2不定积分的换元法
不定积分的换元积分法
csc xdx ln csc x cot x C .
21
应用第一类换元法的常见的积分类型如下:
1.
2. x
1 f (ax b)dx f (ax b)d(ax b) ; a
n 1
f (axn b)dx
1 f (axn b)d(axn b) ; na
这类求不定积分的方法,称为第二换元 法.
32
例11 解
dx 求 1 3 - x .
设 t 3 x,则 x 3 t 2 , dx 2tdt .
dx 2t dt 2 1 t 1 dt 1 t 1 t 1 3 x 1 2 (1 )dt 1 t
8
例1 解 所以
求 sin 2 xdx .
1 设 t 2 x ,则 dt 2dx ,即 dx dt . 2
1 1 sin 2 xdx sin tdt cos t C , 2 2
再将 t 2 x 代入,得
1 sin 2 xdx cos 2 x C . 2
2
x 1 (9) cos xdx sin 2 x C 2 4
28
1 1 C (10) dx 2 2(2 x 3) (2 x 3)
(11)
x 1 ( x 2 2 x 3)
2 1 4
2 2 dx ( x 2 x 3) C 3
3 2 2
3 4
于是
利用复合函数求导公式,可以验证(4.3.1) 的正确性.
3
实际上,由 d F ( ( x)) C F ( x) ( x) dx f ( x) ( x) , 可知公式(4.3.1)成立.利用公式(4.3.1)来计 算不定积分,就是第一换元法,亦称为凑微分 法.
第5章2不定积分换元积分(1)
例10 求 sin3 x dx.
解 sin3 x dx sin2 x sin x dx (1 cos2 x)d cos x
1 cos3 x cos x C 3
说明 当被积函数是三角函数相乘并有奇次幂 时,拆开奇次项去凑微分.
例11 求 sin2 x cos5 xdx.
积分: f [(x)](x)dx F[(x)d[(x)] dF[(x)
第一类换元法可表述为:
换元 ( x )u
积分
f [( x)]( x)dx f (u)duF(u) C
u ( x )还原
F[( x)] C
4
换元积分法
一、第一类换元法
例2 求 2xex2dx .
例3 求 x 1 - x2dx .
19
(1)
5
(1 3x)2 dx
2
(1
7
3x)2
C
21
(3)
1
x x
2
dx
1 ln(1 x2 ) C 2
(5) (ln x)2 dx 1x
(7)
ex x2
dx
1 ln( x)3 C 3
1
ex C
(9) dv 1 2v C 1 2v
(11)
x
2x 2
x
1
3
dx
ln x 2 x 3 C
解
tanxdx
sin cos
x x
dx
1 d cos x cos x
= - ln |cosx| + C
tanxdx = - ln |cosx| + C = ln |secx| + C
同理 cotxdx = ln |sinx| + C = - ln |cscx| + C
不定积分的第二类换元积分法
回 代
ln
x2 a2 x
a
a
C1
ln |xx2a2| C 1-ln a
ln|x x2a2|C
❖(2)根式代换(去根式)
例4
求
1 dx x(13 x)
解 令 xt6 (t 0),dx6t5dt
1 dx x(13 x)
6t5 dt t 3 (1 t 2 )
6t 2 1 t2
dt
6
t2 1-1 1t2 dt
2 x2-a2 atant.
d xasettcatn dt
ysexc
例1 求 a2-x2dx (a0)
解 令 xasitn dxaco tdtst - ,
2 2
a2 -x2dx a2-a2sin 2tacotsdt
a2co2stdt
a2
1co2stdt 2
辅助三角形
a2 1
(t sin2t)C
1 dx x4 1
t-3
t1-41-t12dt
- t3 dt -1 1 dt(41)
1 t 4
4 1t4
-1 1t4 C 2
x4 1 2x2
C.
13
首页
上页
返回
下页
结束
铃
(2)求
dx 4x2 9
解
dx
4x2 9
dx
(2x)2 32
1 d(2x) 2 (2x)2 32
1ln2x 4x29C 2
不定积分的第二类换元积分法
1
首页
上页
返回
下页
结束
铃
一、第二类换元法根本定理
❖定理2
设xj(t)是单调的、可导的函数, 并且j(t)0. 又设f [j(t)]j(t)具有原函数F(t), 则有换元公式
不定积分(二)
不定积分
例5 求 sin 3xsin 5xdx
解: sin 3xsin 5xdx
1 2
[
c
os(3x
5x)
cos(3x
5x)]dx
1 2
c
os8xdx
1 2
cos(2x)dx
1 2
c
os8xdx
1 2
cos2xdx
1 sin 8x 1 sin 2x C
2 sin 2x
1
(ln
tan
3
x) 2
C
3
不定积分
2、
ln(1 x) x(1
ln x)
xdx
[ln(1
x)
lnΒιβλιοθήκη x]d[ln(1x)
ln
x]
1 [ln(1 x) ln x]2 C 2
1 [ln 1 x ]2 C 2x
[ln(1 x) ln x]
解:1、tan3 xsec3 xdx tan2 x sec2 xdsec x
(sec2x 1)sec2 xd (sec x)
sec4 xd(secx) sec2 xd(secx)
1 sec5 x 1 sec3 x C
C
3
3
不定积分
练习
1、e2xdx
3、x3 sin(x4 1)dx
5、
ln x dx x
7、ex 2 ex dx
2、 4x 1dx
不定积分方法总结
A(a cos x b sin x) B(a cos' x b sin' x) 来做。 a cos x b sin x
sin x cos x 或 cos x sin x
。再用待定系数
简单无理函数的积分
一般用第二类换元法中的那些变换形式。
1 5 2 3 t t t c 5 3 1 (8 4 x 2 3 x 4 ) 1 x 2 c 15
例4
求
1 dx x ( x 7 2)
解:令 x 1 dx 1 dt 2
t t
1 t 1 x( x7 2) dx 1 7 ( t 2 )dt ( ) 2 t
1 arctan( x 2 ) c 2
例5
求
1 1 e x dx
1 ex ex ex 1 e x dx (1 1 e x )dx 1 dx d (1 e x ) x ln(1 e x ) c x 1 e
解法一:
1 1 e x dx
2 a ( 1 sin 2 t) a costdt
a
2
cos2 tdt
1 cos 2t a2 a dt 2 2
a2 1dt 2
cos 2tdt
a2 a2 1 t ( sin 2t ) c 2 2 2
sin t cost
x a a2 x2 a x a2 x2 a2
f ( x)dx [ f [ g (t )]g ' (t )dt]
t g 1 ( x )
例1
不定积分的换元积分法4.2
f [j ( t )] j ( t )dt
.
最后将t =j1(x)代入f [j(t)]j(t) 的原函数中.
第二类换元法用于求特殊类型的不定积分.
例 21 例18
求
a
2
x
2
d x (a > 0 ).
x
2
a t
a x
2 2
解
设 x a sin t ,
a x
a
2
< t<
2 2
ln | x
x a
2
2
| C
.
三、积分公式小结
(1 ) kdx kx C ,
( 2 ) x dx
m
(k是常数),
x
m 1
1
m 1
C,
(m 1),
(3)
(4)
(5 )
1 x
dx ln | x | C ,
1 dx arctan x C ,
例 23 例21
求
dx x
2
x
2
(a > 0 ).
a
解 那么
当 x> a 时 , 设 x a se c t (0 < t<
x a
2 2
2
t
),
sec
2
a
t 1
a sec
2
2
ta
2
a
a tan t , 于是
dx x a
2 2
2
a sec t tan t a tan t
2
1 3
sin
3
第2讲不定积分的换元积分法
∫
arctan x d x = ∫ 2v d v x (1 + x)
= v2 + C
换元法可以连续使用
= (arctan u ) 2 + C = (arctan x ) 2 + C .
二、 不定积分的第二换元法
第一换元法中
∫
f (ϕ ( x))ϕ ′( x) d x = ∫ f (u ) d u 是被积表达式
ϕ ( J ) ⊂ I , 则在区间 J 上有
∫ f (ϕ ( x))ϕ ′( x) d x = ∫ f (u ) d u
= F (u ) + C = F (ϕ ( x)) + C.
证明过程 请看书!
该定理称为不定积分的第一换元法,也叫“凑微分”法。
例1 解
求 ∫ sin 3 x cos x d x .
2
π
π
∫
dx a sec 2 t d t =∫ 2 2 a sec t x +a
= ∫ sec t d t
x2 + a2
t
x a
= ln | sec t + tan t | +C1
= ln | x + x 2 + a 2 | + C .
( C = C1 − ln a )
一般说来,含有
a 2 − x 2、 x 2 ± a 2 的表达式的积分,
=∫
(tan x + sec x)′ dx tan x + sec x
= ln | tan x + sec x | +C .
此题若按下面方式做,则有 cos x d x cos x d x du ∫ sec x d x = ∫ cos 2 x = ∫ 1 − sin 2 x = ∫ 1 − u 2 1 u +1 1 sin x + 1 = L = ln + C = ln +C 2 u −1 2 sin x − 1
不定积分的换元法
一般的说,若积分 f (x)dx不易计算可以作适当的
变量代换 x (t) ,把原积分化为 f ((t))'(t) dt 的形
式而可能使其容易积分.当然在求出原函数后, 还要
将 t 1(x) 代回.还原成x的函数,这就是第二换元
积分法计算不定积分的基本思想.
应用第二类换元法求不定积分的步骤为
f
( x) d
x
x
换元
(t)
f
(t)
'(t ) d
t
g(t)d t
F(t)
C
还原
(t)
x
F
1(t) C
第二类积分换元法 分为两种基本类型根 三式 角代 代换 换
例6 求
x dx. 1 x
解 令 1 x t,得x 1t2,得dx 2tdt,所以有
x 1
x
dx
1t
t
2
2tdt
2 (1 t2)dt
ln
x a
x
2 a
a
2
C
.
x2 a2
x
t a
练习:P109 1(12)
小结:二类换元积分法的思想与步骤
作业:P109 1(1)、(4)、(10)
C
1 3
(
x2
3
4)2
C.
x2
4dx
1 2
udu
练习:P109 1(2)、(5)、(15)
二、 第二类换元法
第一类换元法是通过变量替换 u ( x)
将积分
f [( x)]( x)dx化为积分 f (u)du
下面介绍的第二类换元法是通过变量替
换 x (t) 将积分
f ( x)dx化为积分 f [(t)](t)dt
不定积分第二种换元法
复杂实例解析
总结词
复杂实例展示了方法的实际应用
详细描述
选取具有挑战性的不定积分问题,如 $int frac{e^x}{x} dx$,逐步展示如何通过第二种 换元法化简积分,并最终得出答案。
扩展微积分的应用范围
掌握第二种换元法后,学生可以在更广泛的 领域应用微积分知识,解决实际问题。
在其他数学领域的应用
在实变函数中的应用
实变函数是研究实数范围上的函数的数学分 支,第二种换元法在实变函数中也有广泛的 应用。
在复变函数中的应用
复变函数是研究复数范围内函数的数学分支, 其中许多问题可以通过第二种换元法得到解 决。
在第二种换元法中,首先需要选择一个适当的换元函数,通常是为了简化被积函数的形式。然后确定新变量的范 围,将原不定积分中的自变量替换为新变量。接着将被积函数转化为新变量的函数,最后根据新变量的范围计算 不定积分的结果。
04
第二种换元法实例解析
简单实例解析
总结词
简单实例有助于理解基本概念和方法
详细描述
THANKS
感谢观看
03
第二种换元法原理
第二种换元法的定义
总结词
不定积分的第二种换元法是通过引入新的变量来简化不定积分的过程。
详细描述
不定积分的第二种换元法是一种基于变量替换的方法,通过选择适当的换元函 数,将原不定积分转化为更易于计算的形式。
第二种换元法的适用范围
总结词
第二种换元法适用于被积函数难以直接积分的情况,尤其是含有根号或三角函数 的不定积分。
意义
不定积分第二种换元法的意义在于,它提供了一种有 效的工具来解决一些难以处理的不定积分问题。在实 际应用中,许多物理、工程和科学问题都需要解决不 定积分,而第二种换元法可以帮助我们更准确地计算 这些不定积分,从而为解决实际问题提供更可靠的数 学支持。此外,不定积分第二种换元法也是数学理论 体系的重要组成部分,它推动了数学的发展和进步。
不定积分的第二类换元法
不定积分的第二类换元法不定积分的第二类换元法,也称为变换型积分法,是求解某些复杂不定积分问题的一种重要方法。
它的核心思想是通过引入新的变量替换原积分式中的自变量,从而将原积分转化为形式更简单的积分式。
通过适当的变换可以简化积分的计算过程,使得原本难以求解的积分问题变得可行。
第二类换元法的基本步骤如下:1.首先,观察被积函数的形式,尝试找到适合的新的变量来代替原积分中的自变量。
通常可以根据被积函数的特点,选择适当的变换方法。
比如,当被积函数中出现平方根、指数函数、三角函数等形式时,可以考虑使用适当的换元方法。
2.其次,根据选择的新变量进行变换。
这里需要根据换元法的不同种类进行具体分析。
变换后的积分式可能比原式更简单,也可能更加复杂。
但是通过适当的变换,可以使得原本难以求解的积分问题变得可行。
3.然后,对于变换后的积分式,进行必要的代数运算。
这可能包括合并分式、分配开来等操作,以达到简化积分的目的。
4.最后,根据变换后的积分式求解不定积分。
这里需要利用基本的不定积分公式,以及特定函数的积分性质进行计算。
在具体计算过程中,需要注意变换后的新变量与原变量之间的关系,并进行适当的替换。
需要注意的是,不定积分的第二类换元法并非适用于所有问题,它仅仅是求解一部分特殊问题的方法之一。
对于一些特殊的积分问题,可能需要结合其他方法(如分部积分法、换元积分法等)进行求解。
举个例子来说明第二类换元法的具体应用:考虑求解不定积分∫(2x+1)√(2x+1)dx。
这里,我们可以选择新的变量u=2x+1来代替原式中的自变量x。
进行变换后,积分式变为∫√u du。
根据换元后的积分式,我们可以轻松求解得到积分的结果:(2/3)u^(3/2) + C,其中C为常数。
再将u=2x+1代回原始变量x,最终得到不定积分的结果:(2/3)(2x+1)^(3/2) + C。
通过上述例子可以看出,第二类换元法使原先较为复杂的积分问题变得简单易解。
不定积分第二类换元法公式
不定积分第二类换元法公式
换元的根本目的是要将式子中原本的根号去掉。
比如:
被积函数含根式√(a^2-x^2),令x = asint,源式化为a*cost。
利用第二类换元法化简不定积分的关键仍然是选择适当的变换公式x = φ(t)。
此方法主要是求无理函数(带有根号的函数)的不定积分。
由于含有根式的积分比较困难,因此我们设法作代换消去根式,使之变成容易计算的积分。
下面我简单介绍第二类换元法中常用的方法:
(1)根式代换:被积函数中带有根式√(ax+b),可直接令t =√(ax+b);
(2)三角代换:利用三角函数代换,变根式积分为有理函数积分,有三种类型:
被积函数含根式√(a^2-x^2),令x = asint
被积函数含根式√(a^2+x^2),令x = atant
被积函数含根式√(x^2-a^2),令x = asect
注:记住三角形示意图可为变量还原提供方便。
不定积分的第二类换元积分法
dt t C
x 回代: arcsin C a
>>>
例7 求
解
1 a 2 x 2 dx
(a 0)
原式
x a tant
1 (a sec t )2 d (a tant )
1 1 dt t C a a 1 x 回代: arctan C a a
( 2) 求 解
dx
dx 4x2 9
4x2 9 dx
(2 x) 2 32
1 d ( 2 x) 2 (2 x) 2 32
1 ln 2 x 4 x 2 9 C 2
( 3) 求 解
xdx 2x x2 xdx
2x x2
( x 1)dx 2x x
6t 2 t 2 1 1 dt 6 dt 2 2 1 t 1 t
1 6 1 dt 6[t arctant ] C 2 1 t
6[6 x arctan6 x ] C
根式代换(去根式) 1 dx 例4 求 1 ex
第四章
第三节
不定积分
不定积分的换元积分法
主要内容:
第二类换元法.
内 容 回 顾
一、第一类换元法
定理1(换元积分公式)
设 F 是 f 的一个原函数, u=(x)可导, 则有
f [ ( x)] ( x)dx [ f (u )du ] f [ ( x)] ( x)dx
F [ ( x)] C
2 2
a 2 x 2 dx a 2 a 2 sin 2 t a costdt
2
不定积分换元法公式
不定积分换元法公式不定积分换元法是求解不定积分中常用的一种方法,它通过引入一个新的变量替换原积分中的变量,从而将原积分转化为新的不定积分,进而更容易求解。
不定积分换元法公式主要包括两种形式:第一类换元法和第二类换元法。
接下来,我将详细介绍这两种形式的公式及其应用。
一、第一类换元法:第一类换元法是通过引入一个新的变量来替换原不定积分中的变量,一般选择不定积分的变量作为新变量的导数。
设新变量为u = g(x),则原不定积分可表示为∫f(x)dx = ∫h(u)du,其中h(u)为f(x)与g(x)之间的关系。
此时,需要求出u关于x的导数du/dx,并应用链式法则来完成变量替换和求导。
公式如下:∫f(x)dx = ∫h(u)du = ∫h(g(x))g'(x)dx二、第二类换元法:第二类换元法是通过引入一个新的变量来替换原不定积分中的一部分表达式,一般选择积分中的一部分表达式作为新变量的导数。
设新变量为u = g(x),则将表达式f(x)dx进行替换,可得∫f(x)dx =∫g'(x)h(u)du,其中g'(x)为新变量u关于x的导数,h(u)为f(x)dx与g'(x)之间的关系。
此时,需要求出u关于x的导数du/dx,并应用链式法则来完成变量替换和求导。
公式如下:∫f(x)dx = ∫g'(x)h(u)du通过以上两种换元法,可以将原不定积分转化为新的不定积分,然后利用新的不定积分公式及基本积分公式进行求解。
下面举例说明这两种换元法的应用。
(1)第一类换元法的应用:求解∫(2x + 1)²dx。
设u = 2x + 1,则du/dx = 2将du/dx代入原式,并将原积分中的x用u表示∫(2x + 1)²dx = ∫u² * (1/2)du = (1/2) * ∫u²du = (1/2) * u³/3 + C = (1/6)(2x + 1)³ + C。
不定积分 换元法
(也称配元法 , 凑微分法)
例1. 求 解: 令 u a x b , 则 d u adx , 故 原式 = u
m
1 a
du
1
a m 1
1
u
m 1
C
注: 当
时
例2. 求
ቤተ መጻሕፍቲ ባይዱ
想到公式
1 a
2
解:
1 ( x)2
a
dx
1 u2
arctan u C
dx
du
令u
2
2
2
dx
2
(x 2
2
a )
2
2
1 2
d( x a )
2
3 2
a
2
(x
2
a )
d( x a )
2
2
例12 . 求
1 cos 2 x 2 解: cos x (cos x) ( ) 2 2 1 (1 2 cos 2 x cos 2 x) 4
4 2 2
1
x a
, 则 du 1 a
1 a
a 1 u2
du
arctan u C
例3. 求
解:
a
dx
x 2 1 (a)
x d (a) x 1 (a) 2
想到
du 1 u
2
arcsin u C
f [ ( x)] ( x)dx
f ( ( x))d ( x)
3
例9. 求 解法1
1 ex .
dx
(1 e ) e 1 e
2不定积分
u = ex −1, 则 令
4
u2 +1−1
− 4(u − arctanu) + C
机动
目录
上页
下页
返回
结束
方法2 方法 (先换元,再分部) 令 u = ex −1, 则 故
= 2u ln(1+ u )
2
1+
−1
机动
目录
上页
下页
返回
结束
第四章 四
有理函数的积分
• 基本积分法 : 直接积分法 ; 换元积分法 ; 分部积分法
机动
目录
上页
下页
返回
结束
1 dx (ab ≠ 0) . 例6. 求 ∫ (asin x + bcos x)2
解法 1 原式 = ∫
dx
(a tan x + b) cos x
2
2
令 t = tan x
1 dt =− +C =∫ a(a t + b) (at + b)2 cos x =− +C a(a sin x + bcos x)
1 d (2x) 1 解: I = ∫ = ln 2x + 4x2 + 9 + C 2 (2x)2 + 32 2
机动 目录 上页 下页 返回 结束
例22. 求 解: 原式 = ∫
5 ( 2 )2 − (x − 1)2 2
d (x − 1) 2
例23. 求 解: 原式 = −∫
d e−x 1− e−2x
4 1= + C 5 1 4 B+ C = + 6 15 2
1 4 2x −1 原式 = − 5 1+ 2x 1+ x2
不定积分第2换元法
sin
x1 2
2 arcsin x 1 x 1
4 (x 1)2 C
sin
2t
x1 2
4( x1)2
22
2020/2/29
不定积分的计算
例11 求积分 I
dx
x x2 a2
(a 0)
解:当a x 时,令x 1, t (0, 1 )
t
a
解:当0 x a,
xa sin t ,dxa costdt
I1
a2 x2 a cost
a2 a4
cos2 sin 4
t t
dt
a
t
x c ostsin
t
x/ a2
a x2
/
a
a2 x2 tan t x / a2 x2
1 sec2 t 积分 1 1
第二换元法例(续1)
解:I 2
ax,代换asect tan tdt
x aSe c t x 2 a 2 atgt
a sect a tan t
x
x2 a2
整理
1
dt 1 t C
a
a
sin t x2 a2 / x
t
a
令x12sin t
4 cos2 tdt 2 (1 cos2t)dt
4( x1)2 2cost
sin 2t 2sin t cost
分项积分
2t sin 2t C
2 t
x-1 2 x 1 4 (x 1)2
4 (x 1)2
2
2
代回t
a
rc
高等数学 第六章 积分法 6-2 不定积分的换元积分法(2)
第二节 不定积分的换元积分法
一、第一类换元积分法(凑积分法) 第一类换元积分法(凑积分法) 二 、第二类换元积分法 基本积分表( 三 、基本积分表(Ⅱ)
二、第二类换元法
1. 引例
∫
1− x2 d x = ?
解 作变量代换: 作变量代换: 令 x = sint ( t < π ) 则 d x = cos t dt, ,
为去根式
解 令 x = asint , t ∈(− , ), 则 dx = acos t dt 2 2 x 2 2 2 2 2 = acos t sint = a − x = a − a sin t a 2 1+ cos 2t 2 2 I = ∫ acos t ⋅ acos t dt a ∫ dt ∫ cos t d = a x 2 t 2 t sin2t ) +C =a ( + 2 4 a2 − x2 x a2 − x2 sin2t = 2sint cos t = 2 ⋅ ⋅ a2 − x2 a a cos t = 2 x 1 a a = arcsin + x a2 − x2 + C. a 2 2
令 t = 1+ x2, 则 x2 = t 2 −1, xd x = t dt,
∫
(t2 −1)2 dx = ∫ t dt = ∫ (t4 − 2t2 + 1)dt t 1+ x2
x5
1 15 23 = t − t + t + C= (8− 4x2 + 3x4 ) 1+ x2 + C. 15 5 3
中 其 t = ψ−1( x)是x = ψ(t)的 函 . 反 数 端 分 得 后 其 右 积 求 之 , 中t须 反 数 =ψ −1( x)回 . 用 函 t 代
不定积分的换元积分法
第四节 不定积分的换元积分法不定积分时若凑微分法、分部法均解决不了问题,且被积函数中含有复杂的量arcsin x 、()nax b +等),则可以考虑使用换元积分法.一、换元积分法例6.4.1 求不定积分.解 这里主要障碍是 t = 此时2x t =t ”则211dt t=+⎰ 21t dt t=+⎰ 1121t dt t+-=+⎰ 12(1)1dt t =-+⎰ 22ln 1t t C =-++(2ln 1C =+. 例6.4.2 求不定积分11x dx e+⎰. 解 同样令主要障碍x e t =,此时ln x t = 则11x dx e +⎰1ln 1d t t =+⎰()11dt t t=+⎰ 11()1dt t t=-+⎰ ln ln 1t t C =-++ln(1)x x e C =-++.例6.4.3 求不定积分arcsin xdx ⎰.解 令arcsin x t =,此时sin x t =,则 arcsin xdx ⎰sin td t =⎰sin sin t t tdt =-⎰sin cos t t t C =++arcsin x x C =.例6.4.4 求不定积分()2101x dx x +⎰.解 令()1x t +=,此时1x t =-,则()2101x dx x +⎰ ()()21011t d t t -=-⎰21021t t dt t-+=⎰ 8910(2)t t t dt ---=-+⎰789111749C t t t=-+-+ ()()()789111714191C x x x =-+-++++.从以上例题可见,换元可使复杂积分变得简单,可关键是怎么换.二、换元积分举例例6.4.5 用换元法求下列不定积分:(1); (2)⎰; (3);(4)⎰; (5);(6). 解(1)21t dt t +221t dt t =+⎰21121t dt t -+=+⎰1211t dt t ⎛⎫=-+ ⎪+⎝⎭⎰ =222ln 1t t t C -+++=(2ln 1x C -++;(2)⎰2t e dt2t te dt =⎰22t t te e dt =-⎰()21t e t C =-+=)21C +;(3) ()2111t d t t --+ 221t t dt t -=+⎰ 22221t t dt t --+=+⎰ 2221t dt t ⎛⎫=-+ ⎪+⎝⎭⎰ ()244ln 1t t t C =-+++=)14ln1x C +-+;(4)⎰ 2222()55t t td -- 422425t t dt -=⎰ 532412575t t C =-+=532412575C -+;(5)⎰()63211dt t t + 226t 661dt t+-=+⎰ 66arctan t t C =-+=C ;(6)21ln(1)d t t- 2121dt t =-⎰ 1111dt t t ⎛⎫=- ⎪-+⎝⎭⎰ 1ln 1t C t -=++ln C =+.t =”也就行了.“2x ”项,问题就不是那么简单了.例6.4.6cos t =(,22t ππ⎡⎤∈-⎢⎥⎣⎦)换元,求积分. 解sin cos sin x t td t =⎰2cos tdt =⎰1cos 22t dt +=⎰ 11cos 2224dt td t =+⎰⎰ 11sin 224t t C =++ 11sin cos 22t t t C =++ ()11arcsin cos arcsin 22x x x C =++. 例6.4.7sec t =(,22t ππ⎡⎤∈-⎢⎥⎣⎦)换元,求积分.解12tan 2tan 2sec x t d t t=⎰sec tdt =⎰ ln sec tan t t C =++ln sec arctan 22x x C ⎛⎫=++ ⎪⎝⎭.例6.4.8 tan t =(0,2t π⎡⎤∈⎢⎥⎣⎦)换元,求积分. 解33sec 3sec 27sec 3tan d t x t t t =⋅⎰ 21127sec dt t=⎰ 21cos 27tdt =⎰ 1(1cos 2)54t dt =+⎰ 11sin 254108t t C =++ 11sin cos 5454t t t C =++ 1313arccos sin arccos 5418C x x x ⎛⎫=++ ⎪⎝⎭. 例6.4.9 求下列不定积分:(1)sin sin cos x dx x x +⎰;(2);(3)⎰. 解(1)sin sin cos x dx x x +⎰11cot dx x=+⎰cot x t =1cot 1darc t t +⎰21111dt t t =-++⎰ 2111211t dt t t -⎛⎫=-- ⎪++⎝⎭⎰ 211112121t dt dt t t-=-+++⎰⎰ 2211111212121t dt dt dt t t t =-+-+++⎰⎰⎰ ()2111ln 1ln 1cot 242t t arc t C =-+++++ =()2111ln 1cot ln 1cot 242x x x C -+++++;(2)dx222= 222dt =+22=-+ 查《积分表》(见文献文献×)12arcsin 2arcsin 2t t C ⎛=-++ ⎝arcsin t C =-+=(C -;(3)⎰t22sec tan t tdt =2tan tan td t =3t C =+3arc s co C x ⎛=+ ⎝⎭; 此题还可以用另一个很简单的解法:⎰212= ()()12221332x d x =--⎰ ()322133x C =-+; 可见换元积分法不是一个很好的方法,凑微分法、分部法均解决不了,再考虑用它. 思考题6.41.本节介绍的换元积分法中,换元的根本目的是什么?应注意什么问题?2.总结一下利用三角公式换元积分法(三角代换法)的三种类型.3.思考凑微分法、分部法及换元法三种积分方法的优先次序,如何选用? 练习题6.41. 用换元法求下列不定积分:(1); (2); (3)()31x dx x -⎰. 2. 利用三角代换求下列不定积分:(1)()0a >; (2); (3)()0a >.练习题6.4答案1.解(1)()2211t d t t-- ()221t dt =-⎰3223t t C =-+C -; (2)()3121d t t -+ 231t dt t=+⎰ 21131t dt t-+=+⎰ 1311t dt t ⎛⎫=-+ ⎪+⎝⎭⎰ =2333ln 12t t t C -+++=233ln 12C -+; (3)()31xdx x -⎰()3111t d t t--⎰-x=t 31t dt t-=⎰ 2311dt t t ⎛⎫=- ⎪⎝⎭⎰ 212C t t=-++=()21211C x x ++--.2. 解(1)()0a > sin cos (sin )x a t a td a t =⎰ 22cos a tdt =⎰()21cos 22a t dt =+⎰22sin 224a a t t C =++=2arcsin 2a x C a ; (2)21x 2tan 2tan 4tan 2sec t d t t t =⎰ 21cos 4sin t dt t=⎰ 211sin 4sin d t t=⎰ 14sin C t =-+ 1csc arctan 42x C ⎛⎫=-+ ⎪⎝⎭; (3)()0a >1x sec sec sec tan a t da t a ta t =⎰ 1dt a =⎰ 1t C a=+ 1arccos a C a x =+.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1 求 sin2xd.x
解(一)si1nc2xod2sxx12C;sin2xd(2x)
2
解(二) sin2xdx2six ncoxsdx
2six n(dsix)n six n 2C; 解(三) sin2xdx2six ncoxsdx
co x2 sC .
例2 1xx2dx;
解:
1
x x2
dx
1212xx2 dx
1 2
dx(1x2) 1x2
1ln1(x2)C 2
例3 a2dxx2;
解:
dx a2 x2x)2
a
1 a
1
d(x) a
( x )2
a
1arctaxnC
coxsdx 1d(asixn b) a
sixnd x1d(acox sb) se2x cdx 1d(ataxn b)
a
a
cs 2xcd x 1d(atcax nb) a
3. 对简单问题:
f ( u ( x ) u ( x ) ) d f x ( u ( x ) d ( ) x ) u F ( u ( x ) C )
约定 f(u (x 为 )u )(x)dx
证明:由条件 dF (u)得 f(, u)du
根据一阶微分形式不变性,
d ( u ( F x ) ) f( u ( x )d ) ( x ) u f(u (x )u )(x )dx
再根据积分是运 求算 导, 的即 逆知定理结 论成立。
关于第一换元法的几点说明:
1. 求导时:函数对中间变量 u 求导 中间变量对自变量 x 求导
求积分时:对 x 积分 对中间变量 u 积分
顺序相反。
2. 常用凑微分:
dx1d(ax b) a
xdx1d(a2 xb) 2a
x2dx1d(a3 xb) 3a
1dx1d(aln|x|b) xa
dx2da xb a xb a
sin x
13.
x
(arctan 1 x2
x
)3
/
2
dx;
14.
例5 dx ;
a2 x2
解: dx
dx
a2 x2
a 1 ( x)2
a
1
x
d( )
1( x)2 a
a
arcsixnC a
例6
dx ; cosx
解:
dx cos
x
ccoos2sxxdx1dssiinn2xx12ln11ssiinnxxC
问题 cos2xdxsi2n xC ,
解决方法 利用复合函数,设置中间变量.
过程 令 t2xdx 1dt, 2
cos2xdx
12costdt
1sint 2
C1sin2xC. 2
在一般情况下:
设 F (u )f(u ),则 f(u )d u F (u ) C .
如u 果 u(x)可 ( )微 d [ u ( x ) F f ] [ u ( x ) u ( x ] ) dx
dx cos2 x sin2 x
2
dx 2
cos2 x(1 tan2 x)
2
2
2
2
d tan x
2
1
tan
2 2x
2
1 tan x
ln 1
tan
2 x
C
2
l|n sx e tca x | C n
例7 解:
dx ; sinx
dx sin x
tan
d x 2
解: acoxsdxbsinx
1
a2b2
dx a cox s b sixn
a2b2
a2b2
a2 1 b2sin co x d s cxo ssixn a21b2sdi(n (xx))
1 ln tan xC
a2b2
2
其 si中 na , co sb .
3. 几何意义:
原函数f(称 x)的 为积分曲线是 ,积 不分 定曲 积
4. 基本积分表; 5. 不定积分的性质:
1).k(fx)d xkf(x)dx (k0) 2).[f(x)g(x)d] xf(x)d xg(x)dx
§2 不定积分的换元法
❖ 第一换元法 ❖ 第二换元法
一. 第一换元法
a 2 b 2
a 2 b 2
例
1.
x 1 x2
dx ;
2.
dx ; a2 x2
3.
dx ; a2 x2
4.
dx a2
; x2
5.
dx ; cos x
6.
dx ; sin x
9.
dx x(1
; x)
10 .
1
dx cos
2
; x
11.
1 sin x dx; 12 . x n ax 2 bdx;
Nove. 21 Mon.
Review
1. 原函数与不定积分的概念:
f(x)dxF(x)C
C为常数F(, x)为f(x)的一个原函数。
2. 不定积分与微分的关系:
1 )d . (F x)f(x)d xf(x)d xF (x)C 2)d .f(x)d xf(x)d或 x(f(x)d)x f(x)
a
a
例4
dx a2 x2;
解:
dx a2 x2
(axd)(xax)
21a(a 1xa 1x)dx
2 1 a[d(a a x x )d a (a xx )]
1[l|a n x|ln |ax|]C 2a
1 lnaxC 2a ax
f [ u ( x )u ( ] x ) d F x [ u ( x ) ] C [ f(u)d]u uu(x) 由此可得换元法定理
定理1:若u是自变量时 f(u), duF 有 (u)C,则
u是x的可微u(函 x)时 数,也有:
f(u(x))du (x)F(u(x))C
dx 2sin x cos
2 x 2
cos 2 x
2
x 2
d
tan tan
x 2 x 2
dx 2
sin x cos x 22
ln|tanx| x
C
tan x 2
sin
cos
x
2 x
2 sin 2 x 2
1cosx
cx s c cx ot
sin x
sinx
2
例 8acoxdsb xsix n;