麦克斯韦气体分子速率分布定律

合集下载

大学物理第十二章气体动理论第6节 麦克斯韦气体分子速率分布律

大学物理第十二章气体动理论第6节 麦克斯韦气体分子速率分布律


m(H 2 ) m(O2 ) v p ( H 2 ) v p (O 2 )
vp (H2 ) 2 000m.s-1
2kT vp m
o
2 000
v/ ms
1
vp ( H 2 )
m( O 2 ) 32 4 v p (O 2 ) m( H 2 ) 2
vp (O2 ) 500m.s
f ( v)
dS
dN f ( v)dv dS N
v
第十二章 气体动理论
o
v v dv
概率密度
3
物理学
第五版
12-6 麦克斯韦气体分子速率分布律
f (v)dv物理意义
表示在温度为 T 的平衡状态下,速 率在 v 附近单位速率区间 的分子数占总 数的百分比 .
f (v)dv 的物理意义:
表示速率在 v v dv 区间的分 子数占总分子数的百分比.
第十二章 气体动理论
4
物理学
第五版
12-6 麦克斯韦气体分子速率分布律 麦克斯韦气体分子速率分布律 12-6
dN Nf ( v)dv 速率在 v v dv 内分子数: 速率位于 v1 v2区间的分子数: v2 N v N f (v)dv 1 速率位于 v1 v2 区间的分 f ( v)
-1
第十二章 气体动理论
17
f (v )
vp v v
2
第十二章 气体动理论
vp v 2 v
v
15
物理学
第五版
12-6 麦克斯韦气体分子速率分布律 麦克斯韦气体分子速率分布律 12-6
讨论 1 已知分子数 N ,分子质量 m ,分布函 数 f ( v) . 求 (1) 速率在 vp ~ v 间的分子 数;(2)速率在 vp ~ 间所有分子动能 之和 . 解 ( 1)

麦克斯韦气体速率分布律

麦克斯韦气体速率分布律

麦克斯韦气体速率分布律Maxwell Velocity Distribution大家知道,由气体的温度公式可以得出气体分子的方均根速率。

例如在时,氦气。

氧气。

但我们要注意的是,方均根速率仅是运动速率的一种统计平均值,并非气体分子都以方均根速率运动。

事实上,处于平衡状态下的任何一种气体,各个分子均以不同的速率、沿各个方向运动着。

有的速率大于方均根速率,有的速率小于方均根速率,它们的速率可以取零到无穷大之间的任意值。

而且由于气体分子间的相互碰撞,每个分子的速度也在不断地改变,所以在某一时刻,对某个分子来说,其速度的大小和方向完全是偶然的。

然而就大量分子整体而言,在平衡状态下,分子的速率分布遵守一个完全确定的统计性分布规律又是必然的。

下面我们介绍麦克斯韦应用统计理论和方法导出的分子速率分布规律。

气体分子按速率分布的统计规律,最早是由麦克斯韦于1859年在概率论的基础上导出的,1877年玻耳兹曼由经典统计力学中也导出该规律。

由于技术条件的限制,测定气体分子速率分布的实验,直到本世纪二十年代才实现。

1920年斯特恩(O.Stern首先测出银蒸汽分子的速率分布;1934年我国物理学家葛正权测出铋蒸汽分子的速率分布;1955年密勒(Mlier和库士(Kusch测出钍蒸汽分子的速率分布。

斯特恩实验是历史上最早验证麦克斯韦速率分布律的实验。

限于数学上的原因和本课程的要求,我们不推导这个定律,只介绍它的一些基本内容。

*麦克斯韦(J. C. Maxwell,1831—1879)英国物理学家,经典电磁理论的奠基人,气体动理论的创始人之一。

他提出了有旋电场和位移电流概念,建立了经典电磁理论,这个理论包括电磁现象的所有基本定律,并预言了以光速传播的电磁波的存在。

1873年,他的《电磁学通论》问世,这本书凝聚着杜费、富烂克林、库仑、奥斯特、安培、法拉第……的心血,这是一本划时代巨著,它与牛顿时代的《自然哲学的数学原理》并驾齐驱,它是人类探索电磁规律的一个里程碑。

4-4 麦克斯韦气体分子速率分布定律

4-4 麦克斯韦气体分子速率分布定律

1)
v
vp
Nf
(v)dv
2)

vp
1 2
mv 2
Nf
(v)dv
4 – 4 麦克斯韦气体分子速率分布率
第四章气体动理论
例 如图示两条 f (v) ~ v 曲线分别表示氢气和
氧气在同一温度下的麦克斯韦速率分布曲线, 从图
上数据求出氢气和氧气的最概然速率 .
f (v)
vp
2kT m
m(H2 ) m(O2 )
射线中速率v在: v v 区间的分子。
当圆盘以不同的角速度转动时,从屏上可以测量出每次
所沉积的金属层的厚度,各次沉积的厚度对应于不同速
率区间内的分子数。比较这些厚度的比率,就可以知道
在分子射线中,不同速率区间内的分子数与总分子数之
比。
下面看气体分子的速率分布:
4 – 4 麦克斯韦气体分子速率分布率
0N
dN N

0
f
(v)dv
1
4 – 4 麦克斯韦气体分子速率分布率
第四章气体动理论
三 三种统计速率
f (v)
v 1)最概然速率 p fmax
df (v) 0 dv vvp
o
vp
v
根据分布函数求得
M mNA , R NA k
vp
2kT 1.41 kT
m
m
vp 1.41
RT M
物理意义
气体在一定温度下分布在最概然
速率 v p 附近单位速率间隔内的相对
分子数最多 .
4 – 4 麦克斯韦气体分子速率分布率
第四章气体动理论
2)平均速率 v
v v1dN1 v2dN2 vidNi vndNn

7-6麦克斯韦气体分子速率分布定律剖析.

7-6麦克斯韦气体分子速率分布定律剖析.

7 – 6 麦克斯韦气体分子速率分布率
物理学教程 (第二版)
f (v)
S
o
v1 v2
dN f (v)dv dS N 速率位于v v dv 内分子数
v
dN Nf (v)dv
速率位于
v1

v2
区间的分子数
N

v2
v1
N
f
(v)dv
速率位于 v1 v2 区间的分子数占总数的百分比
第七章 气体动理论
f (v) dN Ndv
f (v)
o
v
7 – 6 麦克斯韦气体分子速率分布率
物理学教程 (第二版)
二 三种统计速率
1)最概然速率 v p
df (v) 0 dv vvp
根据分布函数求得
f (v)
f max
o
vp
v
M mNA , R NA k
vp
2kT 1.41 kT
v
N2 分子在不同温 度下的速率分布
第七章 气体动理论
f (v)
O2 H2
o vp0 vpH
v
同一温度下不同 气体的速率分布
7 – 6 麦克斯韦气体分子速率分布率
物理学教程 (第二版)
例 计算在 27 C 时,氢气和氧气分子的方均
根速率 vrms .
解 MH 0.002kg mol1
MO 0.032kg mol1
8kT
0
πm
o
v
v 1.60 kT 1.60 RT
m
M
第七章 气体动理论
7 – 6 麦克斯韦气体分子速率分布率
物理学教程 (第二版)

大学物理麦克斯韦分子速率分布定律资料

大学物理麦克斯韦分子速率分布定律资料
(D) 速率大小与最概然速率相近的气体分子的比 率最大.
11
例: 设有N个气体分子,其速率分布函数为
f
(
)
A
(0 0
)
0 0 0
求: (1)常数A;(2)最概然速率,平均速率和方均根;
(3)速率介于0~0/3之间的分子数;(4)速率介于0~ 0/3
之间的气体分子的平均速率。
f()
解: (1)气体分子的分布曲线如图
2 1300
N
dN
0
3 Nf ( )d
0
0 3
0
N
6
3 0
(0
)d
7N 27
13
(4)速率介于0~0/3之间的气体分子平均速率为
0~0 3
0
3 dN
0 0
0 3
0
N
6 v03
2
(
0
)d
30
7N 27
14
3 dN 0
注意:速率介于 1~ 2之间的气体分子的平均速率
的计算是
2f ( )d
1~2
1
2 f ( )d
1
而非
1 ~2
2f ( )d
1
14
作业题
设. 有N个粒子,其速率分布函数 f v 为
f
v
Av 30 v
0
v 30 v 30
求: (1)归一化常数A的值;(2)最概然速率
(3)N个粒子的平均速率 v
15
§3.4 麦克斯韦分子速率分布定律
任何一个分子,速度大小和方向都是偶然的, 不可预知。但在平衡态下,大量气体分子的速度分布 将具有稳定的规律 — 麦克斯韦速度分布律。
只考虑速度大小的分布—麦克斯韦速率分布律。

麦克斯韦气体分子速率分布定律

麦克斯韦气体分子速率分布定律
f (v)
S
dN = f ( v )dv = dS N 速率位于v → v + dv 内分子数
o
v1 v2
v
dN = Nf ( v )dv
v v1 → v2 区间的分子数 N = ∫v 2 N f ( v )dv 速率位于 1
速率位于 v1 → v2 区间的分子数占总数的百分比
N ( v1 → v 2 ) v2 S = = ∫v f ( v )d v 1 N
二 麦克斯韦气体速率分布定律
m 32 麦氏分布函数 麦氏分布函数 f ( v ) = 4 π ( ) e 2 π kT 2
mv2 2 kT
v
2
m 32 dN = 4π( ) e N 2 π kT
mv 2 kT
v dv
dN f ( v) = Nd v
2
反映理想气体在热动 平衡条件下, 平衡条件下,各速率区间 分子数占总分子数的百分 比的规律 .
vp
的概念
v v v
例 计算在 27 C 时,氢气和氧气分子的方均 根速率 v rms .
H = 0.002kg mol1
2
R = 8.31 J K 1 mol1
O = 0.032kg mol1
2
T = 300K
3 RT
vrms =
3 1
氢气分子 氧气分子
vrms = 1.93 × 10 m s vrms = 483m s
o
vp (H2 )
2000
2kT m
v/ ms
1
∴vp (H2 ) > vp (O2 )
∴vp (H 2 ) = 2000m/s
m(O2 ) 32 = = = 4 ∴ v (O ) = 500 m/s p 2 vp (O2 ) m(H 2 ) 2

12-6麦克斯韦气体分子速率分布律

12-6麦克斯韦气体分子速率分布律
12.6 麦克斯韦速率分布定律
一、分布的概念
在平衡态下,0 ℃空气分子数按速率的分布
25% 20%
N 15% N 10%
5%
0
100
200
300
400
500
600
700
m/s
每一速率区间内分子数取决于速率和速率 区间间隔大小。
二、气体速率分布的实验测定 L
蒸气源 检测器
R

抽 气
抽 气
l v
理想气体在平衡态下,气体中速率在 v~v + dv 区间内的分子数与总分子数的比率为
dN f ( v)dv N 2 2 kT 4 π v e dv 2 πkT 2. v1~v2 区间内的分子数N占总分子数N的比率
v2 32

v2
v1
N f ( v)dv N
3. 曲线下面的总面积等于1


0
N f ( v)dv 1 N
O
f (v )

v2
v1
f ( v)dv
(归一化条件) 4. 最概然速率vp f (v ) 极大值对应的速率。
2kT f ( v) 0 vp dv
v1 vp f (v ) v2 v
O
vp
v
对一定量的理想气体
T 和 对速率分布的影响
dN 2 4 π ve N 2πkT
32
v 2
2 kT
dv
例3 已试用速率分布函数推出气体分子热运动算 术平均速率。 解:根据平均速率的定义,有
v
vdN
N


0
vNf ( v)dv N

麦克斯韦速率分布定律

麦克斯韦速率分布定律

(4) 平均速率和方均根速率.
f ( )
解:(1)求 C :
C (0 ) (0 0 ) 0 ( 0 )


0
f ( )d 1 C
6
3 0
(2) N 0 ~ 0 / 4 N

0 / 4
0
5 f ( ) d N 32
0 df ( ) (3)最可几速率 0 p d p 2
6.5 麦克斯韦速率分布定律
气体中个别分子的速度大小和方向完全是偶然的 , 但 平衡态下,气体分子的速度分布遵从一定的统计规律 — — 麦克斯韦速度分布定律. 若不考虑分子速度的方向, 这个规律就成为麦克斯韦速率分布定律.
1859年, 麦克斯韦用概率论导出了气体分子速率分布 定律,后由玻尔兹曼使用经典统计力学理论导出. 1920年史特恩用分子束实验, 获得分子有着确定的速 度分布的信息, 但未能给出定量的结果. 1934年我国留学 生葛正权在伯克利首次获得此定律的精确实验验证. 此 成功经报界报道, 当时闻名欧美, 在很大程度上改变了外 国人眼中“中国留学生只会读书不能动手, 我们不欢迎” 的形象, 对当时欧美中国留学生有极大的影响和鼓舞.
f (v )
av , (0 v v 0 ) 0 , (v v 0 )
2
f (v )
v0 v 求: (1)常量 a 和υ0 的关系 0 (2)平均速率 v v0 (3)速率在 0 之间分子的平均速率 v 2
解: (1)由归一化条件
0
2 0


0
f ( )d 1
3 得 a 3 v0

f ( v)
T1 300K T2 1200K
f ( v)

6-3 气体分子速率分布率和平均自由程

6-3 气体分子速率分布率和平均自由程

100~200
200~300 300~400
0.081
0.165 0.214
400~500
500~600 600~700
0.206
0.151 0.092
700~800
800~900 900以上
0.048
0.021 0.009
第三节
气体分子速率分布律和能量分布律
N 1 由此数据为依据,以v N v 为横轴,以单位速率间隔 21.4% 内的分子数在总分子数内 所占的百分比为纵轴,作 16.5% 如图所示的锯齿形图。注 8.0% 意在速率间隔∆ν内实际包 200 400 括由v到v+∆ν内的所有速率 的分子。
f (v)
平 均 速 率
O
v
v
第三节
气体分子速率分布律和能量分布律
方均根速率:
气体分子速率平方的平均值的平方根。
v
2

N
0
v dN N
2



0
m e v f (v) 4p 2pkT
3 dN 2 2 mv 2 f (v )dv 2 2 kT RT 3kT 3 RT v N m 1.73
dN f (v )dv N

dN f (v ) Ndv
分子速率分布函数
第三节
气体分子速率分布律和能量分布律
速率分布函数
dN f (v ) Ndv
a、物理意义: 速率在v 附近的单位速率区间的 分子数占总分子的百分比。 b、应用: 确定分布在任一有限速率分布范围v1~v2 内的分子数占总分子数的百分比。
mv2 2 kT v 2 e
第三节
气体分子速率分布律和能量分布律

麦克斯韦速度分布定律

麦克斯韦速度分布定律

麦克斯韦速度分布定律麦克斯韦速度分布定律是描述气体分子速度分布的统计规律之一,由19世纪末的苏格兰物理学家詹姆斯·麦克斯韦提出。

该定律在热力学和统计物理学中有着广泛的应用,能够揭示气体分子运动特征,对于理解气体动力学和热传导等现象具有重要意义。

根据麦克斯韦速度分布定律,理想气体分子的速度服从麦克斯韦-玻尔兹曼速度分布。

其概率密度函数为:f(v) = (m / (2πkT))^(3/2) * 4πv^2 * e^(-mv^2 / (2kT))其中,f(v)表示速度为v的分子的概率密度,m为分子质量,k为玻尔兹曼常数,T为气体温度。

该概率密度函数描述了气体分子速度的分布情况。

根据这一函数,可以得到气体分子不同速度下的概率密度,以及平均速度、平均速度的平方等相关参数。

麦克斯韦速度分布定律具体刻画了速度分布的趋势,从而为研究气体热力学性质提供了重要依据。

根据麦克斯韦速度分布定律可以得到以下几个重要结论:1. 峰值速度:麦克斯韦速度分布定律的概率密度函数在具体速度处取得最大值,即存在一个峰值速度。

这个峰值速度与气体的温度和质量有关,温度越高或质量越小,峰值速度越大。

2. 平均速度:根据麦克斯韦速度分布定律,可以计算出气体分子的平均速度。

平均速度与系统的温度有关,随着温度的升高,平均速度也增加。

3. 速度分散度:麦克斯韦速度分布定律还可以用来计算气体分子速度的分散度。

速度分散度可以通过计算速率最大值附近的速度范围来确定。

由于速度分散度对于描述气体的输运性质至关重要,因此,该定律在研究气体动力学和热学性质时经常被应用。

麦克斯韦速度分布定律是热力学和统计物理学中的重要模型,它将分子速度的概率分布与系统的热力学性质联系在一起。

通过该定律,我们可以更好地理解气体分子的运动规律,研究气体的输运性质和热传导现象。

同时,在工程和科学领域的应用中,麦克斯韦速度分布定律也为材料设计、能源开发和天文物理学等提供了重要指导。

麦克斯韦速率分布

麦克斯韦速率分布

麦克斯韦速率分布
麦克斯韦速率分布是描述气体分子速度分布的概率分布函数之一。

它由麦克斯韦速度分布定律提出,该定律认为在一定温度下,分子速度的分布服从麦克斯韦速率分布。

麦克斯韦速率分布的表达式为:
f(v) = (m / (2 * π * k * T))^(3/2) * 4 * π * v^2 * exp(-(m * v^2) / (2 * k * T))
其中,f(v)是速度为v的气体分子出现的概率密度,m是分子的质量,k是玻尔兹曼常数,T是温度。

麦克斯韦速率分布描述了速率在不同范围内的分子数的相对比例。

麦克斯韦速率分布具有以下特点:
1. 最概然速率:在麦克斯韦速率分布曲线上,存在一个速度值,使得该速度值对应的气体分子出现的概率最高,这个速度就是最概然速率。

2. 平均速率:麦克斯韦速率分布曲线的面积下的整数倍等于总分子数,因此可以通过平均积分得到平均速率。

3. 方均根速率:方均根速率是指速率的平方取平均后开根号的值,它与麦克斯韦速率分布曲线的宽度有关。

麦克斯韦速率分布在解释气体的物理性质和进行气体动力学研究中起着重要的作用,尤其在理解气体温度、分子碰撞等方面具有较高的应用价值。

麦克斯韦气体速率分布律

麦克斯韦气体速率分布律

v Z
二、平均自由程和平均碰撞次数的计算
1、平均碰撞次数 假定 每个分子都是有效直径为d 的弹性小球。
只有某一个分子A以平均速率 其余分子都静止。
d d d
v
运动,
v
A
v

v
A
v
d
d d 球心在圆柱 体内的分子

运动方向上,以 d 为半径的圆柱体内的分子都将 与分子A 碰撞
一秒钟内: 分子A经过路程为 v 2 相应圆柱体体积为 d v 圆柱体内 2 2 d v n Z d v n 分子数
vf (v )dv
8kT 8 RT RT v 1.60 m M M
3、方均根速率 (1)定义: 大量气体分子速率的平方平均值的平方根叫做 方均根速率。 (2)计算:
v2
2 v dN
N
2

2 v Nf (v )dv
N
v 2 f (v )dv
vrms
3kT 3 RT RT v 1.73 m M M
麦克斯韦 速率分布函数
3 2
mv 2
v
2
m——分子的质量 T——热力学温度 k——玻耳兹曼常量
三、三种统计速率
1、最可几速率vP (1) 定义:与 f(v)极大值相对应的速率,称为最可几 速率或最概然速率。 (2) 物理意义:若把整个速率范围划分为许多相等的
小区间,则分布在vP所在区间的分子数比率最大。
速率分布函数
(2) 物理意义:
速率在 v 附近,单位速率区间的分子数占总
分子数的概率,或概率密度。
dN f (v )dv N v2 N = f (v)dv N v1
表示速率分布在v→v+dv内的 分子数占总分子数的概率 表示速率分布在v1→v2内的 分子数占总分子数的概率

麦克斯韦速率分布定律

麦克斯韦速率分布定律

υ 附近单位速率区
间的分子数
(5) nf ()d N dN dN
VN V
单位体积中速率在υ ~ υ+dυ区间的分子数
(6) 2 f ()d 1
dN N

N1 2 N
速率在υ1 ~ υ2区间的分
子数占总分子数的百分比
(7) 2 Nf ()d 1
1920年史特恩用分子束实验, 获得分子有着确定的速 度分布的信息, 但未能给出定量的结果. 1934年我国留学 生葛正权在伯克利首次获得此定律的精确实验验证. 此 成功经报界报道, 当时闻名欧美, 在很大程度上改变了外 国人眼中“中国留学生只会读书不能动手, 我们不欢迎” 的形象, 对当时欧美中国留学生有极大的影响和鼓舞.
p (O2 ) 500 m/s
例4. 设某气体的速率分布函数为
f (v )
av 2,(0 v v0 )
0 , (v v 0 )
f (v )
求:(1)常量 a 和υ0 的关系 0 v0
v
(2)平均速率 v
(3)速率在 0 v 0 之间分子的平均速率v
2
解:(1)由归一化条件
(1) f () dN Nd
(2) f ( )d dN
N
υ附近单位速率区间的分子
数占总分子数的百分比
速率在υ ~ υ+dυ区间的分
子数占总分子数的百分比
(3) N f ()d N dN dN
N
速率在υ ~ υ+dυ
区间的分子数
(4) N f () N dN dN Nd d
f ()
T1
T2 T1
T2
p
2kT m

课件:7-4麦克斯韦气体分子速率分布律

课件:7-4麦克斯韦气体分子速率分布律

k为0~ v0 之间直线段的斜率。
由速率分布函数的归一化条件,可得
f (v)d v
0
v0 0
k
vd
v
1 2
k
v02
1
解得
k
2 v02
故速率分布函数为
2v
f
(v)
v02
(v v0 )
0 (v v0 )
(2)速率在0~ v0 / 2 范围内的分子数为
N பைடு நூலகம்
v0
2 Nf ( v )d v
(2)由平均值公式
v
v dN
N
v Nf (v)d v
v0
Nf (v)d v
v f (v)d v
v0
f (v)d v
v0
v0
注意: f (v)d v 1,故 v
v f (v)d v
v0
v0
(3)发现分子速率大于v0 的概率等于速率 大于 v0的分子数占总分子数的百分比
N
πm0
πM
M
(3)方均根速率 v 2
Nv 2 dN
v
2
Nf
(v)
dv
v2 0
0
N
N
v 2 3kT / m0
v 2 3kT 3RT 1.73 RT
m0
M
M
三种速率的比较
v 2 3kT 3RT
m0
M
v 8kT 8RT
m0 M
vp
2kT m0
2RT M
vp v v2
讨论
f (v)
T1 300K
T2 1200K
o vp1 vp2
v
N2 分子在不同温 度下的速率分布

麦克斯韦速率分布定律

麦克斯韦速率分布定律
1859年, 麦克斯韦用概率论导出了气体分子速率分布 定律,后由玻尔兹曼使用经典统计力学理论导出.
1920年史特恩用分子束实验, 获得分子有着确定的速 度分布的信息, 但未能给出定量的结果. 1934年我国留学 生葛正权在伯克利首次获得此定律的精确实验验证. 此 成功经报界报道, 当时闻名欧美, 在很大程度上改变了外 国人眼中“中国留学生只会读书不能动手, 我们不欢迎” 的形象, 对当时欧美中国留学生有极大的影响和鼓舞.
氧气分子在 0ºC 时的分子速率分布
(m / s)
100以下
N / N (%)
1.4
100-200
8.1
200-300
16.5
300-400
21.4
400-500
20.6
500-600
15.1
600-700
9.2
700-800
4.8
800-900
2.0
二.气体分子速率分布 N /(Nv)
p (O2 ) 500 m/s
例4. 设某气体的速率分布函数为
f (v )
av 2,(0 v v0 )
0 , (v v 0 )
f (v )
求:(1)常量 a 和υ0 的关系 0 v0
v
(2)平均速率 v
(3)速率在 0 v 0 之间分子的平均速率v
2
解:(1)由归一化条件
N
0 / 4 0
f ()d
5N 32
(3)最可几速率
df () d p
0p
0
2
(4)

f
( )d

0
0
2
rms
2
[

麦克斯韦气体分子速率分布律

麦克斯韦气体分子速率分布律

问题3:容器内N个分子的速率分布有什么规律? 1
7-6 麦克斯韦气体分子速率分布律
第七章 气体动理论
对某一分子,其任一时刻的速度具有偶然性,但大 量分子从整体上会出现一些统计规律。
1859年,麦克斯韦用概率论证明了在平衡态下,理 想气体分子速度分布是有规律的,这个规律叫麦克斯 韦速度分布律,若不考虑分子速度的方向,则叫麦克 斯韦速率分布律。
若要将气体分子按速率分布准确描述,则需要将
速率区间尽可能取小,当Δv→0时,即取dv为分子速
率区间,其相应分子数为dNv。
则任一速率区间(v→v+dv)间内的分子出现的概率

dN v
N
这概率在各速率区间是不同的,它应是速率 v 的函数,
并且与区间的大小dv成正比
dNv f (v)dv N
其中 f(v) 称为分子的速率分布函数。
第七章 气体动理论
v
4 3/2
a3/2
v3eav2 dv
0
利用积分公式 x e dx 3 ax2 1
0
2a2
v

4
1/2
a3/2

1 2a2

2
a

8kT
m

k R NA
和 M NAm
得: v 8kT 8RT 1.59 RT -平均速率
m M
一、速率分布函数
按统计假设,各种速率下的分子都存在,用某一 速率区间内分子数占总分子数的百分比,表示分子按 速率的分布规律。
1.将速率从 0→∞ 分割成很多相等的速率区间。 2
7-6 麦克斯韦气体分子速率分布律
一、速率分布函数
第七章 气体动理论

14.6(3)麦克斯韦气体分子速率分布定律

14.6(3)麦克斯韦气体分子速率分布定律

vv1 ~ v2

v2
v1 v2 v1
vf (v )dv f (v )dv
vv1 ~ v2 vf (v )dv
v1
v2
速率位于 v1 v2 区间的分子数占总数的百分比
S
N ( v1 v2 ) N
f ( v)dv
v1
v2
14.6麦克斯韦气体分子速率分布率 二 麦克斯韦气体速率分布定律
第十四章气体动理 论
理想气体处于平衡态且无外力场作用时,有
m 32 麦氏分布函数 f ( v) 4 π ( ) e 2 πkT 2
f (v)
由归一化条件


0
f (v )dv 1 o
v0
A 6 / v0
3
v

v0
0
A 3 Av (v0 v )dv v0 1 6
14.6麦克斯韦气体分子速率分布率
Av (v0 v ) 0 v v0 f (v ) 0 v v0
第十四章气体动理 论
f ( v)
O2
3kT v m
2
T2 1200K
H2
o
v p1 v p 2
v
o
vp 0 vpH
v
N2 分子在不同温 度下的速率分布
同一温度下不同 气体的速率分布
14.6麦克斯韦气体分子速率分布率 三种速率的比较
f (v )
第十四章气体动理 论
o
vp v
v
2
v
三种速率统计值有不同的应用:
在讨论速率分布时,要用到最概然速率; 在计算分子运动的平均距离时,要用到平均速率; 在计算分子的平均平动动能时,要用到方均根速率。

12-(2)麦克斯韦气体分子速率分布律

12-(2)麦克斯韦气体分子速率分布律

v 2v2 1.73
3kkTT mm
1.733MRRTMT
O
vp v v2
v
说 (1) 三种速率都具有统计意义,对少数分子无意义.
(2) 都与 T正比, M反比. 明 (3) 三种速率的用途不同.
vp 研究分子速率分布;
v 计算平均自由程;
v 2 计算平均平动动能。
上 页 下 页 返回 16
物理学 §12-8 气体分子平均碰撞次数和平均自由程
v2 3kT 3RT mM
同理:分子平动动能的平均值为
k
1 mv2 f (v)d v 02
上 页 下 页 返回 15
物理学 §12-6 麦克斯韦气体分子速率分布律 ➢ 三种速率的比较
vp
vp1.41
2kkTT mm
1.421MRTRMT
f (v) v p v v2
v v 1.608πkkmmTT 1.86π0RMTRMT
f (v)
T
O2
vp
H2
2kT m
O2 H2
o
vp1 vp2ຫໍສະໝຸດ vovp vp
v
N2 分子在不同温度
下的速率分布
同一温度下不同 气体的速率分布
结论:同一气体温度越高, 结论:同一温度下,分子
分子的vp 越大。
质量小的分子的vp大。
上 页 下 页 返回 13
物理学 §12-6 麦克斯韦气体分子速率分布律
vp
2kT m
2RT M
R k
NA
气体在温度T 下,速率分布在 vp 附近单位速率区间内 的相对分子数最多,(分子在此速率附近的概率最大)
上 页 下 页 返回 12
物理学 §12-6 麦克斯韦气体分子速率分布律 ➢ 由气体分子的速率分布曲线 …
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
率最大.
例 计算在 27 C 时,氢气和氧气分子的方均
根速率 vrms .
MH 0.002kg mol1 R 8.31J K1 mol 1
MO 0.032kg mol1
T 300K
氢气分子 氧气分子
vrms
3RT M
vrms 1.93103 m s1
vrms 483m s1
例 已知分子数 N ,分子质量 m ,分布函数
f (v) 求 1) 速率在vp ~ v 间的分子数; 2)速率
在 vp ~ 间所有分子动能之和 .
速率在 v v dv 间的分子数 dN Nf (v)dv
1)
v
vp
Nf
(v)dv
2)

vp
1 2
mv 2
vp (H2 ) vp (O2 )
vp (H2 ) 2000m/s vp (O2 ) 500m/s
o vp0 vpH
v
同一温度下不同 气体的速率分布
讨论
麦克斯韦速率分布中最概然速率 v p 的概念
下面哪种表述正确?
v (A) p 是气体分子中大部分分子所具有的速率. v (B) p 是速率最大的速度值. v (C) p 是麦克斯韦速率分布函数的最大值.
(D) 速率大小与最概然速率相近的气体分子的比
f (v)
物理意义
dS
o v v dv
v
dN f (v)dv dS N
归一化条件
表示在温度为 T 的平衡
状态下,速率在 v 附近单位
速率区间 的分子数占总数的
百分比 .
表示速率在v v dv
区间的分子数占总分子数的
百分比 .
0N
dN N

0
f
(v)dv
1
f (v)
dN f (v)dv dS
N
S
速率位于v v dv 内分子数
o
v1 v2 v
dN Nf (v)dv
速率位于
v1

v2
区间的分子数
N

v2
v1
N
f
(v)dv
速率位于 v1 v2 区间的分子数占总数的百分比
S

N (v1 N
v2 )

v2
v1
f
(v)dv
二 麦克斯韦气体速率分布定律
麦氏分布函数
f (v) 4π(
N

vdN vNf (v)dv
v 0
0
f (v)
N
N

v vf (v)dv
8kT
0
πm
o
v
v 1.60 kT 1.60 RT
m
M
3)方均根速率 v2
f (v)
N v2dN v2Nf (v)dv
v2 0
0
N
N
o
v
v2 3kT m
vp v v2
o
vp
v
根据分布函数求得
M mNA , R NA k
vp
2kT 1.41 kT
m
m
vp 1.41
RT M
物理意义
气体在一定温度下分布在最概然
速率 v p 附近单位速率间隔内的相对
分子数最多 .
2)平均速率 v
v v1dN1 v2dN2 vidNi vndNn N
分子速率分布图
N /(Nv)
N :分子总数
S
o
v v v
v
N 为速率在 v v v 区间的分子数.
S N N
表示速率在 v v v
子数占总数的百分比 .
区间的分
分布函数 f (v) lim N 1 lim N 1 dN v0 Nv N v0 v N dv
vrms
Байду номын сангаас
v2
3kT m
3RT M
v 1.60 kT 1.60 RT
m
M
vp
2kT m
2RT M
vp
2kT m
v 8kT πm
v2 3kT m
f (v)
T1 300K T2 1200K
o vp1 vp2
v
N2 分子在不同温 度下的速率分布
f (v)
O2 H2
m
) e v 3 2
mv 2 2kT
2
2πkT
dN 4π(
m
)3
2
mv 2
e 2kT
v2dv
N
2πkT
反映理想气体在热动 平衡条件下,各速率区间
f (v) dN Ndv
f (v)
分子数占总分子数的百分
比的规律 .
o
v
三 三种统计速率
f (v)
v 1)最概然速率 p fmax
df (v) 0 dv vvp
Nf
(v)dv
例 如图示两条 f (v) ~ v 曲线分别表示氢气和
氧气在同一温度下的麦克斯韦速率分布曲线, 从图
上数据求出氢气和氧气的最可几速率 .
f (v)
vp
2kT m
m(H2 ) m(O2 )
o
vp (H2 ) vp (O2 )
2000 v / m s1
m(O2 ) 32 4 m(H2 ) 2
相关文档
最新文档