第二章 回归分析基本方法
回归分析的基本方法

回归分析的基本方法回归分析是一种用于分析变量之间关系的统计方法,可以帮助我们预测一个变量如何随其他变量的变化而变化。
它可以用于描述变量之间的相互依赖关系,并据此进行预测和解释。
回归分析的基本方法有简单线性回归、多元线性回归和逻辑回归等。
简单线性回归是回归分析的最简单形式,用于探索两个变量之间的线性关系。
它假设两个变量之间存在一个直线关系,通过最小二乘法拟合一条直线来拟合这种关系。
简单线性回归模型的基本形式为:Y=β0+β1X+ε。
其中,Y是被解释变量,X是解释变量,β0和β1是回归系数,ε是误差项。
回归系数β0和β1可以通过最小二乘法估计得到,从而得到最佳拟合直线。
多元线性回归是在简单线性回归的基础上进行扩展,用于分析多个解释变量对一个被解释变量的影响。
它假设被解释变量与解释变量之间存在一个线性关系,通过最小二乘法拟合一个多元线性模型。
多元线性回归模型的基本形式为:Y=β0+β1X1+β2X2+...+βnXn+ε。
其中,Y是被解释变量,X1、X2、..、Xn是解释变量,β0、β1、β2、..、βn是回归系数,ε是误差项。
通过最小二乘法,我们可以估计出回归系数β0、β1、β2、..、βn,从而得到最佳拟合模型。
逻辑回归是一种常用于处理二分类问题的回归方法,它用于预测二分类变量的概率。
逻辑回归将线性回归模型的输出值转换为0和1之间的概率值,并根据概率值进行分类。
逻辑回归模型的基本形式为:P(Y=1,X)= 1 / (1+exp(-β0-β1X1-β2X2-...-βnXn))。
其中,P(Y=1,X)是当给定解释变量X时,被解释变量Y等于1的概率,β0、β1、β2、..、βn是回归系数。
在回归分析中,我们需要进行变量选择来判断哪些解释变量对被解释变量的影响最为显著。
常用的变量选择方法有前向选择、后向删除和逐步回归等。
此外,还可以通过检验回归系数的显著性和分析残差来评估回归模型的拟合程度和预测能力。
常用的检验方法包括t检验、F检验和R方等。
一元线性回归分析

C=α+βy + µ
其中, µ是随机误差项。 是随机误差项。 其中, 是随机误差项 根据该方程, 的值, 根据该方程,每给定一个收入 y 的值,消 并不是唯一确定的, 费C并不是唯一确定的,而是有许多值, 并不是唯一确定的 而是有许多值, 他们的概率分布与µ的概率分布相同 的概率分布相同。 他们的概率分布与 的概率分布相同。 线性回归模型的特征: 线性回归模型的特征: 有随机误差项! 有随机误差项!
21
说
明
一、严格地说,只有通过了线性关系的检验,才 严格地说,只有通过了线性关系的检验, 能进行回归参数显著性的检验。 能进行回归参数显著性的检验。 有些教科书在介绍回归参数的检验时没有考虑线 性关系的检验,这是不正确的。 性关系的检验,这是不正确的。因为当变量之间 的关系没有通过线性检验时, 的关系没有通过线性检验时,进行回归参数显著 性的检验是没有意义的。 性的检验是没有意义的。 在一元线性回归分析中, 二、在一元线性回归分析中,即只有一个解释变 量时,这两种检验是统一的。 量时,这两种检验是统一的。但在多元回归分析 这两种检验的意义是不同的。 中,这两种检验的意义是不同的。 为了说明该问题, 为了说明该问题,我们在本章中依然把两种检验 分开论述。 分开论述。
13
为了达到上述目的, 为了达到上述目的,我们直观上会采 用以下准则: 用以下准则: 选择这样的SRF,使得: 选择这样的 ,使得:
残差和∑ ε i = ∑ ( yi − yi )尽可能小! ˆ
但这个直观上的准则是否是一个很好 的准则呢?我们通过以下图示说明: 的准则呢?我们通过以下图示说明:
14
12
ˆx i + ε i yi = α + β ˆ ˆ 即:y i = y i + ε i ˆ ∴ ε i = yi − yi
第二章:双变量线性回归分析

第⼆章:双变量线性回归分析第三部分初计量经济(13周)经典单⽅程计量经济模型:⼀元线形回归模型经典单⽅程计量经济模型:多元线形回归模型经典单⽅程计量经济模型:放宽基本假定模型第⼀章⼀元线性回归(双变量)(1)回归分析的基本概念(2)前提建设(3)参数估计:OLS的参数估计ML的参数估计(4)统计检验(5)预测(6)时间案例与操作(7)思考与作业§1 经典正态线性回归模型(CNLRM)1、⼀个例⼦注 x 表⽰收⼊,y 表⽰⽀出。
5010015020050100150200250300XYY vs. X5010015020050100150200250300XY 1Y1 vs. X条件分布:以X 取定值为条件的Y 的条件分布条件概率:给定X 的Y 的概率,记为P(Y|X)。
例如,P(Y=55|X=80)=1/5;P (Y=150|X=260)=1/7。
条件期望(conditional Expectation ):给定X 的Y 的期望值,记为E(Y|X)。
例如,E(Y|X=80)=55×1/5+60×1/5+65×1/5+70×1/5+75×1/5=65总体回归曲线(Popular Regression Curve )(总体回归曲线的⼏何意义):当解释变量给定值时因变量的条件期望值的轨迹。
总结总体:总体函数:总体⽅程:样本:样本函数:样本⽅程:2、总体回归函数(PRF)E(Y|X i)=f(X i)当PRF的函数形式为线性函数,则有,E(Y|X i)=β1+β2X i其中β1和β2为未知⽽固定的参数,称为回归系数。
β1和β2也分别称为截距和斜率系数。
上述⽅程也称为线性总体回归函数。
3、PRF的随机设定将个别的Y I围绕其期望值的离差(Deviation)表述如下:u i=Y i-E(Y|X i)或Y i=E(Y|X i)+u i其中u i是⼀个不可观测的可正可负的随机变量,称为随机扰动项或随机误差项。
第2章(回归分析)

§2.1 总体与总体回归模型
一、总体与总体回归模型的含义 1.总体回归模型 总体回归模型 对应不同收入水平的60户家庭的每周消费 户家庭的每周消费Y 对应不同收入水平的 户家庭的每周消费
200 160
120
80
40 60 80 100 120 140 160 180 200 220 240 260 280
《计量经济学》王少平 杨继生 欧阳志刚 高教出版社 2010.6
§2.1 总体与总体回归模型
二.总体回归模型中的 Ui 所包含的内容 2.从实际经济行为看 从实际经济行为看Ui 从实际经济行为看
Yi = E (Y X i ) + U i = β 0 + β1 X i + U i
从经济学理论可知, 除收入X外 家庭财富、 从经济学理论可知 除收入 外,家庭财富、 通胀、利率, 通胀、利率,预期等对消费支出产生影响的因 包含在U之中 素,包含在 之中
§2.1 总体与总体回归模型
一、总体与总体回归模型的含义 1. 总体 2. 总体回归模型 二、总体回归模型中 ui所包含的内容 1.从数量上看 ui 从数量上看 2.从实际经济行为看 ui 从实际经济行为看 3.从回归关系看 ui 从回归关系看
《计量经济学》王少平 杨继生 欧阳志刚 高教出版社 2010.6
家庭每周收入X 家庭每周收入
《计量经济学》王少平 杨继生 欧阳志刚 高教出版社 2010.6
§2.1 总体与总体回归模型
一、总体与总体回归模型的含义 1.总体回归模型 总体回归模型
上图说明,收入 从 变化至 变化至280,这一变化 上图说明,收入X从80变化至 说明 , 解释了消费Y的总体的条件期望 均值) 的总体的条件期望( 解释了消费 的总体的条件期望(均值)从65、 、 89等变化至 等变化至173。也就是说,X的变化解释了 等变化至 。也就是说, 的变化解释了 Y的总体的条件期望的变化(总体的平均变 的总体的条件期望的变化( 的总体的条件期望的变化 )。或者说 或者说, 的变化 决定了Y的总体的 的变化, 化)。或者说,X的变化,决定了 的总体的 平均变化。 的变化解释( 平均变化。而X的变化解释(或决定)了Y 的 的变化解释 或决定) 总体的平均变化,这正是回归分析的意义所在。 总体的平均变化,这正是回归分析的意义所在。 因此,称这条线为总体回归模型。 因此,称这条线为总体回归模型。 由于它是一条直线, 由于它是一条直线,故也称为总体回归直线
第二章回归模型

的部分(即由解释变量引起的变化),系 统外的影响(即回归模型无法说明的部分 )只有100(1-R2)%。
二、模型的显著性检验F检验
1. F检验的步骤
假设: 检验统计量: 拒绝域:
2. F检验与R2检验的关系 公式:P49 关系: ①为R2的显著性检验; ②R2值较大时,F检验均能通过; ③实际应用中不必过分苛求R2值的大小
第二节 回归模型的参数估计
一、最小二乘估计(OLS)
原理:根据现有的统计资料(样本), 选择一条直线,使其估计误差(残差)
的平方和达到最小“拟合总误差达 到最小”;
公式: e2 (,得到 的估计值称为“最小二乘估计” (OLS 估计)。
View\Actual,Fitted,Residual\Table.
二、最小二乘估计的性质
1. 参数估计量的评价标准 无偏性 有效性
2、高斯—马尔可夫定理
三、系数的估计误差与置信区间 1. 系数的估计误差 2. 系数的置信区间
第三节 回归模型的统计检验
一、模型的拟合优度检验R2检验
1.总平方和的分解
2.定义:(P46)
3.检验: R21时,模型对样本的近似 程度越高;
第二章 回归模型
第一节 古典回归模型 一、回归分析 1. 总体回归函数 2. 样本回归函数 3. 回归分析的主要内容:
(1)根据样本观察值确定样本回归方程; (2)检验样本回归方程对总体回归方程的近似程度; (3)利用样本回归方程分析总体的平均变化规律。
二、回归模型的基本假定
(一)模型的随机设定 (二)模型的基本假定 1. 零均值假定 2. 同方差假定 3. 非自相关假定 4. 解释变量为非随机变量假定 5. 解释变量与随机误差项不相关假定 6. 无多重共线性假定
回归分析的基本方法

因变量之间的关系。
3
评估模型
4
评估模型的准确性和可行性,使用指 标如R²和标准误差。
收集数据
收集涉及自变量和因变量的相关数据。
拟合数据
使用回归模型对数据进行拟合,找到 最佳拟合曲线或平面。
回归模型的假设和前提条件
1 线性关系
2 独立误差
假设自变量和因变量之间存在线性关系。
假设误差项之间是相互独立的。
和应用回归分析。 • 了解不同类型的回归分析方法和应用可以帮助您选择适合您研究问题
的方法。 • 回归分析有其优势和局限性,因此在应用和解释结果时需要谨慎。
3 多重共线性
要求自变量之间没有多重共线性。
4 正态分布
假设误差项是正态分布的。
回归模型的评估和解释
评估
• 确定回归系数的显著性。 • 评估模型适合度和预测的准确性。
解释
• 解释回归系数的含义和影响。 • 识别哪些自变量对因变量的影响最大。
常见的回归分析方法和应用
简单线性回归
用于研究一个自变量和一个因 变量之间的关系。
回归分析的基本方法
通过回归分析,我们可以揭示变量之间的关系以及预测未来的趋势。
理解回归分析的基本概念和目 的
回归分析是一种统计方法,用于探索和解释变量之间的关系,以及预测和预 测未来的趋势。
其目的是找到一个最佳拟合曲线或平面,以便通过已知的自变量预测因变量 的值。
回归分析的基本步骤
1
建立模型
2
选择适当的回归模型来描述自变量和
多元线回归
用于研究多个自变量和一个因 变量之间的关系。
逻辑回归
用于研究自变量与一个二元因 变量之间的关系。
回归分析的优势和局限性
第2章一元线性回归模型

一元线性回归模型
回归分析是计量经济学的基础内容!
本章介绍一元线性回归模型,最小二乘估计方法及 其性质,参数估计的假设检验、预测等。
浙江财经大学 倪伟才
1
本章主要内容
2 .1 一元线性回归模型
2 .2 参数β0、β1的估计
2 .3 最小二乘估计的性质
2 .4 回归方程的显著性检验 2 .5 残差分析 2 .6 回归系数的区间估计
浙江财经大学 倪伟才 10
回归的术语
y的各种名称: 因变量(dependent variable)或被解释变量 (explained variable)或回归子(regressand)或内 生(endogenous); X的各种名称: 自变量(independent variable)或解释变量 (explanatory variable)或回归元(regressor)或外 生(exogenous) U的各种名称: 随机误差项或随机扰动项(stochastic error term, random disturbance term ): 表示其它因素的影响,是不可观测的随机误差!
浙江财经大学 倪伟才
9
2.1一元线性回归模型
由于两个变量y, x具有明显的线性关系,故考虑直 线方程y=0+1x(函数表达的是确定性关系,有缺 陷!) y=0+1x+u, 其中u表示除x外,影响y的其它一切 因素。 将y与x之间的关系用两部分来描述: a. 一部分0+1x ,由x的变化引起y变化; b.另一部分u ,除x外的其它一切因素引起y变化。 参数(parameters) 0 , 1 ; 0 称为回归常数(截距)(intercept, constant), 1称为回归斜率(slope)
第二章回归分析中的几个基本概念

第二章回归分析中的几个基本概念第一节回归的含义“回归”(Regression)一词最初是由英国生物学家兼统计学家F.Galton(F·高尔顿)在一篇著名的遗传学论文中引入的(1877年)。
他在研究中发现,具有较高身躯的双亲,或具有较矮身躯的双亲尔,其子女的身高表现为退回(即回归)到人的平均身高趋势。
这一回归定律后来被统计学家K·Pearson通过上千个家庭成员身高的实际调查数据进一步得到证实,从而产生了“回归”这一名称。
然而,现代意义上的“回归”比其原始含义要广得多。
一般来说,现代意义上的回归分析是研究一个变量(也称为explained variable或因变量dependent variable)对另一个或多个变量(也称为解释变量explanatory variable或自变量independent variable )的依赖关系,其目的在于通过解释变量的给定值来预测被解释变量的平均值或某个特定值。
具体而言,回归分析所要解决的问题主要有:(1)确定因变量与自变量之间的回归模型,并依据样本观测值对回归模型中的参数进行估计,给出回归方程。
(2)对回归方程中的参数和方程本身进行显著性检验。
(3)评价自变量对因变量的贡献并对其重要性进行判别。
(4)利用所求得的回归方程,并根据自变量的给定值对因变量进行预测,对自变量进行控制。
第二节统计关系与回归分析一、变量之间的统计关系现象之间的相互联系一般可以分为两种不同的类型:一类为变量间的关系是确定的,称为函数关系;而另一类变量之间的关系是不确定的,称为统计关系。
变量之间的函数关系表达的是变量之间在数量上的确定性关系,即一个或几个变量在数量上的变动就会引起另一个变量在数量上的确定性变动,它们之间的关系可以用函数关系y f x=准确地加以描述,这里x可以是一个向量。
当知道了变量x的值,就可以计算出一()个确切的y值来。
变量之间统计关系,是指一个或几个变量在数量上的变动会引起另一个变量数量上发生变动,但变动的结果不是惟一确定的,亦即变量之间的关系不是一一对应的,因而不能用函数关系进行表达。
回归分析基本方法最小二乘法课件

解方程组可以得到最佳参数值,使得预测值与实际观测值之 间的误差平方和最小化。
03
CHAPTER
最小二乘法的实现步骤
数据准备
01
02
03
数据收集
收集相关数据,确保数据 来源可靠,覆盖面广,能 够反映研究对象的特征和 规律。
数据清洗
对数据进行预处理,如缺 失值填充、异常值处理、 数据类型转换等,以提高 数据质量。
在生物统计学中,最小二乘法可以通过对生物学数据进行分析,研究生物变量之间的关系和变化规律 ,从而为生物学研究和医学应用提供支持。这种方法在遗传学、流行病学、药理学等领域有广泛应用 。
06
CHAPTER
总结与展望
总结
最小二乘法的原理
最小二乘法是一种数学优化技术,通过最小化误差的平方 和来找到最佳函数匹配。在回归分析中,它用于估计两个 或多个变量之间的关系。
题的分析方法。
03
扩展到大数据和机器学习领域
随着大数据时代的到来,如何在大规模数据集上应用最小二乘法是一个
值得研究的方向。此外,机器学习算法中的一些优化技术也可以借鉴到
最小二乘法中,以加速计算和提高精度。
THANKS
谢谢
在所有线性无偏估计中,最小二乘法 的估计误差的方差最小,即它的估计 精度最高。
适合多种分布数据
最小二乘法对数据的分布类型要求不 高,可以用于正态分布和非正态分布 的数据。
缺点
对异常值敏感
假设限制多
最小二乘法对数据中的异常值非常敏感, 异常值可能会对回归线的拟合产生显著影 响。
最小二乘法要求误差项具有零均值、同方 差和无序列相关等假设,这些假设在现实 中往往难以完全满足。
最小二乘法的应用
第二章双变量回归分析基本概念

第七节 样本回归函数(SRF)
对应(2.3.2)的SRF
Yˆi ˆ1 ˆ2 Xi 其中 Yˆ读为Y-帽,是 E(Y 的Xi估) 计量。
• 注意,一个估计量(estimator),又称(样本)统计量 (statistic),是指一个规则或公式或方法。在一项应用中, 由估计量算出的一个具体的数值,称为估计值 (estimate) 。
1-12
第七节 样本回归函数(SRF)
总体是观测不到的,大多数情况下,对应于一个 解释变量X,只能观测到被解释变量Y的一个值。
• 我们只能得到对应于某些固定X 值的Y 值的一个(有限 个)样本。
1-13
第七节 样本回归函数(SRF)
样本回归函数(sample regression function, SRF)
(2.3.1)
PRF的形式是一个经验问题,线性方程是常
用的形式:
E(Y Xi ) f ( Xi ) 1 2 Xi (2.3.2)
• 其中 1 和 2为未知但却固定的参数,称为回归系 数( regression coefficient)。1 和 2 分别称为截距
和斜率系数。方程(2.3.2)本身则称为线性总体回归 函数或简称线性总体回归。
Yi 1 2 X i ui
(2.5.2)
(2.5.2)为PFR的随机设定形式,与(2.3.2)等价。
1-11
第六节 随机扰动项的意义
为什么要引入随机扰动项?
• 理论的含糊性 • 数据的缺失 • 变量的解释力(核心变量与周边变量) • 人类行为的内在随机性 • 糟糕的替代变量(永久消费与当前消费等) • 节省原则 • 错误的函数形式
• 父母身高、子女身高 • 儿女的身高趋向人口总体平均,普遍回归定律(law of
回归分析

准差
r剩
S剩 (n r 1)
r 为进入回归模型的变量个数。上述公式表示对于任一给定 的自变量(x1, x2, xm),所对应因变量的实际值 y 以95%的概率落 在区间 ( yˆ 2r剩,yˆ 2r剩),即预测值 yˆ 与实际值 y之差有95%的概
率,使得 y yˆ 2r剩, 所以r剩 越小其预测精度越高。
此外,在检验得知方程是显著之后,还需检验方程中哪些变量 x1, x2 , xm
是影响 y 的重要变量,哪些是不重要变量,进而剔除不重要的变量,简化
方程,得到优化回归方程,这就是所谓的对每个变量要进行显著性检验 (t检验)
n
总离差平方和 S总 ( yi y)2 ,自由度为 n 1,如果观测值给定,S总 i 1
i 1
化对 y 的波动,其自由度为 m 。
n
记 S剩 ( yi yˆi )2 称为剩余平方和(或残差平方和),它是由实验 i1
误差以及其他因素引起的。它反映了实验误差以及其他因素对实验结果的
影响程度,其自由度为n m1。
于是
S总 S回 S剩
当 S总确定时, S剩 越小, S回 越大,则 S回 就越接近 S总,于是用 S回 是否接
一组回归系数 b1 ,b2 , bm 值。 设 b1 ,b2 , bm 分别为 0, 1, , m 的最小二乘估计值,于是
有
yˆ b0 b1x1 b2x2 bmxm
其中 yˆ 是 y 的一个最小二乘估计。
下用最小二乘法求b1 ,b2 , bm
令
1 x11 x12 x1m
4、回归分析预测法的步骤
(1).根据预测目标,确定自变量和因变量 明确预测的具体目标,也就确定了因变量。如预测具体
第二章 一元线性回归分析基础

加,消费增加,但消费的增长低于收入的增长,即消
费对收入的弹性小于1。它的数学表述为
Y X
0
Y X
1,
Y X
Y X
其中Y为消费额,X为收入。
该线性方程描述了消费与收入之间的确定关系,即给定 一个收入值,可以根据方程得到一个唯一确定的消费值。 但实际上消费与收入间的关系不是准确实现的。
原因:入随机误差项,将变量之间的关系用一个线性 随机方程来描述,用随机数学的方法来估计方程中的 参数,这就是线性回归模型的特征,也就是线性计量 经济学模型的特征。
二、一元线性回归模型
单方程线性回归模型的一般形式为
Yi 1 2 X2i 3 X3i k Xki ui ,i 1,2, ,n 其中Y为被解释变量,X 2 ,X 3 , ,X n 为解释变量。
化。
如果误差项的方差不同,那么与其对应的观测值Yi的可 靠程度也不相同。这会使参数的检验和利用模型进行预 测复杂化。而满足同方差假设,将使检验和预测简化。
假设3 表示不同的误差项之间互相独立,同时,不同的 被解释变量在统计上也是互相独立的。即
Cov(Yi, Yj)= E(Yi-E(Yi)) (Yj-E(Yj))= E(uiuj)=0, i≠j 假假设设4,自通动常满X足i为,确即定性变量,即非随机变量,此时,该
也可以用显函数形式表示为 Y f ( X1,X 2 , ,X n )
其中最简单的形式为一元线性函数关系。
例如 当某种商品单价P固定不变,其销售收入y与销售 的商品数量x之间的关系为一元线性关系,即y = Px
如果用x,y构成的直角坐标图来表示,上式所表示的 函数关系为一条经过坐标原点的直线,所有可能的点 都在这条直线上。
Cov(ui, Xi)= E(ui-E(ui)) (Xi-E(Xi))=0,i=1,2, ……,n 假设5 随机误差项服从零均值,同方差的正态分布。即
第二章回归分析中的几个基本概念

第二章回归分析中的几个基本概念1. 回归模型(Regression Model):回归模型是回归分析的基础,用来描述两个或多个变量之间的关系。
回归模型通常包括一个或多个自变量和一个或多个因变量。
常用的回归模型有线性回归模型和非线性回归模型。
线性回归模型是最简单的回归模型,其中自变量和因变量之间的关系可以用一条直线来表示。
线性回归模型的表达式为:Y=β0+β1*X1+β2*X2+...+βn*Xn+ε其中,Y表示因变量,X1、X2、…、Xn表示自变量,β0、β1、β2、…、βn表示回归系数,ε表示误差项。
2. 回归系数(Regression Coefficients):回归系数是回归模型中自变量的系数,用来描述自变量对因变量的影响程度。
回归系数可以通过最小二乘法估计得到,最小二乘法试图找到一组系数,使得模型的预测值和实际观测值的误差平方和最小。
回归系数的符号表示了自变量与因变量之间的方向关系。
如果回归系数为正,表示自变量的增加会使因变量增加,即存在正向关系;如果回归系数为负,表示自变量的增加会使因变量减少,即存在负向关系。
3. 拟合优度(Goodness-of-fit):拟合优度是用来评估回归模型对样本数据的拟合程度。
通常使用R方(R-squared)来度量拟合优度。
R 方的取值范围在0到1之间,越接近1表示模型对数据的拟合程度越好。
R方的解释是,回归模型中自变量的变异能够解释因变量的变异的比例。
例如,如果R方为0.8,表示模型中自变量解释了因变量80%的变异,剩下的20%可能由其他未考虑的因素引起。
4. 显著性检验(Significance Test):显著性检验用于判断回归模型中自变量的系数是否显著不为零,即自变量是否对因变量有显著影响。
常用的方法是计算t值和p值进行检验。
t值是回归系数除以其标准误得到的统计量。
p值是t值对应的双侧检验的概率。
如果p值小于给定的显著性水平(通常是0.05),则可以拒绝原假设,即认为回归系数显著不为零,即自变量对因变量有显著影响。
计量经济学第二章 简单线性回归模型

这样的“规则和方法”有多种,最常用的是最小二乘 法(ordinary least squares, OLS)。
29
一、简单线性回归模型的基本假设 1、为什么要作基本假定?
● 只有对随机扰动的分布作出假定,才能确定 所估计参数的分布性质,也才可能进行假设 检验和区间估计 ●只有具备一定的假定条件,所作出的估计才 具有较好的统计性质。
Y Yi
Yi ei
SRF PRF
ˆ Y i
E (Yi X i )
ui
A
Xi
X
27
第二节 简单线性回归模型 的最小二乘估计
一、简单线性回归模型的基本假设 二、普通最小二乘估计(OLS) 三、OLS回归线的性质 四、最小二乘估计的统计性质
28
▼回归分析的主要目的:根据样本回归函 数SRF,估计总体回归函数PRF。
第二章 简单线性回归模型
主要内容: 回归分析概述 一元线性回归模型的参数估计 一元线性回归模型检验 一元线性回归模型预测 实例
离散变量的期望值定义为E(X)
2
• 方差的性质
方差
Var ( X ) E X i X 2
2
3
• 协方差的性质 协方差
Cov( XY ) E X i X Yi Y
i i __ 2 __ i i
__
__
2
其中: 分别是变量 X 和 Y 的样本观测值 X i和 Y __i X 和 Y 分别是变量 X 和 Y 样本值的平均值
8
相关系数的取值范围:-1≤≤1
>0 为正相关, < 0 为负相关; ||=0 表示不存在线性关系; 线性 ||=1 表示完全线性相关; 线性 0<||<1表示存在不同程度线性相关: || < 0.4 为低度线性相关; 0.4≤ || <0.7为显著线性相关; 0.7≤|| <1.0为高度线性相关。
第二章 回归分析概要3(一元统计检验)

第二章 回归分析概要第三节 一元线性回归模型的统计检验根据第一章第二节里,我们讲过的计量经济学模型检验规则可知,在利用OLS 法估计了一元线性回归模型的参数,并确定了样本回归线后,首先要根据经济理论及实际问题中X 和Y 的对应关系,对回归系数的符号、大小及相互关系进行直观判断,如果上述检验通过的话,还须对估计值进行统计学检验。
回归分析是要通过样本所估计的参数来代替总体的真实参数,或者说是用样本回归线来替代总体回归线。
尽管,从统计性质上已知,如果有足够多的重复抽样,参数的估计值的期望(均值)就等于总体的参数真值,但是,在一次抽样中,估计值不一定就等于该真值。
那么,在一次抽样中,参数的估计值与真值的差异有多大,是否显著,这就需要进一步进行统计检验,主要包括拟合优度检验、变量的显著性检验以及参数检验的置信区间估计。
一、拟合优度检验拟合优度检验,顾名思义,是检验模型对样本观测值的拟合程度(即回归直线对观测值的拟合程度)。
显然,若样本观测值离回归直线越近,则拟合优度越好,X 对Y 的解释程度越强;反之,则拟合优度差,X 对Y 的解释程度弱。
(参看课本44页图3.2.3)因为样本值太多,分别考察每一个离差是不切实际的,又为了克服绝对值符号在计算上带来的不便,因此,常使用离差平方和来考察总离差(推导过程课本44页)。
被解释变量的总离差平方和TSS可解释平方和(回归平方和)ESS 残差平方和RSS 因此,显然,ESS 在TSS 的构成中所占比例越大,RSS 在TSS 中所占的比例就越小,说明回归参数估计值的显著性越强,即样本回归线与真实回归线的拟合优度就越好。
因此,可以用ESS 在TSS 中所占的比例表示样本回归线与总体回归线的拟合程度。
二、变量的显著性检验 1. 相关系数的检验样本相关系数定义公式:)ˆ()ˆ(t t t t y y y y y y -+-=-RSS ESS TSS uRSS y yESS y y TSS t t t +==-=-=∑∑∑222)ˆ()ˆ()(100,01)()ˆ(22222≤≤∴≤≤≤≤-=--==∑∑R TSS ESS TSS RSS TSSRSS R y y y y TSS ESS R t t样本相关系数的性质:(1) r 的取值介于-1和1之间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为一线性函数。其中,0,1是未知参数,称为 回归系数(regression coefficients)。 。
三、随机扰动项
记
i Yi E (Y | X i )
称i为观察值Yi围绕它的期望值E(Y|Xi)的离差 (deviation),是一个不可观测的随机变量,又称 为随机干扰项(stochastic disturbance)或随机误 差项(stochastic error)。
其中
ˆ )2 Q e (Yi Y i
i 1
n
n
2 i
n
i 1
ˆ ˆ X ˆ X ˆ X )) (Yi ( 0 1 1i 2 2i k ki
样本散点图近似于一条直线,画一条直线以尽好地拟合该 散点图,由于样本取自总体,可以该线近似地代表总体回归线。 该线称为一元样本回归线(sample regression lines)。
记样本回归线的函数形式为: ˆ ˆ X ˆ f (X ) Y i i 0 1 i
称为一元样本回归函数(sample regression function, SRF)。
产生并设计随机误差项的主要原因: 1)理论的含糊性; 2)数据的欠缺; 3)节省原则。
四、一元样本回归函数(SRF)
总体的信息往往无法掌握,现实的情况只能是在 一次观测中得到总体的一个样本。 问题:能从一次抽样中获得总体的近似的信息吗? 如果可以,如何从抽样中获得总体的近似信息?
该样本的散点图(scatter diagram):
i i
X Ki i
1i
i
X E ( ) Ki i
1i
i
假设4,向量 服从多维正态分布,即
μ~ N (0, 2 I )
同一元回归一样,多元回归还具有如下两个重要假设:
假设5,样本容量趋于无穷时,各解释变量的方差趋于有 界常数,即n∞时,
二、一元总体回归函数
回归分析关心的是根据解释变量的已知或 给定值,考察被解释变量的总体均值,即当解 释变量取某个确定值时,与之统计相关的被解 释变量所有可能出现的对应值的平均值。
• 概念:
在给定解释变量Xi条件下被解释变量Yi的期望 轨迹称为一元总体回归线(population regression line),或更一般地称为一元总体回归曲线 (population regression curve)。
§2.3
线性回归模型的参数估计
估计方法:OLS、ML 一、普通最小二乘估计
二、最大似然估计
三、参数估计量的性质
四、样本容量问题
五、估计实例
一、普通最小二乘估计
对于随机抽取的n组观测值
(Yi , X ji ), i 1,2,, n, j 0,1,2, k
如果样本函数的参数估计值已经得到,则有:
(*)
(*)式称为一元总体回归函数(方程)PRF的随 机设定形式。表明被解释变量除了受解释变量的系统 性影响外,还受其他因素的随机性影响。
由于方程中引入了随机项,成为计量经济学模型, 因此也称为一元总体回归模型。
随机误差项主要包括下列因素的影响:
1)在解释变量中被忽略的因素的影响; 2)变量观测值的观测误差的影响; 3)模型关系的设定误差的影响; 4)其它随机因素的影响。
ˆ ˆ X ˆ X ˆ X ˆ Y i 0 1 1i 2 2i ki Ki
i=1,2…n
根据最小二乘原理,参数估计值应该是下列方程组的解
Q0 ˆ 0 Q0 ˆ 1 ˆ Q0 2 Q0 ˆ k
正相关 线性相关 统计依赖关系 不相关 相关系数: 有因果关系 无因果关系 回归分析 相关分析 负相关 1 XY 1 正相关 非线性相关 不相关 负相关
▲注意:
①不线性相关并不意味着不相关; ②有相关关系并不意味着一定有因果关系; ③回归分析/相关分析研究一个变量对另一个 (些)变量的统计依赖关系,但它们并不意味着一定 有因果关系。 ④相关分析对称地对待任何(两个)变量,两个 变量都被看作是随机的。回归分析对变量的处理方法 存在不对称性,即区分应变量(被解释变量)和自变 量(解释变量):前者是随机变量,后者不是。
也被称为总体回归函数的随机表达形式。它 的 非随机表达式为:
E(Yi | X 1i , X 2i , X ki ) 0 1 X 1i 2 X 2i k X ki
方程表示:各变量X值固定时Y的平均响应。
j 也被称为 偏回归系数 ,表示在其他解释变
量保持不变的情况下, X j 每变化 1 个单位时, Y 的均值E(Y)的变化; 或者说 j给出了 Xj的单位变化对 Y均值的“直 接”或“净”(不含其他变量)影响。
§2.1 回归分析概述
一、变量间的关系及回归分析的基本概念
二、一元总体回归函数
三、随机扰动项
四、一元样本回归函数(SRF)
§2.1 回归分析概述
一、变量间的关系及回归分析的基本概念 1、变量间的关系
经济变量之间的关系,大体可分为两类:
( 1 ) 确定性关系 或 函数关系 :研究的是 确定现象非随机变量间的关系。
假设2,
1 E ( 1 ) E (μ) E 0 E ( ) n n
1 ) E E (μμ n
1
12 1 n n E 2 n n 1
二、多元线性回归模型的基本假定
假设1,解释变量是非随机的或固定的,且各 X之间互不相关(无多重共线性)。
假设2,随机误差项具有零均值、同方差及不 序列相关性
E ( i ) 0
Var ( i ) E ( i2 ) 2
Cov ( i , j ) E ( i j ) 0
1 1 2 x ( X ji X j ) 2 Q j ji n n
或
1 x x Q n
其中:Q为一非奇异固定矩阵,矩阵x是由各解释变量 的离差为元素组成的nk阶矩阵
x11 x k 1 x x 1n x kn
假设6,回归模型的设定是正确的。
1 μ 2 n n 1
样本回归函数:用来估计总体回归函数
ˆ ˆ X ˆ X ˆ X ˆ Y i 0 1 1i 2 2i ki ki
其随机表示式:
ˆ ˆ X ˆ X ˆ X e Yi 0 1 1i 2 2i ki ki i
相应的函数:
E (Y | X i ) f ( X i )
称为(双变量)一元总体回归函数(population regression function, PRF)。
• 含义:
回归函数(PRF)说明被解释变量Y的平均状 态(总体条件期望)随解释变量X变化的规律。
• 函数形式:
可以是线性或非线性的。
由于方程中引入了随机项,成为计量经济模型,因此 也称为一元样本回归模型(sample regression model)。
▼回归分析的主要目的:根据样本回归函数SRF,估计 总体回归函数PRF。 即,根据
ˆ ˆ X e ˆ e Yi Y i i 0 1 i i
估计
Yi E(Y | X i ) i 0 1 X i i
i=1,2…,n
其中:k为解释变量的数目,j称为回归参数 (regression coefficient)。 习惯上:把常数项看成为一虚变量的系数,该 虚变量的样本观测值始终取1。这样: 模型中解释变量的数目为(k+1)
Yi 0 1 X 1i 2 X 2 i k X ki i
注意:这里PRF可能永 远无法知道。
§2.2 线性回归模型
一、多元线性回归模型 二、多元线性回归模型的基本假定
一、多元线性回归模型
多元线性回归模型:表现在线性回归模型中的 解释变量有多个。 一般表现形式:
Yi 0 1 X 1i 2 X 2 i k X ki i
ei称为残差或剩余项(residuals),可看成是总 体回归函数中随机扰动项i的近似替代。 样本回归函数的矩阵表达:
ˆ Xβ ˆ Y
或
e1 e e 2 e n
ˆ e Y Xβ
其中:
ˆ 0 ˆ ˆ β 1 ˆ k
2、回归分析的基本概念
回归分析(regression analysis)是研究一个变量关于另一个 (些)变量的具体依赖关系的计算方法和理论。 其用意:在于通过后者的已知或设定值,去估计和(或)预 测前者的(总体)均值。 这里:前一个变量被称为被解释变量(Explained Variable) 或应变量(Dependent Variable),后一个(些)变量被称为解 释变量(Explanatory Variable)或自变量(Independent Variable)。 回归分析构成计量经济学的方法论基础,其主要内容包括: (1)根据样本观察值对经济计量模型参数进行估计,求得回 归方程; (2)对回归方程、参数估计值进行显著性检验; (3)利用回归方程进行分析、评价及预测。
总体回归模型n个随机方程的矩阵表达式为
Y X β μ
其中
1 1 X 1 X 11 X 12 X 1n X 21 X 22 X
2n
X k1 X k2 X kn n ( k 1 )
0 1 β 2 k ( k 1)1