八年级数学-《二次根式》单元测试卷(有答案)

合集下载

2022-2023学年人教新版八年级下册数学《第16章 二次根式》单元测试卷(有答案)

2022-2023学年人教新版八年级下册数学《第16章 二次根式》单元测试卷(有答案)

2022-2023学年人教新版八年级下册数学《第16章二次根式》单元测试卷一.选择题(共12小题,满分36分)1.化简(﹣)2的结果是()A.﹣5B.5C.±5D.252.下列各式中,一定是二次根式的是()A.B.C.D.3.若二次根式有意义,则x的取值范围是()A.x≥0B.x≥5C.x≥﹣5D.x≤54.二次根式的值等于()A.﹣2B.±2C.2D.45.下列计算正确的是()A.=±3B.C.D.6.若是最简二次根式,则a的值可能是()A.﹣2B.2C.D.87.的有理化因式是()A.B.C.D.8.下列二次根式中能与合并的是()A.B.C.D.9.若是整数,则正整数n的最小值是()A.4B.5C.6D.710.如图,在数轴上所表示的x的取值范围中,有意义的二次根式是()A.B.C.D.11.已知二次根式,则下列各数中能满足条件的a的值是()A.4B.3C.2D.112.如果+有意义,那么代数式|x﹣1|+的值为()A.±8B.8C.与x的值无关D.无法确定二.填空题(共10小题,满分30分)13.化简的值是,把4化成最简二次根式是.14.计算:÷=.15.若是整数,则最小正整数n的值为.16.使得二次根式在实数范围内有意义的x的取值范围是.17.化简=.18.如果最简二次根式与是同类二次根式,那么x的值为.19.若是整数,则正整数n的最小值是.20.已知n是正整数,是整数,则n的最小值是.21.已知+=0,则+=.22.小明做数学题时,发现=;=;=;=;…;按此规律,若=(a,b为正整数),则a+b=.三.解答题(共5小题,满分54分)23.已知二次根式.(1)求x的取值范围;(2)求当x=﹣2时,二次根式的值;(3)若二次根式的值为零,求x的值.24.(1)通过计算下列各式的值探究问题:①=;=;=;=.探究:对于任意非负有理数a,=.②=;=;=;=.探究:对于任意负有理数a,=.综上,对于任意有理数a,=.(2)应用(1)所得的结论解决问题:有理数a,b在数轴上对应的点的位置如图所示,化简:﹣﹣+|a+b|.25.当a取什么值时,代数式取值最小?并求出这个最小值.26.阅读下面解题过程,并回答问题.化简:解:由隐含条件1﹣3x≥0,得x∴1﹣x>0∴原式=(1﹣3x)﹣(1﹣x)=1﹣3x﹣1+x=﹣2x按照上面的解法,试化简:.27.已知+2=b+8.(1)求a的值;(2)求a2﹣b2的平方根.参考答案与试题解析一.选择题(共12小题,满分36分)1.解:(﹣)2=5.故选:B.2.解:A、x<0时,不是二次根式,故此选项错误;B、x<﹣2时,不是二次根式,故此选项错误;C、是二次根式,故此选项正确;D、当x>0时,不是二次根式,故此选项错误;故选:C.3.解:∵x﹣5≥0,∴x≥5.故选:B.4.解:原式=|﹣2|=2.故选:C.5.解:A、=3,故本选项错误;B、=,故本选项错误;C、=5,故本选项错误;D、==,故本选项正确.故选:D.6.解:∵是最简二次根式,∴a≥0,且a为整数,中不含开的尽方的因数因式,故选项中﹣2,,8都不合题意,∴a的值可能是2.故选:B.7.解:的有理数因式是,故选:A.8.解:A、,不能与合并,错误;B、,能与合并,正确;C、,不能与合并,错误;D、,不能与合并,错误;故选:B.9.解:∵=3,∴正整数n的最小值是5;故选:B.10.解:从数轴可知:x≥﹣3,A.当﹣3≤x<3时,无意义,故本选项不符合题意;B.当x≥﹣3时,有意义,故本选项符合题意;C.当﹣3≤x≤3时,无意义,故本选项不符合题意;D.当x=﹣3时,无意义,故本选项不符合题意;故选:B.11.解:由题意可知:1﹣a≥0,解得:a≤1.故选:D.12.解:∵+有意义,∴x﹣1≥0,9﹣x≥0,解得:1≤x≤9,∴|x﹣1|+=x﹣1+9﹣x=8,故选:B.二.填空题(共10小题,满分30分)13.解:=;4=4×=.故答案是;.14.解:原式===4.故答案为:4.15.解:∵是整数,∴最小正整数n的值是:5.故答案为:5.16.解:∵二次根式在实数范围内有意义,∴x﹣2≥0,解得x≥2.故答案为:x≥2.17.解:原式===2,故答案为:2.18.解:∵最简二次根式与是同类二次根式,∴2x﹣1=5,∴x=3.故答案为:3.19.解:原式=5,则正整数n的最小值是3时,原式是整数.故答案为:3.20.解:==3,∵是整数,∴n的最小值是3,故答案为:3.21.解:由题意得,a﹣3=0,2﹣b=0,解得a=3,b=2,所以,+=+=+=.故答案为:.22.解:根据题中的规律得:a=8,b=82+1=65,则a+b=8+65=73.故答案为:73.三.解答题(共5小题,满分54分)23.解:(1)根据题意,得:3﹣x≥0,解得x≤6;(2)当x=﹣2时,===2;(3)∵二次根式的值为零,∴3﹣x=0,解得x=6.24.解:(1)①=4;=16;=0;=.探究:对于任意非负有理数a,=a.故答案为:4,16,0,,a;②=3;=5;=1;=2.探究:对于任意负有理数a,=﹣a.综上,对于任意有理数a,=|a|.故答案为:3,5,1,2,﹣a,|a|;(2)观察数轴可知:﹣2<a<﹣1,0<b<1,a﹣b<0,a+b<0.原式=|a|﹣|b|﹣|a﹣b|+|a+b|=﹣a﹣b+a﹣b﹣a﹣b=﹣a﹣3b.25.解:∵≥0,∴当a=﹣时,有最小值,是0.则+1的最小值是1.26.解:由隐含条件2﹣x≥0,得x≤2,则x﹣3<0,所以原式=|x﹣3|﹣(2﹣x)=﹣(x﹣3)﹣2+x=﹣x+3﹣2+x=1.27.解:(1)由题意知a﹣17≥0,17﹣a≥0,则a﹣17=0,解得:a=17;(2)由(1)可知a=17,则b+8=0,解得:b=﹣8,故a2﹣b2=172﹣(﹣8)2=225,则a2﹣b2的平方根为:±=±15.。

初中数学人教版八年级下册第十六章 二次根式单元复习-章节测试习题(1)

初中数学人教版八年级下册第十六章 二次根式单元复习-章节测试习题(1)

章节测试题1.【答题】下列式子:①;②;③﹣;④;⑤,是二次根式的有()A.①③B.①③⑤C.①②③D.①②③⑤【答案】B【分析】根据二次根式的定义解答即可。

【解答】形如(a≥0)的式子是二次根式,所以二次根式有:①;③﹣;⑤,选B.2.【答题】下列哪个是最简二次根式()A. B. C. D.【答案】D【分析】根据最简二次根式的定义逐个判断即可得出答案.【解答】解:A、=5,此选项错误;B、=2,此选项错误;C、=3,此选项错误;D、是最简二次根式,此选项正确;选D.3.【答题】下列各式中一定成立的是()A.=﹣3B.+=C.=|x|D.()2=x【答案】C【分析】根据二次根式的性质对A、C、D进行判断;根据二次根式的加减运算对B进行判断.【解答】解:A、==3,所以A选项错误;B、与不能合并,所以B选项错误;C、=|x|,所以C选项正确;D、()2=−x,所以D选项错误.选C.4.【答题】把m根号外的因式适当变形后移到根号内,得()A. B.- C.- D.【答案】C【分析】本题主要考查了二次根式的意义.解题的关键是能正确的把根号外的代数式或数字移到根号内部,它是开方的逆运算.从根号外移到根号内要平方,并且移到根号内与原来根号内的式子是乘积的关系.【解答】解:∵m<0,∴==.选C.5.【答题】如果x<-4,则的值等于()A.4+xB.-xC.-4-xD.x【答案】C【分析】首先由x的取值范围,确定2+x与4+x的取值范围;再利用二次根式的性质与绝对值的性质进行化简即可.【解答】解:∵x<-4,∴2+x<-2,4+x<0,∴=|2+2+x|=|4+x|=-4-x.选C.6.【答题】+|x﹣3|=0,则x y=()A.81B.64C.27D.63【答案】A【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x−y+1=0,x−3=0,解得x=3,y=4,所以,x y=34=81.选A.7.【答题】如果成立,则x的取值范围是()A.-2≤x≤3B.x>-2C.-2<x≤3D.-3≤x≤2【答案】C【分析】求二次根式中字母的取值范围的基本依据是被开方数大于或等于零,当分母中含有二次根式时,还要保证分母不等于零,从而将其转化为解不等式或不等式组。

沪科版数学八年级下册第16章《二次根式》测试题附答案

沪科版数学八年级下册第16章《二次根式》测试题附答案
9.D
【解析】
【分析】
根据二次根式的运算法则逐项计算即可判断.
【详解】
解:A、 和 不是同类二次根式,不能合并,故错误;
B、 =2 ,故错误;
C、 = ,故错误;
D、 = =2 ,故正确.
故选D.
【点睛】
本题考查了二次根式的四则运算.
10.A
【解析】
分析:由m<0,利用二次根式的性质 及绝对值的性质计算即可.
解:原式 ,


故选:A.
【点睛】
本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,先进行二次根式的乘除运算,然后合并同类二次根式.
8.D
【解析】
【分析】
先化简各二次根式,再计算乘法,最后合并同类二次根式可得.
【详解】
原式=8× ﹣ ×3 +4×
=4 ﹣ +
= ,
故选:D.
【点睛】
本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的性质和运算法则.
故|b-3|= =0,
则b=3,a=5,
故ab-1=52=25.
【点睛】
考查了二次根式的性质和化简及非负数的性质,解题的关键是将所给的式子化为非负数的和为0的等式,然后利用非负性求出a、b的值,本题属于中等题型.
23.(1) ;(2)9
【解析】
【分析】
(1)先化简各二次根式,再合并同类二次根式即可得;
=b-a+2c
【点睛】
此题主要考查了二次根式以及绝对值的性质与化简,正确化简二次根式是解题关键.
26.(1)a=2 ,b=5,c=3 ;(2)能,5 +5.
【解析】
【分析】
(1)根据非负数的性质列式求解即可;

八年级下册数学二次根式单元试卷(含答案)

八年级下册数学二次根式单元试卷(含答案)

, x − 3 ≥ 0
{ 3−x ≥ 0
解得x=3,
将 代入 ,得 x=3
−−−−−
−−−−−
y = √x − 3 + √3 − x + 2
, y = 2 将x=3、y=2代入xy得 9,
所以xy=9.
13.使式子
−−−−− √m − 2
有意义的最小整数m是
.
【参考答案】
答案:2. 解:根据题意得,m-2≥0, 解得m≥2, 所以最小整数m是2.
−−−−−−−
−−−−−−−
已知 < < ,化简 14.
2x5
√(x

2
2)
+
√(x

2
5)
=
.
【参考答案】
答案:3.
−−−−−−−
−−−−−−−
解: , √(x − 2)2 + √(x − 5)2 = | x - 2 | + | x - 5 |
因为2<x<5,所以x-2>0,x-5<0,
所以|x-2|+|x-5|=x-2+5-x=3.
,宽为
2
−− √10
,则下列说法不正确的是().
A.大长方形的长为6
−− √10
B.大长方形的宽为5
−− √10
C.大长方形的周长为11
−− √10
D.大长方形的面积为300
【参考答案】
答案:C.
解:
由题意得大长方形的两边分别为 , , −−
−−
−−
3 √10 + 2 √10 = 5 √10
−−
−−
人教版数学八年级第十六章 二次根式单元卷
一、选择题

人教版数学八年级下册第十六章二次根式 单元测试卷(含答案解析)

人教版数学八年级下册第十六章二次根式 单元测试卷(含答案解析)

人教版数学八年级下册第十六章二次根式单元测试卷(含答案解析)一、单选题(共12小题,每小题4分,共计48分)1A.4b B.CD2.下列各数中,与的积不含二次根式的是A.B.CD3m为()A.-10B.-40C.-90D.-1604.若a,b-5,则a,b的关系为A.互为相反数B.互为倒数C.积为-1D.绝对值相等5.下列计算正确的是3==6=3=;a b=-.A.1个B.2个C.3个D.4个6合并的是()A B C D7.若6的整数部分为x,小数部分为y,则(2x)y的值是() A.5-B.3C.-5D.-38.如图,a,b,c的结果是()a c+A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b9.估计的值应在( )A .5和6之间B .6和7之间C .7和8之间 D.8和9之间10有意义,那么直角坐标系中点A(a,b)在() A .第一象限 B .第二象限 C .第三象限D .第四象限11.下列计算正确的是AB . CD12.如果,,那么各式:,,,其中正确的是()A .①②③B .①③C .②③D .①②二、填空题(共5小题,每小题4分,共计20分)13.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a﹣的结果是_____.14.已知a 、b满足(a ﹣1)2=0,则a+b=_____.15有意义,则实数x 的取值范围是_____.16.若a ,b 都是实数,b﹣2,则a b 的值为_____. 17.已知实数,互为倒数,其中__________. ()=3=2==0ab > 0a b +<=1=b =-a b a 2=+三、解答题(共4小题,每小题8分,共计32分)18=b+8.(1)求a 的值;(2)求a 2-b 2的平方根.19.已知实数a 满足|300﹣a =a ,求a ﹣3002的值.20.已知点A(5,a)与点B(5,-3)关于x 轴对称,b 为求(1)的值。

人教版八年级数学下册第十六章二次根式单元测试卷(含答案)

人教版八年级数学下册第十六章二次根式单元测试卷(含答案)

⼈教版⼋年级数学下册第⼗六章⼆次根式单元测试卷(含答案)第⼗六章⼆次根式单元测试卷题号⼀⼆三总分得分⼀、选择题(每题3分,共30分)1.要使⼆次根式错误!未找到引⽤源。

有意义,x必须满⾜()A.x≤2B.x≥2C.x>2D.x<22.下列⼆次根式中,不能与错误!未找到引⽤源。

合并的是()A.错误!未找到引⽤源。

B.错误!未找到引⽤源。

C.错误!未找到引⽤源。

D.错误!未找到引⽤源。

3.下列⼆次根式中,最简⼆次根式是()A.错误!未找到引⽤源。

B.错误!未找到引⽤源。

C.错误!未找到引⽤源。

D.错误!未找到引⽤源。

4.下列各式计算正确的是()A.错误!未找到引⽤源。

+错误!未找到引⽤源。

=错误!未找到引⽤源。

B.4错误!未找到引⽤源。

-3错误!未找到引⽤源。

=1C.2错误!未找到引⽤源。

×3错误!未找到引⽤源。

=6错误!未找到引⽤源。

D.错误!未找到引⽤源。

÷错误!未找到引⽤源。

=35.下列各式中,⼀定成⽴的是()A.错误!未找到引⽤源。

=(错误!未找到引⽤源。

)2B.错误!未找到引⽤源。

=(错误!未找到引⽤源。

)2C.错误!未找到引⽤源。

=x-1D.错误!未找到引⽤源。

=错误!未找到引⽤源。

·错误!未找到引⽤源。

6.已知a=错误!未找到引⽤源。

+1,b=错误!未找到引⽤源。

,则a与b的关系为()A.a=bB.ab=1C.a=-bD.ab=-17.计算错误!未找到引⽤源。

÷错误!未找到引⽤源。

×错误!未找到引⽤源。

的结果为()A.错误!未找到引⽤源。

B.错误!未找到引⽤源。

C.错误!未找到引⽤源。

D.错误!未找到引⽤源。

8.已知a,b,c为△ABC的三边长,且错误!未找到引⽤源。

+|b-c|=0,则△ABC的形状是()A.等腰三⾓形B.等边三⾓形C.直⾓三⾓形D.等腰直⾓三⾓形9.已知a-b=2错误!未找到引⽤源。

-1,ab=错误!未找到引⽤源。

八年级数学下册第十六章《二次根式》测试题-人教版(含答案)

八年级数学下册第十六章《二次根式》测试题-人教版(含答案)

八年级数学下册第十六章《二次根式》测试题-人教版(含答案)一.选择题(每小题 3 分,共 30 分)1.代数式24x -在实数范围内有意义,则 x 的取值范围是()A .x ≥2B .x ≠2C .x >2D .x ≤2 2.化简16的结果为( ) A .2 B .-4 C .4D .±43. 下列二次根式是最简二次根式的是()A .13B . 8C . 14D .12 4. 下列计算正确的是( ) A .822-= B .(25)(25)1-+= C 945 D 22=5. 设 x 、y 为实数,且 y =45x -5x - |y − x | 的值是( )A .1B .9C .4D .56.2(21)a -=1-2a ,则()A .a >12B . a <12C . a ≥12D . a ≤127. 已知 ab <02a b 后的结果为()A .bB .-bC .b -D .-b -8. 化简二次根式-1a a-后的结果是( )A aB a -C aD a -9. 已知110a a +,则1a a-等于( ) A .±6 B 6 C 6 D 610.已知 a 、b 、c 为互不相等的有理数,满足2(2)(2)(2)b a c +=++, 则符合条件的a 、b 、c 共有( )A .0 组B .1 组C .2 组D .4 组二、填空题(每小题 3 分,共 18 分)11. 18_________,2(27)=__________43__________.13. 在实数范围内分解因式x 3-5x =________________. 14. 已知 x =5-1,则 x ²+2x -7=___________. 15. 已知实数 a 、b 在数轴上对应的点的位置如图所示,化简:2a + |a + b | +| −a +2|-2(2)b -=___________. 16.设12211112a =++,22211123a =++,32211134a =++,……,22111(1)n a n n =+++, 其中n 为正整数,则n a 的值为_______________.三、解答题(共 8 题,共 72 分) 17.(8 分)计算: (1) 118288-+; (2) 11(6)2()|32|2--⨯-+-; (3) 231(32)31+---; (4) 20202021(23)(23)-+.18. (8分)先化简,再求值: 3142y xx y x y +-+,其中 x =4,y =19.19.(8 分)如图,已知长方形内两相邻正方形的面积分别为 2 和 6,求长方形内阴影部分的面积S.20. (8分)已知实数23+的整数部分为x,小数部分为y,求224x yx y+-+的值.21. (8分)已知x3+1,y31,求:(1)代数式xy的值; (2)代数式x3+x2y+xy2+y3的值.22. (10分)(1) 已知:a32,b3+2,求代数式a2b-ab2 的值;(2)运用乘法公式计算:①2+.(32)(23)(32)(2233);②2(3)已知实数x、y满足x2+10x4y-=-25 ,则(x+y)2021的值是多少?23. (10分)743+743+7212+由于4+3=7,4×3=12, 即4)²+3)²=74×312 743+7212+22(4)243(3)+⨯+2(43)+=23.请解答下列问题:(1)423+________526-=__________;(2)进一步研究发现: 2m n ±的化简, 只要我们找到两个正数 a 、b (a > b ), 使 a +b =m ,ab =n ,即22)a b m +=ab n =2m n ±___________; (3)322+526+7212+9220+11230+13242+15256+17272+请写出化简过程).24.(12分)对于任意正实数a、b,均有2()a b≥0,∴a-ab b≥0,∴a+b≥ab当且仅当a=b时,等号成立. 结论:在a+b≥ab a、b均为正实数)中,若ab为定值p,只有当a=b时,a+b有最小值p根据上述内容,回答下列问题:(1)初步探究:若n>0,只有当n=_______ 时,n+1n有最小值;(2)深入思考:下列一组图是由 4 个全等的矩形围成的大正方形,中空部分是小正方形,矩形的长和宽分别为a、b . 试利用大正方形与四个矩形的面积的大小关系,验证a+b≥ab并指出等号成立时的条件;(3)拓宽延伸:如图,已知A(-6,0),B(0,-8),点P是第一象限内的一个动点,过P 点向坐标轴作垂线,分别交x轴和y轴于C、D两点,矩形OCPD的面积始终为 48,求四边形ABCD面积的最小值以及此时P点的坐标.……ABC yD O Px参考答案一.选择题(每小题 3 分,共 30 分)1.代数式24x -在实数范围内有意义,则 x 的取值范围是()A .x ≥2B .x ≠2C .x >2D .x ≤2 【答案】A .2.化简16的结果为( ) A .2 B .-4 C .4 D .±4【答案】C .3. 下列二次根式是最简二次根式的是()A .13B . 8C . 14D .12 【答案】C .4. 下列计算正确的是( ) A .822-= B .(25)(25)1-+= C 945 D 22=【答案】A .5. 设 x 、y 为实数,且 y =45x -5x - |y − x | 的值是( )A .1B .9C .4D .5【答案】A .6.2(21)a -=1-2a ,则()A .a >12B . a <12C . a ≥12D . a ≤12【答案】D .7. 已知 ab <02a b 后的结果为()A .bB .-bC .b -D .-b -【答案】B .8. 化简二次根式-1a a-后的结果是( )A aB a -C aD a -【答案】B . 9. 已知110a a +,则1a a-等于( ) A .±6 B 6 C 6 D 6【答案】D . 提示:2211()()4a a aa-=+-=10-4=6,∴1a a-=±6.10.已知 a 、b 、c 为互不相等的有理数,满足2(2)(2)(2)b a c +=++, 则符合条件的a 、b 、c 共有( )A .0 组B .1 组C .2 组D .4 组【答案】A . 提示:由已知等式,得b 2+22b =ac +(a +c )2,∵a 、b 、c 为有理数, 比较上述等式的两边,得:b 2=ac ,2b =a +c .由2b =a +c ,得4b 2=(a +c )2,把b 2=ac 代入,得4ac =(a +c )2,∴(a -c )2=0, ∴a =c ,与题设a ≠c 不符,故选A .二、填空题(每小题 3 分,共 18 分)11. 计算:18=_________,2(27)=__________,43=__________. 【答案】32, 28,233.12. 若45n 是整数,则正整数 n 的最小值为___________. 【答案】5.13. 在实数范围内分解因式x 3-5x =________________.【答案】x (x +5)(x -5). 提示:原式=x (x 2-5)=x (x +5)(x -5). 14. 已知 x =5-1,则 x ²+2x -7=___________.【答案】-3. 提示:移项得:x +1=5,两边平方,得 x 2+2x +1=5,∴x 2+2x =4, 则x ²+2x -7=4-7=-3.15. 已知实数 a 、b 在数轴上对应的点的位置如图所示,化简:2a + |a + b | +| −a +2|-2(2)b -=___________.【答案】-3a . 提示: 由数轴,知a <b <0,∴a +b <0,-a +2>0,b -2<0, ∴原式=|a |+|a + b | +| −a +2|-|b -2|=-a -(a +b )+(-a +2)+(b -2)=-3a .16.设12211112a =++,22211123a =++,32211134a =++,……,22111(1)n a n n =+++, 其中n 为正整数,则n a 的值为_______________.【答案】1+1(1)n n +. 提示:22222222(1)(1)(1)(1)n n n n n a n n n n +++=+++=222222(1)(1)(1)n n n n n n +++++=22222(1)221(1)n n n n n n +++++=2222(1)2(1)1(1)n n n n n n +++++=222[(1)1](1)n n n n +++,∴a n =(1)1(1)n n n n +++=1+1(1)n n +.三、解答题(共 8 题,共 72 分) 17.(8 分)计算: 118288 (2) 11(6)2()32|2--+; (3) 231(32)31+- (4) 20202021(23)23). 【答案】(1)原式=2124711247 (2)原式=-32+(23=-3(3)原式=(3-34)2(31)(31)(31)+-+7-3423+=7-3235-3(4)原式=20202020(23)(23)(23)=2020(23)(23)-23.18. (8分)先化简,再求值: 3142y xy x ++,其中 x =4,y =19. 122x y x y 132x y当x =4,y =19114329=1+1=2.19.(8 分)如图,已知长方形内两相邻正方形的面积分别为 2 和 6, 求长方形内阴影部分的面积S .【答案】依题意,AM 2,DM =CD 6AD 26 ∴长方形ABCD 626, 则S 626-2-6=3 2. 方法2:S =AM ·AB -22·62=3 2.20. (8分)已知实数23+ 的整数部分为x ,小数部分为y ,求224x yx y +-+ 的值.23+23,∴023+1,∴x =0,y =23∴ 224x y x y +-+02(23)02(23)4+---+2(23)4234--++2(23)23-233-233-21. (8分)已知x 3+1,y 31,求:(1)代数式xy 的值; (2)代数式x 3+x 2y +xy 2+y 3的值. 【答案】(1) xy =33-1)=3-1=2. (2) x +y =31)+31)=3原式=x 2(x +y )+y 2(x +y )=(x +y )(x 2+y 2)=(x +y )[(x +y )2-2xy ] =332-2×2]=3-4)=322. (10分)(1) 已知: a 32,b 3+2,求代数式 a 2b -ab 2 的值; 【答案】a -b =-4,ab =332)=3-4=-1, ∴原式=ab (a -b )=-1×(-4)=4.(2)运用乘法公式计算:①2(2233); ②2(32)(23)(32)+. 【答案】①原式=8+627=35+6②原式=4-3+(3-62)=1+5-66-6(3)已知实数 x 、y 满足 x 2+10x 4y -=-25 ,则(x +y )2021的值是多少? 【答案】由已知条件,得 (x +5)24y -0,∵(x +5)2≥04y -0,∴(x +5)2=04y -0, ∴x =-5,y =4,∴(x +y )2021=(-5+4)2021=-1.23. (10分)743+743+7212+由于4+3=7,4×3=12, 即4)²+3)²=74×312 743+7212+22(4)243(3)+⨯+2(43)+=23.请解答下列问题:(2)进一步研究发现: 2m n ±的化简, 只要我们找到两个正数 a 、b (a > b ), 使 a +b =m ,ab =n ,即22)a b m +=ab n =2m n ±___________; (3)322+526+7212+9220+11230+13242+15256+17272+请写出化简过程).【答案】42331+52632-2m n ±2a b ab +±2()a b ±a b(3)∵32221+52632+721243+ 21+32+43+54+98+ =21)+32)+43+54+…+98) =-191+3=2.24.(12分)对于任意正实数 a 、b ,均有2()a b ≥0,∴a -ab b ≥0,∴a +b ≥ab 当且仅当 a =b 时,等号成立. 结论:在 a +b ≥ab a 、b 均为正实数)中,若 ab 为定 值p ,只有当a =b 时,a +b 有最小值p 根据上述内容,回答下列问题: (1)初步探究:若 n >0,只有当 n =_______ 时,n +1n有最小值; (2)深入思考:下列一组图是由 4 个全等的矩形围成的大正方形,中空部分是小正方形, 矩形的长和宽分别为 a 、b . 试利用大正方形与四个矩形的面积的大小关系,验证 a +b ≥ab 并指出等号成立时的条件;(3)拓宽延伸:如图,已知 A (-6,0),B (0,-8),点 P 是第一象限内的一个动点,过 P 点向坐标轴作垂线,分别交 x 轴和 y 轴于 C 、D 两点,矩形 OCPD 的面积始终为 48, 求四边形 ABCD 面积的最小值以及此时 P 点的坐标.【答案】(1) n =1. 提示: 根据a +b ≥ab 112n n nn+≥⋅当且仅当n =1n时成立,此时n =1.……ABCy DOP x(2) 大正方形的边长为a+b,中空小正方形的边长为b-a,由图形的面积,得:(a+b)2-4ab=(b-a)2≥0,∴(a+b)2-4ab≥0,∴(a+b)2≥4ab,则a+b≥ab显然,只有当a=b时,上述各式中等号成立.(3) 设P(x,y),则OC=x,OD=y,xy=48.∵A(-6,0),B(0,-8),∴OA=6,OB=8,∴四边形ABCD的面积为S=12AC·BE=12(x+6)(y+8)=12(xy+8x+6y+48)=12(48+8x+6y+48)=4x+3y+48≥43x y⋅+48=3xy48=348⨯48=96.取等号时,4x=3y,又xy=48,∴x=6,y=8,∴P(6,8).∴四边形ABCD面积的最小值为96,此时P点的坐标为P(6,8).。

人教版数学八年级下册第16章专题01 二次根式测试试卷(含答案)

人教版数学八年级下册第16章专题01 二次根式测试试卷(含答案)

人教版数学8年级下册第16章专题01 二次根式一、选择题(共12小题)1.(2022x的取值范围是( )A.x≥0B.x≥﹣2C.x>2D.x≤22.(2022秋•门头沟区期末)下列代数式能作为二次根式被开方数的是( )A.x B.3.14﹣πC.x2+1D.x2﹣13.(2022秋•x的取值范围在数轴上表示正确的是( )A.B.C.D.4.(2021春•光山县期末)下列各式中,一定是二次根式的是( )B C DA5.(2022x的取值范围为( )A.x>0B.x≥﹣1C.x≥0D.x>﹣16.(2021春•番禺区期末)下列运算正确的是( )A=B=C=D=x7.(2021春•海珠区期末)下列各式中,最简二次根式的是( )A B C D8.(2021A.2B C.D.9.(2022秋•黄浦区月考)下列二次根式中,属于最简二次根式的是( )A B C D10.(2022秋•静安区校级期中)下列二次根式中,最简二次根式是( )A B C D11.(2021秋•惠民县期末)下列二次根式中属于最简二次根式的是( )A B C D12.(2022秋•徐汇区校级期中)下列根式中,最简二次根式有( )个.A.2B.3C.4D.5二、填空题(共12小题)13.(2022秋•吉林期末)代数实数范围内有意义,则x的取值范围是 .14.下列代数式中,是二次根式的有 (填序号).x<0).15.(2021春•黄埔区期末)计算:= ,= ,③(―2= .16.(2017.17.(2020•梧州一模)计算:2= .18.(2021春•花都区期末)已知x<2= .19.(2022 .20.(2022•南阳二模)写出一个实数x x可以是 .21.(2022秋•的是 .22.(2022秋•晋江市校级期中) .23.(2022a>0,b>0)化为最简二次根式: .24.(2022秋•虹口区校级月考),最简二次根式有 个.三、解答题(共13小题)25.(2021a>0,b>0).26.(2022秋•萧县期中)先阅读下面提供的材料,再解答相应的问题:x的值是多少?∴x﹣1≥0且1﹣x≥0.又∵x﹣1和1﹣x互为相反数,∴x﹣1=0,且1﹣x=0,∴x=1.问题:若y=++2,求x y的值.27.(2022秋•昌平区期中)已知y=++5,求x+y的平方根.28.(2022秋•奉贤区期中)已知x,y为实数,且y=―+1,求xy的平方3根.29.(2022秋•湖口县期中)已知y=+++2.(1)求y x的值;(2)求y的整数部分与小数部分的差.30.(2022秋•洛宁县月考)已知a,b,c为实数,且c=+―+2―c2+ab的值.31.(2022春•岑溪市期中)已知实数x,y满足y=++5,求:(1)x与y的值;(2)x2﹣y2的平方根.32.(2022春•龙岩期中)已知|2022﹣a|+=a,求a﹣20222的值.33.(2021春•花都区期末)计算:―+34.(2022春•灵宝市期中)把下列二次根式化简最简二次根式:(1(2(3(435.(2021•中原区开学)(1)把下列二次根式化为最简二次根式:(2)解方程:(3x﹣2)2﹣4=036.(2021•黄岛区校级开学)把下列二次根式化简成最简二次根式:(1(2(337.(2022秋•西安月考)若a=2,b=3,c=﹣6参考答案一、选择题(共12小题)1.D2.C3.A4.D5.B6.B7.C8.C9.C10.C11.D12.C;二、填空题(共12小题)13.x≥514.①③⑥15.5;4;316.>17.318.2﹣x19.420.5(答案为不唯一)21.22.223.24.1;三、解答题(共13小题)25.解:原式==2a >0,b >0).26.解:由题意得:2x ―1≥01―2x ≥0,∴2x ﹣1=0,解得x =12,所以y =2,所以x y =(12)2=14.27.解:由二次根式有意义可得:3―x ≥0x ―3≥0,解得x =3.∴y =5.∴x +y =3+5=8.故x +y 的平方根为±28.解:由题意得,x ―27≥027―x ≥0,解得x =27,则y =13,∴xy =27×13=9,∴9=±3.29.解:∵y =+++2,∴x ―2≥02―x ≥0,解得x =2,∴y =+2.(1)y x =2=6++4=10+(2)∵y =+2,23,∴y 的整数部为4+2―4=―2,∴y的整数部分与小数部分的差为:4―2)=6―30.解:∵c=+―+2―∴a﹣2=0,b﹣1=0,c=2―∴a=2,b=1,∴c2+ab=(2―2+2×1=4+3﹣+2=9﹣31.解:(1)根据题意得:x﹣13≥0,13﹣x≥0,∴x=13,∴y=5;(2)x2﹣y2=132﹣52=169﹣25=144,144的平方根为±12,∴x2﹣y2的平方根为±12.32.解:∵a﹣2023≥0,∴a≥2023,∴2022﹣a<0,∴a﹣2022+=a,=2022,∴a﹣2023=20222,∴a﹣20222=2023.33.解:原式=―+=34.解:(1==(2==(3===(4==35.解:(1)=====∴(3x﹣2)2=4,∴3x﹣2=±2,即3x﹣2=2或3x﹣2=﹣2,或x=0.解得x=4336.解:=====37.解:∵a=2,b=3,c=﹣6,===。

八年级数学下册第一单元《二次根式》测试(含答案解析)

八年级数学下册第一单元《二次根式》测试(含答案解析)

一、选择题1.从“+,﹣,×,÷”中选择一种运算符号,填入算式“+1)□x”的“□”中,使其运算结果为有理数,则实数x 不可能是( )A B . 1 C 2 D .12. )A .1B .2C .3D .43. )A B C D 4.下列式子中是二次根式的是( )A B C D 5.下列运算正确的是 ( )A B C .1)2=3-1 D 6.设a b 0>>,2240a b ab +-=,则a b b a +-的值是( )A .2B .-3C .D .7.下列计算正确的是( )A 7=±B 7=-C 112=D 2=8.合并的是( )A B C D 9.下列计算正确的是( )A =B =C .216=D 1=10.若0<x<1,则 )A .2xB .- 2xC .-2xD .2x11.=x 可取的整数值有( ). A .1个 B .2个C .3个D .4个12. )A .1个B .2个C .3个D .4个二、填空题13.x 的取值范围是______________. 14._____. 15.2=__________.16.已知+3,则x-y=_____________.17.已知a 、b 为有理数,m 、n分别表示521amn bn +=,则3a b +=_________.18.19.===…(a 、b 均为实数)则=a __________,=b __________.20.)0a >=______.三、解答题21.(1(2)解不等式组:2(3)8(1)22x x x x x --<⎧⎪⎨--≤-⎪⎩ 22.先化简再求值:2211,211a a a a a ----+-其中a = 23.(1)计算2011(20181978)|22-⎛⎛⎫-⨯----- ⎪ ⎝⎭⎝⎭(2)先化简,再求值:2256111x x x x -+⎛⎫-÷ ⎪--⎝⎭,x 从0,1,2,3四个数中适当选取. 24.先化简,再求值:21133x x x x xx ,其中1x =25.计算:(12(5)-; (2)(x ﹣2y+3)(x+2y+3).26.计算(1)22018112-⎛⎫-+ ⎪⎝⎭;(20|1-;(3)2(1)16x -=;(4)321x +=【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据题意,添上一种运算符号后逐一判断即可.【详解】解:A+1+1)=0,故本选项不合题意;B、1)无论是相加,相减,相乘,相除,结果都是无理数,故本选项符合题意; C﹣2)=3,故本选项不合题意;D)(12,故本选项不合题意.故选:B .【点睛】本题主要考查了二次根式的混合运算,熟记二次根式的混合运算法则以及平方差公式是解答本题的关键.(a+b )(a-b )=a 2-b 2.2.C解析:C【分析】为同类根式,即可得到此方程的正整数解的组数有三组.【详解】解:∵,x ,y 为正整数,∴====∴11327x y =⎧⎨=⎩,224812x y =⎧⎨=⎩,331473x y =⎧⎨=⎩,共有三组正整数解. 故选:C .【点睛】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.3.B解析:B【分析】根据分数的性质,在分子分母同乘以2,再根据二次根式的性质化简即可.【详解】4===, 故选:B .【点睛】此题考查化简二次根式,掌握分数的性质确定分子分母同乘以最小的数值,使分母化为一个数的平方,由此化简二次根式是解题的关键.4.C解析:C【分析】利用二次根式的定义进行解答即可.【详解】A 中,当0a <时,不是二次根式,故此选项不符合题意;B 1x <-时,不是二次根式,故此选项不符合题意;C =()2 10x +≥恒成立,因此该式是二次根式,故此选项符合题意;D 20-<,不是二次根式,故此选项不符合题意;故选:C .【点睛】(0a ≥)的式子叫做二次根式. 5.B解析:B【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【详解】A A 错误;B ,故选项B 正确;C 、21)313=-=-,故选项C 错误;D 53=≠+,故选项D 错误;故选:B .【点睛】本题考查了二次根式的混合运算,解答本题的关键是明确二次根式混合运算的法则. 6.D解析:D【分析】由2240a b ab +-=可得2()6a b ab +=,2()2a b ab -=,然后根据0a b >>求得a b +和a b -的值,代入即可求解.【详解】∵2240a b ab +-=,即224a b ab +=,∴2()6a b ab +=,2()2a b ab -=,∵0a b >>, ∴a b +=a b -=,∴a b a b b a a b ++=---== 故选:D .【点睛】本题考查了求分式的值以及二次根式的除法运算,正确运用完全平方公式是解题的关键. 7.D解析:D【分析】根据二次根根式的运算法则即可求出答案.【详解】A 77=-=,故该选项错误;B 77=-=,故该选项错误;C ==D == 故选:D .【点睛】本题主要考查了利用二次根式的性质化简,正确掌握相关运算法则是解题关键. 8.D解析:D【分析】先化简选项中各二次根式,然后找出被开方数为2的二次根式即可.【详解】的同类二次根式.A63无法合并,故A错误;B43无法合并,故B错误;C25无法合并,故C错误;D32可以合并,故D正确.故选D.【点睛】本题主要考查的是同类二次根式的定义,掌握同类二次根式的定义是解题的关键.9.B解析:B【分析】根据二次根式加减法、乘除法的法则分别计算即可得到答案.【详解】A A错误;B==B正确;C、28=,故选项C错误;D==D错误;故选:B.【点睛】本题主要考查了二次根式的加减乘除运算,熟练掌握运算方法是解题的关键.10.D解析:D【分析】利用完全平方公式以及二次根式的性质,结合0<x<1,进行化简,即可得到答案.【详解】∵0<x<1,∴1+xx >0,1-xx<0,∴=11|+||-|x x x x- =1+x x +1-x x=2x ,故选D【点睛】||a =,是解题的关键. 11.B解析:B【分析】根据二次根式有意义的条件列出不等式,求出x 的范围,得到答案.【详解】解:由题意得,40x -≥,50x -≥,解得,45x ≤≤,则x 可取的整数是4、5,共2个,故选:B .【点睛】本题考查了二次根式有意义的条件,掌握二次根式有意义的条件是被开方数是非负数是解题的关键.12.B解析:B【分析】先把各二次根式化简为最简二次根式,再根据同类二次根式的概念解答即可.【详解】被开方数不同,故不是同类二次根式;被开方数不同,故不是同类二次根式;被开方数相同,故是同类二次根式;2被开方数相同,故是同类二次根式.2个,故选:B .【点睛】此题主要考查了同类二次根式的定义即化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.二、填空题13.且【分析】根据分式有意义可得根据二次根式有意义的条件可得再解即可【详解】由题意得:且解得:且故答案为:且【点睛】本题主要考查了分式有意义和二次根式有意义的条件关键是掌握分式有意义的条件是分母不等于零 解析:0x ≥且1x ≠【分析】根据分式有意义可得10x -≠,根据二次根式有意义的条件可得0x ≥,再解即可.【详解】由题意得:10x -≠,且0x ≥,解得:0x ≥且1x ≠,故答案为:0x ≥且1x ≠.【点睛】本题主要考查了分式有意义和二次根式有意义的条件,关键是掌握分式有意义的条件是分母不等于零,二次根式中的被开方数是非负数.14.【分析】先分母有理化然后化简后合并即可【详解】解:=2﹣=故答案为:【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式然后合并同类二次根式即可在二次根式的混合运算中如能结合题目特点灵.【分析】先分母有理化,然后化简后合并即可.【详解】=【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.15.1【分析】由题可得即可得出再根据二次根式的性质化简即可【详解】由题可得∴∴∴故答案为:【点睛】本题主要考查了二次根式有意义的条件以及二次根式的性质与化简掌握二次根式的性质是解决问题的关键解析:1【分析】由题可得,30x -≥,即可得出20x -≤,再根据二次根式的性质化简即可.【详解】由题可得,30x -≥,∴3x ≥,∴20x -≤,∴2()()23x x =----23x x =-+-+1=.故答案为:1.【点睛】本题主要考查了二次根式有意义的条件以及二次根式的性质与化简,掌握二次根式的性质是解决问题的关键.16.﹣1【分析】根据二次根式有意义的条件可得关于x 的不等式组进而可求出xy 然后把xy 的值代入所求式子计算即可【详解】解:由题意得:所以x=2当x=2时y=3所以x -y=2-3=﹣1故答案为:﹣1【点睛】解析:﹣1【分析】根据二次根式有意义的条件可得关于x 的不等式组,进而可求出x 、y ,然后把x 、y 的值代入所求式子计算即可.【详解】解:由题意得:2020x x -≥⎧⎨-≥⎩,所以x=2, 当x=2时,y=3,所以x -y=2-3=﹣1.故答案为:﹣1.【点睛】本题考查了二次根式有意义的条件、代数式求值和一元一次不等式组,属于基础题目,熟练掌握基本知识是解题的关键.17.4【分析】只需先对估算出大小从而求出其整数部分a 其小数部分用表示再分别代入进行计算;【详解】∵2<<3∴2<<3∴m=2n==把m=2n=代入∴化简得:∴且解得:∴故答案为:4【点睛】本题考查了无理解析:4【分析】只需先对5-a ,其小数部分用5a -表示,再分别代入21amn bn +=进行计算;【详解】∵2<3,∴2<5-3,∴ m=2,n=52=3,把m=2,n=3代入21amn bn +=∴ ((22331a b -+-=,化简得:())616261a b a b ++= ,∴ 6161a b +=且260a b +=,解得: 1.5a =,0.5b =-∴331.50.54a b +=⨯-=,故答案为:4.【点睛】本题考查了无理数大小的估算和二次根式的混合运算,能够正确估算出一个较复杂的无理数的大小是解决此类问题的关键;18.<【分析】直接利用二次根式的性质分别变形进而比较得出答案【详解】解:==∵>∴∴<故答案为:<【点睛】此题主要考查了二次根式的分母有理化正确化简二次根式是解题关键解析:<【分析】直接利用二次根式的性质分别变形,进而比较得出答案.【详解】===== ∵+∴< ∴故答案为:<.【点睛】此题主要考查了二次根式的分母有理化,正确化简二次根式是解题关键.19.748【分析】利用已知条件找出规律写出结果即可【详解】解:∵⋯⋯∴⋯⋯∴故答案为:748【点睛】本题考查归纳推理考查对于所给的式子的理解主要看清楚式子中的项与项的数目与式子的个数之间的关系本题是一个解析:7, 48【分析】利用已知条件,找出规律,写出结果即可.【详解】解:∵=== ⋯⋯,∴====== ⋯⋯,==∴7a =,27148b =-=,故答案为:7,48【点睛】本题考查归纳推理,考查对于所给的式子的理解,主要看清楚式子中的项与项的数目与式子的个数之间的关系,本题是一个易错题.20.-b 【分析】先确定b 的取值范围再利用二次根式的性质化简【详解】解:∵a ﹥0﹥0∴b ﹤0∴-b 故答案为:-b 【点睛】本题考查了二次函数的性质与化简解题的关键是确定b 的取值范围及理解被开平方数具有非负性解析:【分析】先确定b 的取值范围,再利用二次根式的性质化简.【详解】解:∵a ﹥0,3-ab ﹥0,∴b ﹤0,∴)0a >=故答案为:【点睛】本题考查了二次函数的性质与化简,解题的关键是确定b 的取值范围及理解被开平方数具有非负性.三、解答题21.(1)2)﹣2<x≤2【分析】(1)先算乘除,再算加减;(2)分别求出两个一元一次不等式的解即可;【详解】(1)原式=,=;(2)2(3)8(1)22x x x x x --<⎧⎪⎨--≤-⎪⎩, 解不等式2(3)8--<x x 得:x >﹣2; 解不等式(1)22--≤-x x x 得:x≤2; 所以,不等式组的解集为:﹣2<x≤2.【点睛】本题主要考查了二次根式的混合运算和一元一次不等式组的求解,准确计算是解题的关键.22.()()211a a -+,1. 【分析】分母先分解因式化简,两个异分母分式通分后相减,再把a 值代入求解即可.【详解】2211211a a a a a ----+- =211(1)(1)(1)a a a a a ----+- =1111a a --+ =()()(1)(1)11a a a a +---+=()()211a a -+,当a =原式231=-=1【点睛】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.23.(1)12)12x -,12- 【分析】(1)由二次根式的性质、负整数指数幂、零指数幂、绝对值的意义进行化简,然后进行计算,即可得到答案;(2)先去括号,把分式进行化简,然后结合分式有意义的条件,取到合适的值,再代入计算,即可得到答案. 【详解】解:(1)原式(141241212⎛=-⨯--=--+= ⎝⎭; (2)原式12(2)(3)3111111(2)(3)2x x x x x x x x x x x x -----⎛⎫=-÷=⋅= ⎪-------⎝⎭; ∵10x -≠,20x -≠,30x -≠,∴1,2,3x ≠,x 只能取0,当0x =时,原式11122==--. 【点睛】 本题考查了分式的混合运算,分式的化简求值,二次根式的性质、负整数指数幂、零指数幂、绝对值的意义,解题的关键是熟练掌握运算法则,正确的进行化简.24.2x x -;2+.【分析】先把括号内通分化简,然后利用除法运算化为乘法运算,将算式化简,再将1x =代入计算原式的值即可.【详解】 解:21133x x x x x x 2311=333x x x x x x x x2131=33x x x x x x x 213=31x x x x x1x x2x x =-当1x =时,原式2212122.【点睛】本题考查了分式的化简求值,熟悉相关运算法则是解题的关键.25.(1)345;(2)x 2+6x+9﹣4y 2 【分析】(1)首先计算开方,然后从左向右依次计算;求出算式的值是多少即可.(2)将各多项式分组,利用平方差公式和完全平方公式计算即可.【详解】解:(1)原式=2+(﹣1)+45+5 =6+45 =345; (2)原式=(x+3﹣2y )(x+3+2y )=(x+3)2﹣4y 2=x 2+6x+9﹣4y 2. 【点睛】本题主要考查实数的运算,平方差公式和完全平方公式,解决此类问题,要熟练掌握运算顺序和运算方法.26.(1)-5;(2;(3)5x =或3x =-;(4)-1【分析】(1)分别利用乘方、负整数指数幂、算术平方根和立方根计算,再将结果相加减;(2)分别利用二次根式的性质、绝对值的性质和零指数幂化简(或计算),再将结果相加减;(3)两边直接开平方后,解一元一次方程即可;(4)移项合并后开立方即可.【详解】解:(1)原式=145(3)-+-+-=94-+=5-;(2)原式=211-;(3)2(1)16x -=两边同时开平方得:14x -=±,即14x =±,即5x =或3x =-;(4)321x +=移项后合并得:31x =-两边同时开立方得:1x =-.【点睛】本题考查实数的混合运算,利用平方根和立方根解方程.涉及的知识点有二次根式的性质、零指数幂和负整数指数幂、化简绝对值、平方根和立方根等.(1)(2)中能利用相关定义分别计算是解题关键;(3)(4)中主要用到的思想是降次.。

2023年人教版八年级数学下册第十六章《二次根式》综合测试卷附答案解析

2023年人教版八年级数学下册第十六章《二次根式》综合测试卷附答案解析

2023年八年级数学下册第十六章《二次根式》综合测试卷1.下列各式是二次根式的是()A.-7B.m C.a 2+1D.332.若式子x +1+x -2在实数范围内有意义,则x 的取值范围是()A.x >-1B.x ≥-1C.x ≥-1且x ≠0D.x ≤-13.下列二次根式中,是最简二次根式的是()A.2B.12C.12D.94.4.下列运算正确的是()A.2+3=5B.30=0C.(-2a )3=-8a 3D.a 6÷a 3=a 25.化简二次根式(-5)2×3的结果为()A.-53B.53C.±53 D.30×3的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.估计5+2×10的值应在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间8.若x <0,则x -x 2x 的结果是()A.0B.-2C.0或2D.29.已知a ,b ,c 为△ABC 的三边长,且a 2-2ab +b 2+|b -c |=0,则△ABC 的形状是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形10.如图,长方形内有两个相邻的正方形,其面积分别为2和8,则图中阴影部分的面积为()A.2B.2C.22D.6二、填空题(每题3分,共24分)11.比较大小:35________27(填“>”“<”或“=”).12.计算:24-323=________.13.比较:5-12________12(填“>”“=”或“<”).14.实数a 在数轴上对应的点的位置如图所示,则(a -4)2+(a -11)2化简后为________.15.【2022·贺州】若实数m ,n 满足|m -n -5|+2m +n -4=0,则3m +n =________.16.△ABC 的面积S =12cm 2,底边a =23cm,则底边上的高为__________.17.已知a ≠0,b ≠0且a <b ,化简-a 3b 的结果是__________.18.已知三角形的三边长分别为a ,b ,c ,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦给出求其面积的海伦公式S =p (p -a )(p -b )(p -c ),其中p =a +b +c 2;我国南宋时期数学家秦九韶曾提出利用三角形的三边求其面积的秦九韶公式S 的三边长分别为2,3,4,则其面积是________.三、解答题(19题16分,其余每题10分,共66分)19.计算:(1)(6+8)×3÷32;-12+(1-2)0-|3-2|;(3)(6-412+38)÷22;(4)(1+3)(2-6)-(22-1)2.20.先化简,再求值:23x 9x +y 2x y 3-21x -5x =12,y =4.21.已知等式|a -2023|+a -2024=a 成立,求a -20232的值.22.已知一个长方形花坛与一个圆形花坛的面积相等,长方形花坛的长为140πm,宽为35πm,求这个圆形花坛的半径.23.【跨学科题】据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=h5 (不考虑风速的影响).(1)求从40m高空抛物到落地的时间.(2)小明说从80m高空抛物到落地时间是(1)中所求时间的2倍,他的说法正确吗?如果不正确,请说明理由.(3)已知高空坠落物体动能(单位:焦耳)=10×物体质量×高度,某质量为0.05kg的鸡蛋经过6s后落在地上,这个鸡蛋产生的动能是多少?你能得到什么启示?(注:杀伤无防护人体只需要65焦耳的动能)24.我们学习了二次根式,那么所有的非负数都可以看成是一个数的平方,如3=(3)2,5=(5)2,下面我们观察:(2-1)2=(2)2-2×1×2+12=2-22+1=3-22;反之,3-22=2-22+1=(2-1)2,∴3-22=(2-1)2,∴3-22=2-1.(1)化简3+2 2.(2)化简4+2 3.(3)化简4-12.(4)若a±2b=m±n,则m,n与a,b的关系是什么?并说明理由.答案一、1.C2.C 3.A 4.C 5.B 6.D 7.B 8.D 9.B 10.B 二、11.>12.613.>14.715.716.43cm17.-a -ab点拨:∵a ≠0,b ≠0,∴-a 3b >0,a 3b <0.∴a ,b 异号.又∵a <b ,∴a <0,b >0.∴-a 3b =-a -ab .18.3154三、19.解:(1)原式=(32+26)÷32=1+233;(2)原式=-2-23+1-(2-3)=-2-23+1-2+3=-3-3;6-412+3×24=32-1+3=32+2;(4)原式=2×(1+3)×(1-3)-(8-42+1)=2×(1-3)-8+42-1=-22-8+42-1=22-9.20.解:原式=2x x +xy -x x +5xy=x x +6xy .当x =12,y =4时,原式=1212+612×4=24+62=2524.21.解:由题意得a -2024≥0,∴a ≥2024.原等式变形为a -2023+a -2024=a .整理,得a -2024=2023.两边平方,得a -2024=20232,∴a -20232=2024.22.解:长方形花坛的面积为140π×35π=70π(m 2),∴圆形花坛的面积为70πm 2.设圆形花坛的面积为S m 2,半径为r m,则S =πr 2,即70π=πr 2,∴r=70ππ=70.故这个圆形花坛的半径为70m. 23.解:(1)由题意知h=40m,∴t=h5=405=8=22(s).(2)不正确.理由如下:当h=80m时,t=805=16=4(s).∵4≠2×22,∴不正确.(3)当t=6s时,6=h5,∴h=180m.∴鸡蛋产生的动能为10×0.05×180=90(焦耳).启示:严禁高空抛物.24.解:(1)3+22=(2+1)2=2+1.(2)4+23=(3+1)2=3+1.(3)4-12=4-23=(3-1)2=3-1.+n=a,=b.理由:把a±2b=m±n两边平方,得a±2b=m+n±2mn,+n=a,=b.。

人教版八年级数学下册第十六章《二次根式》单元测试卷附答案

人教版八年级数学下册第十六章《二次根式》单元测试卷附答案

第十六章《二次根式》单元测试卷(共23题,满分120分,考试用时90分钟)一、选择题(共10小题,每小题3分,共30分)1.下列式子是二次根式的是()A.2B.√2C.√23D.√−22.二次根式√x−2有意义的条件是()A.x>2B.x<2C.x≥2D.x≤23.下列式子中,属于最简二次根式的是()A.√12B.√23C.√0.3D.√74.化简√(−2)2得()A.2B.-2C.±2D.45.下列二次根式中,不能与√2合并的是()A.√12B.√8C.√12D.√186.下列计算正确的是()A.√2+√3=√5B.2+√2=2√2C.3√2−√2=3D.3√2−√2=2√27.下列计算错误的是()A.√5×√6=√30B.√18÷√2=9C.3√3÷3√3=1D.3√2×2=6√28.计算(2+√5)(2-√5)的结果是()A.-1B.-3C.9-4 √5D.9+4 √59.若二次根式√1+a与√4−a的被开方数相同,则a的值为()A.1B.2C.23D.3210.(创新题)如图,数轴上表示1,√2的对应点分别为A,B,则以点A为圆心,以AB为半径的圆交数轴于点C,则点C表示的数是()A.√2-1B.1-√2C.2-√2D.√2-2二、填空题(共5小题,每小题3分,共15分)11.计算√8−√2的结果等于.12.计算:3√5×2√5=.13.若√12n是正整数,则最小的整数n是.14.已知实数x,y满足|x-4|+√y−8=0,则分别以x,y的值为两边长的等腰三角形的周长是.15.(跨学科融合)某小区要在面积为128平方米的正方形空地上建造一个休闲园地,并进行规划(如图1),在休闲园地内建一个面积为72平方米的正方形儿童游乐场,游乐场两边铺设健身道,剩下的区域作为休息区.现计划在休息区摆放占地面积为3×1.5平方米的“背靠背”休闲椅(如图2),并要求休闲椅摆放在东西方向或南北方向上,请通过计算说明休息区内最多能摆放张这样的休闲椅.三、解答题(一)(共3小题,每小题8分,共24分)16.计算:3√5+2√12−√20.17.计算:√24÷√3−√6×2√3.18.求代数式2xx2−2x+1÷(1+1x−1)的值,其中x=√2+1.四、解答题(二)(共3小题,每小题9分,共27分)19.已知x=2+√3,求代数式x2-2√3x+3的值.20.若x,y都是实数,且y=√x−3+√3−x+8,求x+y的值.21.如图,已知实数a,b,c在数轴上的位置,化简:√a2-|a-b|+√(b+c)2.五、解答题(三)(共2小题,每小题12分,共24分)22.(跨学科融合)高空抛物严重威胁着人们的“头顶安全”,即便是常见小物件,一旦高空落下,也威力惊人,而且用时很短,常常避让不及.据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=√2ℎg(不考虑风速的影响,g≈10 m/s2).(1)求从40 m高空抛物到落地的时间(结果保留根号);(2)小明说从80 m高空抛物到落地的时间是(1)中所求时间的2倍,他的说法正确吗?请说明理由;(3)已知高空坠物动能(单位:J)=10×物体质量(单位:kg)×高度(单位:m).某质量为0.05 kg的鸡蛋经过6 s后落在地上,这个鸡蛋产生的动能是多少(单位:J)?这个鸡蛋会伤害到楼下的行人吗?(注:杀伤无防护的人体只需要65 J的动能)23.阅读下列材料,然后解答问题:√5=√5√5×√5=3√55.(一)√2 3=√2×3√3×3=√63.(二)√3+1=√3−1)(√3+1)(√3−1)=√3−1)(√3)2−1=√3-1.(三)以上这种化简的步骤叫做分母有理化.。

【3套试卷】人教版数学八年级下第16章二次根式单元考试题(有答案)

【3套试卷】人教版数学八年级下第16章二次根式单元考试题(有答案)

人教版数学八年级下第16章二次根式单元考试题(有答案)人教版八年级数学下册第十六章二次根式单元检测卷总分:150分,时间:120分钟;姓名:;成绩:;一、选择题(4分×12=48分)1、下列二次根式是最简二次根式的是()C.B.2)A. B.C.3a能够取的值是()A. 0B. 1C. 2D.34有意义的条件是()A.x≥1B.x≤1C.x≠1D.x<15、若135a是整数,则a的最小正整数值是( )A.15 B.45 C.60 D.1356、则实数x的取值范围在数轴上的表示正确的是( )=-)7aA. -B.C. -D.8、已知(5m=n,如果n是整数,则m可能是()A. 5 C.9、下列计算正确的是( )A. 4B. 1C. 3 210、若a 、b 、c )A. 2a -2cB. -2cC. 2bD.2a11、已知a ,b a 、b ,则下列表示正确的是( )A. 0.3abB. 3abC. 0.1abD.0.9ab12、定义:m Δn =(m+n )2,m ※n =mn -2,则[(]Δ)的值是()C. 5二、填空题(4分×6=24分)13= ;14、已知矩形的长为cm cm ,则矩形的面积为 ;15、当a = 时,16、已知a =,b =,则a 2b+ab 2= ;171x =成立的条件是 ;1822510b b +=,则a+b 的平方根是 ;三、22a 10分×2=20分)19、计算(1)21+( (2)2019+(-1)20、计算:(1)220,0)a a b >>(2)2(0,0)aa b m n ÷>>四、解答题(9分×4=36分)21、用四张一样大小的长方形纸片拼成一个正方形ABCD ,如图所示,它的面积是75,AE=22、化简求值:2(2)(2)(2)(43)a b a b a b b a b +-+--+,其中a 1,b ;23、观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式: 121212)12)(12()12(1121-=--=-+-⨯=+ 232323)23)(23()23(1231-=--=-+-⨯=+ 同理可得:32321-=+ 从计算结果中找出规律,并利用这一规律计算.......1)的值24、已知a,b,c在数轴上如图所示,化简:+b c五、解答题(10分+12分=22分)25、现有一组有规律的数:1,-1,2,-2,3,-3,1,-1,2,-2,3,-3,…,其中1,-1,2,-2,3,-3这6个数按此规律重复出现.(1)第50个数是什么数?(2)把从第1个数开始的前2018个数相加,结果是多少?(3)从第1个数起,把连续若干个数的平方相加,如果和为520,那么一共是多少个数的平方相加?26、小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+()2.善于思考的小明进行了以下探索:设=()2(其中a、b、m、n均为整数),则有=m2+2n2∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若=()2,用含m、n的式子分别表示a、b,得:a= ,b= ;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+ =(+ )2;(3)若)2,且a 、m 、n 均为正整数,求a 的值?2019年春人教版数学八年级下第16章二次根式单元考试题答案一、选择题CDBDA CABDA AB二、填空题13、1; 14、2; 15、6; 16、6; 17、x ≥-1;18、±3三、解答题19、计算:(1)5; (2)0;20、(1)12a 3b 2;(2)2221a ab a b -+; 四、解答题21、22、;23、2017;24、-a五、解答题25、(1)第50个数是-1.(2)从第1个数开始的前2018个数的和是0.(3)一共是261个数的平方相加.26、26、(1)223,2m n mn + (2)16,8,2,2(答案不唯一)(3)7或13.人教版初中数学八年级下册第十六章《二次根式》单元基础卷一、选择题(每小题3分,共30分)1x 的取值范围是( ).A. 1x >B. 1x ≥C. 1x <D. 1x ≤ 2.若a -1+b 2-4b +4=0,则ab 的值等于( )A .-2B .0C .1D .23.=x 的取值范围是( ) A. 2x ≠B. 0x ≥C. 2x >D. 2x ≥4.是同类二次根式的是( )。

八年级下册数学《二次根式》单元测试卷有答案

八年级下册数学《二次根式》单元测试卷有答案

八年级下册数学《二次根式》单元测试卷一、单选题x的取值范围是()1A.x≠7B.x<7 C.x>7 D.x≥72的相反数是()A.﹣2 B.2 C.﹣4 D.4 3.下列各式属于最简二次根式的有()AB C D4.下列计算正确的是()A=B.3=C2=D=5是同类二次根式的是()A B C D6n的最小值是()A.4 B.6 C.8 D.12 7.估计√13的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间8.下列各式中计算正确的是()A=⨯2)×(﹣4)=8B=4a(a>0)C3+4=7D 3=9.已知1a a +=1a a-=( )AB C .D .10.若1a b -=,2213a b +=,则ab 的值为( ) A .6 B .7 C .8 D .9二、填空题11_____.12.已知a 、b 满足(a ﹣1)2,则a+b=_____.13_____.14=______. 15.比较大小:58_____√5−12.(填“>”、“<”或“=”)16a =_____.17_____.18=_____.三、解答题19.化简:20.已知a,求293a a ---21.先化简代数式1﹣1x x -÷2212x x x-+,并从﹣1,0,1,3中选取一个合适的代入求值.22.若实数a 、b 满足2(2)0a b +-+=,求2b +a ﹣1的值.23.若x ,y 都是实数,且y +1y 的值.24.阅读理解材料:把分母中的根号去掉叫做分母有理化,例如:;1==等运算都是分母有理化.根据上述材料, (1(210+++(3n +++参考答案1.D【解析】【分析】直接利用二次函数有意义的条件分析得出答案.【详解】在实数范围内有意义,∴x-7≥0,解得:x≥7.故选:D.【点睛】本题考查了二次根式有意义的条件,正确把握二次根式的定义是解题的关键.2.B【解析】【分析】,再求其相反数即可.【详解】故选B.3.B【解析】【分析】先根据二次根式的性质化简,再根据最简二次根式的定义判断即可.【详解】A=A选项错误;B是最简二次根式,故B选项正确;C=D=D选项错误;故选:B.【点睛】考查了对最简二次根式的定义的理解,能理解最简二次根式的定义是解此题的关键.4.D【解析】【分析】根据二次根式的运算法则逐项计算即可判断.【详解】解:A不是同类二次根式,不能合并,故错误;B、,故错误;C2÷=,故错误;2D.故选D.【点睛】本题考查了二次根式的四则运算.5.C【解析】【分析】同类二次根式定义为几个二次根式化简成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.【详解】符合定义的只有C项,所以答案选择C项.【点睛】本题考查了同类二次根式的定义,熟练掌握定义是解答本题的关键.6.B【解析】【分析】=则6n是完全平方数,满足条件的最小正整数n为6.【详解】∵=∴6n是完全平方数,∴n的最小正整数值为6.故选B.【点睛】主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.7.C【解析】解:∵√9<√13<√16,∴3<√13<4,故选C.8.D【解析】【分析】根据二次根式的意义、性质逐一判断即可得.【详解】A ,此选项错误;B =(a >0),此选项错误;C =5,此选项错误;D =,此选项正确. 故选D . 【点睛】本题考查了二次根式的性质与化简,解题的关键是熟练掌握二次根式的定义和性质. 9.C 【解析】分析:本题只要根据1a a -=详解:1a a -===C .点睛:本题考查的是完全平方公式的应用,属于中等难度的题型.()()224a b a b ab +=-+,()()224a b a b ab -=+-,a b -= 10.A 【解析】 【分析】将a ﹣b =1两边平方,利用完全平方公式化简,将第一个等式代入计算即可求出ab 的值. 【详解】解:将a ﹣b =1两边平方得:(a ﹣b )2=a 2+b 2﹣2ab =1, 把a 2+b 2=13代入得:13﹣2ab =1, 解得:ab =6. 故选A . 【点睛】本题考查完全平方公式,熟练掌握公式是解题关键. 11.﹣6.【解析】【分析】直接利用立方根以及算术平方根化简得出答案.【详解】解:原式=4﹣10=﹣6.故答案为﹣6.【点睛】本题考查实数运算,正确利用立方根以及算术平方根化简各数是解题关键.12.﹣1【解析】【分析】利用非负数的性质可得a-1=0,b+2=0,解方程即可求得a,b的值,进而得出答案.【详解】∵(a﹣1)2,∴a=1,b=﹣2,∴a+b=﹣1,故答案为﹣1.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.13.4 3【解析】【分析】根据算术平方根的定义求解可得.【详解】解:=4 3故答案为:4 3【点睛】本题考查算术平方根,解题关键是熟练掌握算术平方根的定义.14【解析】 【分析】先进行二次根式的化简,然后合并. 【详解】解:原式3==. 【点睛】本题考查了二次根式的加减法,正确化简二次根式是解题的关键. 15.> 【解析】 【分析】利用作差法即可比较出大小. 【详解】解:∵58−√5−12=5−4√5+48=9−4√58=√81−√808>0,∴58>√5−12.故答案为>. 16.1 【解析】 【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a 的方程,根据解方程,可得答案. 【详解】=a +1=2.解得a=1.故答案是:1.【点睛】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.17.【解析】【分析】一般二次根式的有理化因式是符合平方差公式的特点的式子.据此作答.【详解】.解.【点睛】本题考查二次根式的有理化.根据二次根式的乘除法法则进行二次根式有理化.二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.18.2【解析】【分析】根据二次根式乘法的运算法则进行求解即可得.【详解】=2,故答案为:2.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式乘法的运算法则是解题的关键.19.【解析】【分析】根据二次根式的乘法法则运算.【详解】解:原式=6-=6-7【点睛】本题考查的知识点是二次根式化简,解题的关键是熟练的掌握二次根式.20.7.【解析】【分析】先将a的值分母有理化,从而判断出a﹣2<0,再根据二次根式的混合运算顺序和运算法则化简原式,继而将a的值代入计算可得.【详解】解:∵a2∴a﹣2=220,则原式=3323(2) a a aa a a+-----()()=a+3+1 a=2=7.【点睛】本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.21.-11x +,-14. 【解析】试题分析:根据分式的除法和减法可以化简题目中的式子,然后在﹣1,0,1,3中选取一个使得原分式有意义的x 的值代入即可解答本题.试题解析:原式=1﹣()()()21·11x x x x x x +-+- =1﹣21x x ++ =121x x x +--+=-11x +, 当x=3时,原式=﹣131+ =-14 . 22.43. 【解析】【分析】由于平方和二次根式都具有非负性,根据非负数的性质列出二元一次方程组求出a 、b 的值,再代入代数式求解即可.【详解】解:由题意,得20230a b b a +-=⎧⎨-+=⎩ , 解得5313a b ⎧=⎪⎪⎨⎪=⎪⎩. ∴2b +a ﹣1=2×13+53﹣1=43. 【点睛】本题考查非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.23.5【解析】【分析】首先根据二次根式有意义的条件可得:4040x x -≥⎧⎨-≥⎩,解不等式组可得x=4,然后再代入y=1可得y +3y 的值.【详解】解:由题意得:, 解得:x =4,则y =1,+3y =2+3=5.【点睛】本题考查的知识点是二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.24.(1;(2﹣1;(3﹣1.【解析】【分析】(1,即可得出答案;(2)根据分母有理化,可得实数的减法,根据实数的减法运算,可得答案.【详解】(1)==; (2+⋯1...-1=(3⋯1...+﹣1【点睛】运用了二次根式的分母有理化,二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相等.找出分母的有理化因式是解本题的关键.。

八年级下册数学二次根式单元试卷2(含答案)

八年级下册数学二次根式单元试卷2(含答案)

C.
,故错误; (
– √3
-1)2=3-2
– √3
+1
−−−−−−
, 故 错 误 D .
√52

2
3
=4
.
故选B.
4.下列说法正确的是()
若 < ,则 < A. a 0
−−
√a2
0
B.(
−−− √−a
)2=a
若 C .
−−− √−x
有意义,则x<0
D.
− −
1

=
a
√a a
【参考答案】
答案:D.
解:A、若a<0,则

A . √3 + √2 = √5



B . √3 × √2 = √6
C.(
– √3
-1)2=3-1
−−−−−−
D.
√52

2
3
=5-3
4.下列说法正确的是()
若 < ,则 < A. a 0
−−
√a2
0
B.(
−−− √−a
)2=a
若 C .
−−− √−x
有意义,则x<0
D.
− −
1

=
a
√a a
已知 ,那么 的值为() −−−−
方法二:
a−b √a+√b
=
2
2
(√a) −(√b)
√a+√b
(√a−√b)(√a+√b)

=
= √a - √b .
√a+√b
请你挑选一种你喜欢的方法,对 1 进行分母有理化,并求当x= 1 时,式子x2-x+1的值.

八年级数学下册第一单元《二次根式》检测题(包含答案解析)

八年级数学下册第一单元《二次根式》检测题(包含答案解析)

一、选择题1.已知a =,2b =-a 与b 大小关系是( ) A .a b ≥ B .a b ≤ C .a b < D .a b =2.是同类二次根式的是( )A B C D3.a 的值不可以是( )A .12B .8C .18D .284.x 的取值范围是( )A .x <1B .x >1C .x≥1D .x≤15.已知y 3+,则x y 的值为( ). A .43 B .43- C .34 D .34- 6.下列命题是假命题的是( )A .全等三角形的周长相等B .C .若实数a 0<,b 0<,则ab 0>D .如果x y 0+=0=7. )A B .C D .8.下列计算正确的是( )A =B .8-=C =D 4=9.估计 ) A .在2~3之间B .在3~4之间C .在4~5之间D .在5~6之间 10.已知a =,b =,则a 与b 的大小关系是( ). A .a b > B .a b < C .a b =D .无法确定 11.下列各式成立的是( )A .23=B 2=-C 7=D x 12.函数y =x 的取值范围是( ). A .2x > B .2x ≠ C .2x < D .0x ≠二、填空题13.x 的取值范围是________.14.若2<x <3|3|x -的正确结果是_____.15.4y =,则y x =________.16.计算2+________.17.已知5ab =,则=__.18.函数12y x =-自变量的取值范围是________;函数y =自变量的取值范围是________.19.11|1()2--+的值是_____20.有意义的x 的取值范围是______. 三、解答题21.-. 22.解方程组和计算(1)计算:﹣﹣)0(1)2 (2)解方程组:①43522x y y x +=⎧⎨=-⎩; ②3414233x y x y -=⎧⎨-=⎩. 23.计算:(11-+(2)3)(3--24.阅读理解:某节数学课上,钱老师在复习数轴上的点与数之间的关系时,给出了新的定义:若,,A B C 是数轴上的三个点,如果点C 到A 的距离是点C 到B 的距离的2倍,那么我们就称C 是[,]A B 的黄金点.例如,如图①,点A 表示的数为1-,点B 表示的数为2,表示数1的点C 到点A 的距离是2,到点B 的距离是1,那么点C 是[,]A B 的黄金点;又如,表示0的点D 到点A 的距离是1,到点B 的距离是2,那么点D 是[,]B A 的黄金点.(1)如图②,E F 、为数轴上两点,点E 所表示的数为4-,点F 所表示的数为2.数____所表示的点是[,]E F 的黄金点.(2)如图③2所表示的点G 是[,]M N 的黄金点,当点M 在点N 的右侧,且点N 所表示的数为1-时,此时点M 所表示的数为_______________.(3)如图④,,A B 为数轴上两点,点A 所表示的数为10-,点B 所表示的数为50.现有一只电子蜗牛P 从点B 出发,以3个单位每秒的速度向左运动,到达点A 停止.当t 为何值时,,P A 和B 中恰有一个点为其余两点的黄金点.(请直接写出答案) 25.计算(1)38232182)(325)(325)26.计算:(18322(2)132362483+【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】 根据分母有理化将a =进行整理即可求解. 【详解】解:2a =+=2=-又2b =-a b ∴=.故选:D .【点睛】此题主要考查分母有理化的应用,正确掌握分母有理化是解题关键.2.D解析:D【分析】将各个二次根式化成最简二次根式后,选被开方数为2的根式即可.【详解】A 不符合题意;B 不符合题意;,因此选项C 不符合题意;是同类二次根式,因此选项D 符合题意;故选:D .【点睛】本题考查同类二次根式的意义,将二次根式化成最简二次根式后,被开方数相同的二次根式是同类二次根式.3.D解析:D【分析】是否为同类二次根式即可.【详解】是同类二次根式,当a=122=是同类二次根式,故该项不符合题意;当a=8=是同类二次根式,故该项不符合题意;当a=18=是同类二次根式,故该项不符合题意;当a=28=不是同类二次根式,故该项符合题意;故选:D .【点睛】此题考查最简二次根式的定义,同类二次根式的定义,化简二次根式,正确化简二次根式是解题的关键.4.C解析:C【分析】直接利用二次根式有意义的条件分析得出答案.【详解】∵∴x−1≥0,解得:x≥1.故选:C .【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.5.A解析:A【分析】由二次根式有意义的条件可得出x 的值,即可得出y 的值,计算出x y的值即可. 【详解】因为3y =,4040x x -≥⎧∴⎨-≥⎩, ∴x =4,∴y =3, ∴43x y =. 故选:A .【点睛】本题主要考查二次根式有意义的条件,熟记二次根式有意义的条件是解题关键.6.D解析:D【分析】根据全等三角形的性质、同类二次根式的定义、实数的乘法法则、二次根式被开方数的非负性进行判断即可.【详解】解:A 、全等三角形的对应边相等,所以周长也相等,此选项正确,不符合题意;B =,C 、若实数a 0<,b 0<,则ab 0>,此选项正确,不符合题意;D 、令x=1,y=﹣1,满足x+y=0无意义,此选项错误,符号题意,故选:D .【点睛】本题考查命题的真假判断,熟练掌握全等三角形的性质、、同类二次根式的定义、实数的乘法法则、二次根式被开方数的非负性是解答的关键.7.C解析:C【分析】先根据二次根式的性质化简各项,再根据同类二次根式的定义逐项判断即得答案.【详解】解:A 不是同类二次根式,故本选项不符合题意;B 、=C =D 、= 故选:C .【点睛】本题考查了二次根式的性质和同类二次根式的定义,属于基础题型,熟练掌握上述知识是解题的关键.8.C解析:C【分析】根据二次根式的加减乘除运算法则分别计算出各项的结果,再进行判断得出结论即可.【详解】解:A ≠B 、8-≠C =D =,原式计算错误,故不符合题意;故选:C .【点睛】 此题主要考查了二次根式的加减乘除运算,熟练掌握二次根式的运算法则是解答此题的关键.9.C解析:C【分析】先根据二次根式的乘法法则可知,再由16<24<25,利用算术平方根的性质可得4<5,可得结果.【详解】解:∵16<24<25,∴45,即4<5,故选:C .【点睛】本题主要考查了估算无理数的大小,熟练掌握算术平方根的性质及二次根式的乘法法则是解答此题的关键.10.B解析:B【分析】 将a =,b =进行分母有理化,再比较即可. 【详解】 解:451451515151a , 46262626262b , ∵<1<∴16+<+∴a b <.故选B .【点睛】本题考查了分母有理化,不等式的性质,实数比较大小等知识点,熟悉相关性质是解题的关键.11.C解析:C【分析】利用二次根式的性质进行化简判断选项的正确性.【详解】解:A2=32=9,错误;B 、原式=|﹣2|=2,错误;C 、原式=|﹣7|=7,正确;D 、原式=|x |,错误,故选:C .【点睛】本题考查二次根式的化简,解题的关键是掌握二次根式的化简方法.12.C解析:C【分析】0≠;根据二次根式的性质,得20x -≥,从而得到自变量x 的取值范围.【详解】结合题意,得:200x -≥⎧⎪≠ ∴22x x ≤⎧⎨≠⎩∴2x <故选:C .【点睛】本题考查了分式、二次根式的知识;解题的关键是熟练掌握分式、二次根式的性质,从而完成求解.二、填空题13.x≥-1【分析】根据二次根式的被开方数是非负数列出不等式x+1≥0通过解该不等式即可求得x 的取值范围【详解】解:根据题意得x+1≥0解得x≥-1故答案为:x≥-1【点睛】此题考查了二次根式的意义和性解析:x≥-1【分析】根据二次根式的被开方数是非负数列出不等式x+1≥0,通过解该不等式即可求得x 的取值范围.【详解】解:根据题意,得x+1≥0,解得,x≥-1.故答案为:x≥-1.【点睛】(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.14.【分析】根据二次根式的性质绝对值的性质先化简代数式再合并【详解】解:∵2<x<3∴|x﹣2|=x﹣2|3﹣x|=3﹣x原式=|x﹣2|+3﹣x=x﹣2+3﹣x=1故答案为:1【点睛】此题考查化简求值解析:【分析】根据二次根式的性质,绝对值的性质,先化简代数式,再合并.【详解】解:∵2<x<3,∴|x﹣2|=x﹣2,|3﹣x|=3﹣x,原式=|x﹣2|+3﹣x=x﹣2+3﹣x=1.故答案为:1.【点睛】此题考查化简求值,整式的加法法则,正确掌握二次根式的性质,绝对值的性质是解题的关键.15.16【分析】根据二次根式有意义的条件求得x的值再求出y的值再代入求解即可【详解】∵要使有意义∴2-x≥0x-2≥0∴x=2∴y=4把x=2y=4代入=故答案为:16【点睛】考查了二次根式有意义的条件解析:16【分析】根据二次根式有意义的条件求得x的值,再求出y的值,再代入求解即可.【详解】∵∴2-x≥0,x-2≥0,∴x=2,∴y=4,=.把x=2,y=4代入y x=4216故答案为:16.【点睛】考查了二次根式有意义的条件,解题关键是根据二次根式有意义的条件求得x=2.16.【分析】利用二次根式有意义的条件得到x≤2再利用二次根式的性质化简得到原式=2﹣x+|x﹣3|然后去绝对值后合并即可【详解】解:∵∴∴故答案为:【点睛】此题考查了二次根式的化简掌握二次根式的性质和是 解析:52x -.【分析】利用二次根式有意义的条件得到x≤2,再利用二次根式的性质化简得到原式=2﹣x+|x ﹣3|,然后去绝对值后合并即可.【详解】解:∵20x -≥,∴2x ≤,∴22352x x x =-+-=-.故答案为:52x -.【点睛】此题考查了二次根式的化简,掌握二次根式的性质2(0)a a =≥和(0)0? (0)(0)a a a a a a >⎧⎪===⎨⎪-<⎩是解答此题的关键. 17.【分析】先利用二次根式化简然后分和两种情况解答即可【详解】解:原式当时原式;当时原式;即故答案为【点睛】本题主要考查了二次根式的性质和绝对值的性质根据二次根式的性质化简所给的二次根式是解答本题的关键解析:±【分析】先利用二次根式化简,然后分0a >、0b >和0a <,0b <两种情况解答即可.【详解】解:原式=+a b =+,=5ab =,∴当0a >,0b >时,原式==当0a <,0b <时,原式=-=-即=±故答案为±【点睛】本题主要考查了二次根式的性质和绝对值的性质,根据二次根式的性质化简所给的二次根式是解答本题的关键.18.【分析】根据分式的分母不等于0得到根据二次根式的被开方数大于等于0得到求解即可【详解】由题意得:解得∵∴故答案为:【点睛】此题考查分式有意义的条件二次根式被开方数的非负性正确理解代数式的形式列式计算 解析:2x ≠ 3x ≥【分析】根据分式的分母不等于0得到20x -≠,根据二次根式的被开方数大于等于0得到30x -≥,求解即可.【详解】由题意得:20x -≠,解得2x ≠,∵30x -≥,∴3x ≥故答案为:2x ≠,3x ≥.【点睛】此题考查分式有意义的条件,二次根式被开方数的非负性,正确理解代数式的形式列式计算是解题的关键.19.【分析】直接利用二次根式的性质绝对值以及负整数指数幂的性质分别化简得出答案【详解】故答案为:【点睛】本题主要考查了二次根式的混合运算以及负整数指数幂的性质正确掌握相关运算法则是解题关键解析:3【分析】直接利用二次根式的性质,绝对值以及负整数指数幂的性质分别化简得出答案.【详解】11|1()2---+21=3=.故答案为:3.【点睛】本题主要考查了二次根式的混合运算以及负整数指数幂的性质,正确掌握相关运算法则是解题关键.20.且【分析】根据分式的分母不能为0二次根式的被开方数大于或等于0列出式子求解即可得【详解】由题意得:解得且故答案为:且【点睛】本题考查了分式和二次根式有意义的条件熟练掌握分式和二次根式的定义是解题关键 解析:3x ≤且2x ≠-【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得.【详解】由题意得:2030x x +≠⎧⎨-≥⎩, 解得3x ≤且2x ≠-,故答案为:3x ≤且2x ≠-.【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分式和二次根式的定义是解题关键.三、解答题21.3【分析】直接化简二次根式进而计算得出答案.【详解】-===. 【点睛】本题考查了二次根式的混合运算,正确化简二次根式是解题的关键. 22.(1)①-②;(2)①111015x y ⎧=⎪⎪⎨⎪=⎪⎩;②3019x y =⎧⎨=⎩ 【分析】(1)①直接利用二次根式的混合运算法则化简,进而计算得出答案;②直接利用负整数指数幂的性质以及二次根式的混合运算法则分别化简得出答案;(2)①直接利用代入消元法解方程得出答案;②直接利用加减消元法解方程得出答案.【详解】解:(1)①原式62=⨯==-,故答案为:-②原式(12+-=4+2-故答案为:;(2)解①方程组:435(1)22(2)+=⎧⎨=-⎩x y y x , 把(2)代入(1)中得:4x +3(2x ﹣2)=5,解得:x =1110, 把x =1110代入(2)得y =15,所以方程组的解为:111015x y ⎧=⎪⎪⎨⎪=⎪⎩, 故答案为111015x y ⎧=⎪⎪⎨⎪=⎪⎩; 解②方程组:3414(1)233(2)-=⎧⎨-=⎩x y x y , (1)×2﹣(2)×3得:-8y +9y =28﹣9,解得y =19,把y =19代入(2)中得:2x ﹣57=3,解得x =30,所以方程组的解为:3019x y =⎧⎨=⎩. 故答案为:3019x y =⎧⎨=⎩. 【点睛】 本题考查了二次根式的四则运算及二元一次方程组的解法,属于基础题,计算过程中细心即可.23.(1);(2)-15.【分析】(1)利用二次根式的加减运算法则计算即可;(2)根据平方差公式计算.【详解】(1)原式=6-(2)原式=22(33(3)92415-+--=--=-=-【点睛】本题考查了二次根式的加减法及平方差公式,掌握二次根式的加减法的运算法则是解题的关键.24.(1)8或0;(2);(3)203t s =或403s 或10s .【分析】(1)如图,设G 是是[,]E F 的黄金点,且G 对应的数是,x 则2,GE GF = 再利用两点之间的距离公式表示,,GE GF 再列绝对值方程,解方程可得答案;(2)如图,设M 对应的数为,y 由数2所表示的点G 是[,]M N 的黄金点,点M 在点N 的右侧,可得:()2221,y -=+再解方程可得答案; (3)由题意得P 对应的数为:503t -,603,PA t =- 3,60PB t AB ==,再分六种情况讨论:当P 是[,]A B 的黄金点,则2,PA PB = 当P 是[,]B A 的黄金点,则2,PB PA = 当B 是[,]P A 的黄金点,则2,PB BA = 当B 是[,]A P 的黄金点,则2,BA BP = 当A 是[,]B P 的黄金点,则2,BA AP = 当A 是[,]P B 的黄金点,则2,AP AB = 分别列方程求解并检验即可得到答案.【详解】解:(1)如图,设G 是是[,]E F 的黄金点,且G 对应的数是,x则2,GE GF =点E 所表示的数为4-,点F 所表示的数为2.4,2,GE x GF x ∴=+=-42224,x x x ∴+=-=-424x x ∴+=-或4240,x x ++-=当424x x +=-时,8,x ∴=当4240x x ++-=时,0,x =所以8或0所表示的点是[,]E F 的黄金点.故答案为:8或0.(2)如图,设M 对应的数为,y2所表示的点G 是[,]M N 的黄金点,点M 在点N 的右侧,2,212,GM GN GN GM y ∴===,)2221,y ∴= 222+2322y ∴==所以M 对应的数为322+,故答案为:32+2.(3)如图, P 的最长运动时间为:()5010=203s --,由题意得P 对应的数为:503t -,()50310603,PA t t =---=- ()505033,PB t t =--=当P 是[,]A B 的黄金点,则2,PA PB =60323,t t ∴-=⨯20,3t ∴= 当P 是[,]B A 的黄金点,则2,PB PA =()32603t t ∴=- 40,3t ∴= 当B 是[,]P A 的黄金点,则2,PB BA =()501060AB =--=,3260,t ∴=⨯可得:40,t =不合题意舍去,当B 是[,]A P 的黄金点,则2,BA BP =6023,t =⨯10,t ∴=当A 是[,]B P 的黄金点,则2,BA AP =()602603t ∴=-,10,t ∴=当A 是[,]P B 的黄金点,则2,AP AB =603260,t ∴-=⨯20,t ∴=- 不合题意,舍去,综上:当203t s =或403s 或10s 时,,P A 和B 中恰有一个点为其余两点的黄金点. 【点睛】本题考查的是数轴上两点之间的距离,数轴上的动点问题,分类讨论的数学思想,绝对值方程的应用,一元一次方程的应用,合并同类二次根式,掌握以上知识是解题的关键.25.(1;(2)-17【分析】(1)先化简二次根式,再合并即可;(2)利用平方差计算即可.【详解】解:(1)==-+(68=(2)22=-=-=-17320【点睛】本题考查了二次根式的运算、平方差公式,准确掌握运算法则,合理利用公式是解题关键.26.(1)2【分析】(1)把每个二次根式化成最简后再把被开方数相同的项合并;(2)按照乘法分配律去括号,按照除法法则计算二次根式的商,再把所得结果各项化简后合并同类二次根式即可得到最终答案.【详解】解:(1)原式=+-=(241=(2)原式=3-+=(121.【点睛】本题考查二次根式的运算,熟练掌握二次根式的运算法则和化简方法是解题关键.。

八年级数学下册《二次根式》单元检测卷(附答案)

八年级数学下册《二次根式》单元检测卷(附答案)

八年级数学下册《二次根式》单元检测卷(附答案)一、选择题(本大题共10小题,共40分。

在每小题列出的选项中,选出符合题目的一项)1. 1312-21x +3272(4)-( )A. ①③⑤B. ①③C. ①②③D. ①②③⑤2. 下列各式中,没有意义的是( ) 3(3)x x +- 2(1)1x -+3 π- 5 π-3. 2(1)1a a -=-,则a 的取值范围是( )A. 1a >B. 1aC. 1a <D. 1a4. 下列等式中成立的是( ) 44455+=333344+=22233+=11122+=5. 下列根式中属最简二次根式的是( ) 2+1a 128 26. 已知51a =,451b =-a 与b 的关系是( ) A. 1ab = B. 0a b +=C. 1ab =-D. a b = 7. 下列各组二次根式中,化简后是同类二次根式的是( ) 8321251575278. 下列变形中,正确的是.( ) 9936442252555==⨯=22224140414041401-==-= C. 23(527)=-25327=-90-⨯⨯ D. 232(3)218-=-⨯=9. 已知31x =,则221x x -+的值为( )A. 0B. 3C. 1 2110. 已知三角形的三边长分别为a ,b ,c ,求其面积问题,中外数学家曾经进行过深入的研究,古希腊的几何学家海伦(,Heron 约公元50年)给出求其面积的海伦公式()()()S p p a p b p c =---其中2a b c p ++=;我国南宋时期数学家秦九韶(约12021261)-曾提出利用三角形的三边求其面积的秦九韶公式2222221().22a b c S a b +-=-若一个三角形的三边分别为2,3,4,则其面积是( ) 315 315 315 15二、填空题(本大题共4小题,共20分)11. 3240x y +-=,则xy 的值为__________.12. 若x 满足|2017|-2018x x -x =, 则22017x -=________13. 若2xy =,则________.y x xy x y = 14. 设12211112a =++,22211123a =++,32211134a =++,…,22111(1)n a n n =+++,其中n 123a a a …2022a +的值为__________.三、解答题(本大题共9小题,共90分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学-《二次根式》单元测试卷
一、填空题:(每空3分,共33分)
1.下列各式:、、、(x>0)、、﹣、、(x≥0,y≥0)中是二次根式.
2.当x时,在实数范围内有意义.
3.化简=.(x≥0)
4.计算:=;
×=;
)=;
=.
5.若n<0,则代数式=.
6.实数a在数轴上的位置如图所示,则|a﹣1|+=.
7.若+y2﹣4y+4=0,则xy的值为.
8. +的有理化因式是.
二、选择题(每小题3分,共18分)
9.下列各式中,正确的是()
A.2<<3 B.3<<4 C.4<<5 D.14<<16
10.下列二次根式中,是最简二次根式的是()
A.B. C.D.
11.把二次根式(y>0)化为最简二次根式结果是()
A.(y>0)B.(y>0)C.(y>0)D.以上都不对
12.以下二次根式:①;②;③;④中,与是同类二次根式的是()A.①和②B.②和③C.①和④D.③和④
13.化简:a的结果是()
A. B.C.﹣D.﹣
14.当a≥0时,,,﹣中,比较它们的结果,下面四个选项中正确的是()A.=≥﹣B.>>﹣
C.<<﹣D.=<﹣
三、解答题
15.计算:
(1)﹣;
(2)×;
(3)﹣;
(4)(+3);
(5)(3+2)(2﹣3);
(6)(3﹣)2;
(7);
(8)×+.
16.先化简,再求值,其中x=,y=27.
17.解方程:(x﹣1)=(x+1)
18.先阅读下列的解答过程,然后作答:
形如的化简,只要我们找到两个数a、b使a+b=m,ab=n,这样()2+()2=m,•=,那么便有==±(a>b)例如:化简
解:首先把化为,这里m=7,n=12;
由于4+3=7,4×3=12,即()2+()2=7,•=,
∴===2+
由上述例题的方法化简:
(1);
(2);
(3).
参考答案与试题解析
一、填空题:(每空3分,共33分)
1.下列各式:、、、(x>0)、、﹣、、(x≥0,y≥0)中、、﹣、是二次根式.
【考点】二次根式的定义.
【分析】根据二次根式的定义进行解答即可.
【解答】解:二次根式是、(x>0)、﹣、(x≥0,y≥0),
故答案为、、﹣、.
2.当x≥时,在实数范围内有意义.
【考点】二次根式有意义的条件.
【分析】二次根式的被开方数是非负数.
【解答】解:当3x﹣1≥0,即x≥时,在实数范围内有意义.
故答案为:x≥.
3.化简=x.(x≥0)
【考点】二次根式的性质与化简.
【分析】原式利用二次根式的性质化简即可得到结果.
【解答】解:原式==x.
故答案为:x
4.计算:=﹣;
×=2;
)=3﹣2;
=.
【考点】二次根式的混合运算.
【分析】利用二次根式的除法法则运算;利用二次根式的乘除法则运算×=;利用分母有理化计算);利用二次根式的除法法则运算.
【解答】解:==﹣;
×==2;
)==3+2;
=.
故答案为﹣,2,3﹣2,.
5.若n<0,则代数式=.
【考点】二次根式的性质与化简.
【分析】首先写成••的形式,然后分别进行化简即可.
【解答】解:原式=••
=3•m•(﹣n)
=﹣3mn.
故答案是:﹣3mn.
6.实数a在数轴上的位置如图所示,则|a﹣1|+=1.
【考点】二次根式的性质与化简;实数与数轴.
【分析】根据数轴上表示的两个数,右边的数总比左边的大,分别得出a﹣1与0,a﹣2与0的关系,然后根据绝对值的意义和二次根式的意义化简.
【解答】解:根据数轴上显示的数据可知:1<a<2,
∴a﹣1>0,a﹣2<0,
∴|a﹣1|+=a﹣1+2﹣a=1.
故答案为:1.
7.若+y2﹣4y+4=0,则xy的值为4.
【考点】因式分解﹣运用公式法;非负数的性质:偶次方;非负数的性质:算术平方根.【分析】首先配方,进而利用二次根式的性质以及偶次方的性质,进而得出关于x,y的方程组求出即可.
【解答】解:∵+y2﹣4y+4=0,
∴+(y﹣2)2=0,
∴,
解得:,
∴xy的值为:4.
故答案为:4.
8. +的有理化因式是﹣.
【考点】分母有理化.
【分析】根据平方差公式即可得出(+)×(﹣)=﹣1,再结合有理化因式的定义即可得出结论.
【解答】解:∵(+)×(﹣)=﹣=2﹣3=﹣1,
∴﹣是+的一个有理化因式.
故答案为:﹣.
二、选择题(每小题3分,共18分)
9.下列各式中,正确的是()
A.2<<3 B.3<<4 C.4<<5 D.14<<16
【考点】实数大小比较;估算无理数的大小.
【分析】首先估算的整数部分和小数部分,再比较大小即可求解.
【解答】解:∵≈3.87,3<3.87<4,
∴3<<4;
故选B.
10.下列二次根式中,是最简二次根式的是()
A.B. C.D.
【考点】最简二次根式.
【分析】A选项中含有小数;D选项的被开方数中含有能开得尽方的因数;C选项的被开方数中含有分母;
因此这三个选项都不符合最简二次根式的要求.所以本题的答案应该是B.
【解答】解:A、==,不是最简二次根式;
B、,不含有未开尽方的因数或因式,是最简二次根式;
C、=,被开方数中含有分母,故不是最简二次根式;
D、=2,不是最简二次根式.
只有选项B中的是最简二次根式,故选B.
11.把二次根式(y>0)化为最简二次根式结果是()
A.(y>0)B.(y>0)C.(y>0)D.以上都不对
【考点】最简二次根式.
【分析】根据最简二次根式的被开方数不含开的尽的因数或因式,被开方数不含分母,可得答案.
【解答】解:==,
故选:C.
12.以下二次根式:①;②;③;④中,与是同类二次根式的是()A.①和②B.②和③C.①和④D.③和④
【考点】同类二次根式.
【分析】先把每个二次根式化为最简二次根式,然后根据同类二次根式的定义解答.
【解答】解:∵,,,,
∴与是同类二次根式的是①和④,
故选:C.
13.化简:a的结果是()
A. B.C.﹣D.﹣
【考点】二次根式的性质与化简.
【分析】直接利用二次根式的性质得出a的符号,进而化简求出即可.
【解答】解:由题意可得:a<0,
则a=﹣=﹣.
故选:C.
14.当a≥0时,,,﹣中,比较它们的结果,下面四个选项中正确的是()A.=≥﹣B.>>﹣
C.<<﹣D.=<﹣
【考点】实数大小比较.
【分析】首先根据二次根式的性质可知=≥0,而﹣≤0,进一步得出
=≥﹣,由此选择答案即可.
【解答】解:由分析可知当a≥0时,=≥﹣.
故选:A.
三、解答题
15.计算:
(1)﹣;
(2)×;
(3)﹣;
(4)(+3);
(5)(3+2)(2﹣3);
(6)(3﹣)2;
(7);
(8)×+.
【考点】二次根式的混合运算.
【分析】(1)先把各二次根式化简为最简二次根式,然后合并即可;
(2)利用二次根式的乘除法则运算;
(3)先把各二次根式化简为最简二次根式,然后合并即可;
(4)利用二次根式的乘法法则运算;
(5)利用多项式乘法展开,然后合并即可;
(6)利用完全平方公式计算;
(7)利用二次根式的乘除法则运算和平方差公式计算;
(8)利用二次根式的乘除法则运算和平方差公式计算.
【解答】解:(1)原式=﹣2+3+
=4﹣;
(2)原式=1××
=10;
(3)原式=3﹣+2
=;
(4)原式=﹣+3+
=﹣4+6+2;
(5)原式=18﹣9+4﹣12
=6﹣5;
(6)原式=54﹣18+15
=69﹣18;
(7)原式=+3﹣1
=3+2
=5;
(8)原式=+
=4+2.
16.先化简,再求值,其中x=,y=27.【考点】二次根式的化简求值.
【分析】首先对二次根式进行化简,然后去括号、合并二次根式即可化简,然后把x,y的值代入求解.
【解答】解:原式=(6+3)﹣(+6)
=9﹣﹣6
=3﹣,
当x=,y=27时,
原式=3﹣
=﹣
=.
17.解方程:(x﹣1)=(x+1)
【考点】二次根式的应用;解一元一次方程.
【分析】根据一元一次方程的解法求解.
【解答】解:移项得:(﹣)x=+,
解得:x=5+2.
18.先阅读下列的解答过程,然后作答:
形如的化简,只要我们找到两个数a、b使a+b=m,ab=n,这样()2+()2=m,•=,那么便有==±(a>b)例如:化简
解:首先把化为,这里m=7,n=12;
由于4+3=7,4×3=12,即()2+()2=7,•=,
∴===2+
由上述例题的方法化简:
(1);
(2);
(3).
【考点】分母有理化.
【分析】先把各题中的无理式变成的形式,再根据范例分别求出各题中的a、b,即可求解.
【解答】解:(1)==﹣;
(2)===﹣;
(3)==.。

相关文档
最新文档