九年级数学求概率的方法
2024九年级数学上册“第二十五章 概率初步”必背知识点
2024九年级数学上册“第二十五章概率初步”必背知识点一、随机事件与概率1. 随机事件定义:在一定条件下,可能发生也可能不发生的事件,称为随机事件。
对比:与随机事件相对的是确定事件,确定事件又分为必然事件和不可能事件。
必然事件是事先能肯定它一定会发生的事件;不可能事件是事先能肯定它一定不会发生的事件。
2. 概率的定义一般定义:在大量重复实验中,如果事件A发生的频率m/n稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p。
取值范围:概率的取值范围是0≤p≤1。
特别地,P(必然事件)=1,P(不可能事件)=0。
二、概率的计算方法1. 理论概率在一次试验中,如果包含n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=m/n。
2. 列举法求概率列表法:当试验中存在两个元素且出现的所有可能的结果较多时,常用列表法列出所有可能的结果,再求出概率。
树状图法:当试验涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树状图法。
三、用频率估计概率原理:在大量重复试验中,如果事件A发生的频率m/n 稳定于某一个常数p,那么可以认为事件A发生的概率为p。
即,频率可以作为概率的近似值,随着试验次数的增加,频率会越来越接近概率。
四、概率的应用与理解1. 概率的意义概率是对事件发生可能性大小的量的表现,它反映了随机事件的稳定性和规律性。
2. 游戏公平性判断游戏公平性需要计算每个事件的概率,并比较它们是否相等。
如果概率相等,则游戏公平;否则,游戏不公平。
五、综合应用概率知识在解决实际问题中的应用:如抽奖、天气预测、投资决策等领域的概率计算和分析。
示例题目1. 理论概率计算例题:从一副扑克牌中随机抽取一张,求抽到红桃的概率。
解析:一副扑克牌共有54张 (包括大王和小王),其中红桃有13张。
因此,抽到红桃的概率为P=13/54。
2. 列举法求概率例题:一个不透明的袋子中装有3个红球和2个白球,每个球除颜色外都相同。
九年级数学求概率的方法
1.等可能性原则法:这是一种最简单直观的方法,即给定的事件在样本空间中的每个基本事件发生的可能性都是相等的。
例如,掷一枚公正的硬币,出现正面和反面的可能性都是1/2、再如,掷一颗公正的骰子,出现每个面的可能性都是1/6、通过等可能性原则,可以计算出各种事件的概率。
2.频率法:频率法是根据大量重复试验的结果来推测事件发生的可能性。
例如,在一次大规模的投掷硬币实验中,重复投掷1000次,正面朝上500次,反面朝上500次,那么我们可以说正面朝上和反面朝上的概率都是0.5、通过频率法,可以模拟多次试验来估计事件发生的概率。
3.几何概率法:几何概率法是通过计算事件发生的几何形状的面积或长度来求解概率。
例如,在一个正方形中,如果一个点在正方形内的一个区域上,那么它落在这个区域上的概率是这个区域的面积与正方形的面积的比值。
通过几何概率法,可以计算出各种图形的概率。
4.相对频数法:相对频数法是通过实验次数和事件发生的实验次数之比来求解概率。
例如,掷一枚硬币,实验1000次,出现正面500次,出现反面500次。
那么正面朝上的概率就是正面朝上的实验次数500除以总实验次数1000,即0.5、通过相对频数法,可以根据实验数据来计算事件发生的概率。
5.利用排列和组合的概率公式:在一些特定情况下,概率的计算可以利用排列和组合的概率公式来求解,如百分数、百分比、等等。
例如,从一副扑克牌中抽取一张牌,得到一张黑桃牌的概率可以通过计算黑桃牌的数量与总牌数的比例来求解。
6.事件的互斥与独立:在计算概率时,还需要考虑事件的互斥与独立性。
互斥事件指的是两个事件不能同时发生,例如抛硬币时出现正面和抛硬币时出现反面。
独立事件指的是一个事件的发生不影响另一个事件的发生,例如两次掷硬币时出现正面的概率是独立的。
通过考虑事件的互斥与独立性,可以更准确地计算概率。
这些是在九年级数学中常用的求解概率的方法。
通过掌握这些方法,可以更好地理解概率的概念和计算。
人教版九年级上册数学《用列举法求概率》概率初步研讨说课教学课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
机摸出 1 个球,然后放回箱子中,轮到下一个人摸球,三人摸到球的颜色都不相同
的概率是( D )
A.217
B.13
C.19
D.29
第二十五章 概率初步
上一页 返回导航 下一页
数学·九年级(上)·配人教
10.【陕西中考】现有A、B两个不透明袋子,分别装有3个除颜色外完全相同
数学·九年级(上)·配人教
8.三名运动员参加定点投篮比赛,原定出场顺序是:甲第一个出场,乙第二 个出场,丙第三个出场.由于某种原因,要求这三名运动员用抽签方式重新确定出
场顺序,求抽签后每个运动员的出场顺序都发生变化的概率.
课件
课件
课件
课件
课件
课件
课件
个 人 简 历 : 课件 /jianli/
课件
课件
数学·九年级(上)·配人教
5.【教材 P140 习题 25.2T4 变式】一只昆虫在如图所示的树枝上寻觅食物,假
1
定
课件 课件
课件 课件
昆虫在
每个
岔路口
都会
随机选
择一
条路径
,则
它获取
食物
的概率
是
___3___.
课件
课件
课件
个 人 简 历 : 课件 /jianli/
课件
课件
手 抄 报 : 课 件/shouchaobao/ 课 件
数学·九年级(上)·配人教
课件
课件
课件
课件
课件
课件
课件
个 人 简 历 : 课件 /jianli/
课件
人教版九年级数学上册《用列举法求概率》概率初步PPT精品教学课件
板书设计
把两枚骰子分别记为第1枚和第2枚,这样就可以用下面的方形表格列举出
所有可能出现的结果.
解决问题
两枚骰子分别记为第1枚和第2枚,所有可能的结果列表如下:
(1)满足两枚骰子点数相同(记为事件A)的结果有6个
6
1
(表中斜体加粗部分),所以P(A)= 36 = 6.
(2)满足两枚骰子的和是9(记为事件B)的结果有4个
2.如图所示的扇形图给出的是地球上海洋、陆地的表面积约占地球表面积的
百分比. 若宇宙中有一块陨石落在地球上,则它落在海洋中的概率是
%.
达标检测
1.“同吋掷两枚质地均匀的骰子,至少有一枚骰子的点数是3”的概率为
(
)
1
A.
3
11
B.
36
5
C.
12
1
D.
4
2.不透明的袋子中装有红球1个、绿球1个、白球2个,这些球除颜色外无
出场,由于人为指定出场顺序不合规,要重新抽签确定出场顺序,则抽签后三个
运动员出场顺序都发生变化的概率是
.
达标检测
5.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,
2
3
其中红球1个,若从中随机摸出一个球,这个球是白球的概率为 .
(1)求袋子中白球的个数;
(2)随机摸出一个球后放回并搅匀,再随机摸出一个球,请用画树状图
5
,全是辅音字母的结果有两个,
12
2
1
即BCH,BDH,所以P(三个辅音)= = .
12
6
P(一个元音)=
练习巩固
1.经过某十字路口的汽车,可能直行,也可能左转或右转. 如果这三种可能
初中数学求概率的方法
初中数学求概率的方法
1.认识概率
概率是指某个事件发生的可能性,通常表示成一个介于0到1之间的数值,也可以表示成百分比的形式,比如我们说一个事件的概率为0.5,就可以理解为该事件发生的可能性为50%。
2.各种求概率的公式
(1) 可以用直接比例:把某个事件发生出现的次数除以总次数就得出概率数
(2) 也可以用贝叶斯公式:如果由两个事件A和B,其中A的发生概率为P,而当A 发生的条件下B的发生概率为P,那么B发生的概率就是P×P
(3)还可以用随机实验法:用随机实验法可以从实际实验得到概率数据,使用这种方法时,我们可以让某种事件多次发生,实验出发生概率。
3.大量事件的概率
如果事件比较复杂,那么求概率时,就可以把这些复杂事件分解成简单事件,然后求出每个简单事件的概率,把所有概率加起来就可以求出总体事件的概率。
4.乘积法律
乘积法律就是把多个事件的概率乘起来,得出总的概率,例如,如果有两个事件A和B,A的发生概率是P,B的发生概率是Q,那么A和B同时发生的概率就是P×Q。
5.全概率公式
全概率公式是为了求某一事件发生的概率,此法以一种事件A的发生为分支,将一个现象分解成多个不相交的事件分支,从而求出A发生的概率。
以上是关于初中数学求概率的方法,希望可以帮助到有需要的朋友们。
九年级上册数学知识点概率
九年级上册数学知识点概率九年级上册的数学课程涉及到了概率的学习。
概率是数学中一个非常重要的概念,它主要用于描述事件发生的可能性。
了解概率的基本概念和计算方法,将有助于我们更好地理解和解决实际问题。
一、概率的基本概念概率是描述事件发生可能性大小的一个数值。
在数学中,用P(A)表示事件A发生的概率。
概率的取值范围是0到1,其中0表示事件不可能发生,1表示事件一定会发生。
例如,一枚公平硬币抛掷的结果有两种可能性:正面和反面。
因为硬币是公平的,所以正面和反面出现的概率应该相等,即P(正面)=P(反面)=0.5。
二、概率的计算方法1. 相对频率法:通过对事件进行多次重复实验,统计事件发生的次数,并将发生次数除以总实验次数,即可得到事件的概率。
当重复实验次数越多时,得到的概率越接近真实概率。
2. 等可能原则:当所有事件发生的概率相等时,可以使用等可能原则计算概率。
比如抛硬币、掷骰子等。
3. 极限法则:当事件发生的可能性趋向于无穷小时,可以使用极限法则计算概率。
比如在一个大群体中,事件发生的概率等于该事件在群体中的比例。
三、事件的关系与计算1. 事件的对立事件:对立事件指的是互相排斥的事件。
当一个事件发生时,另一个事件一定不会发生。
对立事件的概率之和为1。
例如,扔一个骰子,出现的点数要么是偶数,要么是奇数,两者互为对立事件。
2. 事件的并事件:并事件指的是两个或多个事件同时发生的事件。
并事件的概率可以通过对事件发生的次数进行统计计算。
例如,从一个扑克牌中随机抽出一张牌,事件A是抽到红桃,事件B是抽到数字小于5的牌,事件C是抽到黑桃。
事件A与事件B 的并事件是抽到红桃并且数字小于5的牌。
3. 事件的交事件:交事件指的是两个或多个事件共同发生的事件。
交事件的概率可以通过对事件发生的次数进行统计计算。
例如,在一批产品中,合格品的概率为0.9,其中通过检测的产品占0.8,而被认为具有高质量的产品占0.7。
被认为具有高质量且通过检测的产品的概率就是合格品的交事件。
人教版九年级数学上册用列举法求概率之树状图法-老师版
解:(1)两个骰子的点数相同(记为事件A) ∴P(A)=6/36=1/6(2)两个骰子点数之和是9(记为事件B) ∴ P(B)=4/36=1/9(3)至少有一个骰子的点数为2 (记为事件C) ∴ P(C)=11/361.用树状图法求三步试验的概率【例1】(2015•绵阳模拟)甲、乙、丙三个人打乒乓球,为了确定哪两个人先打,商定三人伸出手来,若其中两人的手心或手背同时向上,则这两人先打,如果三个人手心或手背都向上则重来,则甲乙两先打的概率为()A.B.C.D.总结:画树状图求概率的基本步骤:(1)明确一次试验的几个步骤及顺序;(2)画树状图列举一次试验的所有可能结果;(3)明确随机事件A,数出所求事件发生的可能结果m,以及所有可能发生的试验结果n;(4)计算随机事件的概率P A=mn ().练1(2015•塘沽区三模)经过某十字路口的汽车,它可能继续直行,也可能向左或向右转,若这三种的可能性相同,则两辆汽车经过十字路口全部继续直行的概率为______.2.用树状图法求有放回、无放回摸球试验的概率【例2】(2015•大兴区一模)布袋中有红、黄、蓝三个球,它们除颜色不同以外,其他都相同,从袋中随机取出一个球后再放回袋中,这样取出球的顺序依次是“红﹣黄﹣蓝”的概率是()A.B.C.D.总结:以摸球为背景考查概率知识是一种常见题型,解答此类问题时,首先必须弄清楚摸球后有无放回,有放回与无放回对概率的影响不同:(1)第一次无放回,第二次只能从第一次剩下的球里面摸球,不能出现两次摸球是同一个球的情况;(2)有放回摸球,两次摸到的球可能是同一个,与无放回摸球相比,多了两次都是同一个球的情况;(3)分清楚有无放回后,利用画树状图的方法分析所有等可能的结果及所关注的结果,在此基础上计算出概率.练2(2015•宿迁)一只不透明的袋子中装有1个白球、1个蓝球和2个红球,这些球除颜色外都相同.(1)从袋中随机摸出1个球,摸出红球的概率为_______;(2)从袋中随机摸出1个球(不放回)后,再从袋中余下的3个球中随机摸出1个球.求两次摸到的球颜色不相同的概率.3.用树状图法求配套问题的概率【例3】(2011•盐城)小明有3支水笔,分别为红色、蓝色、黑色;有2块橡皮,分别为白色、黑色.小明从中任意取出1支水笔和1块橡皮配套使用.试用树状图或表格列出所有可能的结果,并求取出红色水笔和白色橡皮配套的概率.总结:用列表法或树状图法展示所有等可能的结果数n,找出某事件所占有的结果数m,则这件事的发生的概率P=mn.一.选择题1.(2015•福州校级模拟)有一个从袋子中摸球的游戏,小红根据游戏规则,作出了如下图所示的树形图,则此次摸球的游戏规则是()A.随机摸出一个球后放回,再随机摸出1个球B.随机摸出一个球后不放回,再随机摸出1个球C.随机摸出一个球后放回,再随机摸出3个球D.随机摸出一个球后不放回,再随机摸出3个球2.(2014•江阴市校级二模)如图,一只蚂蚁在如图所示位置向上爬,在树枝上寻觅食物,假定蚂蚁在每一个岔路口都会随机的选择一条路径,那么这只蚂蚁爬到树枝头A和E的概率的大小关系是()A.A的概率大B.E的概率大C.同样大D.无法比较二.填空题3.(2015•温州)一个不透明的袋中只装有1个红球和2个篮球,它们除颜色外其余均相同.现随机从袋中摸出两个球,颜色是一红一蓝的概率是______.4.(2015•红桥区一模)在一个不透明的袋子中,有2个白球和2个红球,它们只有颜色上的区别,从袋子中随机地摸出一个球记下颜色放回.再随机地摸出一个球.则两次都摸到白球的概率为______.5.(2013•黄石)甲、乙玩猜数字游戏,游戏规则如下:有四个数字0、1、2、3,先由甲心中任选一个数字,记为m,再由乙猜甲刚才所选的数字,记为n.若m、n满足|m﹣n|≤1,则称甲、乙两人“心有灵犀”,则甲、乙两人“心有灵犀”的概率是________.三.解答题6.(2016•贵阳模拟)体育课上,小明、小强、小华三人在学习训练踢足球,足球从一人传到另一人就记为踢一次.(1)如果从小强开始踢,经过两次踢后,足球踢到了小华处的概率是多少(用树状图表示或列表说明);(2)如果踢三次后,球踢到了小明处的可能性最小,应从谁开始踢?请说明理由.7.(2015•酒泉)有三张卡片(形状、大小、颜色、质地都相等),正面分别下上整式x2+1,﹣x2﹣2,3.将这三张卡片背面向上洗匀,从中任意抽取一张卡片,记卡片上的整式为A,再从剩下的卡片中任意抽取一张,记卡片上的整式为B,于是得到代数式.(1)请用画树状图成列表的方法,写出代数式所有可能的结果;(2)求代数式恰好是分式的概率.8.(2015•连云港)九(1)班组织班级联欢会,最后进入抽奖环节,每名同学都有一次抽奖机会,抽奖方案如下:将一副扑克牌中点数为“2”,“3”,“3”,“5”,“6”的五张牌背面朝上洗匀,先从中抽出1张牌,再从余下的4张牌中抽出1张牌,记录两张牌点数后放回,完成一次抽奖,记每次抽出两张牌点数之差为x,按表格要求确定奖项.奖项一等奖二等奖三等奖|x||x|=4|x|=31≤|x|<3(1)用列表或画树状图的方法求出甲同学获得一等奖的概率;(2)是否每次抽奖都会获奖,为什么?9.(2015•安徽)A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.(1)求两次传球后,球恰在B手中的概率;(2)求三次传球后,球恰在A手中的概率.10.(2015•黄石)父亲节快到了,明明准备为爸爸煮四个大汤圆作早点:一个芝麻馅,一个水果馅,两个花生馅,四个汤圆除内部馅料不同外,其它一切均相同.(1)求爸爸吃前两个汤圆刚好都是花生馅的概率;(2)若给爸爸再增加一个花生馅的汤圆,则爸爸吃前两个汤圆都是花生的可能性是否会增大?请说明理由.11.(2015•东莞)老师和小明同学玩数学游戏.老师取出一个不透明的口袋,口袋中装有三张分别标有数字1,2,3的卡片,卡片除数字外其余都相同,老师要求小明同学两次随机抽取一张卡片,并计算两次抽到卡片上的数字之积是奇数的概率.于是小明同学用画树状图的方法寻求他两次抽取卡片的所有可能结果.如图是小明同学所画的正确树状图的一部分.(1)补全小明同学所画的树状图;(2)求小明同学两次抽到卡片上的数字之积是奇数的概率.典例探究答案:【例1】】分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲乙两先打的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有8种等可能的结果,甲乙两先打的有2种情况,∴甲乙两先打的概率为:=.故选C.点评:此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.练1.分析:画出树状图,然后根据概率公式解答即可.解答:解:根据题意,画出树状图如下:一共有9种情况,两辆汽车经过十字路口全部继续直行的有1种情况,所以,P(两辆汽车经过十字路口全部继续直行)=.故答案为:.点评:本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.【例2】分析:列举出所有情况,看球的顺序依次是“红﹣黄﹣蓝”的情况数占所有情况数的多少即可.解答:解:共有27种情况,球的顺序依次是“红﹣黄﹣蓝”的情况数有1种,所以概率为.故选A.点评:考查用列树状图的方法解决概率问题;得到球的顺序依次是“红﹣黄﹣蓝”的情况数是解决本题的关键;用到的知识点为:概率等于所求情况数与总情况数之比.练2.分析:(1)直接利用概率公式求出摸出红球的概率;(2)利用树状图得出所有符合题意的情况,进而理概率公式求出即可.解答:解:(1)从袋中随机摸出1个球,摸出红球的概率为:=;故答案为:;(2)如图所示:,所有的可能有12种,符合题意的有10种,故两次摸到的球颜色不相同的概率为:=.【例3】分析:先画出树状图展示所有可能的6种结果,找出取出红色水笔和白色橡皮占1种,然后根据概率的概念求解即可.解答:解:画树状图:共有6种等可能的结果,其中取出红色水笔和白色橡皮占1种,∴出红色水笔和白色橡皮配套的概率=.点评:本题考查了概率的概念:用列举法展示所有等可能的结果数n,找出某事件所占有的结果数m,则这件事的发生的概率P A=mn ().点评:此题主要考查了树状图法求概率,根据题意利用树状图得出所有情况是解题关键.练3.分析:(1)首先分别用A,B表示两支不同的笔,分别用a,b,c,d表示四个不同的笔帽,然后根据题意画树状图,由树状图求得所有等可能的结果;(2)由(1)中的树状图求得取出的笔和笔帽恰好配套的情况,再利用概率公式即可求得答案.解答:解:(1)分别用A,B表示两支不同的笔,分别用a,b,c,d表示四个不同的笔帽,画树状图得:则共有8种等可能的结果;(2)∵取出的笔和笔帽恰好配套的有2种情况,∴取出的笔和笔帽恰好配套的概率为:=.点评:此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.课后小测答案:一.选择题1.分析:根据树形图,可得此次摸球的游戏规则是:随机摸出一个球后放回,再随机摸出1个球.解答:解:观察树形图可得:袋子中共有红、黄、蓝三个小球,此次摸球的游戏规则为:随机摸出一个球后放回,再随机摸出1个球.故选A.点评:此题考查了用树状图法求概率的知识.注意掌握试验是放回实验还是不放回实验.2.分析:分别求出到达树枝A与树枝E的概率,然后再比较大小.解答:解:蚂蚁到达树枝A的概率是×=,蚂蚁到达树枝E的概率是×=,∵<,∴蚂蚁爬到树枝头E的概率大.故选B.点评:本题主要考查了概率公式,用到的知识点为:两步完成的事件的概率=第一步事件的概率与第二步事件的概率的积.二.填空题3.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与随机从袋中摸出两个球,颜色是一红一蓝的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有6种等可能的结果,随机从袋中摸出两个球,颜色是一红一蓝的有4种情况,∴随机从袋中摸出两个球,颜色是一红一蓝的概率是:=.故答案为:.点评:此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.4.分析:先利用树状图展示所有16种等可能的结果数,再找出两次摸出球的颜色不同的结果数,然后根据概率公式求解.解答:解:共有16种结果,两次都摸到白球的有4种结果,则概率是=.故答案是:.点评:本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求解.5.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与m、n满足|m ﹣n|≤1的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有16种等可能的结果,m、n满足|m﹣n|≤1的有10种情况,∴甲、乙两人“心有灵犀”的概率是:=.故答案为:.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.三.解答题6.分析:(1)列举出所有情况,看足球踢到了小华处的情况数占所有情况数的多少即可;(2)可设球从小明处先开始踢,得到3次踢球回到小明处的概率,进而根据树状图可得球从其他2位同学处开始,3次踢球回到小明处的概率,比较可得可能性最小的方案.解答:解:(1)如图:∴P(足球踢到小华处)=(2)应从小明开始踢如图:若从小明开始踢,P (踢到小明处)==同理,若从小强开始踢,P (踢到小明处)=若从小华开始踢,P (踢到小明处)=(理由3分)点评:考查用列树状图的方法解决概率问题;分类得到3次踢球踢到小明处的情况数是解决本题的难点;用到的知识点为:概率等于所求情况数与总情况数之比.7.分析:(1)首先根据题意画出树状图,然后由树状图即可求得所有等可能的结果;(2)由(1)中的树状图,可求得抽取的两张卡片结果能组成分式的情况,然后利用概率公式求解即可求得答案.解答:解:(1)画树状图:(2)代数式所有可能的结果共有6种,其中代数式是分式的有4种:,,,,所以P (是分式)=.第一次第二次x 2+1 ﹣x 2﹣2 3x 2+1﹣x2﹣23点评:此题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.8.分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲同学获得一等奖的情况,再利用概率公式即可求得答案;(2)由树状图可得:当两张牌都是2时,|x|=0,不会有奖.解答:解:(1)画树状图得:∵共有20种等可能的结果,甲同学获得一等奖的有2种情况,∴甲同学获得一等奖的概率为:=;(2)不一定,当两张牌都是2时,|x|=0,不会有奖.点评:此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.9.分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次传球后,球恰在B手中的情况,再利用概率公式即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与三次传球后,球恰在A手中的情况,再利用概率公式即可求得答案.解答:解:(1)画树状图得:∵共有4种等可能的结果,两次传球后,球恰在B手中的只有1种情况,∴两次传球后,球恰在B手中的概率为:;(2)画树状图得:∵共有8种等可能的结果,三次传球后,球恰在A手中的有2种情况,∴三次传球后,球恰在A手中的概率为:=.点评:此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.10.分析:(1)首先分别用A,B,C表示芝麻馅、水果馅、花生馅的大汤圆,然后根据题意画树状图,再由树状图求得所有等可能的结果与爸爸吃前两个汤圆刚好都是花生馅的情况,然后利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与爸爸吃前两个汤圆都是花生的情况,再利用概率公式即可求得给爸爸再增加一个花生馅的汤圆,则爸爸吃前两个汤圆都是花生的概率,比较大小,即可知爸爸吃前两个汤圆都是花生的可能性是否会增大.解答:解:(1)分别用A,B,C表示芝麻馅、水果馅、花生馅的大汤圆,画树状图得:∵共有12种等可能的结果,爸爸吃前两个汤圆刚好都是花生馅的有2种情况,∴爸爸吃前两个汤圆刚好都是花生馅的概率为:=;(2)会增大.理由:分别用A,B,C表示芝麻馅、水果馅、花生馅的大汤圆,画树状图得:∵共有20种等可能的结果,爸爸吃前两个汤圆都是花生的有6种情况,∴爸爸吃前两个汤圆都是花生的概率为:=>;∴给爸爸再增加一个花生馅的汤圆,则爸爸吃前两个汤圆都是花生的可能性会增大.点评:此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.11.分析:(1)根据题意可得此题是放回实验,即可补全树状图;(2)由树状图可求得所有等可能的结果与小明同学两次抽到卡片上的数字之积是奇数的情况,再利用概率公式即可求得答案.解答:解:(1)补全小明同学所画的树状图:(2)∵共有9种等可能的结果,小明同学两次抽到卡片上的数字之积是奇数的有4种情况,∴小明同学两次抽到卡片上的数字之积是奇数的概率为:.点评:此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.12.分析:(1)用完全列举法得到选考结果为AC,AD,BC,BD;(2)根据概率公式求解;(3)用1、2、3、4分别表示AC、AD、BC、BD,先利用树状图法展示所有16种等可能的结果数,找出甲、乙两个考生选考结果完全相同的结果数,然后根据概率公式求解.解答:解:(1)如果考生随机选考,共有4种不同的选考结果,它们是AC,AD,BC,BD;(2)恰好选中掷实心球和篮球运球投篮的概率,即P(AC)=;(3)用1、2、3、4分别表示AC、AD、BC、BD,画树状图为:共有16种等可能的结果数,其中甲、乙两个考生选考结果完全相同的占4种,所以甲、乙两个考生选考结果完全相同的概率==.点评:本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B概率.。
初三中考数学 概率
第28讲概率考点1 事件的分类确定性事件必然事件在一定条件下,必然会发生的事件,称为①. 不可能事件在一定条件下,必然不会发生的事件,称为②. 必然事件和不可能事件统称为确定性事件.随机事件在一定条件下,③的事件,称为随机事件.考点2 概率的意义与计算概率的意义对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件发生的④.概率的计算一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率为:P(A)=⑤.求概率的常用方法①概率的定义;②列表法;③画树状图法;④用频率估计概率(在大量重复试验中,事件A发生的频率为mn,我们可以估计事件A发生的概率为mn).【易错提示】用频率估计概率的条件必须是“大量重复试验”.1.必然事件的概率是P(A)=1,不可能事件的概率是P(A)=0,随机事件的概率0<P(A)<1.2.用面积法求概率:当随机事件的概率大小与几何图形的面积有关时,往往利用面积法求概率,计算公式为P(A)=A事件发生的面积总面积.3.当一次试验要涉及1个因素时,通常采用枚举法求事件的概率;当一次试验涉及2个因素时,可用列表法或画树状图法求概率;当一次试验涉及3个或3个以上的因素时,必须用画树状图法求概率.命题点1 事件的分类例1 (2014·聊城)下列说法中不正确的是( )A.抛掷一枚硬币,硬币落地时正面朝上是随机事件B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件C.任意打开七年级下册数学教科书,正好是97页是确定事件D.一只盒子中有白球m个,红球6个,黑球n个(每个球除了颜色外都相同).如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m与n的和是6方法归纳:事件分为确定事件和不确定事件,确定事件分为必然事件和不可能事件.本题的易错点在把确定事件当作必然事件,从而错选A.1.(2014·聊城模拟)下列事件:①在足球赛中,弱队战胜强队;②抛掷一枚硬币,落地后正面朝上;③任取两个正整数,其和大于1;④长分别为3、5、9厘米的三条线段能围成一个三角形.其中确定事件的个数是( )A.1个B.2个C.3个D.4个2.(2013·衡阳)“a是实数,|a|≥0”这一事件是( )A.必然事件B.不确定事件C.不可能事件D.随机事件3.(2013·武汉)袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球,下列事件是必然事件的是( )A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球4.(2014·孝感)下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100 ℃;③掷一次骰子,向上一面的数字是2;④度量四边形的内角和,结果是360°.其中是随机事件的是.(填序号)5.(2013·沁阳模拟)写出一个所描述的事件是不可能事件的成语.命题点2 概率的意义例2 (2014·台州)某品牌电插座抽样检查的合格率为99%,则下列说法中正确的是( )A.购买100个该品牌的电插座,一定有99个合格B.购买1 000个该品牌的电插座,一定有10不个合格C.购买20个该品牌的电插座,一定都合格D.即使购买1个该品牌的电插座,也可能不合格方法归纳:概率反映了一事件出现的机会的大小,在分析某个事件发生的概率时,关键要弄清:(1)此事件活动中可能出现哪些结果;(2)理解概率时要注意:概率只表示事件发生的可能性的大小,不能说明某种肯定的结果.1.(2014·淄博模拟)某篮球运动员的罚球投篮的命中率大约是83.3%.下列说法错误的是( )A.该运动员罚球投篮2次,一定全部命中B.该运动员罚球投篮2次,不一定全部命中C.该运动员罚球投篮1次,命中的可能性较大D.该运动员罚球投篮1次,不命中的可能性较小2.(2014·德州)下列命题中,真命题是( )A.若a>b,则c-a<c-bB.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖C.点M(x1,y1),点N(x2,y2)都在反比例函数y=1x的图象上,若x1>x2,则y1<y2D.甲、乙两射击运动员分别射击10次,他们射击成绩的方差分别为s2甲=4,s2乙=9,这一过程中乙发挥比甲更稳定3.(2013·泰州)事件A:打开电视,它正在播广告;事件B:抛掷一个均匀的骰子,朝上的点数小于7;事件C:在标准大气压下,温度低于0 ℃时冰融化.3个事件的概率分别记为P(A)、P(B)、P(C),则P(A)、P(B)、P(C)的大小关系正确的是( )A.P(C)<P(A)=P(B)B.P(C)<P(A)<P(B)C.P(C)<P(B)<P(A)D.P(A)<P(B)<P(C)命题点3 概率的计算例3 (2014·成都)第十五届中国“西博会”将于2014年10月底在成都召开,现有20名志愿者准备参加某分会场的工作,其中男生8人,女生12人.(1)若从这20人中随机选取一人作为联络员,求选到女生的概率;(2)若该分会场的某项工作只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2、3、4、5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲参加,否则乙参加.试问这个游戏公平吗?并说明理由.【思路点拨】(1)根据概率的意义即可求得;(2)先用枚举法、列表法或树状图法确定出两次摸牌所有可能出现的结果数,以及和为偶数的结果数,从而求出甲、乙概率的大小,做出判断.【解答】方法归纳:如果可能出现的结果较少,用枚举法简单;如果二次性操作且结果的可能性较多时,列表法和画树状图法可以不重不漏列出所有可能出现的结果.本题注意是二次无放回抽取,关键字“任取2张”,注意和有放回抽取的区别.1.(2014·金华)一个布袋里装有5个球,其中3个红球、2个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是红球的概率是( )A.16B.15C.25D.352.(2014·苏州)如图,一个圆形转盘被分成6个圆心角都为60°的扇形,任意转动这个转盘1次,当转盘停止转动时,指针指向阴影区域的概率是( )A.14B.13C.12D.233.(2014·杭州)让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则这两个数的和是2的倍数或是3的倍数的概率等于( )A.316B.38C.58D.13164.(2014·日照)小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x、乙立方体朝上一面上的数字为y,这样就确定点P的一个坐标(x,y),那么点P落在双曲线y=6x上的概率为( )A.118B.112C.19D.135.(2014·滨州)在一个口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.小明和小强采取了不同的摸取方法,分别是:小明:随机摸取一个小球记下标号,然后放回,再随机地摸取一个小球,记下标号;小强:随机摸取一个小球记下标号,不放回,再随机地摸取一个小球,记下标号;(1)用画树状图(或列表法)分别表示小明和小强摸球的所有可能出现的结果;(2)分别求出小明和小强两次摸球的标号之和等于5的概率.1.(2013·遂宁)以下问题,不适合用全面调查的是( )A.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱2.(2014·益阳)小玲在一次班会中参与知识抢答活动,现有语文题6个,数学题5个,综合题9个,她从中随机抽取1个,抽中数学题的概率是( )A.120B.15C.14D.133.(2014·东营)小明把如图所示的平行四边形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是( )A.12B.13C.14D.164.(2013·青岛)一个不透明的口袋装有除颜色外都相同的五个白球和若干个红球,在不允许将球倒出来数的情况下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程.小亮共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有( )A.45个B.48个C.50个D.55个5.(2014·泰安)在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出一个小球记下其标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和大于4的概率是( )A.38B.12C.58D.346.(2014·泰州)任意抛掷一枚均匀的骰子一次,朝上的点数大于4的概率等于.7.(2014·长沙)100件外观相同的产品中有5件不合格,现从中任意抽取1件进行检测,抽到不合格产品的概率是.移植总数(n) 400 750 1 500 3 500 7 000 9 000 14 000成活数(m) 369 662 1 335 3 203 6 335 8 073 12 628成活的频率mn 0.923 0.883 0.890 0.915 0.905 0.897 0.902根据表中数据,估计这种幼树移植成活率的概率为(9.(2014·内江)有6张背面完全相同的卡片,每张正面分别画有三角形、平行四边形、矩形、正方形、梯形和圆,现将其全部正面朝下搅匀从中任取一张卡片,抽中正面画的图形是中心对称图形的概率为.10.(2014·台州)抽屉里放着黑白两种颜色的袜子各1双(除颜色外其余都相同),在看不见的情况下随机摸出两只袜子,他们恰好同色的概率是.11.(2014·凉山)凉山州某学校积极开展“服务社会,提升自我”的志愿者服务活动,来自九年级的5名同学(三男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰是一男一女的概率是3 5 .12.(2014·温州)一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是13.求从袋中取出黑球的个数.13.(2014·徐州)某学习小组由3名男生和1名女生组成,在一次合作学习后,开始进行成果展示.(1)如果随机抽取1名同学单独展示,那么女生展示的概率为;(2)如果随机抽取2名同学共同展示,求同为男生的概率.14.(2014·淄博)节能灯根据使用寿命分成优等品、正品和次品三个等级,其中使用寿命大于或等于8 000小时的节能灯是优等品,使用寿命小于6 000小时的节能灯是次品,其余的节能灯是正品,质监部门对某批次的一种节能灯(共200个)寿命(小时) 频数频率4 000≤t<5 000 10 0.055 000≤t<6 000 20 a6 000≤t<7 000 80 0.407 000≤t<8 000 b 0.158 000≤t<9 000 60 c合计200 1(1)根据分布表中的数据,在答题卡上写出a,b,c的值;(2)某人从这200个节能灯中随机购买1个,求这种节能灯恰好不是次品的概率.15.(2014·云南)某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一张茶艺表演门票,他们决定采用抽卡片的办法确定谁去,规定如下:将正面分别标有数字1、2、3、4的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上,随机抽出一张记下数字后放回,重新洗匀后背面朝上放置在桌面上,再随机抽出一张记下数字,若两个数字的和为奇数,则小明去;若两个数字的和为偶数,则小亮去.(1)请用列表或画树形图(树状图)的方法表示抽出的两张卡片上的数字和的所用可能出现的结果;(2)你认为这个规则公平吗?请说明理由.16.(2014·宁波)如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是( )A.12B.25C.37D.4717.(2014·黄石)一般地,如果在一次实验中,结果落在区域D中每一个点都是等可能的,用A表示“实验结果落在D中的某个小区域M中”这个事件,那么事件A发生的概率P(A)=MD.如图,现在等边△ABC内射入一个点,则该点落在△ABC内切圆中的概率是.18.(2014·巴中)在四边形ABCD中,①AB∥CD,②AD∥BC,③AB=CD,④AD=BC,在这四个条件中任选两个作为已知条件,能判定四边形ABCD是平行四边形的概率是.19.(原创)如图所示,电路图上有四个开关A,B,C,D和一个小灯泡,闭合开关D或同时闭合开关A,B,C都可以使小灯泡发光.(1)任意闭合其中一个开关,则小灯泡发光的概率等于;(2)任意闭合其中两个开关,请用画树状图或列表的方法求出小灯泡发光的概率.20.(2014·安徽)如图,管中放置同样的绳子AA1、BB1、CC1.(1)小明从这三根绳子中随机选一根,恰好选中绳子AA1的概率是多少?(2)小明先从左端A、B、C三个绳头中随机选两个打一个结,再从右端A1、B1、C1三个绳头中随机选两个打一个结,求这三根绳子能连接成一根长绳子的概率.参考答案考点解读①必然事件②不可能事件③可能发生也可能不发生④概率⑤m n各个击破例1 C题组训练 1.B 2.A 3.A 4.①③ 5.答案不唯一:拔苗助长等例2 D题组训练 1.A 2.A 3.B例3(1)20人中有12人是女生,∴P(女生)=1220=35.(2)解法一(枚举法):任取2张,所有可能的结果23,24,25,34,35,45,共6种,其中和为偶数的结果有:“24”和“35”2种,∴P(甲参加)=26=13,P(乙参加)=23,∴游戏不公平.解法二(列表法):列表如下:2 3 4 52 (3,2) (4,2) (5,2)3 (2,3) (4,3) (5,3)4 (2,4) (3,4) (5,4)5 (2,5) (3,5) (4,5)∴P(甲参加)=412=13,P(乙参加)=23,∴游戏不公平.解法三(树状图法):画树状图如下:∴P(甲参加)=412=13,P(乙参加)=23,∴游戏不公平.题组训练 1.D 2.D 3.C 4.C 5.(1)画树状图如下:(2)P(小明两次摸球的标号之和等于5)=416=14.P(小强两次摸球的标号之和等于5)=412=13.整合集训1.D2.C3.C4.A5.C6.137.1208.0.99.2310.1311.3512.(1)20个球里面有5个黄球,故P1=PP黄总=520=14.(2)设从袋中取出x(0<x<8,且x为整数)个黑球,则∴820xx--=13,解得x=2.经检验,x=2是方程的解,且符合题意. 答:从袋中取出黑球的个数为2个.13.(1)1 4 .(2)画树状图如下:∴所有可能的结果共有12种,两人都是男生的结果有6种.∴P(两男)=612=12.14.(1)a=0.1,b=30,c=0.3;(2)这批节能灯中,优等品有60个,正品有110个,次品有30个,此人购买的1个节能灯恰好不是次品的概率为:P=11060200+=0.85.15.(1)由树状图可知共出现了16种等可能的结果.(2)出现的奇数有8个,则P(和为奇数)=816=12;P(和为偶数)=816=12.∵P(和为奇数)=P(和为偶数),∴游戏公平.16.D17.39π18.2319.(1)1 4 .(2)画树状图如图:由电路图知,只要接通D,小灯泡就能发光,∴P(小灯泡发光)=612=12.20.(1)小明可选择的情况有三种,每种发生的可能性相等,恰好选中绳子AA1的情况为一种,所以小明恰好选中绳子AA1的概率为1 3 .(2).A1B1B1C1A1C1AB AB、A1B1AB、B1C1AB、A1C1BC BC、A1B1BC、B1C1BC、A1C1AC AC、A1B1AC、B1C1AC、A1C1其中左、右打结是相同字母(不考虑下标)的情况,不可能连接成为一根长绳.∴能连接成为一根长绳的情况有6种,∴三根绳子连接成为一根长绳的概率为P=69=23.。
九年级数学下册课件(冀教版)用列举法求简单事件的概率
按钮 12 13 14 23 24 34 代号
结果 成功 失败 失败 失败 失败 失败
所有可能结果有6种,它们都是等可能发生的,
而其中只有一种结 果为“闯关成功”,所以,
P(闯关成功)=
1 6
.
总结
直接列举法求概率的采用: 当试验的结果是有限个的,且这些结果出现的可
能性相等,并决定这些概率的因素只有一个时采用.
86 (88,86) (79,86) (90,86) (81,86) (72,86)
82 (88,82) (79,82) (90,82) (81,82) (72,82)
85 (88,85) (79,85) (90,85) (81,85) (72,85)
83 (88,83) (79,83) (90,83) (81,83) (72,83)
式 P( A) m 计算出事件的概率. n
2.适用条件:如果事件中各种结果出现的可能性均等,含有 两次操作(如掷骰子两次)或两个条件(如两个转盘)的事件.
1 对本节“一起探究”投掷正四面体的试验,求下列事件的概率. A=“两数之和为偶数 ” B=“两数之和为奇数” C=“两数之和大于5” D=“两数之和为3的倍数”
解:(1)根据题意列表如下: 共有9种等可能的结果,它们是(0,-1),(0,-2),(0,0), (1,-1),(1,-2),(1,0),(2,-1),(2,-2),(2,0).
x
y
-1
-2
0
0
(0,-1)
(0,-2)
(0,0)
1
(1,-1)
(1,-2)
(1,0)
2
(2,-1)
(2,-2)
(2,0)
例1 如图,四个开关按钮中有两个各控制一盏灯,另两个按钮控 制一个发音装置. 当连续按对两个按钮点亮两盏灯时,“闯 关 成功”;而只要按错一个按钮,就会发出 “闯关失败” 的声音. 求“闯关成功”的概率.
北师大版 初三数学 九年级上册 3.1 用树状图或表格求概率
用树状图或表格求概率学习用树状图和列表法计算涉及两步实验的随机事件发生的概率.重点:用树状图和列表法计算涉及两步实验的随机事件发生的概率. 难点:正确地用列表法计算涉及两步实验的随机事件发生的概率.⎧⎪⎧⎪⎪⎪⎧⎪⎪⎨⎨⎪⎩⎪⎪⎪⎨⎩⎪⎧⎪⎪⎪⎨⎪⎪⎪⎩⎪⎩必然事件事件确定事件不可能事件概率随机事件列表法概率计算树状图法用频率估计概率一、用树状图求概率当一次试验要涉及3个或更多的因素时,为了不重复不漏掉地列出所有可能的结果,通常采用树状图.重点注意:画树状图时,每个“分支”的意义不同,但它们具有相同的等可能性,因此不能忽略任何一种情况,更不能遗漏任何一种情况(不重不漏). 二、用表格求概率在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,我们可以通过列举试验结果的方法,分析出随机事件发生的概率,当一次试验要涉及两个因素(例如摇两个骰子)并且可能出现的结果数目较多时,为了不重复不漏掉地列出所有可能的结果,通常采用表格求概率.重点注意:用表格求概率的适用范围是: (1)某次试验仅涉及两个因素; (2)可能出现的结果数目较多. 用树状图与表格求概率的联系与区别 联系:用树状图或表格求概率的共同前提是: (1)各种情况出现的可能性是相等的; (2)某事件发生的概率公式均为P(A)=各种种情况出现的次某事件发事件发生;(3)在列出并计算各种情况出现的总次数和某事件发生的次数时不能重复也不能遗漏. 区别:当随机事件包含两步时,尤其是转盘游戏问题,当其中一个盘被等分成2份以上时,选用表格比较方便,当然此时也可用树状图;当随机事件包含三步或三步以上时,用树状图方便,此时难以列表.注意:在用表格求随机事件发生的概率时,要注意列表时数据或事件的顺序不能相互混淆,如(1,2)与(2,1)不是相同的事件,尽管在有些情况下它们的意义或结果是相同的.如果有两组牌,它们的牌面数字分别是1,2,3.那么从每组牌中各摸出一张牌,两张牌的牌面数字和为几的概率最大?两张牌的牌面数字和等于4的概率是多少呢?小明的做法:总共有9种情况,每种情况发生的可能性相同,而两张牌的牌面数字和等于4的情况出现得最多,共3次,因此牌面数字和等于4的概率最大,概率为93,即31.小亮的做法:也用了列表的方法,可我得到牌面数字和等于4的概率为31.(2,3)考点1 用树状图求概率【例1】 甲口袋中装有2个相同的小球,它们分别写有字母A 和B ;乙口袋中装有3个相同的小球,它们分别写有字母C 、D 和E ;丙口袋中装有2个相同的小球,它们分别写有字母H 和I .从3个口袋中各随机地取出1个小球.(1)取出的3个小球上恰好有1个、2个和3个元音字母的概率分别是多少?(2)取出的3个小球上全是辅音字母的概率是多少?【变式1】经过某十字路口的汽车,它可能继续直行,也可能左转或右转,如果这三种可能性大小相同,同向而行的三辆汽车都经过这个十字路口时,求下列事件的概率: (1)三辆车全部继续直行 (2)两辆车右转,一辆车左转 (3)至少有两辆车左转在用树形图树形图与具【变式2】 某校八年级将举行班级乒乓球对抗赛,每个班必须选派出一对男女混合双打选手参赛,八年级一班准备在小娟、小敏、小华三名女选手和小明、小强两名男选手中,选男、女选手各一名组成一对参赛组合,一共能够组成哪几对?如果小敏和小强的组合是最强组合,那么采用随机抽签的办法,恰好选出小敏和小强参赛的概率是多少?练1.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1,2,3,4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上的数字之积为偶数的概率是( )A.14B.12C.34D.56练2.某中学为迎接建党九十八周年,举行了以“童心向党,从我做起”为主题的演讲比赛.经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛.那么九年级同学获得前两名的概率是( )A.12B.13C.14D.16练3.同时抛掷三枚质地均匀的硬币,至少有两枚硬币正面向上的概率是( ) A.38B.58C.23D.12练4.有两部不同的电影A ,B ,甲、乙、丙3人分别从中任意选择一部观看. (1)求甲选择A 部电影的概率;(2)求甲、乙、丙3人选择同一部电影的概率(请用画树状图的方法给出分析过程,并求出结果).考点2 用表格求概率【例2】同时掷两个质地均匀的骰子,计算下列事件的概率: (1) 两个骰子的点数相同; (2) 两个骰子的点数的和是9; (3) 至少有一个骰子的点数为2.【变式1】某联欢会上,组织者为活跃气氛设计了以下转盘游戏:A 、B 两个带指针的转盘分别被分成三个面积相等的扇形,转盘A 上的数字分别是1,6,8,转盘B 上是4,5,7(两个转盘除表面数字不同外,其他完全相同).选择2名同学分别转动A 、B 两个转盘,停止后指针所指数字较大的一方为获胜者,另一方需表演节目(若箭头恰好停留在分界线上,则重转一次).作为游戏者,你会选择哪个装置呢?并请说明理由.【变式2】在6张卡片上分别写有1~6的整数,随机的抽取一张后放回,再随机的抽取一张,那么,第一次取出的数字能够整除第2次取出的数字的概率是多少?4 游戏转盘B游戏转盘A A练1.某校决定从两名男生和一名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的同学恰为一男一女的概率是( )A.13B.23C.49D.59练2.小亮、小莹、大刚三名同学随机地站成一排合影留念,小亮恰好站在中间的概率是( )A.12B.13C.23D.16练3.今年某市为创评“全国文明城市”,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签的方式确定2名女生去参加.抽签规则:将4名女班干部的姓名分别写在四张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的三张卡片中随机抽取第二张,记下姓名.(1)该班男生“小刚被抽中”是________事件,“小悦被抽中”是________事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为________.(2)请用列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.考点3. 频率估计概率类型【例3】在一个不透明的袋子里装有3个黑球和若干个白球,它们除颜色不同外其余都相同.在不允许将球倒出来数的前提下,小明为估计袋中白球个数,采用如下办法:从中随机摸出一球,记下颜色后放回袋中,充分摇匀后,再随机摸出一球,记下颜色……不断重复上述过程,小明共摸球1000次,其中200次摸到黑球.根据上述数据,小明估计袋子中白球有________个.【变式1】为了估计湖里有多少条鱼,先从湖里捕捞100条鱼做上标记,然后放回湖里去,经过一段时间,带有标记的鱼完全混合于鱼群后,第二次再捕捞125条,发现其中2条有标记,那么由此可估计湖里大约有___________条鱼【变式2】在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有( ) A 、15个B 、20个C 、30个D 、35个练1.在一个不透明的盒子中装有n 个小球,它们只有颜色上的区别,其中有2个红球.每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球实验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是 .练2.一只不透明的袋中装有4个小球,分别标有数字2,3,4,x,这些球除数字外都相同.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和.记录后都将小球放回袋中搅匀,进行重复试验.试验数据如下表:0.34 0.330.33 解答下列问题:(1)如果试验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,试估计出现“和为7”的概率;(2)根据(1),若x是不等于2,3,4的自然数,试求x的值.练3.一个口袋中装有10个红球和若干个黄球.在不允许将球倒出来数的前提下,为估计口袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程20次,得到红球数与10的比值的平均数为0.4.根据上述数据,估计口袋中大约有 ( )个黄球.考点4. 几何频率【例4】小球在如图所示的地板上自由滚动,并随机地停留在某块方砖上,每一块方砖除颜色外完全相同,它最终停留在黑色方砖上的概率是________.练1.如图,一只蚂蚁在正方形ABCD区域内爬行,点O是对角线的交点,∠MON=90°,OM,ON分别交线段AB,BC于M,N两点,则蚂蚁停留在阴影区域的概率为.练2.如图,A 、B 是数轴上的两个点,在线段AB 上任取一点C ,则点C 到表示-1的点的距离不大于2的概率是( )A .21B.32 C .43 D .54练3.为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为2 m 的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域内的频率稳定在常数0.25附近,请你估计不规则区域的面积.【当堂检测】1.甲口袋中装有2个相同的小球,它们分别写有字母A 和B ;乙口袋中装有3个相同的小球,它们分别写有字母C 、D 和E ;从两个口袋中各随机地取出1个小球.用列表法写出所有可能的结果.2.如果还有丙口袋中装有2个相同的小球,它们分别写有字母H 和I .从甲、乙、丙三个口袋中各随机地取出1个小球.你能写出所有可能的结果吗?第4题图3.两道单项选择题都含有A、B、C、D四个选项,若某学生不知道正确答案就瞎猜,则这两道题恰好全部被猜对的概率是__________.4.小明的奶奶家到学校有3条路可走,学校到小明的外婆家也有3条路可走,若小明要从奶奶家经学校到外婆家,不同的走法共有________种.5.在一个盒子中有质地均匀的3个小球,其中两个小球都涂着红色,另一个小球涂着黑色,则计算以下事件的概率选用哪种方法更方便?1)从盒子中取出一个小球,小球是红球;2)从盒子中每次取出一个小球,取出后再放回,取出两球的颜色相同;3)从盒子中每次取出一个小球,取出后再放回,连取了三次,三个小球的颜色都相同.6. 在一个不透明的布袋里装有4个标号分别为1,2,3,4的小球,它们的材质、形状、大小等完全相同,小凯从布袋里随机取出1个小球,记下数字为x,小敏从剩下的3个小球中随机取出1个小球,记下数字为y,这样就确定了点P的坐标(x,y).(1)请你用画树状图或列表的方法,写出点P所有可能的坐标;(2)求点P(x,y)在函数y=-x+5图象上的概率.【演练方阵】一、填空题:1.从1、2、3、4、5这五个数字中,先随意抽取一个,然后从剩下的四个数中再抽取一个,则两次抽到的数字之和为偶数的概率是 ;2.有五条线段,其长度分别为1、3、5、7、9,从中任取三条,以这三条线段为边能够成一个三角形的概率是 ;3.现有10个型号相同的杯子,其中一等品7个,二等品2个,三等品1个,从中任取两个杯子都是一等品的概率是 . 二、选择题:1、同时掷两颗均匀的骰子,下列说法中正确的是( ).(1)“两颗的点数都是3”的概率比“两颗的点数都是6”的概率大; (2)“两颗的点数相同”的概率是16 ;(3)“两颗的点数都是1”的概率最大;(4)“两颗的点数之和为奇数”与“两颗的点数之和为偶数”的概率相同. A. (1)、(2) B. (3)、(4) C. (1)、(3) D. (2)、(4) 2、 如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转)正数的概率为( )A .18B .16C .14D .123.从长为3,5,7,10是( )A .14B .12C .34D .1三、解答题:1、有两组卡片,第一组卡片共3张,分别写着2、2、3;第二组卡片共5张,分别写着1、2、2、3、3 试用列表的方法求从每组中各抽取一张卡片,两张都是2的概率.2、有两个质量均匀、大小相同的正四面体,其中一个的四个面上分别写着数字1、2、3、4,另一个的四个面上分别写着数字5、6、7、8. 将这两个正四面体同时投掷到桌面上,并以它们底面上的数字之和来计分,问:(1)共能组成多少种不同的计分?(2)底面上的数字之和为素数的概率是多少?(3)底面上的数字之和为偶数的概率是多少?3. 在一个不透明的盒子中,装有3个分别写有数字6,-2,7的小球,他们的形状、大小、质地完全相同,搅拌均匀后,先从盒子里随机抽取1个小球,记下小球上的数字后放回盒子,搅拌均匀后再随机取出1个小球,再记下小球上的数字.(1)用列表法或树状图法中的一种方法,写出所有可能出现的结果;(2)求两次取出的小球上的数字相同的概率P.4. 在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)分别求出李燕和刘凯获胜的概率.甲乙。
人教版九年级数学上册25.2.2用列表法和树状图法求概率教案
(2)树状图的绘制:难点在于如何引导学生正确绘制树状图,并从中找出所有可能的结果。
举例:一个盒子里有3个红球和2个蓝球,先随机取一个球,放回后再取一个球,求第二次取出的球是红色的概率。
(3)组合数的计算:难点在于如何让学生理解组合数在列表法和树状图法中的应用,并掌握计算方法。
3.重点难点解析:在讲授过程中,我会特别强调列表法的列出所有结果和树状图法的正确绘制这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与列表法和树状图法相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示列表法和树状图法的基本原理。
3.培养直观想象素养:通过绘制树状图,使学生能够形象地把握事件之间的关系,培养直观想象和空间思维能力。
4.强化数学运算素养:在求解概率过程中,加强学生的数学运算能力,提高准确性,培养严谨的数学态度。
5.增进数据分析素养:引导学生对实际问题进行数据分析,培养从数据中提取信息、发现规律的能力,为解决更复杂问题奠定基础。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解列表法和树状图法的基本概念。列表法是通过列出所有可能的结果来计算概率的方法,而树状图法则通过图形化的方式展示事件之间的关系,帮助我们求解概率。这两种方法在解决实际问题时具有重要意义。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何运用列表法和树状图法求解实际问题的概率。
在实践活动方面,我发现学生们在解决实际问题时,对于如何将问题转化为数学模型还存在一定的困扰。针对这个问题,我将在后续的教学中,多提供一些案例,让学生们通过观察和模仿,逐步学会将实际问题抽象为数学模型。
人教版初中数学九年级上册 用列举法求概率(第2课时) 课件PPT
1
;
27
(2)P(两车向右,一车向左)=
1
;
9
(3)P(至少两车向左)=
7
27
、
13
新课讲解
例2 小刚、小军、小丽三人参加课外兴趣小组,他们都计划从航模小
组、科技小组、美术小组中选择一个、
(1)求三人选择同一个兴趣小组的概率;
(2)求三人都选择不同兴趣小组的概率、
14
第 二十五章 概率初步
25.2 用列举法求概率
第2课时 树状图法
1
学习目标
1
用列举法(画树状图法)求事件的概率(重点)、
2
进一步学习分类思想方法,掌握有关数学技能、
2
新课导入
知识回顾
一般地,如果在一次试验中,有n种可能的结果,并
且它们 发生的可能性相等 ,事件A包含其中的 m 种
m
n
结果,那么事件A发生的概率P(A)=
即
A A
C C
H I
A A
D D
H I
A
E
H
A B B B B B B
E C C D D E E
I H I H I H I
这些结果的可能性相等、
有 2 个元音字母的结果有4 种, 即ACI, ADI, AEH, BEI,
所以P(2 个元音)=
= 、
8
新课讲解
由树状图可以看出,所有可能出现的结果共有 12种,
(1)两次取出的小球上的数字相同;
(2)两次取出的小球上的数字之和大于10、
19
随堂训练
解:根据题意,画出树状图如下
第一个数字
人教版九年级上册数学精品教学课件 第二十五章 概率初步 用列举法求概率 第1课时 用列表法求概率
1 A.12 C.16
B.110 D.25
课堂小结
硬币的 正反面
直接 列举法
掷骰子 的点数
在运用列表法求概率时,应注意各种结果出现的可能性 相等,要注意列表时事件(或数据)的顺序不能随意混淆.
用列表法求概率适用于事件中涉及两个因素, 并且可能出现的结果数目较多的概率问题.
列表法
Thank you!
知识点2 用列表法求概率
例2 同时掷两枚质地均匀的骰子,计算下列事件的概率:
(1)两枚骰子的点数相同;
(2)两枚骰子点数的和是9; (3)至少有一枚骰子的点数为2.
怎么列出所有可 能出现的结果?
解: 两枚骰子分别记为第1枚和第2枚,可以用表列举出所 有可能出现的结果.
第1枚 第2枚
1
2
3
4
5
6
1
(2)列表如下:
第一次 123
第二次
1
1,1 2,1 3,1
2
1,2 2,2 3,2
3
1,3 2,3 3,3
由表可知,共有 9 种等可能的结果,其中这两个数 字之和是 3 的倍数的有 3 种,所以这两个数字之和 是 3 的倍数的概率为 P=3 =1
93
4.如图,小颖在围棋盘上两个格子的格点上任意摆放 黑、白两个棋子,且两个棋子不在同一条网格线上, 其中,恰好摆放成如图所示位置的概率是( A )
在一次试验中,如果可能出现的结果只有有限个,且各 种结果出现的可能性大小相等,那么我们可以通过列举 试验结果的方法,求出随机事件发生的概率.
知识点1 用直接列举法求概率
例1 同时抛掷两枚质地均匀的硬币,求下列事件的概率: (1)两枚硬币全部正面向上; (2)两枚硬币全部反面向上; (3)一枚硬币正面向上、一枚硬币反面向上.
人教版九年级上册数学精品教学课件 第25章 概率初步 用列举法求概率
不同的概率为( C )
A. 1
1
1
B.
C.
D. 3
4
3
2
4
2. a、b、c、d 四本不同的书放入一个书包,至少放
一本,最多放两本,共有 10 种不同的放法.
3. 在一个不透明的袋子里,装有三个分别写有数字 6, -2,7 的小球,它们的形状、大小、质地等完全相同. 先从袋子里随机取出一个小球,记下数字后放回袋子 里,摇匀后再随机取出一个小球,记下数字. 请你用 列表或画树状图的方法求下列事件的概率. (1)两次取出的小球上的数字相同; (2)两次取出的小球上的数字之和大于 10.
AB
E DC
HI
甲
乙
丙
(1) 取出的 3 个小球中恰好有 1 个,2 个,3 个写有元音
字母的概率各是多少?
解:由树状图知所有 甲
A
B
可能出现的结果有 12
个,它们出现的可能 乙 C D E C D E
性相等.
满足只有一个元音字
母的结果有 5 个,则 P (一个元音) = 5 .
12
丙 H IH IH I H IH IH I A AA AA A B B B B B B C CD DE E C C D D E E H IH IH I H I H IH I
例3 甲、乙、丙三人做传球的游戏,开始时,球在甲 手中,每次传球,持球的人将球任意传给其余两人中 的一人,如此传球三次. (1) 写出三次传球的所有可能结果 (即传球的方式); (2) 指定事件A:“传球三次后,球又 回到甲的手中”,写出 A 发生的所有 可能结果; (3) 求P(A).
解:(1) 第一次 第二次 第三次 结果
问题引入 现有 A、B、C 三盘包子,已知 A 盘中有 两个酸菜包和一个糖包,B 盘中有一个酸菜包和一个 糖包和一个韭菜包,C 盘中有一个酸菜包和一个糖包 以及一个馒头. 老师就爱吃酸菜包,如果老师从每个 盘中各选一个包子 (馒头除外),请你帮老师算算选的 包子全部是酸菜包的概率是多少.
人教版数学九年级上册25.2《列举法求概率》教案
人教版数学九年级上册25.2《列举法求概率》教案一. 教材分析《列举法求概率》是人教版数学九年级上册第25.2节的内容,主要介绍了利用列举法求概率的方法。
本节内容是在学生掌握了概率的基本概念和等可能事件的概率求法的基础上进行的,是进一步培养学生解决实际问题的能力。
通过本节内容的学习,学生能够掌握列举法求概率的步骤和方法,并能运用到实际问题中。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和解决问题的能力,对于概率的基本概念和等可能事件的概率求法已经有了一定的了解。
但是,学生在运用列举法求概率时,可能会出现列举不完整、分类不清晰等问题。
因此,在教学过程中,需要引导学生正确地进行列举和分类,培养学生解决问题的能力。
三. 教学目标1.知识与技能:使学生掌握列举法求概率的方法,能够运用列举法解决实际问题。
2.过程与方法:通过学生的自主探究和合作交流,培养学生的解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.重点:列举法求概率的方法。
2.难点:如何引导学生正确地进行列举和分类,解决实际问题。
五. 教学方法1.情境教学法:通过生活实例的引入,激发学生的学习兴趣,引导学生运用列举法解决实际问题。
2.合作学习法:学生进行小组讨论和合作交流,培养学生解决问题的能力和团队合作意识。
3.引导发现法:教师引导学生进行自主探究,发现列举法求概率的方法,培养学生的独立思考能力。
六. 教学准备1.教学课件:制作相关的教学课件,帮助学生更好地理解和掌握列举法求概率的方法。
2.练习题:准备一些相关的练习题,用于巩固学生的学习效果。
七. 教学过程1.导入(5分钟)利用生活实例引入本节课的内容,例如抛硬币、抽奖等,引导学生思考如何求解这些事件的概率。
2.呈现(10分钟)通过课件展示列举法求概率的步骤和方法,引导学生理解并掌握列举法的基本原理。
3.操练(10分钟)让学生进行小组讨论,共同解决一些实际问题,例如抛硬币三次,求正面向上的概率等。
数学求概率的常用方法
适用范围
适用于试验结果为连续的、无限的情 况,如长度、面积、体积等。
适用于概率计算中需要使用比例或比 例关系的情况。
计算步骤
01
确定试验的所有可能结 果构成的区域或集合。
02
03
04
确定构成事件的区域或 集合。
计算构成事件的区域或 集合与所有可能结果构 成的区域或集合的比例。
将该比例作为事件的概 率值。
全概率公式适用范围
当一个复杂事件可以分解为若干个互斥子事件时,可以使用 全概率公式来计算该复杂事件的概率。
当子事件之间相互独立时,全概率公式可以进一步简化为独 立事件的乘法公式。
全概率公式计算步骤
确定复杂事件和互斥子事件,并计算 每个子事件的概率。
将所有子事件的概率相加,得到复杂 事件的概率。
贝叶斯公式定义与特点
数学求概率的常用方法
目录
• 直接计数法 • 古典概型概率计算法 • 几何概型概率计算法 • 条件概率计算法 • 全概率公式与贝叶斯公式
01
直接计数法
定义与特点
定义
直接计数法是通过列举所有可能 的结果,并计算每个结果发生的 概率,从而得出总概率的方法。
特点
直接计数法适用于事件数量较少 的情况,计算过程直观简单,但 当事件数量较大时,计算量会迅 速增加。
计算概率
根据古典概型概率公式, $P(A) = frac{有利于A的 基本事件数}{样本空间中 基本事件的总数}$,求出 所求事件的概率。
03
几何概型概率计算法
定义与特点
定义
几何概型是一种概率模型,其中试验的所有可能结果是无限且等可能的。
特点
试验结果具有无限性和等可能性,概率只与构成事件的长度(面积、体积等) 成比例。
九年级数学上册概率知识点
九年级数学上册概率知识点概率是九年级数学上册非常重要的一个知识点,它不仅仅在数学中发挥作用,还可以应用到日常生活以及其他学科中。
本文将详细介绍九年级数学上册中涉及到的概率知识点,包括基础概念、概率的计算方法以及概率在实际问题中的应用。
一、基础概念在学习概率之前,我们首先要了解一些基础概念。
概率是事件发生的可能性大小的一种衡量方式。
我们常用0到1之间的数值来表示概率,其中0表示不可能事件,1表示必然事件。
例如,掷一枚均匀的骰子,出现1的概率为1/6,即1/6的可能性。
另外,事件的互斥和对立是概率计算中的两个重要概念。
互斥事件指的是两个或多个事件不能同时发生,对立事件指的是两个事件中至少有一个会发生。
二、概率的计算方法在概率的计算方法中,我们需要掌握频率法、几何法和古典概率法。
1. 频率法:通过实验的统计结果来估算概率。
例如,在进行一系列相同的试验中,我们记录事件发生的次数,然后将发生的次数除以试验总次数,得到事件发生的频率。
频率趋近于一个固定值时,就是事件的概率。
2. 几何法:通过求事件的几何概率来计算。
几何概率是指事件发生可能性与样本空间中的所有可能性之比。
例如,一个正方形纸片上有一圆和一正方形,如果我们随机选取一个点,点所在的位置在圆内的可能性即为事件发生的几何概率。
3. 古典概率法:适用于每个事件发生的可能性相等的情况。
通过计算有利事件数与样本空间中总事件数的比值来计算概率。
例如,一副标准扑克牌中黑桃的数量是13,总牌数是52,那么摸到一张黑桃牌的概率即为13/52=1/4。
三、概率在实际问题中的应用概率不仅仅是数学中的抽象概念,它还可以应用到实际生活中。
下面将介绍两个与概率相关的实际问题。
1. 事件的独立性:在一系列独立的事件中,每个事件的发生不会影响其他事件的发生。
例如,连续掷两枚均匀的骰子,每一次的掷骰结果都不会对其他次的掷骰结果造成影响。
那么两次掷骰都是掷到6的概率即为单次掷骰结果是6的概率的平方,即1/6 *1/6 = 1/36。
九年级数学上册教学课件《用画树状图法求概率》
AB 甲
CD E乙
HI 丙
解:记取出的3个小球上恰好有1个、2个、3个元
音字母分别为事件A、B、C.
P(A)=
5 12
.
P(B)=
4 12
=
1 3
.
P(C)=
1 12 .
甲
A
B
乙
C DE
C DE
丙 HI HI HI HI HI HI
n
注意 用列表法或画树状图法求概率的前提: 1.可能出现的结果只有有限个; 2.各种结果出现的可能性大小相等.
思考
列表法和画树状图法的选用:
(1)当一次试验要涉及两个因素(或两个步骤), 且可能出现的结果数目较多时,可用“列表法”; (2)当一次试验要涉及三个或更多的因素(或步 骤)时,应采用“画树状图法”.
剪断的两张分别为B1,B2.
A2 B2
解:列举出所有结果如下:
记恰好合成一张完整图片为事件A.
P(
A)
4 12
1 3
.
A1
B1
A2
B2
练习
【教材P139练习】
经过某十字路口的汽车,可能直行,也可能向左转或向
右转.如果这三种可能性大小相同,求三辆汽车经过这个十
字路口时,下列事件的概率:
(1)三辆车全部继续直行;
P(B)
3 6
1 2
.
拓展延伸
6. 两张图片形状完全相同,把两张图片全部从中间剪断, 再把四张形状相同的小图片混合在一起.从四张图片 中随机地摸取一张,接着再随机地摸取一张,则两张 小图片恰好合成一张完整图片的概率是多少?
九年级数学 用列举法求概率
A反B正 A正B反 A反B反
所以,
n=4
m=1
p(2正)=1/4
例1、袋子里面装有一个黑球两个红球、
摸两次,第一次放回去再摸一次,两次都 摸到红球的概率是多少。 如图:
解: 1 2
第一次
红1
红2
黑
第二次
红1 红2 黑
红1 红2 黑 红1 红2 黑
所以, n=9 所以
m=4
4 p(2红)= 9
归纳 把所有可能事件写出来、或者 用表格、树形图表示出来。然后 p(A)=m/n求出概率,这种求概率 的方法叫列举法求概率。
上节知识的回顾
1、概率公式 p(A)=m/n 2、不可能事件的概率;p(A)=0 3、必然事件的概率; P(A)=1 本节内容;列举法求概率
投一枚硬币求正面向上的概率。 袋子里有两个红球一个黑球,摸一次摸到黑 球的概率。
例1,一学生一次投两枚硬币试求两枚正面都朝上的概率。
A
B
解,列举所有的可能性:A正B正
练习(一)
是一电子元件,它有通电和不通电两种情况。求 下列安装由A到B通电的概率
解:1通2通 1通2不通 。 1不通2通 1不通2不通 P(通)=m/n=1/4
解:P(通)=m/n=3/4 解
练习(二)
三两概率 。
解:P(3车右拐)=1/27
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学目标:
情感与态度:
通过本节课的学习,使学生在与人合作 交流、探索规律,形成共识方面会有进一步 的增强,在对事件概率的刻画中养成做出合 理决策的习惯。
23.1求概率的方法
教学目标:
知识与技能:
1.掌握用列举法中的画树状图的方法计算 简单事件的概率。
2.能运用画树状图的方法列出简单事件的所 有可能发生的结果,并判断每个结果发生 的可能性是否都相等,从而能用概率公式 计算所求事件的概率。
教学目标:
过程与方法:
1.通过画树状图法求概率,使学生经历 “建
外链发布 https:/// 外链发布
伤兵罗雯依琦妖女细长的耳朵,此时正惨碎成海马样的暗白色飞丝,快速射向远方女伤兵罗雯依琦妖女怪嚷着狂鬼般地跳出界外,急速将细长的耳朵复原,但元气已受损伤砸壮扭公主:“哈哈! 这位同志的风格极为迷离哦!非常有完美性呢!”女伤兵罗雯依琦妖女:“ 哎!我要让你们知道什么是疯狂派!什么是缠绵流!什么是温柔完美风格!”壮扭公主:“哈哈!小老样,有什么 法术都弄出来瞧瞧!”女伤兵罗雯依琦妖女:“ 哎!我让你享受一下『白冰跳祖牙膏理论』的厉害!”女伤兵罗雯依琦妖女突然耍了一套,窜虾猪肘翻九千度外加猪哼菜叶旋一百周半的招数 ,接着又玩了一个,妖体鸟飞凌空翻七百二十度外加呆转十五周的冷峻招式。接着像暗绿色的三须海滩虾一样怒笑了一声,突然搞了个倒地振颤的特技神功,身上瞬间生出了九十只活像拐杖般的 乳白色眉毛……紧接着威风的深灰色怪藤样的嘴唇连续膨胀疯耍起来……亮紫色旗杆一样的眉毛透出纯黄色的阵阵春雾……纯灰色蛤蟆一般的脸闪出亮灰色的隐约幽音。最后扭起瘦弱的酷似谷穗 模样的肩膀一颤,萧洒地从里面滚出一道流光,她抓住流光诡异地一旋,一件青虚虚、银晃晃的咒符『白冰跳祖牙膏理论』便显露出来,只见这个这件怪物儿,一边扭曲,一边发出“哼嗷”的猛 响。!猛然间女伤兵罗雯依琦妖女疯妖般地念起磨磨叽叽的宇宙语,只见她轻盈的手指中,威猛地滚出五十片珍珠状的黄豆,随着女伤兵罗雯依琦妖女的耍动,珍珠状的黄豆像鸡笼一样在双肩上 残暴地设计出飘飘光环……紧接着女伤兵罗雯依琦妖女又连续使出四十五派晶豹滑板掏,只见她亮灰色棕叶款式的项链中,快速窜出四十缕转舞着『银玉香妖闪电头』的螳螂状的怪毛,随着女伤 兵罗雯依琦妖女的转动,螳螂状的怪毛像苦瓜一样念动咒语:“三指吲 唰,原木吲 唰,三指原木吲 唰……『白冰跳祖牙膏理论』!爷爷!爷爷!爷爷!”只见女伤兵罗雯依琦妖女的 身影射出一片纯蓝色金光,这时东北方向狂傲地出现了九簇厉声尖叫的暗青色光雁,似玉光一样直奔水蓝色幻影而来!,朝着壮扭公主齐整严密的牙齿乱晃过来。紧跟着女伤兵罗雯依琦妖女也狂 耍着咒符像缰绳般的怪影一样向壮扭公主乱晃过来壮扭公主突然来了一出,蹦鹏灯笼翻九千度外加雁乐烟囱旋一百周半的招数!接着又搞了个,团身犀醉后空翻七百二十度外加傻转七周的惊人招 式!接着像灰蓝色的飞臂海湾鹏一样疯喊了一声,突然耍了一套倒立抽动的特技神功,身上忽然生出了九十只美如杠铃一般的暗黑色鼻子!紧接着圆润光滑、无忧无虑的快乐下巴奇特紧缩闪烁起 来……时常露出欢快光
活动4: 盒中有3个外形相同的球,其中有1个白球,
2个红球,从盒子中随机抽取2个,按下列3种 不同的抽法,分别计算“1个是白球,1个是红 球”的概率。
(1)一次从盒子中抽取2个; (2)从盒子中每次抽取1个,抽取后不放回,连续 抽取两次;
(3)从盒子中每次抽取1个,抽取后放回,连续 抽取两次。
课后小结:
知识小结: 本节课我们主要了解树形图的意义,掌握建立
树形分析图的方法。 学法小结:
学会利用树状图求事件的概率。使我们求树 形图的方法增加到了两种方法:列表法和树状 图法。
பைடு நூலகம்
教学重点:
会运用画树状图的方法求简单事件的概率。
教学难点:
掌握画树状图列出所有可能发生的结 果的方法。
教学方法:
小组合作,自主探究,教师引导
教学用具:
多媒体辅助教学
一、创设情境,引出新知
76
8
9
2
5
31 4 10
活动1:
食物
一支蚂蚁在如图所示的 树枝上寻觅食物,假定 蚂蚁在每个岔路口都会 随机地选择一条路径, 它获得食物的概率是多 少?