解】平均数,方差.故选A.【点睛】本题考查平均数和方差,熟记计算公式,准确计算是关键,是基础题9.如图,长方体中,,则 ( )A.1 B.C.2 D.【答案】B【解析】由长方体体对角线的性质即可求解【详解】在长方体中,,则,解得.故选B.【点睛】本题考查长方体及计算,熟记长方体的基本性质,准确计算是关键,是基础题10.命题“”的否定是( )A.B.C.D.【答案】A【解析】由全称命题的否定即可求解【详解】全称命题的否定是把全称量词改为存在量词,并否定结论,则原命题的否定为“”.故选A.【点睛】本题考查全称命题的否定,熟记全称命题的否定原则是关键,是基础题11.设满足约束条件,则的最大值为( )A.-5 B.-3 C.1 D.4【答案】C【解析】画出不等式表示的可行域,平移直线即可求解【详解】作出约束条件表示的平面区域如图所示,当直线过点时,取得最大值,.故选C.【点睛】本题考查线性规划,数形结合思想,准确画出可行域,准确计算是关键,是基础题12.已知圆与轴相切于点,半径为5,则圆的标准方程是( )A.B.C.或D.或【答案】D【解析】由题知圆心坐标则方程可求【详解】由题意得圆的圆心为或,故圆的标准方程为或.故选D.【点睛】本题考查圆的标准方程,圆的简单几何性质,熟记标准方程,准确计算是关键,是基础题13.如图,中,,,用表示,正确的是( )A.B.C.D.【答案】C【解析】由平面向量基本定理和三角形法则求解即可【详解】由,可得,则,即.故选C.【点睛】本题考查平面向量基本定理和三角形法则,熟记定理和性质是解题关键,是基础题14.若数列的通项,设,则数列的前7项和为( )A.14 B.24 C.26 D.28【答案】C【解析】讨论n,去绝对值,得等差数列,则分段求和即可【详解】当时,,,即,.当时,,即,.所以数列的前7项和为.故选C.【点睛】本题考查等差数列求和,绝对值的性质,正确去绝对值,准确记忆求和公式是关键,是基础题15.已知椭圆的长轴为,为椭圆的下顶点,设直线的斜率分别为,且,则该椭圆的离心率为( )A.B.C.D.【答案】B【解析】由题证明,再求离心率即可【详解】由题意得,则, ,则,即,所以,离心率.故选B.【点睛】本题考查椭圆离心率,椭圆简单几何性质,推理是解题关键,是中档题二、填空题16.已知角的顶点与坐标原点重合,终边经过点,则______.【答案】【解析】由三角函数定义求解即可【详解】由题意得,,.故答案为【点睛】本题考查三角函数定义,熟记定义,准确计算是关键,是基础题17.在等比数列中,,则______.【答案】8【解析】先求q,再求值即可【详解】设等比数列的公比为,由题意得,则.【点睛】本题考查等比数列通项公式,熟记通项公式,准确计算是关键,是基础题18.袋中装有五个除颜色外完全相同的球,其中2个白球,3个黑球,从中任取两球,则取出的两球颜色相同的概率是______.【答案】【解析】由古典概型列举任取两球的所有基本事件则可求解【详解】记2个白球分别为,3个黑球分别为,从这5个球中任取两球,所有的取法有,,,,,,,,,,共10种.其中取出的两球颜色相同取法的有4种,所以所求概率为.故答案为【点睛】本题考查古典概型,列举法的应用,熟记概率公式,准确计算是关键,是基础题19.已知函数是定义在上的奇函数,当时,,则当时,______.【答案】【解析】设则,代入解析式再由奇函数则可求解【详解】当时,),由奇函数可得.故答案为【点睛】本题考查奇函数的应用,解析式求法,熟记奇函数得定义,准确计算是关键,是基础题三、解答题20.的内角的对边分别为,已知,.(1)求的面积;(2)若,求的值.【答案】(1)2(2)【解析】(1)由题求,再利用面积公式S=求解即可;(2)由余弦定理得再利用b,c的关系,求解a即可【详解】(1)∵是的内角,即,,∴.又,∴.(2)由, ,可得.由,可得.∴,解得.【点睛】本题考查余弦定理,同角三角函数基本关系,面积公式,熟记公式与定理,准确计算是关键,是基础题21.如图,三棱锥中,,, ,,是的中点,点在线段上.(1)求证:;(2)若平面, 求四棱锥的体积.(参考公式:锥体的体积公式,其中是底面积,是高.)【答案】(1)见证明;(2)1【解析】(1)由线面垂直的判定定理证明即可(2)由平面,得,推得为的中点即可计算再由平面,知道锥体的高,则体积可求【详解】(1)∵,,平面,平面,,∴平面.又平面,∴.(2)∵平面, 平面,平面平面,∴.又为的中点,∴为的中点.∴.∵, ,∴.∴.由(1)得平面,∴是四棱锥的高.∴.【点睛】本题考查线面垂直的判定,线面平行性质定理,棱锥体积,熟记判定定理,准确计算是关键,是中档题。
广东省广州市2019届高三数学二模试卷(理科) Word版含解析
2018-2019学年广东省广州市高考数学二模试卷(理科)一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题温馨提示:多少汗水曾洒下,多少期待曾播种,终是在高考交卷的一刹尘埃落地,多少记忆梦中惦记,多少青春付与流水,人生,总有一次这样的成败,才算长大。
高考保持心平气和,不要紧张,像对待平时考试一样去做题,做完检查一下题目,不要直接交卷,检查下有没有错的地方,然后耐心等待考试结束。
目要求的.1.已知集合M={x|﹣1<x<1},N={x|x2<2,x∈Z},则()A.M⊆N B.N⊆M C.M∩N={0}D.M∪N=N2.已知复数z=,其中i为虚数单位,则|z|=()A.B.1 C.D.23.已知cos(﹣θ)=,则sin()的值是()A.B.C.﹣D.﹣4.已知随机变量x服从正态分布N(3,σ2),且P(x≤4)=0.84,则P(2<x<4)=()A.0.84 B.0.68 C.0.32 D.0.165.不等式组的解集记为D,若(a,b)∈D,则z=2a﹣3b的最小值是()A.﹣4 B.﹣1 C.1 D.46.使(x2+)n(n∈N)展开式中含有常数项的n的最小值是()A.3 B.4 C.5 D.67.已知函数f(x)=sin(2x+φ)0<φ<)的图象的一个对称中心为(,0),则函数f (x)的单调递减区间是()A.[2kπ﹣,2kπ+](k∈Z)B.[2kπ+,2kπ+](k∈Z)C.[kπ﹣,kπ+](k∈Z)D.[kπ+,kπ+](k∈Z)8.已知球O的半径为R,A,B,C三点在球O的球面上,球心O到平面ABC的距离为R.AB=AC=2,∠BAC=120°,则球O的表面积为()A.π B.π C.π D.π9.已知命题p:∀x∈N*,()x≥()x,命题q:∃x∈N*,2x+21﹣x=2,则下列命题中为真命题的是()A.p∧q B.(¬p)∧q C.p∧(¬q)D.(¬p)∧(¬q)10.如图,网格纸上的小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积是()A.4+6π B.8+6π C.4+12πD.8+12π11.已知点O为坐标原点,点M在双曲线C:x2﹣y2=λ(λ为正常数)上,过点M作双曲线C的某一条渐近线的垂线,垂足为N,则|ON|•|MN|的值为()A.B.C.λD.无法确定12.设函数f(x)的定义域为R,f(﹣x)=f(x),f(x)=f(2﹣x),当x∈[0,1]时,f(x)=x3.则函数g(x)=|cos(πx)|﹣f(x)在区间[﹣,]上的所有零点的和为()A.7 B.6 C.3 D.2二.填空题:本大题共4小题,每小题5分.13.曲线f(x)=+3x在点(1,f(1))处的切线方程为______.14.已知平面向量与的夹角为,=(1,),|﹣2|=2.则||=______.15.已知中心在坐标原点的椭圆C的右焦点为F(1,0),点F关于直线y=x的对称点在椭圆C上,则椭圆C的方程为______.16.在△ABC中,a,b,c分别为内角A,B,C的对边,a+c=4,(2﹣cosA)tan=sinA,则△ABC的面积的最大值为______.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.设S n是数列{a n}的前n项和,已知a1=3,a n=2S n+3(n∈N)+1(I)求数列{a n}的通项公式;(Ⅱ)令b n=(2n﹣1)a n,求数列{b n}的前n项和T n.18.班主任为了对本班学生的考试成绩进行分折,决定从本班24名女同学,18名男同学中随机抽取一个容量为7的样本进行分析.(I)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可,不必计算出结果)(Ⅱ)如果随机抽取的7名同学的数学,物理成绩(单位:分)对应如表:学生序号i 1 2 3 4 5 6 7数学成绩60 65 70 75 85 87 90x i物理成绩70 77 80 85 90 86 93y i(i)若规定85分以上(包括85分)为优秀,从这7名同学中抽取3名同学,记3名同学中数学和物理成绩均为优秀的人数为ξ,求ξ的分布列和数学期望;(ii)根据上表数据,求物理成绩y关于数学成绩x的线性回归方程(系数精确到0.01);若班上某位同学的数学成绩为96分,预测该同学的物理成绩为多少分?附:回归直线的方程是:,其中b=,a=.76 83 812 52619.如图,在多面体ABCDM中,△BCD是等边三角形,△CMD是等腰直角三角形,∠CMD=90°,平面CMD⊥平面BCD,AB⊥平面BCD.(Ⅰ)求证:CD⊥AM;(Ⅱ)若AM=BC=2,求直线AM与平面BDM所成角的正弦值.20.已知点F(1,0),点A是直线l1:x=﹣1上的动点,过A作直线l2,l1⊥l2,线段AF的垂直平分线与l2交于点P.(Ⅰ)求点P的轨迹C的方程;(Ⅱ)若点M,N是直线l1上两个不同的点,且△PMN的内切圆方程为x2+y2=1,直线PF的斜率为k,求的取值范围.21.已知函数f(x)=e﹣x﹣ax(x∈R).(Ⅰ)当a=﹣1时,求函数f(x)的最小值;(Ⅱ)若x≥0时,f(﹣x)+ln(x+1)≥1,求实数a的取值范围;(Ⅲ)求证:.四.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.[选修4-1:几何证明选讲]22.如图,四边形ABCD是圆O的内接四边形,AB是圆O的直径,BC=CD,AD的延长线与BC的延长线交于点E,过C作CF⊥AE,垂足为点F.(Ⅰ)证明:CF是圆O的切线;(Ⅱ)若BC=4,AE=9,求CF的长.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C的参数方程为(θ为参数).以点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsin(θ+=.(Ⅰ)将曲线C和直线l化为直角坐标方程;(Ⅱ)设点Q是曲线C上的一个动点,求它到直线l的距离的最大值.[选修4-5:不等式选讲]24.已知函数f(x)=log2(|x+1|+|x﹣2|﹣a).(Ⅰ)当a=7时,求函数f(x)的定义域;(Ⅱ)若关于x的不等式f(x)≥3的解集是R,求实数a的最大值.2016年广东省广州市高考数学二模试卷(理科)参考答案与试题解析一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x|﹣1<x<1},N={x|x2<2,x∈Z},则()A.M⊆N B.N⊆M C.M∩N={0}D.M∪N=N【考点】集合的包含关系判断及应用.【分析】N={x|x2<2,x∈Z}={﹣1,0,1},从而解得.【解答】解:N={x|x2<2,x∈Z}={﹣1,0,1},故M∩N={0},故选:C.2.已知复数z=,其中i为虚数单位,则|z|=()A.B.1 C.D.2【考点】复数求模.【分析】先根据复数的运算法则化简,再根据计算复数的模即可.【解答】解:z====,∴|z|=1,故选:B.3.已知cos(﹣θ)=,则sin()的值是()A.B.C.﹣D.﹣【考点】三角函数的化简求值.【分析】由已知及诱导公式即可计算求值.【解答】解:cos(﹣θ)=sin[﹣(﹣θ)]=sin()=,故选:A.4.已知随机变量x服从正态分布N(3,σ2),且P(x≤4)=0.84,则P(2<x<4)=()A.0.84 B.0.68 C.0.32 D.0.16【考点】正态分布曲线的特点及曲线所表示的意义.【分析】根据对称性,由P(x≤4)=0.84的概率可求出P(x<2)=P(x>4)=0.16,即可求出P(2<x<4).【解答】解:∵P(x≤4)=0.84,∴P(x>4)=1﹣0.84=0.16∴P(x<2)=P(x>4)=0.16,∴P(2<x<4)=P(x≤4)﹣P(x<2)=0.84﹣0.16=0.68故选B.5.不等式组的解集记为D,若(a,b)∈D,则z=2a﹣3b的最小值是()A.﹣4 B.﹣1 C.1 D.4【考点】简单线性规划.【分析】由题意作平面区域,从而可得当a=﹣2,b=0时有最小值,从而求得.【解答】解:由题意作平面区域如下,,结合图象可知,当a=﹣2,b=0,即过点A时,z=2a﹣3b有最小值为﹣4,故选:A.6.使(x2+)n(n∈N)展开式中含有常数项的n的最小值是()A.3 B.4 C.5 D.6【考点】二项式定理的应用.【分析】在二项展开式的通项公式中,令x的幂指数等于0,求出n与r的关系值,即可求得n的最小值.=••x2n﹣5r,【解答】解:(x2+)n(n∈N)展开式的通项公式为T r+1令2n﹣5r=0,求得2n=5r,可得含有常数项的n的最小值是5,故选:C.7.已知函数f(x)=sin(2x+φ)0<φ<)的图象的一个对称中心为(,0),则函数f (x)的单调递减区间是()A.[2kπ﹣,2kπ+](k∈Z)B.[2kπ+,2kπ+](k∈Z)C.[kπ﹣,kπ+](k∈Z)D.[kπ+,kπ+](k∈Z)【考点】正弦函数的图象.【分析】由题意和函数的对称性待定系数可得函数解析式,可得单调递减区间.【解答】解:由题意可得sin(2×+φ)=0,故2×+φ=kπ,解得φ=kπ﹣,k∈Z,由0<φ<可得φ=,∴f(x)=sin(2x+),由2kπ+≤2x+≤2kπ+可得kπ+≤x≤kπ+,∴函数f(x)的单凋递减区间为[kπ+,kπ+],k∈Z.故选:D.8.已知球O的半径为R,A,B,C三点在球O的球面上,球心O到平面ABC的距离为R.AB=AC=2,∠BAC=120°,则球O的表面积为()A.π B.π C.π D.π【考点】球的体积和表面积.【分析】利用余弦定理求出BC的长,进而由正弦定理求出平面ABC截球所得圆的半径,结合球心距,求出球的半径,代入球的表面积公式,可得答案.【解答】解:在△ABC中,∵AB=AC=2,∠BAC=120°,∴BC==2,由正弦定理可得平面ABC截球所得圆的半径(即△ABC的外接圆半径),r==2,又∵球心到平面ABC的距离d=R,∴球O的半径R=,∴R2=故球O的表面积S=4πR2=π,故选:D.9.已知命题p:∀x∈N*,()x≥()x,命题q:∃x∈N*,2x+21﹣x=2,则下列命题中为真命题的是()A.p∧q B.(¬p)∧q C.p∧(¬q)D.(¬p)∧(¬q)【考点】复合命题的真假.【分析】命题p:利用指数函数的性质可得:是真命题;命题q:由2x+21﹣x=2,化为:(2x)2﹣2•2x+2=0,解得2x=,∴x=,即可判断出真假,再利用复合命题真假的判定方法即可得出.【解答】解:命题p:∀x∈N*,()x≥()x,利用指数函数的性质可得:是真命题;命题q:由2x+21﹣x=2,化为:(2x)2﹣2•2x+2=0,解得2x=,∴x=,因此q是假命题.则下列命题中为真命题的是P∧(¬q),故选:C.10.如图,网格纸上的小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积是()A.4+6π B.8+6π C.4+12πD.8+12π【考点】由三视图求面积、体积.【分析】根据三视图知几何体是组合体:下面是半个圆柱、上面是一个以圆柱轴截面为底的四棱锥,并求出圆柱的底面半径、母线,四棱锥的高和底面边长,代入体积公式求值即可.【解答】解:根据三视图知几何体是组合体,下面是半个圆柱、上面是一个以圆柱轴截面为底的四棱锥,圆柱的底面半径为2,母线长为3;四棱锥的高是2,底面是边长为4、3的矩形,∴该几何体的体积V==6π+8,故选:B.11.已知点O为坐标原点,点M在双曲线C:x2﹣y2=λ(λ为正常数)上,过点M作双曲线C的某一条渐近线的垂线,垂足为N,则|ON|•|MN|的值为()A.B.C.λD.无法确定【考点】双曲线的简单性质.【分析】设M(m,n),即有m2﹣n2=λ,求出双曲线的渐近线为y=±x,运用点到直线的距离公式,结合勾股定理可得|ON|,化简整理计算即可得到所求值.【解答】解:设M(m,n),即有m2﹣n2=λ,双曲线的渐近线为y=±x,可得|MN|=,由勾股定理可得|ON|===,可得|ON|•|MN|=•==.故选:B.12.设函数f(x)的定义域为R,f(﹣x)=f(x),f(x)=f(2﹣x),当x∈[0,1]时,f(x)=x3.则函数g(x)=|cos(πx)|﹣f(x)在区间[﹣,]上的所有零点的和为()A.7 B.6 C.3 D.2【考点】函数零点的判定定理.【分析】根据f(x)的对称性和奇偶性可知f(x)在[﹣,]上共有3条对称轴,x=0,x=1,x=2,根据三角函数的对称性可知y=|cos(πx)|也关于x=0,x=1,x=2对称,故而g(x)在[﹣,]上3条对称轴,根据f(x)和y=|cos(πx)|在[0,1]上的函数图象,判断g(x)在[﹣,]上的零点分布情况,利用函数的对称性得出零点之和.【解答】解:∵f(x)=f(2﹣x),∴f(x)关于x=1对称,∵f(﹣x)=f(x),∴f(x)根与x=0对称,∵f(x)=f(2﹣x)=f(x﹣2),∴f(x)=f(x+2),∴f(x)是以2为周期的函数,∴f(x)在[﹣,]上共有3条对称轴,分别为x=0,x=1,x=2,又y=|cos(πx)关于x=0,x=1,x=2对称,∴x=0,x=1,x=2为g(x)的对称轴.作出y=|cos(πx)|和y=x3在[0,1]上的函数图象如图所示:由图象可知g(x)在(0,)和(,1)上各有1个零点.∴g(x)在[﹣,]上共有6个零点,设这6个零点从小到大依次为x1,x2,x3,…x6,则x1,x2关于x=0对称,x3,x4关于x=1对称,x5,x6关于x=2对称.∴x1+x2=0,x+x4=2,x5+x6=4,∴x1+x2+x+x4+x5+x6=6.故选:B.二.填空题:本大题共4小题,每小题5分.13.曲线f(x)=+3x在点(1,f(1))处的切线方程为y=x+4.【考点】利用导数研究曲线上某点切线方程.【分析】求函数的导数,利用导数的几何意义进行求解即可.【解答】解:函数的导数f′(x)=﹣+3,则f′(1)=﹣2+3=1,即切线斜率k=1,∵f(1)=2+3=5,∴切点坐标为(1,5),则切线方程为y﹣5=x﹣1,即y=x+4,故答案为:y=x+414.已知平面向量与的夹角为,=(1,),|﹣2|=2.则||=2.【考点】平面向量数量积的运算.【分析】对|﹣2|=2两边平方得出关于||的方程,即可解出.【解答】解:||=2,=||||cos=||,∵|﹣2|=2,∴()2=,即4||2﹣4||+4=12,解得||=2.故答案为:2.15.已知中心在坐标原点的椭圆C的右焦点为F(1,0),点F关于直线y=x的对称点在椭圆C上,则椭圆C的方程为+=1.【考点】椭圆的简单性质.【分析】设椭圆的方程为+=1(a>b>0),由题意可得c=1,设点F(1,0)关于直线y=x的对称点为(m,n),由两直线垂直的条件:斜率之积为﹣1,以及中点坐标公式,解方程可得a,b,进而得到椭圆方程.【解答】解:设椭圆的方程为+=1(a>b>0),由题意可得c=1,即a2﹣b2=1,设点F(1,0)关于直线y=x的对称点为(m,n),可得=﹣2,且n=•,解得m=,n=,即对称点为(,).代入椭圆方程可得+=1,解得a2=,b2=,可得椭圆的方程为+=1.故答案为: +=1.16.在△ABC中,a,b,c分别为内角A,B,C的对边,a+c=4,(2﹣cosA)tan=sinA,则△ABC的面积的最大值为.【考点】余弦定理;正弦定理.【分析】使用半角公式化简条件式,利用正弦定理得出a,b,c的关系,使用海伦公式和基本不等式得出面积的最大值.【解答】解:在△ABC中,∵(2﹣cosA)tan=sinA,∴(2﹣cosA)=sinA,即2sinB=sinA+sinAcosB+cosAsinB=sinA+sinC,∴2b=a+c=4,∴b=2.∵a+c=4,∴a=4﹣c.∴S==∵(3﹣c)(c﹣1)≤=1,∴S≤.故答案为:.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.设S n是数列{a n}的前n项和,已知a1=3,a n+1=2S n+3(n∈N)(I)求数列{a n}的通项公式;(Ⅱ)令b n=(2n﹣1)a n,求数列{b n}的前n项和T n.【考点】数列的求和;数列递推式.【分析】(I)利用递推关系与等比数列的通项公式即可得出;(II)利用“错位相减法”与等比数列的其前n项和公式即可得出.【解答】解:(I)∵a n+1=2S n+3,∴当n≥2时,a n=2S n﹣1+3,∴a n+1﹣a n=2(S n﹣S n﹣1)=2a n,化为a n+1=3a n.∴数列{a n}是等比数列,首项为3,公比为3.∴a n=3n.(II)b n=(2n﹣1)a n=(2n﹣1)•3n,∴数列{b n}的前n项和T n=3+3×32+5×33+…+(2n﹣1)•3n,3T n=32+3×33+…+(2n﹣3)•3n+(2n﹣1)•3n+1,∴﹣2T n=3+2(32+33+…+3n)﹣(2n﹣1)•3n+1=﹣3﹣(2n﹣1)•3n+1=(2﹣2n)•3n+1﹣6,∴T n=(n﹣1)•3n+1+3.18.班主任为了对本班学生的考试成绩进行分折,决定从本班24名女同学,18名男同学中随机抽取一个容量为7的样本进行分析.(I)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可,不必计算出结果)(Ⅱ)如果随机抽取的7名同学的数学,物理成绩(单位:分)对应如表:学生序号i 1 2 3 4 5 6 7数学成绩x i60 65 70 75 85 87 90物理成绩y i70 77 80 85 90 86 93(i)若规定85分以上(包括85分)为优秀,从这7名同学中抽取3名同学,记3名同学中数学和物理成绩均为优秀的人数为ξ,求ξ的分布列和数学期望;(ii)根据上表数据,求物理成绩y关于数学成绩x的线性回归方程(系数精确到0.01);若班上某位同学的数学成绩为96分,预测该同学的物理成绩为多少分?附:回归直线的方程是:,其中b=,a=.76 83 812 526【考点】离散型随机变量的期望与方差;线性回归方程;离散型随机变量及其分布列.【分析】(Ⅰ)根据分层抽样的定义建立比例关系即可得到结论.(Ⅱ)(i)ξ的取值为0,1,2,3,计算出相应的概率,即可得ξ的分布列和数学期望.(ii)根据条件求出线性回归方程,进行求解即可.【解答】(Ⅰ)解:依据分层抽样的方法,24名女同学中应抽取的人数为名,18名男同学中应抽取的人数为18=3名,故不同的样本的个数为.(Ⅱ)(ⅰ)解:∵7名同学中数学和物理成绩均为优秀的人数为3名,∴ξ的取值为0,1,2,3.∴P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==,∴ξ的分布列为ξ0 1 2 3PEξ=0×+1×+2×+3×=.(ⅱ)解:∵b=0.65,a==83﹣0.65×75=33.60.∴线性回归方程为=0.65x+33.60当x=96时,=0.65×96+33.60=96.可预测该同学的物理成绩为96分.19.如图,在多面体ABCDM中,△BCD是等边三角形,△CMD是等腰直角三角形,∠CMD=90°,平面CMD⊥平面BCD,AB⊥平面BCD.(Ⅰ)求证:CD⊥AM;(Ⅱ)若AM=BC=2,求直线AM与平面BDM所成角的正弦值.【考点】直线与平面所成的角;空间中直线与直线之间的位置关系.【分析】(I)取CD的中点O,连接OB,OM,则可证OM∥AB,由CD⊥OM,CD⊥OB得出CD⊥平面ABOM,于是CD⊥AM;(II)以O为原点建立空间直角坐标系,求出和平面BDM的法向量,则直线AM与平面BDM所成角的正弦值为|cos<>|.【解答】(Ⅰ)证明:取CD的中点O,连接OB,OM.∵△BCD是等边三角形,∴OB⊥CD.∵△CMD是等腰直角三角形,∠CMD=90°,∴OM⊥CD.∵平面CMD⊥平面BCD,平面CMD∩平面BCD=CD,OM⊂平面CMD,∴OM⊥平面BCD.又∵AB⊥平面BCD,∴OM∥AB.∴O,M,A,B四点共面.∵OB∩OM=O,OB⊂平面OMAB,OM⊂平面OMAB,∴CD⊥平面OMAB.∵AM⊂平面OMAB,∴CD⊥AM.(Ⅱ)作MN⊥AB,垂足为N,则MN=OB.∵△BCD是等边三角形,BC=2,∴,CD=2.在Rt△ANM中,.∵△CMD是等腰直角三角形,∠CMD=90°,∴.∴AB=AN+NB=AN+OM=2.以点O为坐标原点,以OC,BO,OM为坐标轴轴建立空间直角坐标系O﹣xyz,则M(0,0,1),,D(﹣1,0,0),.∴,,.设平面BDM的法向量为=(x,y,z),由n•,n•,∴,令y=1,得=.设直线AM与平面BDM所成角为θ,则==.∴直线AM与平面BDM所成角的正弦值为.20.已知点F(1,0),点A是直线l1:x=﹣1上的动点,过A作直线l2,l1⊥l2,线段AF的垂直平分线与l2交于点P.(Ⅰ)求点P的轨迹C的方程;(Ⅱ)若点M,N是直线l1上两个不同的点,且△PMN的内切圆方程为x2+y2=1,直线PF的斜率为k,求的取值范围.【考点】直线与圆锥曲线的综合问题.【分析】(Ⅰ)点P到点F(1,0)的距离等于它到直线l1的距离,从而点P的轨迹是以点F 为焦点,直线l1:x=﹣1为准线的抛物线,由此能求出曲线C的方程.(Ⅱ)设P(x0,y0),点M(﹣1,m),点N(﹣1,n),直线PM的方程为(y0﹣m)x﹣(x0+1)y+(y0﹣m)+m(x0+1)=0,△PMN的内切圆的方程为x2+y2=1,圆心(0,0)到直线PM的距离为1,由x0>1,得(x0﹣1)m2+2y0m﹣(x0+1)=0,同理,,由此利用韦达定理、弦长公式、直线斜率,结合已知条件能求出的取值范围.【解答】解:(Ⅰ)∵点F(1,0),点A是直线l1:x=﹣1上的动点,过A作直线l2,l1⊥l2,线段AF的垂直平分线与l2交于点P,∴点P到点F(1,0)的距离等于它到直线l1的距离,∴点P的轨迹是以点F为焦点,直线l1:x=﹣1为准线的抛物线,∴曲线C的方程为y2=4x.(Ⅱ)设P(x0,y0),点M(﹣1,m),点N(﹣1,n),直线PM的方程为:y﹣m=(x+1),化简,得(y0﹣m)x﹣(x0+1)y+(y0﹣m)+m(x0+1)=0,∵△PMN的内切圆的方程为x2+y2=1,∴圆心(0,0)到直线PM的距离为1,即=1,∴=,由题意得x0>1,∴上式化简,得(x0﹣1)m2+2y0m﹣(x0+1)=0,同理,有,∴m,n是关于t的方程(x0﹣1)t2+2y t﹣(x0+1)=0的两根,∴m+n=,mn=,∴|MN|=|m﹣n|==,∵,|y0|=2,∴|MN|==2,直线PF的斜率,则k=||=,∴==,∵函数y=x﹣在(1,+∞)上单调递增,∴,∴,∴0<<.∴的取值范围是(0,).21.已知函数f(x)=e﹣x﹣ax(x∈R).(Ⅰ)当a=﹣1时,求函数f(x)的最小值;(Ⅱ)若x≥0时,f(﹣x)+ln(x+1)≥1,求实数a的取值范围;(Ⅲ)求证:.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最小值;(Ⅱ)得到e x+ax+ln(x+1)﹣1≥0.(*)令g(x)=e x+ax+ln(x+1)﹣1,通过讨论a的范围,确定函数的单调性,从而求出满足条件的a的具体范围即可;(Ⅲ)令a=2,得到,从而证出结论.【解答】解:(Ⅰ)当a=﹣1时,f(x)=e﹣x+x,则.…1分令f'(x)=0,得x=0.当x<0时,f'(x)<0;当x>0时,f'(x)>0.…2分∴函数f(x)在区间(﹣∞,0)上单调递减,在区间(0,+∞)上单调递增.∴当x=0时,函数f(x)取得最小值,其值为f(0)=1.…3分(Ⅱ)若x≥0时,f(﹣x)+ln(x+1)≥1,即e x+ax+ln(x+1)﹣1≥0.(*)令g(x)=e x+ax+ln(x+1)﹣1,则.①若a≥﹣2,由(Ⅰ)知e﹣x+x≥1,即e﹣x≥1﹣x,故e x≥1+x.∴.…4分∴函数g(x)在区间[0,+∞)上单调递增.∴g(x)≥g(0)=0.∴(*)式成立.…5分②若a<﹣2,令,则.∴函数φ(x)在区间[0,+∞)上单调递增.由于φ(0)=2+a<0,.…6分故∃x0∈(0,﹣a),使得φ(x0)=0.…7分则当0<x<x0时,φ(x)<φ(x0)=0,即g'(x)<0.∴函数g(x)在区间(0,x0)上单调递减.∴g(x0)<g(0)=0,即(*)式不恒成立.…8分综上所述,实数a的取值范围是[﹣2,+∞).…9分(Ⅲ)证明:由(Ⅱ)知,当a=﹣2时,g(x)=e x﹣2x+ln(x+1)﹣1在[0,+∞)上单调递增.则,即.…10分∴.…11分∴,即.…12分.四.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.[选修4-1:几何证明选讲]22.如图,四边形ABCD是圆O的内接四边形,AB是圆O的直径,BC=CD,AD的延长线与BC的延长线交于点E,过C作CF⊥AE,垂足为点F.(Ⅰ)证明:CF是圆O的切线;(Ⅱ)若BC=4,AE=9,求CF的长.【考点】与圆有关的比例线段;圆的切线的判定定理的证明.【分析】(Ⅰ)连接OC,AC,证明:AE∥OC,利用CF⊥AE,可得CF⊥OC,即可证明CF 是圆O的切线;(Ⅱ)由割线定理:EC•EB=ED•EA,且AE=9,得,利用勾股定理求CF的长.【解答】(Ⅰ)证明:连接OC,AC,∵BC=CD,∴∠CAB=∠CAD.…1分∵AB是圆O的直径,∴OC=OA.∴∠CAB=∠ACO.…2分∴∠CAD=∠ACO.∴AE∥OC.…3分∵CF⊥AE,∴CF⊥OC.…4分∴CF是圆O的切线.…5分(Ⅱ)解:∵AB是圆O的直径,∴∠ACB=90°,即AC⊥BE.∵∠CAB=∠CAD,∴点C为BE的中点.∴BC=CE=CD=4.…6分由割线定理:EC•EB=ED•EA,且AE=9.…7分得.…8分在△CDE中,CD=CE,CF⊥DE,则F为DE的中点.∴.…9分在Rt△CFD中,.…10分∴CF的长为.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C的参数方程为(θ为参数).以点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsin(θ+=.(Ⅰ)将曲线C和直线l化为直角坐标方程;(Ⅱ)设点Q是曲线C上的一个动点,求它到直线l的距离的最大值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(Ⅰ)由曲线C的参数方程为(θ为参数)利用cos2θ+sin2θ=1可得曲线C的直角坐标方程.由ρsin(θ+=,得,(II)解法1:由于点Q是曲线C上的点,则可设点Q的坐标为,点Q 到直线l的距离为d=.利用三角函数的单调性值域即可得出.解法2:设与直线l平行的直线l'的方程为x+y=m,与椭圆方程联立消去y得4x2﹣6mx+3m2﹣3=0,令△=0,解得m即可得出.【解答】解:(Ⅰ)解:由曲线C的参数方程为(θ为参数)可得,∴曲线C的直角坐标方程为.由ρsin(θ+=,得,化简得,ρsinθ+ρcosθ=2,∴x+y=2.∴直线l的直角坐标方程为x+y=2.(Ⅱ)解法1:由于点Q是曲线C上的点,则可设点Q的坐标为,点Q到直线l的距离为=.当时,.∴点Q到直线l的距离的最大值为.解法2:设与直线l平行的直线l'的方程为x+y=m,由,消去y得4x2﹣6mx+3m2﹣3=0,令△=(6m)2﹣4×4×(3m2﹣3)=0,解得m=±2.∴直线l'的方程为x+y=﹣2,即x+y+2=0.∴两条平行直线l与l'之间的距离为.∴点Q到直线l的距离的最大值为.[选修4-5:不等式选讲]24.已知函数f(x)=log2(|x+1|+|x﹣2|﹣a).(Ⅰ)当a=7时,求函数f(x)的定义域;(Ⅱ)若关于x的不等式f(x)≥3的解集是R,求实数a的最大值.【考点】对数函数的图象与性质;其他不等式的解法.【分析】(Ⅰ)a=7时便可得出x满足:|x+1|+|x﹣2|>7,讨论x,从而去掉绝对值符号,这样便可求出每种情况x的范围,求并集即可得出函数f(x)的定义域;(Ⅱ)由f(x)≥3即可得出|x+1|+|x﹣2|≥a+8恒成立,而可求出|x+1|+|x﹣2|≥3,这样便可得出3≥a+8,解出该不等式即可得出实数a的最大值.【解答】解:(Ⅰ)由题设知:|x+1|+|x﹣2|>7;①当x>2时,得x+1+x﹣2>7,解得x>4;②当1≤x≤2时,得x+1+2﹣x>7,无解;③当x<﹣1时,得﹣x﹣1﹣x+2>7,解得x<﹣3;∴函数f(x)的定义域为(﹣∞,﹣3)∪(4,+∞);(Ⅱ)解:不等式f(x)≥3,即|x+1|+|x﹣2|≥a+8;∵x∈R时,恒有|x+1|+|x﹣2|≥|(x+1)﹣(x﹣2)|=3;又不等式|x+1|+|x﹣2|≥a+8解集是R;∴a+8≤3,即a≤﹣5;∴a的最大值为﹣5.2016年10月6日。
2019年1月广东省普通高中学业水平考试数学解析版Word版含答案
机密★启用前试卷类型A 2019年1月广东省普通高中学业水平考试数学试卷一、选择题:本大题共15 小题,每小题 4 分,满分60 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合 A {0,2, 4}, B { 2,0, 2},,则A B ()A.{0 ,2}B.{-2 ,4 }C.[0,2]D.{-2 ,0,2,4}【答案】 DA B 。
{ 2,0,2,4}2.设i 为虚数单位,则复数i 3 i = ()A. 1+3iB. 1+3iC. 1 3iD. 1 3i【答案】 B2i i i i i 。
3 3 3 13.函数y log3(x2) 的定义域为()A.( 2,+ ) B. (2,+ ) C. [ 2,+ ) D. [2,+ )【答案】 Ax 2 0, x 2。
4.已知向量a (2, 2),b (2, 1),,则a b ()A.1 B. 5 C.5 D. 25【答案】 C2 2a b (4, 3), a b 4 ( 3) 5。
5.直线3x 2y 6 0 的斜率是()A. 32B. -32C.23D. -23【答案】 BA 3 k=- =-B 。
216.不等式 2 9 0x 的解集为()A. { x x 3}B. { x x 3}C.{ x x 3或x 3}D. {x 3 x 3}【答案】 D2 9 0, 2 9,3 3x x x。
7.已知 a 0,则a3 2a()1 32 1A.a2 B.2a C.3a D.a3【答案】 Da a23 2a a32 11a a3 3。
8.某地区连续六天的最低气温(单位: C )为:9,8,7,6,5,7,则该六天最低气温的平均数和方差分别为()A.57和 B .388和 C. 7和1D.38和23【答案】 A9 8 7 6 5 7x 762 1 2 2 2 2 2 2 5 s [(9 7) +(8 7) +(7 7) +(6 7) +(5 7) +(7 7) ] 。
高考数学 典型例题16 三角函数式的化简与求值 试题
卜人入州八九几市潮王学校高考数学典型例题详解三角函数化简与求值三角函数式的化简和求值是高考考察的重点内容之一.通过本节的学习使考生掌握化简和求值问题的解题规律和途径,特别是要掌握化简和求值的一些常规技巧,以优化我们的解题效果,做到事半功倍. ●难点磁场(★★★★★)2π<β<α<43π,cos(α-β)=1312,sin(α+β)=-53,求sin2α的值_________. ●案例探究 [例1]不查表求sin 220°+cos 280°+3cos20°cos80°的值.★★★★级题目. 知识依托:熟知三角公式并能灵敏应用.错解分析:公式不熟,计算易出错.技巧与方法:解法一利用三角公式进展等价变形;解法二转化为函数问题,使解法更简单更精妙,需认真体会.解法一:sin 220°+cos 280°+3sin 220°cos80° =21(1-cos40°)+21(1+cos160°)+3sin20°cos80° =1-21cos40°+21cos160°+3sin20°cos(60°+20°) =1-21cos40°+21(cos120°cos40°-sin120°sin40°)+3sin20°(cos60°cos20°-sin60°sin20°)=1-21cos40°-41cos40°-43sin40°+43sin40°-23sin 220° =1-43cos40°-43(1-cos40°)=41 解法二:设x =sin 220°+cos 280°+3sin20°cos80°y =cos 220°+sin 280°-3cos20°sin80°,那么x +y =1+1-3sin60°=21,x -y =-cos40°+cos160°+3sin100° =-2sin100°sin60°+3sin100°=0 ∴x =y =41,即x =sin 220°+cos 280°+3sin20°cos80°=41. [例2]设关于x 的函数y =2cos 2x -2a cos x -(2a +1)的最小值为f (a ),试确定满足f (a )=21的a 值,并对此时的a 值求y 的最大值.★★★★★级题目知识依托:二次函数在给定区间上的最值问题.错解分析:考生不易考察三角函数的有界性,对区间的分类易出错. 技巧与方法:利用等价转化把问题化归为二次函数问题,还要用到配方法、数形结合、分类讲座等.解:由y =2(cos x -2a )2-2242+-a a 及cos x ∈[-1,1]得: f (a )⎪⎪⎩⎪⎪⎨⎧≥-<<-----≤)2( 41)22( 122)2( 12a a a a a a ∵f (a )=21,∴1-4a =21⇒a =81∉[2,+∞) 故-22a -2a -1=21,解得:a =-1,此时, y =2(cos x +21)2+21,当cos x =1时,即x =2k π,k ∈Z ,y max =5. [例3]函数f (x )=2cos x sin(x +3π)-3sin 2x +sin x cos x(1)求函数f (x )的最小正周期;(2)求f (x )的最小值及获得最小值时相应的x 的值;(3)假设当x ∈[12π,127π]时,f (x )的反函数为f -1(x ),求f --1(1)的值.★★★★★级题目.知识依托:熟知三角函数公式以及三角函数的性质、反函数等知识.错解分析:在求f --1(1)的值时易走弯路.技巧与方法:等价转化,逆向思维.解:(1)f (x )=2cos x sin(x +3π)-3sin 2x +sin x cos x =2cos x (sin x cos3π+cos x sin 3π)-3sin 2x +sin x cos x =2sin x cos x +3cos2x =2sin(2x +3π) ∴f (x )的最小正周期T =π(2)当2x +3π=2k π-2π,即x =k π-125π(k ∈Z )时,f (x )获得最小值-2. (3)令2sin(2x +3π)=1,又x ∈[27,2ππ], ∴2x +3π∈[3π,23π],∴2x +3π=65π,那么 x =4π,故f --1(1)=4π. ●锦囊妙计本难点所涉及的问题以及解决的方法主要有:1.求值问题的根本类型:1°给角求值,2°给值求值,3°给式求值,4°求函数式的最值或者值域,5°化简求值.2.技巧与方法:1°要寻求角与角关系的特殊性,化非特角为特殊角,纯熟准确地应用公式.2°注意切割化弦、异角化同角、异名化同名、角的变换等常规技巧的运用.3°对于条件求值问题,要认真寻找条件和结论的关系,寻找解题的打破口,很难入手的问题,可利用分析法.4°求最值问题,常用配方法、换元法来解决.●歼灭难点训练一、选择题1.(★★★★★)方程x 2+4ax +3a +1=0(a >1)的两根均tan α、tan β,且α,β∈ (-2,2ππ),那么tan 2βα+的值是() A.21 B.-2 C.34 D.21或者-2 二、填空题2.(★★★★)sin α=53,α∈(2π,π),tan(π-β)=21,那么tan(α-2β)=_________. 3.(★★★★★)设α∈(43,4ππ),β∈(0,4π),cos(α-4π)=53,sin(43π+β)=135,那么sin(α+β)=_________.三、解答题4.不查表求值:.10cos 1)370tan 31(100sin 130sin 2︒+︒+︒+︒5.cos(4π+x )=53,(1217π<x <47π),求x x x tan 1sin 22sin 2-+的值. 6.(★★★★★)α-β=38π,且α≠k π(k ∈Z ).求)44(sin 42sin 2csc )cos(12βπαααπ-----的最大值及最大值时的条件.7.(★★★★★)如右图,扇形OAB 的半径为1,中心角60°,四边形PQRS是扇形的内接矩形,当其面积最大时,求点P 的位置,并求此最大面积.8.(★★★★★)cos α+sin β=3,sin α+cos β的取值范围是D ,x ∈D ,求函数y =10432log 21++x x 的最小值,并求获得最小值时x 的值.参考答案难点磁场解法一:∵2π<β<α<43π,∴0<α-β<4π.π<α+β<43π,∴sin(α-β)=.54)(sin 1)cos(,135)(cos 122-=+--=+=--βαβαβα ∴sin2α=sin [(α-β)+(α+β)]=sin(α-β)cos(α+β)+cos(α-β)sin(α+β)解法二:∵sin(α-β)=135,cos(α+β)=-54, ∴sin2α+sin2β=2sin(α+β)cos(α-β)=-6572 sin2α-sin2β=2cos(α+β)sin(α-β)=-6540 ∴sin2α=6556)65406572(21-=-- 歼灭难点训练一、1.解析:∵a >1,tan α+tan β=-4a <0.tan α+tan β=3a +1>0,又α、β∈(-2π,2π)∴α、β∈(-2π,θ),那么2βα+∈(-2π,0),又tan(α+β)=342tan 12tan 2)tan(,34)13(14tan tan 1tan tan 2=β+α-β+α=β+α=+--=βα-β+α又a a , 整理得2tan 222tan 32-β+α+β+α=0.解得tan 2β+α=-2. 答案:B2.解析:∵sin α=53,α∈(2π,π),∴cos α=-54 那么tan α=-43,又tan(π-β)=21可得tan β=-21, 答案:247 3.解析:α∈(43,4ππ),α-4π∈(0,2π),又cos(α-4π)=53. 答案:6556 三、4.答案:2π≠αk 〔k ∈Z 〕,322322π-π≠π-α∴k 〔k ∈Z 〕 ∴当,22322π-π=π-αk 即34π+π=αk 〔k ∈Z 〕时,)322sin(π-α的最小值为-1.7.解:以OA 为x 轴.O 为原点,建立平面直角坐标系,并设P 的坐标为(cos θ,sin θ),那么 |PS |=sin θ.直线OB 的方程为y =3x ,直线PQ 的方程为y =sin θ.联立解之得Q (33sin θ;sin θ),所以|PQ |=cos θ-33sin θ. 于是S PQRS =sin θ(cos θ-33sin θ)=33(3sin θcos θ-sin 2θ)=33(23sin2θ-22cos 1θ-)=33(23sin2θ+21cos2θ-21)=33sin(2θ+6π)-63. ∵0<θ<3π,∴6π<2θ+6π<65π.∴21<sin(2θ+6π)≤1. ∴sin(2θ+6π)=1时,PQRS 面积最大,且最大面积是63,此时,θ=6π,点P 为的中点,P (21,23). 8.解:设u =sin α+cos β.那么u 2+(3)2=(sin α+cos β)2+(cos α+sin β)2=2+2sin(α+β)≤4.∴u 2≤1,-1≤u ≤D =[-1,1],设t =32+x ,∵-1≤x ≤1,∴1≤t ≤5.x =232-t .。
2019年1月浙江省普通高中学业水平考试数学试题 (含解析)
2019年1月浙江省普通高中学业水平考试数学试题 (含解析)1.已知集合 $A=\{1,3,5\}$,$B=\{3,5,7\}$,则$AB$ $=$ ()。
A。
$\{1,3,5\}$ B。
$\{1,7\}$ C。
$\{3,5\}$ D。
$\{5\}$答案】C解析】由题意可得 $AB=\{3,5\}$。
2.函数 $f(x)=\log_5(x-1)$ 的定义域是()。
A。
$(-\infty,1)$ B。
$[1,+\infty)$ C。
$(1,+\infty)$ D。
$(0,+\infty)$答案】C解析】若使函数有意义,则 $x-1>0$,解得 $x>1$,故函数的定义域为 $(1,+\infty)$。
3.圆 $x+(y-2)^2=9$ 的半径是()。
A。
$3$ B。
$2$ C。
$9$ D。
$6$答案】A解析】因为 $r^2=9$,所以 $r=3$。
4.一元二次不等式 $x^2-7x<0$ 的解集是()。
A。
$\{x|07\}$C。
$\{x|-77\}$答案】A解析】解不等式可得 $\{x|0<x<7\}$。
5.双曲线 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,$a=3$,$b=2$,焦点在 $x$ 轴上,所以渐近线方程为()。
A。
$y=\pm\frac{94}{3294}x$ B。
$y=\pm x$ C。
$y=\pm\frac{2349}{94}x$ D。
$y=\pm\frac{3294}{94}x$答案】B解析】因为双曲线方程为 $\frac{y^2}{b^2}-\frac{x^2}{a^2}=1$,即 $y=\pm\frac{b}{a}x$,所以 $y=\pm x$。
6.已知空间向量 $\boldsymbol{a}=(-1,0,3)$,$\boldsymbol{b}=(3,-2,x)$,若$\boldsymbol{a}\perp\boldsymbol{b}$,则实数 $x$ 的值是()。
2019年1月广东省普通高中学业水平考试数学真题(含答案解析)
好记星书签整理
机密★启用前试卷类型:A 2019年1月广东省普通高中学业水平考试
数学试卷
本试卷共4页,21小题,满分100分。
考试用时90分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B铅笔将试卷类型(A)填涂在答题卡相应
位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.每题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答
案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题(本题共有15小题,每小题4分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.已知集合A={0,2,4},B={-2,0,2},则AUB=
A.{0,2} B.{-2,4}
C.[0,2] D.{-2,0,2,4}
2.设i为虚数单位,则复数i(3+i)=
A.1+3i B.-1+3i
C.1-3i D.-1-3i
3.log3(x+2)的定义域为
A.(-2,+∞)B.(2,+∞)
C.[-2,+∞)D.[ 2,+∞)
4.已知量a=(2,-2),b=(2,-1),则|a+b|
A.1 B.5
C.5 D.25
数学试卷A第1页(共4页)。
2019年1月浙江省普通高中学业水平考试数学试题 Word版含解析
解析:当 时, ,
当 时, ,检验 时不符合,
所以 ,逐项判断只有D选项正确.
15.如图,正三棱柱(底面是正三角形的直棱柱) 的底面边长
为 ,侧棱长为 ,则 与侧面 所成的角是()
A. B. C. D.
答案:A
解析:过 作 ,易证 平面 ,所以 就是 与侧面 所成角的平面角,由于 , ,所以 ,故所求的线面角为 .
答案:
解析:在 中,由余弦定理得 ,
所以 ,解得 ,或 (舍),
因此 的面积 ,
在 中,由余弦定理得 ,
所以 ,
因此 的面积 ,
故四边形 的面积 .
22.已知 是定义在 上的偶函数,且在 上单调递增.若对任意 ,不等式 恒成立,则 的最小值是.
答案:
解析:如图,作出 的图象,
因为 ,
所以 的图象始终在 的上方,
由基本不等式知 ,即 ,
所以 ,
另一方面,设斜线 与平面 所成角为 ,
则由最小角定理知 ,从而 ,
所以 到平面 的距离 ,
所以 ,故选D.
二、填空题(本大题共4小题,每空3分,共15分。)
19.设等比数列 的前 项和为 ,首项 ,公比 ,则 ; .
答案:
解析: .
20.已知平面向量 满足 , ,且 与 不共线.若 与 互相垂直,则实数 .
若 ,
当 时, ,
即 , ,得 ,
所以 .
当 时, .
当 时, ,
即 , ,
得 ,所以
综上所述, .
24.(本题满分10分)如图,已知抛物线 的焦点为 , 为坐标原点,直线 与抛物线 相交于 , 两点.
(1)当 , 时,求证: ;
(2)若 ,点 关于直线 的对称点为 ,求 的取值范围.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省2019届1月份普通高中学业水平考试
数学试卷
一.选择题:本大题共15小题. 每小题4分,满分60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.
1. 已知集合,,则()
A. B. C. D.
【答案】B
【解析】由题意可知
故选B
2. 对任意的正实数,下列等式不成立的是()
A. B.
C. D.
【答案】B
【解析】∵
∴选项错误
故选B
3. 已知函数,设,则()
A. B. C. D.
【答案】C
【解析】∵函数
∵
∴
故选C
4. 设是虚数单位,是实数,若复数的虚部是2,则()
A. B. C. D.
【答案】D
∵复数的虚部为2
∴
∴
故选D
5. 设实数为常数,则函数存在零点的充分必要条件是()
A. B. C. D.
【答案】C
【解析】∵若函数存在零点
∴
∴
∴函数存在零点的充分必要条件是
故选C
6. 已知向量,,则下列结论正确的是()
A. B. C. D.
【答案】B
【解析】对于,若∥,则,因为,故错误;对于,因为,所以,则,故正确;对于,,,
故错误;对于,,故错误
故选B
7. 某校高一(1)班有男、女学生共50人,其中男生20人,用分层抽样的方法,从该班学生中随机选取15人参加某项活动,则应选取的男、女生人数分别是()
A. 6和9
B. 9和6
C. 7和8
D. 8和7
【答案】A
∴男女生的比例为,
∵用分层抽样的方法,从该班学生中随机选取15人参加某项活动
∴男生的人数为,女生的人数为
故选A
点睛:进行分层抽样的相关计算时,常利用以下关系式巧解:
(1);
(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.
8. 如图所示,一个空间几何体的正视图和侧视图都是矩形,俯视图是正方形,则该几何体的体积为()
A. B. C. D.
【答案】C
【解析】由图像可知该空间几何体为长方体,长和宽为2,高为1
体积
故选C
点睛:本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点. 观察三视图并将其“翻译”成直观图是解题的关键,做题时不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.
9. 若实数满足,则的最小值为()
A. B. C. D.
【答案】D
【解析】根据已知作出可行域如图所示:
,即,斜率为,在处截取得最小值为
故选D
点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题. 求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.
10. 如图,是平行四边形的两条对角线的交点,则下列等式正确的是()
A. B.
C. D.
【答案】D
【解析】对于,,故错误;对于,,故错误;对于,
,故错误。
故选D
11. 设的内角的对边分别为,若,则()
A. B. C. D.
【答案】A
【解析】的内角的对边分别为,且
∴根据余弦定理得
∵
∴
故选A
12. 函数,则的最大值和最小正周期分别为()
A. 2和
B. 4和
C. 2和
D. 4和
【答案】A
【解析】∵函数
∴函数的最大值为2,最小正周期为
故选A
13. 设点是椭圆上的一点,是椭圆的两个焦点,若,则
()
A. B. C. D.
【答案】B
【解析】∵
∵
∴
∵,
∴
∴
故选B
点睛:本题主要考查利用椭圆的简单性质及椭圆的定义. 求解与椭圆性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.
14. 设函数是定义在上的减函数,且为奇函数,若,,则下列结论不正确的是()
A. B. C. D.
【答案】D
【解析】对于,因为是定义在上的奇函数,所以,故正确;对于,因为函数是
定义域上的减函数,过原点,且,所以,故正确;对于,设,则当,有最小值为2,所以,因为函数是定义域上的减函数,所以,故正确;对于,因为,所以,因为函数是定义域上的减函数,所以
,故错误
故选D
15. 已知数列的前项和,则()
A. B. C. D.
【答案】C
【解析】∵当时,,当时
∴
∴首项,公比
故选C
二.填空题:本大题共4小题,每小题4分,满分16分.
16. 双曲线的离心率为____________.
【答案】
【解析】∵由题可知
∴
∴离心率
故答案为
17. 若,且,则____________.
【答案】
【解析】∵
∴
∵
∴
∴
故答案为
18. 笔筒中放有2支黑色和1支红色共3支签字笔,先从笔筒中随机取出一支笔,使用后放回笔筒,第二次再从笔筒中随机取出一支笔使用,则两次使用的都是黑色笔的概率为
____________.
【答案】
【解析】第一次为黑色的概率为,第二次为黑色的概率为
两次都是黑色的概率为
故答案为
19. 圆心为两直线和的交点,且与直线相切的圆的标准方程是____________.
【答案】
【解析】联立方程组解之得
∵圆与直线相切
∴圆的半径
故答案为
点睛:此题考查了直线与圆的位置关系,涉及的知识有:点到直线的距离公式,圆的标准方程,当直线与圆相切时,圆心到切线的距离等于圆的半径.属于基础题.
三.解答题:本大题共2小题. 每小题12分,满分24分. 解答须写出文字说明、证明过程和演算步骤.
20. 若等差数列满足,且.
(1)求的通项公式;
(2)设数列满足,,求数列的前项和.
【答案】(1)(2)
【解析】试题分析:(1)设等差数列的公差为,由及,列出方程组即可求解和,从而求出的通项公式;(2)由(1)求出的通项公式,进而求出数列的前项和.
试题解析:(1)设等差数列的公差为.
数列的通项公式为.
(2)由(1)知,
又适合上式
数列是首项为,公差为的等差数列.
21. 如图所示,在三棱锥中,,,为的中点,垂直平分,且
分别交于点.
(1)证明:;
(2)证明:.
【答案】(1)见解析(2)见解析
【解析】试题分析:(1)由垂直平分及为的中点可证
,从而可证;(2)连接,由,为
的中点可证,结合,即可证,从而得,再由,可
得,即可证,从而得出结论.
试题解析:(1)证明:垂直平分
为的中点
又为的中点
为的中位线
又
(2)证明:连接
,为的中点
垂直平分
又,
又
又,
又
点睛:本题主要考查线面平行的判定定理、线面垂直的判定定理等应用,此类题目是立体几何中的常见问题,解答本题,关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,本题能较好的考查考生的空间想象能力、逻辑推理能力、转化与化归思想及基本运算能力等,试题有一定的综合性,属于中档试题.。