随机信号分析 题目及答案
随机信号分析课后习题答案
1第一次作业:练习一之1、2、3题1.1 离散随机变量X 由0,1,2,3四个样本组成,相当于四元通信中的四个电平,四个样本的取值概率顺序为1/2,1/4,1/8,和1/8。
求随机变量的数学期望和方差。
解:875.087813812411210)(][41==⨯+⨯+⨯+⨯===∑=i i i x X P x X E81)873(81)872(41)871(21)870(])[(][2224122⨯-+⨯-+⨯-+⨯-=-=∑=i i i P X E x X D109.16471==1.2 设连续随机变量X 的概率分布函数为⎪⎩⎪⎨⎧≥<≤-+<=21201)](2πΑsin[0.500)(x x x x x F求(1)系数A ;(2)X 取值在(0.5,1)内的概率)15.0(<<x P 。
解:⎪⎩⎪⎨⎧<≤-π==其他0201)](2π[cos 2)()(x x A dx x dF x f 由1)(=⎰∞∞-dx x f得 2A 021)](2πAsin[1)]d (2π[cos 2=-=-π⎰∞∞-x x x A21A =35.042)]15.0(2[sin 21)]11(2[sin 21)5.0(F )1(F )15.0(==-π--π=-=<<x P1.3 试确定下列各式是否为连续随机变量的概率分布函数,如果是概率分布函数,求其概率密度。
(1)⎪⎩⎪⎨⎧<≥-=-000e 1)(2x x x F x (2)⎪⎩⎪⎨⎧≥<≤<=1110Α00)(2x x x x x F (3)0)]()([)(>--=a a x u x u a xx F (4)0)()()(>---=a a x u axa x u a x x F2解:(1)⎪⎩⎪⎨⎧<≥-=-000e 1)(2x x x F x 当0≥x 时,对于12x x ≥,有)()(12x F x F ≥,)(x F 是单调非减函数; 1)(0≤≤x F 成立;)()(x F x F =+也成立。
随机信号分析[常建平 李海林]习题答案解析
1-9 已知随机变量X 的分布函数为20,0(),011,1X x F x kx x x <⎧⎪=≤≤⎨⎪>⎩求:①系数k ; ②X 落在区间(0.3,0.7)内的概率; ③随机变量X 的概率密度。
解:第①问 利用()X F x 右连续的性质 k =1第②问{}{}{}()()0.30.70.30.70.70.30.7P X P X F P X F =<<=<≤-=-第③问 201()()0X X xx d F x f x elsedx ≤<⎧==⎨⎩1-10已知随机变量X 的概率密度为()()xX f x kex -=-∞<<+∞(拉普拉斯分布),求:①系数k ②X 落在区间(0,1)内的概率 ③随机变量X 的分布函数 解:第①问 ()112f x dx k ∞-∞==⎰ 第②问 {}()()()211221x x P x X x F x F x f x dx <≤=-=⎰随机变量X 落在区间12(,]x x 的概率12{}P x X x <≤就是曲线()y f x =下的曲边梯形的面积。
{}{}()()1010101112P X P X f x dxe -<<=<≤==-⎰第③问()102102xx e x f x e x -⎧≤⎪⎪=⎨⎪>⎪⎩()00()110022111010222xx xxx x x x F x f x dxe dx x ex e dx e dxx e x -∞-∞---∞=⎧⎧≤≤⎪⎪⎪⎪==⎨⎨⎪⎪+>->⎪⎪⎩⎩⎰⎰⎰⎰1-11 某繁忙的汽车站,每天有大量的汽车进出。
设每辆汽车在一天内出事故的概率为0.0001,若每天有1000辆汽车进出汽车站,问汽车站出事故的次数不小于2的概率是多少?,(01)p q λ→∞→→∞→−−−−−−−−→−−−−−−−−→−−−−−−−−→n=1n ,p 0,np=n 成立,0不成立-分布二项分布泊松分布高斯分布汽车站出事故的次数不小于2的概率()()P(2)101k P k P k ≥=-=-= 答案0.1P(2)1 1.1k e -≥=-100.1n p ≥≤实际计算中,只需满足,二项分布就趋近于泊松分布()np!k e P X k k λλλ-===1-12 已知随机变量(,)X Y 的概率密度为(34)0,0(,)0x y XY kex y f x y -+⎧>>⎪=⎨⎪⎩,,其它求:①系数k ?②(,)X Y 的分布函数?③{01,02}P X X <≤<≤?第③问 方法一:联合分布函数(,)XY F x y 性质:若任意四个实数1212,,,a a b b ,满足1212,a a b b ≤≤,则121222111221{,}(,)(,)(,)(,)XY XY XY XY P a X a b Y b F a b F a b F a b F a b <≤<≤=+--{01,02}(1,2)(0,0)(1,0)(0,2)XY XY XY XY P X Y F F F F ⇒<≤<≤=+--方法二:利用(){(,)},XY DP x y D f u v dudv∈∈⎰⎰)(210{01,02},XY P X Y f x y dxdy <≤<≤=⎰⎰1-13 已知随机变量(,)X Y 的概率密度为101,(,)0x y xf x y ⎧<<<=⎨⎩,,其它 ①求条件概率密度(|)X f x y 和(|)Y f y x ?②判断X 和Y 是否独立?给出理由。
随机信号分析(第3版)习题及答案
1. 有四批零件,第一批有2000个零件,其中5%是次品。
第二批有500个零件,其中40%是次品。
第三批和第四批各有1000个零件,次品约占10%。
我们随机地选择一个批次,并随机地取出一个零件。
(1) 问所选零件为次品的概率是多少?(2) 发现次品后,它来自第二批的概率是多少? 解:(1)用i B 表示第i 批的所有零件组成的事件,用D 表示所有次品零件组成的事件。
()()()()123414P B P B P B P B ====()()()()12341002000.050.420005001001000.10.110001000P D B P D B P D B P D B ========()11110.050.40.10.10.16254444P D =⨯+⨯+⨯+⨯=(2)发现次品后,它来自第二批的概率为,()()()2220.250.40.6150.1625P B P D B P B D P D ⨯===2. 设随机试验X求X 的概率密度和分布函数,并给出图形。
解:()()()()0.210.520.33f x x x x δδδ=-+-+-()()()()0.210.520.33F x u x u x u x =-+-+-3. 设随机变量X 的概率密度函数为()xf x ae -=,求:(1)系数a ;(2)其分布函数。
解:(1)由()1f x dx ∞-∞=⎰()()2xxx f x dx ae dx ae dx e dx a ∞∞∞---∞-∞-∞==+=⎰⎰⎰⎰所以12a =(2)()1()2xxtF x f t dt e dt --∞-∞==⎰⎰所以X 的分布函数为()1,0211,02xx e x F x e x -⎧<⎪⎪=⎨⎪-≥⎪⎩4.求:(1)X 与的联合分布函数与密度函数;(2)与的边缘分布律;(3)Z XY =的分布律;(4)X 与Y 的相关系数。
(北P181,T3) 解:(1)()()()()()()(),0.07,10.18,0.15,10.081,10.321,0.201,1F x y u x y u x y u x y u x y u x y u x y =+++-+-++-+--()()()()()()(),0.07,10.18,0.15,10.081,10.321,0.201,1f x y x y x y x y x y x y x y δδδδδδ=+++-+-++-+--(2) X 的分布律为()()00.070.180.150.4010.080.320.200.60P X P X ==++===++=Y 的分布律为()()()10.070.080.1500.180.320.5010.150.200.35P Y P Y P Y =-=+===+===+= (3)Z XY =的分布律为()()()()()()()()()()111,10.080001,00.400.320.72111,10.20P Z P XY P X Y P Z P XY P X P X Y P Z P XY P X Y =-==-===-======+===+======== (4)因为()()()00.4010.600.6010.1500.5010.350.20E X E Y =⨯+⨯==-⨯+⨯+⨯=()()10.0800.7210.200.12E XY =-⨯+⨯+⨯=则()()()()ov ,0.120.600.200C X Y E XY E X E Y =-=-⨯=X 与Y 的相关系数0XY ρ=,可见它们无关。
随机信号分析(常建平-李海林版)课后习题答案
由于百度文库格式转换的原因,不能整理在一个word 文档里面,下面是三四章的答案。
给大家造成的不便,敬请谅解随机信号分析 第三章习题答案、随机过程 X(t)=A+cos(t+B),其中A 是均值为2,方差为1的高斯变量,B 是(0,2π)上均匀分布的随机变量,且A 和B 独立。
求(1)证明X(t)是平稳过程。
(2)X(t)是各态历经过程吗?给出理由。
(3)画出该随机过程的一个样本函数。
(1)(2)3-1 已知平稳过程()X t 的功率谱密度为232()(16)X G ωω=+,求:①该过程的平均功率?②ω取值在(4,4)-范围内的平均功率?解[][]()[]2()cos 211,cos 5cos 22X E X t E A E t B A B R t t EA τττ=++=⎡⎤⎣⎦+=+=+与相互独立()()()21521()lim2TT T E X t X t X t X t dt AT-→∞⎡⎤=<∞⇒⎣⎦==⎰是平稳过程()()[]()()4112211222222242'4(1)24()()444(0)41132(1)224414414(2)121tan 13224X X XE X t G d RFG F e R G d d d arc x x ττωωωωωππωωπωωπωπωω∞----∞∞-∞-∞∞--∞∞⎡⎤⨯⎡⎤==⋅=⋅⎢⎥+⎣⎦====+==⎛⎫+ ⎪==⎣⎦=++⎝⎭=⎰⎰⎰⎰⎰P P P P 方法一()方:时域法取值范围为法二-4,4内(频域的平均率法功)2d ω=3-7如图3.10所示,系统的输入()X t 为平稳过程,系统的输出为()()()Y t X t X t T =--。
证明:输出()Y t 的功率谱密度为()2()(1cos )Y X G G T ωωω=-[][]:()[()()]{()()}{()(}2()()()()()()()()2(()[)()(()()]()())Y X X X Y X X Y Y Y X X X Y Y j T j T R E Y t Y t E X t X t T X t X t T R R R R E Y t Y t G F R T T e e G R G R G G G G ωωτττττωτωττωττττωωωω-⇒⇒=+=--+-+-=--=+=-⇔⇔∴=-+-=已知平稳过程的表达式利用定义求利用傅解系统输入输出立叶平变稳换的延时特性2()2()22()(1cos )j T j T X X X e e G G G T ωωωωωω-⎡⎤+-⎢⎥⎣⎦=-3-9 已知平稳过程()X t 和()Y t 相互独立,它们的均值至少有一个为零,功率谱密度分别为216()16X G ωω=+22()16Y G ωωω=+令新的随机过程()()()()()()Z t X t Y t V t X t Y t =+⎧⎨=-⎩ ①证明()X t 和()Y t 联合平稳; ②求()Z t 的功率谱密度()Z G ω ③求()X t 和()Y t 的互谱密度()XY G ω ④求()X t 和()Z t 的互相关函数()XZ R τ ⑤求()V t 和()Z t 的互相关函数()VZ R τ 解:()()4124(1)()()()2[()]()0[()]0()2[()]0()()(,)[()][()]0()()(2)()()()()[()()][()()][()X X X Y XY Z X t Y t R F G e E X t R E X t R eE Y t X t Y t R t t E X t E Y t X t Y t Z t X t Y t R E Z t Z t E X t Y t X t τττωτδττττττ---==∞=⇒=⎡⎤⎣⎦=-⇒=∴+=⋅+=⇒=+=+=++、都平稳=与与联合独平立稳[][]{}2214||()]()()()()()0()()()16()()()116(3)()0()0(4)()[()()]()()()()()()[()]2(5)(X YX XY Y XY Z X Y Z X Y XY XY XZ X XY X X VZ Y t R R R R R R R R G G G R G R E X t Z t E X t X t Y t R R R F G e R ττττττττττωωωωωτωτττττττωτ--++=+++=∴=++∴=+==+=→==+=+++=+==={}4||)[()()][()()][()()]()()()4X Y E V t Z t E X t Y t X t Y t R R e ττττττδτ-=+=-+++=-=+-3-11 已知可微平稳过程()X t 的自相关函数为2()2exp[]X R ττ=-,其导数为()()Y t X t '=。
随机信号习题及答案
3.
⎧0 ⎪ 已知随机变量 X 的分布函数为: FX ( x) = ⎨kx 2 ⎪1 ⎩
x<0 0 ≤ x < 1 ,求:①系数 k;②X 落在区间 x >1
0 < x < +∞,0 < y < +∞ 其它
(0.3,0.7)内的概率;③随机变量 X 的概率密度函数。
4.
⎧e − ( x + y ) 设二维随机变量(X,Y)的概率密度为: f ( x, y ) = ⎨ ⎩0
求:①
分布函数 FXY ( x, y ) ;②(X,Y)落在如图所示的三角形区域内的概率。
y x+y=1
0
x
5. (续上题)求③边缘分布函数 FX ( x) 和 FY ( y ) ;④求边缘概率 f X ( x) 和 fY ( y ) 。 6. ( 续 上 题 ) ⑤ 求 条 件 分 布 函 数 FX ( x y ) 和 FY ( y x) ; ⑥ 求 条 件 概 率 密 度 f X ( x
103
9 若两个随机过程 X (t ) = A(t )cos t 和 Y (t ) = B(t )sin t 都是非平稳过程,其中 A(t ) 和 B (t ) 为相互独立,且 各自平稳的随机过程,它们的均值为 0 ,自相关函数 R A (τ ) = RB (τ ) = R (τ ) 。试证这两个过程之和
和 Y 的相关性及独立性。
11. 已知随机变量 X 的均值 m X = 3 ,方差 σ 2 X = 2 ,且另一随机变量 Y = −6 X + 22 。讨论 X 和 Y 的相关性和正交性。 12. 设随机变量 Y 和 X 之间为线性关系 Y = aX + b ,a、b 为常数,且 a ≠ 0 。已知随机变量 X 为正态分布,即:
随机信号分析课后习题答案
随机信号分析课后习题答案随机信号分析课后习题答案随机信号分析是现代通信系统设计和信号处理领域中的重要基础知识。
通过对随机信号的分析,我们可以更好地理解和处理噪声、干扰等随机性因素对通信系统性能的影响。
下面是一些关于随机信号分析的课后习题及其答案,希望对大家的学习有所帮助。
1. 什么是随机信号?随机信号是在时间域上具有随机性质的信号。
与确定性信号不同,随机信号的每个样本值都是随机变量,其取值不是确定的。
随机信号可以用统计特性来描述,如均值、方差、功率谱密度等。
2. 什么是平稳随机信号?平稳随机信号是指在统计性质上不随时间变化的随机信号。
具体来说,平稳随机信号的均值和自相关函数不随时间变化。
平稳随机信号在实际应用中较为常见,因为它们具有一些方便的数学性质,可以简化信号处理的分析和设计。
3. 如何计算随机信号的均值?随机信号的均值可以通过对信号样本值的求平均来计算。
对于离散时间随机信号,均值可以表示为:E[x[n]] = (1/N) * Σ(x[n])其中,E[x[n]]表示信号x[n]的均值,N表示信号的样本数,Σ表示求和运算。
4. 如何计算随机信号的方差?随机信号的方差可以用均方差来表示。
对于离散时间随机信号,方差可以表示为:Var[x[n]] = E[(x[n] - E[x[n]])^2]其中,Var[x[n]]表示信号x[n]的方差,E[x[n]]表示信号的均值。
5. 什么是自相关函数?自相关函数是用来描述随机信号与其自身在不同时间延迟下的相似性的函数。
自相关函数可以用来分析信号的周期性、相关性等特性。
对于离散时间随机信号,自相关函数可以表示为:Rxx[m] = E[x[n] * x[n-m]]其中,Rxx[m]表示信号x[n]的自相关函数,E[ ]表示期望运算。
6. 如何计算随机信号的自相关函数?随机信号的自相关函数可以通过对信号样本值的乘积进行求平均来计算。
对于离散时间随机信号,自相关函数可以表示为:Rxx[m] = (1/N) * Σ(x[n] * x[n-m])其中,Rxx[m]表示信号x[n]的自相关函数,N表示信号的样本数,Σ表示求和运算。
随机信号分析(常建平+李海林)习题答案
1-9 已知随机变量X 的分布函数为20,0(),011,1X x F x kx x x <⎧⎪=≤≤⎨⎪>⎩求:①系数k ; ②X 落在区间(0.3,0.7)内的概率; ③随机变量X 的概率密度。
解:第①问 利用()X F x 右连续的性质 k =1第②问{}{}{}()()0.30.70.30.70.70.30.7P X P X F P X F =<<=<≤-=-第③问 201()()0X X xx d F x f x elsedx ≤<⎧==⎨⎩1-10已知随机变量X 的概率密度为()()xX f x kex -=-∞<<+∞(拉普拉斯分布),求:①系数k ②X 落在区间(0,1)内的概率 ③随机变量X 的分布函数 解: 第①问 ()112f x dx k ∞-∞==⎰ 第②问{}()()()211221x x P x X x F x F x f x dx <≤=-=⎰随机变量X 落在区间12(,]x x 的概率12{}P x X x <≤就是曲线()y f x =下的曲边梯形的面积。
{}{}()()1010101112P X P X f x dxe -<<=<≤==-⎰第③问()102102xx e x f x e x -⎧≤⎪⎪=⎨⎪>⎪⎩()00()110022111010222xx xxx x x x F x f x dxe dx x ex e dx e dxx e x -∞-∞---∞=⎧⎧≤≤⎪⎪⎪⎪==⎨⎨⎪⎪+>->⎪⎪⎩⎩⎰⎰⎰⎰1-11 某繁忙的汽车站,每天有大量的汽车进出。
设每辆汽车在一天内出事故的概率为0.0001,若每天有1000辆汽车进出汽车站,问汽车站出事故的次数不小于2的概率是多少?,(01)p q λ→∞→→∞→−−−−−−−−→−−−−−−−−→−−−−−−−−→n=1n ,p 0,np=n 成立,0不成立-分布二项分布泊松分布高斯分布汽车站出事故的次数不小于2的概率()()P(2)101k P k P k ≥=-=-= 答案0.1P(2)1 1.1k e -≥=-100.1n p ≥≤实际计算中,只需满足,二项分布就趋近于泊松分布()np!k e P X k k λλλ-===1-12 已知随机变量(,)X Y 的概率密度为(34)0,0(,)0x y XY kex y f x y -+⎧>>⎪=⎨⎪⎩,,其它求:①系数k ?②(,)X Y 的分布函数?③{01,02}P X X <≤<≤?第③问 方法一:联合分布函数(,)XY F x y 性质:若任意四个实数1212,,,a a b b ,满足1212,a a b b ≤≤,则121222111221{,}(,)(,)(,)(,)XY XY XY XY P a X a b Y b F a b F a b F a b F a b <≤<≤=+--{01,02}(1,2)(0,0)(1,0)(0,2)XY XY XY XY P X Y F F F F ⇒<≤<≤=+--方法二:利用(){(,)},XY DP x y D f u v dudv∈∈⎰⎰)(210{01,02},XY P X Y f x y dxdy <≤<≤=⎰⎰1-13 已知随机变量(,)X Y 的概率密度为101,(,)0x y xf x y ⎧<<<=⎨⎩,,其它 ①求条件概率密度(|)X f x y 和(|)Y f y x ?②判断X 和Y 是否独立?给出理由。
随机信号分析(第3版)第三章 习题答案
⎧8δ (ω ) + 20(1 − ω /10), (2) S (ω ) = ⎨ 0, ⎩ 求它们的自相关函数和均方值。 解:(1)
(4) 否, R Y (0) = −1 在原点不是非负 (5)是 3.15 3.16 已 知 随 机 过 程 X (t ) 和 Y (t ) 独 立 且 各 自 平 稳 , 自 相 关 函 数 为 RX (τ ) = 2e − τ cos ω0τ 与 RY (τ ) = 9 + exp(−3τ 2 ) 。令随机过程 Z (t ) = AX (t )Y (t ) ,其中 A 是均值为 2,方差为 9 的随机变量,且与 X (t ) 和 Y (t ) 相互独立。求过程 Z (t ) 的 均值、方差和自相关函数。 解: (6) 是 (7) 是 (8) 是
2 2 3.14 对于两个零均值广义平稳随机过程 X ( t ) 和 Y ( t ) , 已知 σ X = 5 ,σY = 10 ,
问下述函数可否作为自相关函数,为什么? (1) RX (τ ) = 5u (τ ) exp ( −3τ ) ; (3) RY (τ ) = 9 (1 + 2τ 2 ) ; ⎡ sin ( 3τ ) ⎤ (5) RX (τ ) = 5 ⎢ ⎥ ; ⎣ 3τ ⎦ (6) RX (τ ) = 5 exp(− τ ) ; 解:根据平稳随机信号相关函数的性质, (1)否,非偶函数 (2)否,非偶函数 (3) 否, R Y (0) = 9 ≠ σ 2Y
3.6 给定随机过程 X ( t ) = A cos (ω 0t ) + B sin (ω 0t ) ,其中 ω 0 是常数, A 和 B 是 两个任意的不相关随机变量,它们均值为零,方差同为 σ 2 。证明 X ( t ) 是广义平 稳而不是严格平稳的。 3.6 证明:Q m X (t ) = E[X(t )] = E[ A cos(ω 0 t ) + B sin(ω 0 t) ] = 0
《随机信号分析》-高新波等-课后答案
C = *第0章1/1;1/ 2;1/ 3;1/4;1/ 5;1/ 6;2 /1;2 / 2;2 / 3;2 /4;2 / 5;2/6;3/l;3/2;3/3;3/4;3/5;3/6;4/l;4/2;4/3;4/4;4/5;4/6;5/l;5/2;5/3;5/4;5/5;5/6;6/l;6/2;6/3;6/4;6/5;6/64 = {l/l;2/2;3/3;4/4;5/5;6/6}1/5;!/ 6;2 /4;2 / 5;2 / 6;3 / 3;3 / 4;3 / 5;3 / 6;4 / 2;4 / 3;4 / 4;4 / 5;'4/6;5/l;5/2;5/3;5/4;5/5;5/6;6/l;6/2;6/3;6/4;6/5;6/6 /1 /1;1 / 2;1 / 3;1 / 4;1 / 5;1 / 6;2 /1;2 / 2;2 / 3;2 / 4;2 / 5;2 / 6;3 /1;3 / 2;'3/3;3/4;3/5;3/6;4/l;4/2;4/3;5/l;5/2;5/3;6/l;6/2;6/3B =0.2(2)'0用)=x < 00<x<30x 2/12 2x -3-x 2/4,3<x <41 x>4P (l<x<7/2)=f^v +⑴⑶0.3E (X )= L 2<T :t/r = £ ~^y %dy =E (X2)=「Ji 奇dx = 了241a\^e~y 晶尸dy = 2a 2r (2)= 2a 2o(x)=£(/)-(研x))2=2尸_m S=04292S 0.4⑴£(Jf)=(-1)x03+0x0.44-1x03=0£(K)=1x0.4+2x0.2+3x0.4=2(2)由于存在X=0的情况,所以研Z)不存在(3)E(Z)=(-1-1)2x0.2+(-1-2)2xO.l+(O-l)2xO.l+(0-3)2x0.3+(l-l)2xO.1+0-2)2x0.1+(1-3)2x0.1=5 0.5X=ln*,当\dy\=^M=^e(Iny-mf2/”00.6t2+勺血s=£0<x<l,0<.y<2f32\X x~.—+—s as=(363-)7X*i X丁-312=诉号>=2尸号间=fp+导=土名/(x)0.7££be~^x+y^dxdy=[/>(1-e~'\~y dy=/>(1-e-,)= 1,/>=(!—e~x尸/(x)=he~x Ve-y dy=—^e~x fi<x<\f(y)=be~y^e~x dx—e~y,y>00.8(1)x,v不独立⑵F(z)=££~'|(X+yY{x+y}dxdy=£|/『(xe~x +ye~x}ixdy =g按(1一(1+Z一*片5+*(]_e-(z-y)肱,=]_]+z+/2\2f(z)=F'(z)=\+z+—e~:-(1+z)e~z=—e-2,z>0、2)20.9。
随机信号分析第3版习题及答案word资料18页
1. 有四批零件,第一批有2019个零件,其中5%是次品。
第二批有500个零件,其中40%是次品。
第三批和第四批各有1000个零件,次品约占10%。
我们随机地选择一个批次,并随机地取出一个零件。
(1) 问所选零件为次品的概率是多少?(2) 发现次品后,它来自第二批的概率是多少? 解:(1)用i B 表示第i 批的所有零件组成的事件,用D 表示所有次品零件组成的事件。
(2)发现次品后,它来自第二批的概率为, 2. 设随机试验X求X 的概率密度和分布函数,并给出图形。
解:()()()()0.210.520.33f x x x x δδδ=-+-+- 3. 设随机变量X 的概率密度函数为()xf x ae -=,求:(1)系数a ;(2)其分布函数。
解:(1)由()1f x dx ∞-∞=⎰所以12a =(2)()1()2xxtF x f t dt e dt --∞-∞==⎰⎰所以X 的分布函数为4.求:(1)X 与的联合分布函数与密度函数;(2)与的边缘分布律;(3)Z XY =的分布律;(4)X 与Y 的相关系数。
(北P181,T3) 解:(1)(2) X 的分布律为 Y 的分布律为(3)Z XY =的分布律为 (4)因为 则X 与Y 的相关系数0XY ρ=,可见它们无关。
5. 设随机变量()~0,1X N ,()~0,1Y N 且相互独立,U X YV X Y =+⎧⎨=-⎩。
(1) 随机变量(),U V 的联合概率密度(),UV f u v ;(2) 随机变量U 与V 是否相互独立? 解:(1)随机变量(),X Y 的联合概率密度为由反函数 22u v x u vy +⎧=⎪⎪⎨-⎪=⎪⎩,1112211222J ==--, (2)由于, 222244414uv u v e π+---⎛⎫⎛⎫=⨯⎪⎪⎪⎪⎭⎭所以随机变量U 与V 相互独立。
6. 已知对随机变量X 与Y ,有1EX =,3EY =,()4D X =,()16D Y =,0.5XY ρ=,又设3U X Y =+,2V X Y =-,试求EU ,EV ,()D U ,()D V 和(,)Cov U V 。
随机信号分析答案CH1习题答案
ρ XY =
σ X σY
C XY
→ C XY = ρ XY ⋅ σ X σ Y = 0.4 × 2 × 1 = 0.8
∴ 方差D [V ] = 4.8 D [W ] = 17.8
2 2 2 ⎤ E⎡ ⎣ X ⎦ = D [ X ] + mX = 4 + 1 = 5 2 2 2 ⎤ = D [Y ] + mY E⎡ Y = 1 + 2 =5 ⎣ ⎦
CVW = RVW − mV ⋅ mW = 22.2 − 3 × 7 = 1.2
ρVW =
σV σW
CVW
=
1.2 4.8 × 17.8
≈ 0.13
1.32 已知对随机变量 X 与 Y ,有 E [ X ] = 1 , E [Y ] = 3 ,
D [ X ] = 4 , D [Y ] = 16 , ρ XY = 0.5 , 又 设 U = 3 X + Y ,
= FX ( 0.7 ) − FX ( 0.3) = 0.7 2 − 0.32 = 0.4
k =1
(2) P {0.3 < X < 0.7} = P {0.3 < X ≤ 0.7} − P { X = 0.7}
0 ≤ x <1 else
(3) f X (x) =
dFX (x) ⎧2x =⎨ dx ⎩0
1 2 3 1 2 3
jv3X3 jvX1 jv2 X2 ⎡ ⎤ ⎤ ⎡ ⎤ X1, X2 , X3独立 E ⎡ e E e E e ⋅ ⋅ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
= φ1(v)φ2 (2v)φ3 (3v)
jv( 2 X + X +4 X +10) ⎡ ⎤ φ ( v ) E e = (4) X ⎣ ⎦
随机信号分析(第3版)习题及答案
1. 2. 3. 4. 5.6.有四批零件,第一批有2000个零件,其中5%是次品。
第二批有500个零件,其中40%是次品。
第三批和第四批各有1000个零件,次品约占10%。
我们随机地选择一个批次,并随机地取出一个零件。
(1) 问所选零件为次品的概率是多少?(2) 发现次品后,它来自第二批的概率是多少?解:(1)用i B 表示第i 批的所有零件组成的事件,用D 表示所有次品零件组成的事件。
()()()()123414P B P B P B P B ====()()()()12341002000.050.420005001001000.10.110001000P D B P D B P D B P D B ========()11110.050.40.10.10.16254444P D =⨯+⨯+⨯+⨯=(2)发现次品后,它来自第二批的概率为,()()()()2220.250.40.6150.1625P B P D B P B D P D ⨯===7. 8.9. 设随机试验X 的分布律为求X 的概率密度和分布函数,并给出图形。
解:()()()()0.210.520.33f x x x xδδδ=-+-+-()()()()0.210.520.33F x u x u x u x =-+-+-10.11. 设随机变量X 的概率密度函数为()xf x ae -=,求:(1)系数a ;(2)其分布函数。
解:(1)由()1f x dx ∞-∞=⎰()()2xxx f x dx ae dx ae dx e dx a ∞∞∞---∞-∞-∞==+=⎰⎰⎰⎰所以12a =(2)()1()2xxtF x f t dt e dt --∞-∞==⎰⎰所以X 的分布函数为()1,0211,02xx e x F x e x -⎧<⎪⎪=⎨⎪-≥⎪⎩12.13.14.X Y求:(1)X 与Y 的联合分布函数与密度函数;(2)X 与Y 的边缘分布律;(3)Z XY =的分布律;(4)X 与Y 的相关系数。
随机信号分析课后习题答案
1第一次作业:练习一之1、2、3题1.1 离散随机变量X 由0,1,2,3四个样本组成,相当于四元通信中的四个电平,四个样本的取值概率顺序为1/2,1/4,1/8,和1/8。
求随机变量的数学期望和方差。
解:875.087813812411210)(][41==⨯+⨯+⨯+⨯===∑=i i i x X P x X E81)873(81)872(41)871(21)870(])[(][2224122⨯-+⨯-+⨯-+⨯-=-=∑=i i i P X E x X D109.16471==1.2 设连续随机变量X 的概率分布函数为⎪⎩⎪⎨⎧≥<≤-+<=21201)](2πΑsin[0.500)(x x x x x F求(1)系数A ;(2)X 取值在(0.5,1)内的概率)15.0(<<x P 。
解:⎪⎩⎪⎨⎧<≤-π==其他0201)](2π[cos 2)()(x x A dx x dF x f 由1)(=⎰∞∞-dx x f得 2A 021)](2πAsin[1)]d (2π[cos 2=-=-π⎰∞∞-x x x A21A =35.042)]15.0(2[sin 21)]11(2[sin 21)5.0(F )1(F )15.0(==-π--π=-=<<x P1.3 试确定下列各式是否为连续随机变量的概率分布函数,如果是概率分布函数,求其概率密度。
(1)⎪⎩⎪⎨⎧<≥-=-000e 1)(2x x x F x (2)⎪⎩⎪⎨⎧≥<≤<=1110Α00)(2x x x x x F (3)0)]()([)(>--=a a x u x u a xx F(4)0)()()(>---=a a x u axa x u a x x F2解:(1)⎪⎩⎪⎨⎧<≥-=-000e 1)(2x x x F x 当0≥x 时,对于12x x ≥,有)()(12x F x F ≥,)(x F 是单调非减函数; 1)(0≤≤x F 成立; )()(x F x F =+也成立。
随机信号分析中文版答案
1≤ y ≤ 6
1 b−a
+∞ −∞
X 1 ⋅⋅⋅ X n 相互独立
φ X (ω ) = ∫
i
f X ( xi )e jω xi dxi
=∫
b
a
1 jω xi 1 1 jωb e dxi = (e − e jω a ) b−a b − a jω
(b+ a ) ⎛ (b − a )ω ⎞ jω 2 = Sa ⎜ ⎟e 2 ⎝ ⎠
π
2
−2+
π2
8
2 2 2 ∴ D [ x] = σ X =E⎡ ⎣x ⎤ ⎦ − E [ x] 2 =σy =
π
2
−2+
π2
8
−
π2
16
=
π2
16
+
π
2
−2
(4)
Rxy = E [ xy ]
π 1 π 2 2 xy sin ( x + y ) dxdy 2 ∫0 ∫0 π π ⎤ 1 π ⎡ = ∫ 2 x ⎢ − y cos ( x + y ) 02 + sin ( x + y ) 02 ⎥ dx 2 0 ⎣ ⎦
5
《随机信号分析》 课后习题答案
武汉理工大学信息工程学院
cx1x 2 = rx1x 2 − mx1mx 2 cx1x 2 ⎞ ⎛10 2 ⎞ ⎛c cx ( x1, x 2) = ⎜ x1x1 ⎟=⎜ ⎟ ⎝ cx 2 x1 cx 2 x 2 ⎠ ⎝ 2 10 ⎠
1 − f x ( x1 , x2 ) = e 192π
1.8 解: C XY = E[( x − mx )( y − m y )] = E[ XY ] − mx m y = m11 − mx m y
随机信号分析1-3部分答案
1.1 离散随机变量X 由0,1,2,3四个样本组成,相当于四元通信中的四个电平,四个样本的取值概率顺序为1/2,1/4,1/8,和1/8。
求随机变量的数学期望和方差。
解:875.087813812411210)(][41==⨯+⨯+⨯+⨯===∑=i i i x X P x X E81)873(81)872(41)871(21)870(])[(][2224122⨯-+⨯-+⨯-+⨯-=-=∑=i i i P X E x X D109.16471==1.2 设连续随机变量X 的概率分布函数为⎪⎩⎪⎨⎧≥<≤-+<=21201)](2πΑsin[0.500)(x x x x x F求(1)系数A ;(2)X 取值在(0.5,1)内的概率)15.0(<<x P 。
解:⎪⎩⎪⎨⎧<≤-π==其他0201)](2π[cos 2)()(x x A dx x dF x f 由 1)(=⎰∞∞-dx x f得2A 021)](2πAsin[1)]d (2π[cos 2=-=-π⎰∞∞-x x x A 21A =35.042)]15.0(2[sin 21)]11(2[sin 21)5.0(F )1(F )15.0(==-π--π=-=<<x P1.3 试确定下列各式是否为连续随机变量的概率分布函数,如果是概率分布函数,求其概率密度。
(1)⎪⎩⎪⎨⎧<≥-=-000e 1)(2x x x F x (2)⎪⎩⎪⎨⎧≥<≤<=1110Α00)(2x x x x x F (3)0)]()([)(>--=a a x u x u a xx F (4)0)()()(>---=a a x u axa x u a x x F解:(1)⎪⎩⎪⎨⎧<≥-=-000e 1)(2x x x F x 当0≥x 时,对于12x x ≥,有)()(12x F x F ≥,)(x F 是单调非减函数; 1)(0≤≤x F 成立;)()(x F x F =+也成立。
随机信号分析(常建平_李海林版)课后习题答案
由于百度文库格式转换的原因,不能整理在一个word 文档里面,下面是三四章的答案。
给大家造成的不便,敬请谅解随机信号分析 第三章习题答案、随机过程 X(t)=A+cos(t+B),其中A 是均值为2,方差为1的高斯变量,B 是(0,2π)上均匀分布的随机变量,且A 和B 独立。
求(1)证明X(t)是平稳过程。
(2)X(t)是各态历经过程吗?给出理由。
(3)画出该随机过程的一个样本函数。
(1)(2)3-1 已知平稳过程()X t 的功率谱密度为232()(16)X G ωω=+,求:①该过程的平均功率?②ω取值在(4,4)-范围内的平均功率?解[][]()[]2()cos 211,cos 5cos 22X E X t E A E t B A B R t t EA τττ=++=⎡⎤⎣⎦+=+=+与相互独立()()()21521()lim2TT T E X t X t X t X t dt AT-→∞⎡⎤=<∞⇒⎣⎦==⎰是平稳过程()()[]()()4112211222222242'4(1)24()()444(0)41132(1)224414414(2)121tan 13224X X XE X t G d RFG F e R G d d d arc x x ττωωωωωππωωπωωπωπωω∞----∞∞-∞-∞∞--∞∞⎡⎤⨯⎡⎤==⋅=⋅⎢⎥+⎣⎦====+==⎛⎫+ ⎪==⎣⎦=++⎝⎭=⎰⎰⎰⎰⎰P P P P 方法一()方:时域法取值范围为法二-4,4内(频域的平均率法功)2d ω=3-7如图3.10所示,系统的输入()X t 为平稳过程,系统的输出为()()()Y t X t X t T =--。
证明:输出()Y t 的功率谱密度为()2()(1cos )Y X G G T ωωω=-[][]:()[()()]{()()}{()(}2()()()()()()()()2(()[)()(()()]()())Y X X X Y X X Y Y Y X X X Y Y j T j T R E Y t Y t E X t X t T X t X t T R R R R E Y t Y t G F R T T e e G R G R G G G G ωωτττττωτωττωττττωωωω-⇒⇒=+=--+-+-=--=+=-⇔⇔∴=-+-=已知平稳过程的表达式利用定义求利用傅解系统输入输出立叶平变稳换的延时特性2()2()22()(1cos )j T j T X X X e e G G G T ωωωωωω-⎡⎤+-⎢⎥⎣⎦=-3-9 已知平稳过程()X t 和()Y t 相互独立,它们的均值至少有一个为零,功率谱密度分别为 216()16X G ωω=+22()16Y G ωωω=+令新的随机过程()()()()()()Z t X t Y t V t X t Y t =+⎧⎨=-⎩ ①证明()X t 和()Y t 联合平稳; ②求()Z t 的功率谱密度()Z G ω ③求()X t 和()Y t 的互谱密度()XY G ω ④求()X t 和()Z t 的互相关函数()XZ R τ ⑤求()V t 和()Z t 的互相关函数()VZ R τ 解:()()4124(1)()()()2[()]()0[()]0()2[()]0()()(,)[()][()]0()()(2)()()()()[()()][()()][()X X X Y XY Z X t Y t R F G e E X t R E X t R eE Y t X t Y t R t t E X t E Y t X t Y t Z t X t Y t R E Z t Z t E X t Y t X t τττωτδττττττ---==∞=⇒=⎡⎤⎣⎦=-⇒=∴+=⋅+=⇒=+=+=++、都平稳=与与联合独平立稳[][]{}2214||()]()()()()()0()()()16()()()116(3)()0()0(4)()[()()]()()()()()()[()]2(5)(X YX XY Y XY Z X Y Z X Y XY XY XZ X XY X X VZ Y t R R R R R R R R G G G R G R E X t Z t E X t X t Y t R R R F G e R ττττττττττωωωωωτωτττττττωτ--++=+++=∴=++∴=+==+=→==+=+++=+==={}4||)[()()][()()][()()]()()()4X Y E V t Z t E X t Y t X t Y t R R e ττττττδτ-=+=-+++=-=+-3-11 已知可微平稳过程()X t 的自相关函数为2()2exp[]X R ττ=-,其导数为()()Y t X t '=。
随机信号分析基础课后练习题含答案
随机信号分析基础课后练习题含答案第一部分随机变量和概率分布练习题1设离散随机变量X的概率分布函数为:X0 1 2 3 4P X0.05 0.15 0.35 0.30 0.15求E(X)和D(X)。
答案1根据概率分布函数的公式有:$$E(X)=\\sum_{i=1}^n x_i P_X(x_i) = 0 \\times 0.05 + 1\\times 0.15 + 2 \\times 0.35 + 3 \\times 0.30 + 4 \\times 0.15 = 2.25$$$$D(X)=\\sum_{i=1}^n (x_i-E(X))^2P_X(x_i) = 0.710625$$ 练习题2已知随机变量X的概率密度函数为:$$f_X(x) = \\begin{cases} \\frac{1}{3}e^{-\\frac{x}{3}} & x \\geq 0 \\\\ 0 & x < 0 \\end{cases}$$求E(X)和D(X)。
答案2根据概率分布函数的公式有:$$E(X)=\\int_{-\\infty}^{+\\infty}xf_X(x)dx =\\int_{0}^{+\\infty}x\\frac{1}{3}e^{-\\frac{x}{3}}dx=3$$ $$D(X)=E(X^2)-(E(X))^2=\\int_{-\\infty}^{+\\infty}x^2f_X(x)dx-(E(X))^2=\\int_{0}^{+\\infty}x^2\\frac{1}{3}e^{-\\frac{x}{3}}dx-9=\\frac{27}{4}$$第二部分随机过程练习题3设二阶矩有限的离散时间随机过程X n的均值序列为m n,自相关函数为R n(i,j)=E(X i−m i)(X j−m j),其中 $0 \\leq i,j \\leq N$。
若m n=n2,R n(i,j)=ij(i+j),求 $E(\\sum_{n=0}^N X_n)$。
随机信号分析CH4习题及答案
习 题4.1 随机信号()1Y t 与()2Y t 的实测样本函数如下题图4.1(a)与(b)所示,试说明它们是否均值各态历经。
(a )(b )题图4.1解:由均值各态历经信号的定义:[][](,)(,)MSEA Y t s E Y t s =, 即随机信号的每条样本的时间平均都相同,并在均方误差意义下等于其统计平均。
图(a )中每条样本的时间平均都不相同,()1Y t 不可能是均值各态历经信号;图(b )中每条样本的时间平均都可能相同,且大致等于其统计平均,()2Y t 很可能是均值各态历经信号4.2 随机二元传输信号如例3.16所述,试分析它的均值各态历经性。
解:由例3.16,随机二元传输信号的协方差函数为,41(),0Y pq T C TTττττ⎧⎛⎫-≤⎪ ⎪=⎨⎝⎭>⎪⎩又根据定理 4.1的充分条件为:()lim 0C ττ→∞=,且()04C pq =<∞,因此,它是均值各态历经信号。
又解:根据定理4.1的充要条件11lim ()4lim 2211lim 240221L TL T L L L pq T C d d L L T pq L ττττ--→∞→∞→∞==⋅⎛⎫- ⎪⎝⋅⋅=⎭⎰⎰因此,它是均值各态历经信号。
4.34.4 随机信号()X t 与()Y t 是联合广义各态历经(各自广义各态历经,且[][]()()()()A X t Y t E X t Y t ττ+=+)的,试分析信号()()()Z t aX t bY t =+的各态历经性,其中a 与b 是常数。
解:由题意,均方意义下有,[][][][]()(),()()A X t E X t A Y t E Y t == [][]()()()()A X t X t E X t X t ττ+=+[][]()()()()A Y t Y t E Y t Y t ττ+=+[][]()()()()A X t Y t E X t Y t ττ+=+[][]()()()()A Y t X t E Y t X t ττ+=+因而[]()[][][][]()[]()()()()()())(()A aX t bY t aA X t bA Y t aE X t b A Z t E E Y t Z t E aX t bY t =+⎡⎤⎣⎦=+=+=+=⎡⎤⎣⎦所以,()Z t 是均值各态历经信号[]()()[][][][][][][][]()()[]2222()()()()()()()()()()()()()()()()()()()()()()()(()()()())A aX t bY t aX t bY t a A X t X t b A Y t Y t abA X t Y t abA Y t X t a A Z t Z t E X t X t b E Y t Y t abE X t Y t abE Y t X t E aX t bY t aX E t Y Z t t b t Z ττττττττττττττ=++++⎡⎤⎣⎦=+++++++=+++++++=++++⎡⎤++⎣⎦==()Z R τ因此,()Z t 是相关各态历经信号,也是广义各态历经。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. (10分)随机变量12,X X 彼此独立,且特征函数分别为12(),()v v φφ,求下列随机变量的特征函数:(1) 122X X X =+ (2)12536X X X =++解:(1)()121222()jv X X jvX jv X jvXX v E e E e E e e φ+⎡⎤⎡⎤⎡⎤===⋅⎣⎦⎣⎦⎣⎦1221212()(2)jvX jv X X X E e E e v v φφ⎡⎤⎡⎤=⎣⎦⎣⎦和独立(2)()1212536536()jv X X jv X jv X jv X v E e E e e e φ++⎡⎤⎡⎤==⋅⋅⎣⎦⎣⎦1253612jv X jv X jv X X E e E e E e ⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦和独立 612(5)(3)jv e v v φφ=2. (10分)取值()1,1-+,概率[0.4,0.6]的独立()半随机二进制传输信号()X t ,时隙长度为T ,问: (1) 信号的均值函数()E X t ⎡⎤⎣⎦; (2) 信号的自相关函数(),X R t t τ+; (3) 信号的一维概率密度函数();X f x t 。
解:(1)()10.410.60.2E X t =-⨯+⨯=⎡⎤⎣⎦ (2) 当,t t τ+在同一个时隙时:[]222(,)()()[()]10.6(1)0.41X R t t E X t X t E X t ττ+=+==⨯+-⨯=当,t t τ+不在同一个时隙时:[][][](,)()()()()0.20.20.04X R t t E X t X t E X t E X t τττ+=+=+=⨯=(3)()()();0.610.41X f x t x x δδ=-++3. (10分)随机信号0()sin()X t t ω=+Θ,()()0cos Y t t ω=+Θ,其中0ω为常数,Θ为在[]-,ππ上均匀分布的随机变量。
(1) 试判断()X t 和()Y t 在同一时刻和不同时刻的独立性、相关性及正交性;(2) 试判断()X t 和()Y t 是否联合广义平稳。
解:(1) 由于X (t )和Y(t )包含同一随机变量θ,因此非独立。
根据题意有12f ()θπ=。
[]001sin()02E[X(t )]E t sin(w t )d ππωθθπ-=+Θ=+=⎰, []001cos()02E[Y(t )]E t cos(w t )d ππωθθπ-=+Θ=+=⎰ {}121212010201020120120121211242XY XY C (t ,t )R (t ,t )E[X (t )Y(t )]E[sin(w t )cos(w t )]sin(w t )cos(w t )d sin[w (t t )]sin[w (t t )]d sin[w (t t )]ππππθθθθθπθθπ--===++=++=+++-=-⎰⎰由于0XY XY R (t,t )C (t,t )==,X (t )和Y(t )在同一时刻正交、线性无关。
除()012w t t k π-=±外的其他不同时刻12120XY XY R (t ,t )C (t ,t )=≠,所以1X (t )和2Y(t )非正交且线性相关。
(2) 由于0E[X(t )]E[Y(t )]==,X (t )和Y(t )均值平稳。
[]12010201020120120120121241122X R (t ,t )E sin(w t )sin(w t )sin(w t )sin(w t )d {cos[w (t t )]cos[w (t t )]d cos[w (t t )]cos(w )ππππθθθθθπθθπτ--=++=++=-+++-=-=⎰⎰同理可得1212Y X R (t ,t )R (t ,t )=,因此X (t )和Y(t )均广义平稳。
由于121201201122XY XY R (t ,t )C (t ,t )sin[w (t t )]sin(w )τ==-=,因此X (t )和Y(t )联合广义平稳。
4. (10分)判断下列函数是否能作为实广义平稳随机过程的自相关函数(其中c ω均为常数)?如果不能,请写出理由。
(1)cos() ||4() 0 c c R πωττωτ⎧≤⎪=⎨⎪⎩其它(2)cos() ||2() 0 c c R πωττωτ⎧≤⎪=⎨⎪⎩其它(3)10cos() ||() 0 cc R πωττωτ⎧≤⎪=⎨⎪⎩其它(4)()=cos() ||c R τωττ≤∞ 解:(1)不能,因为零点连续,而4/π点不连续。
(2)能。
(3)不能,因为20c R()R()πω=,而R()τ又不是2c /πω的周期函数。
(4)能。
5. (10分)线性时不变系统的框图如下图所示。
若输入白噪声的双边功率谱密度01 W/Hz 2N =,求系统输出噪声的功率谱密度函数和自相关函数,以及输出噪声总功率。
解:系统的传递函数为()11R H j R j L j ωωω==++,则系统输出功率谱密度为()()()222112121Y X S S H j ωωωωω=⨯==⋅++。
输出噪声的自相关函数为()12Y R e ττ-=输出噪声总功率为102N Y P R ()(W )==6. (10分)设随机信号()()()()()sin Z t X t t Y t t ωω=-00cos ,其中ω0为常数,()()X t Y t 和均为零均值的平稳随机过程,并且相互正交。
问:(1) ()()X t Y t 和是否联合广义平稳?(2) 假如()()X Y R R ττ=,()Z t 是否为广义平稳的随机信号? 证明:(1) 由于()()X t Y t 和相互正交,所以(,)(,)0XY YX R t t R t t ττ+=+≡,与t 无关 ,又因为()()X t Y t 和均为零均值的平稳随机过程,所以()()X t Y t 和是联合广义平稳随机信号。
(2) 假如()()X Y R R ττ=,[()][()()sin ]0E Z t E X t t Y t t ωω=-==00cos 常数(,)[()()]Z R t t E Z t Z t ττ+=+[][]{}()()()sin ()()()sin E X t t Y t t X t t Y t t τωττωτωω=++-++-0000cos cos[()()]()[()()]()E X t X t t t E X t Y t t t τωτωτωτω=++-++0000cos cos cos sin[()()]()[()()]()E Y t X t t t E Y t Y t t t τωτωτωτω-+++++0000sin cos sin sin由于()()X t Y t 和相互正交,所以[()()][()()]0E X t Y t E Y t X t ττ+=+=(,)[()()]()[()()]()Z R t t E X t X t t t E Y t Y t t t ττωτωτωτω∴+=+++++0000cos cos sin sin()()()()X Y R t t R t t τωτωτωτω=+++0000cos cos sin sin()()X Y R R τωττωτ==00cos cos ,与t 无关所以()Z t 是广义平稳的随机信号。
7. (10分)下列函数中哪些是实广义平稳随机信号功率谱密度的正确表达式?若是,求该信号的平均功率;若不是,请说明原因。
(1) 229()69S ωωωω+++= (2)2424()109S ωωωω+++=(3) 210()010S ωωω⎧≤⎪=⎨>⎪⎩ (4)()()2S ωπδω=解:(1) 不可以。
不是偶函数。
(2) 可以。
()()42224111()109219S ωωωωω⎡⎤⎢⎥=-++++⎢⎥⎣⎦=,所以 3()R e e τττ--+11=412,所以1(0)3P R =+=11=412(3) 可以。
10101120()222P S d d ωωωπππ∞-∞-===⎰⎰(4) 可以。
11()2()122P S d d ωωπδωωππ∞∞-∞-∞===⎰⎰8. (10分)某语音随机信号()X t 满足广义各态历经性,现将该信号经过无线信道进行传输,假设信道噪声为广义各态历经的加性高斯白噪声()N t 。
讨论:(1) 收到的信号()()()Y t X t N t =+的均值各态历经性; (2) ()Y t 满足广义各态历经性的条件。
解:由()X t 满足广义各态历经性,所以()X t 广义平稳且满足:[()][()][()()][()()]xE X t A X t m t E X t X t A X t X t t ττ==⎧⎨+=+⎩,与无关,与无关 同理,()N t 广义平稳且满足:1[()][()]lim ()02[()()][()()]()2T T T o E N t A N t N t dt T N E N t N t A N t N t ττδτ-→∞⎧===⎪⎪⎨⎪+=+=⎪⎩⎰由于()X t 与()N t 是独立的,所以:[][]()()()X E Y t E X t N t m =+=()()(,)()()()()()()Y X N R t t E X t N t X t N t R R τττττ+=++++=+⎡⎤⎣⎦所以()Y t 是广义平稳的。
且有:[][][][][][]()()()()()()()X A Y t A X t N t A X t A N t E X t E N t m =+=+=+=所以,[]()()[][][][]()()()()()()()()()()()()()()A Y t Y t A X t N t X t N t A X t X t A N t N t A X t N t A N t X t τττττττ+=++++⎡⎤⎣⎦=+++++++[][]()(()()))(()X N A X t N X t N R t t R A ττττ+++++=由于[][]()()X E Y t A Y t m ==,所以()Y t 是均值各态历经的。
假如[][]()()()()0A X t N t A X t N t ττ+++=,则()Y t 是广义各态历经的。
9. (10分)已知平稳随机信号()X t 的功率谱密度24()4X S ωω=+ 。
()X t 通过频率响应为1()1H j ωω=+的系统后得到()Y t 。