(方案)人脸识别系统技术方案.doc

合集下载

人脸识别技术方案

人脸识别技术方案

人脸识别技术方案人脸识别技术是一种通过计算机视觉和模式识别等技术,对人脸图像进行分析和比对,从而实现对人脸身份的自动识别与验证的技术。

它具备高效、准确、便捷等特点,在安全、身份认证、门禁控制、人员管理等领域有着广泛的应用。

本文将详细介绍人脸识别技术的工作原理和应用场景,并提出一种人脸识别技术方案。

一、人脸识别技术的工作原理1. 图像采集:人脸识别技术的前提是获取到人脸图像信息。

一般通过摄像头等设备对目标人物进行拍摄,获取到人脸图像。

图像采集需要注意光线、角度等因素的影响,以获得清晰的人脸图像。

2. 图像预处理:获得的人脸图像需要进行预处理,包括去噪、对齐、归一化等步骤。

预处理能够提高图像的质量,减少噪声干扰,使得后续的特征提取和比对更加准确、稳定。

3. 特征提取:在预处理之后,需要从图像中提取人脸的特征。

常用的特征提取方法有主成分分析(PCA)、线性判别分析(LDA)、局部二值模式(LBP)等。

这些方法能够将人脸图像转化为特征向量的形式,实现对人脸的定量描述。

4. 特征匹配:将提取到的人脸特征与数据库中的特征进行匹配比对,确定人脸的身份。

匹配算法可以采用欧氏距离、余弦相似度等方法进行计算,找出与输入人脸最相似的特征向量。

5. 判定与识别:根据特征匹配的结果,系统可以判定输入人脸的身份是否与数据库中的数据匹配,从而实现人脸的识别。

如果匹配成功,则可以进行相应的操作,比如门禁开启、身份验证等。

二、人脸识别技术的应用场景1. 安防领域:人脸识别技术可以应用于视频监控系统,实时监测和识别人脸,对可疑人物进行报警,提高安全防范水平。

同时,在边境口岸、机场等地,可以通过人脸识别系统对人员进行快速的识别和监测。

2. 身份认证:通过人脸识别技术,可以对个人身份进行快速准确的验证。

在金融、电子商务等领域,可以用于用户登录、支付验证等环节,提高用户交易的安全性。

3. 出入控制:人脸识别技术可与门禁系统结合,实现对人员进出的控制。

智慧校园人脸识别系统建设方案

智慧校园人脸识别系统建设方案
异常检测
利用人脸识别技术,实现异常事件的自动检测和报警,及时发现和 处理安全问题。
视频回溯
通过人脸识别技术,实现校园内视频回溯和查询,为安全事件处理 提供有力支持。
04
智慧校园人脸识别系统设计
系统架构设计
前端采集
通过高清摄像头采集人 脸图像,并实时传输到
后端服务器。
特征提取
利用人脸识别算法对采 集的人脸图像进行特征 提取,生成特征向量。
监控安防
在校园重要区域设置监控摄像头,实时监测并预警异常情况。
人脸识别技术的发展趋势
深度学习
利用深度学习算法提高人脸识别的准确率和鲁棒性,特别是在复 杂环境和动态场景下。
多模态识别
结合其他生物特征,如指纹、虹膜等,提高身份验证的可靠性。
数据隐私保护
在人脸识别过程中加强数据加密和匿名化处理,保护个人隐私和数 据安全。
持续优化与改进方案
数据安全与隐私保护
加强数据加密和隐私保护措施,确保个人信息 的安全和隐私。
用户体验优化
通过用户反馈和调研,持续优化系统的界面和 操作流程,提高用户满意度。
跨部门合作与资源共享
加强与其他部门的合作与资源共享,共同推进智慧校园的建设与发展。
THANKS
谢谢您的观看
智慧校园人脸识别系统建设 方案
汇报人: 2023-12-28
目录
• 引言 • 人脸识别系统技术介绍 • 智慧校园人脸识别系统需求分
析 • 智慧校园人脸识别系统设计 • 智慧校园人脸识别系统实施方

目录
• 智慧校园人脸识别系统效益分 析
• 智慧校园人脸识别系统未来展 望
01
引言
目的和背景
提升校园安全

人脸识别安全技术方案

人脸识别安全技术方案

人脸识别安全技术方案随着科技的不断发展,人脸识别技术被广泛应用于安全系统中。

从手机解锁到边境安全管理,人脸识别技术已成为重要的安全手段。

然而,随着使用人脸识别技术的增加,人们对于其安全性的担忧也日益增加。

本文将探讨人脸识别技术的安全问题,并提出一种有效的人脸识别安全技术方案。

一、人脸图像数据的安全存储人脸图像数据是进行人脸识别的基础,因此,安全存储人脸图像数据具有重要意义。

首先,要采取加密措施保护人脸图像数据的安全。

采用对称加密算法或非对称加密算法进行数据加密,确保人脸图像数据在传输和存储过程中不被窃取或篡改。

其次,采用分布式存储技术,将人脸图像数据分散存储在多个服务器上,避免单点故障和数据丢失。

二、活体检测技术的应用为了应对假脸攻击等安全风险,人脸识别系统应用活体检测技术。

通过活体检测技术,可以判断被检测者是否真实存在,并排除照片、面具等非真实人脸的干扰。

活体检测技术可以采用多种方法,如红外活体检测、3D结构光活体检测等。

通过综合应用不同的活体检测技术,可以提高对假脸攻击的识别率和准确性,增强人脸识别系统的安全性。

三、防御人脸照片冒充攻击为了防止攻击者使用他人的人脸照片冒充进行识别,可以采用一些技术手段进行防御。

首先,可以引入比对人脸图像时的动作要求,如要求用户眨眼、摇头等。

这样可以有效减少被攻击者通过静态照片进行冒充的风险。

其次,可以引入活体检测技术,通过判断人脸是否处于真实活动状态,排除使用照片冒充的可能性。

此外,还可以结合人脸识别技术与其他生物特征识别技术,如指纹识别、声纹识别等,提高识别系统的准确性和安全性。

四、隐私保护的措施在应用人脸识别技术时,重要的一点是保护用户的个人隐私。

为了确保个人隐私的安全,可以采用匿名化技术对人脸图像进行处理。

匿名化技术将人脸图像转换为一系列无法还原为原始图像的特征,以保护用户的隐私。

另外,还可以采用分级权限管理机制,限制不同用户对人脸图像数据的访问权限,确保用户的个人隐私安全。

人脸识别系统方案

人脸识别系统方案

人脸识别系统方案1.人脸检测:通过算法识别出图像中的人脸部分;2.特征提取:将人脸图像中的特征点提取出来,如眼睛、嘴巴、鼻子等;3.特征匹配:将提取的特征点与数据库中已有的人脸特征进行匹配;4.人脸识别:根据匹配结果判断是否为同一人。

2人脸识别解决方案XXX人脸识别解决方案主要应用于公安、交通、金融、教育等领域。

该解决方案采用深度研究算法,能够在复杂的场景中准确识别人脸,实现快速、准确的人脸识别。

同时,该解决方案支持多种人脸采集设备,可灵活适配不同场景需求。

此外,XXX人脸识别解决方案还具备以下特点:1.高性能:采用高效的深度研究算法,能够快速准确地识别人脸;2.多场景适应性:支持多种人脸采集设备,可适应不同的场景需求;3.高安全性:支持多重身份认证,确保人脸识别的准确性和安全性;4.灵活性:可根据客户需求进行定制化开发,满足不同的应用场景。

3方案概述3.1项目概况本项目旨在为公安、交通等行业提供一套高效、准确的人脸识别解决方案。

该解决方案采用大华人脸识别技术,支持多种人脸采集设备,能够在复杂的场景中实现快速、准确的人脸识别。

同时,该解决方案支持多重身份认证,确保人脸识别的准确性和安全性。

本项目的目标是提高公安、交通等行业的安全性和效率,为平安城市建设做出贡献。

总之,人脸识别技术在公安、交通、金融、教育等领域有着广泛的应用前景。

大华人脸识别解决方案采用高效的深度研究算法,能够在复杂的场景中快速准确地识别人脸。

该解决方案支持多种人脸采集设备,具有高性能、多场景适应性、高安全性和灵活性等特点。

本项目旨在为公安、交通等行业提供一套高效、准确的人脸识别解决方案,为平安城市建设做出贡献。

本项目旨在设计一套高效、准确的人脸识别系统,其中包括人脸图像采集及检测、人脸图像预处理、人脸图像特征提取以及人脸特征数据匹配与识别等模块。

2.2人脸图像采集及检测人脸图像采集及检测是基于人的脸部特征对输入的人脸图像或视频流进行判断。

人脸识别系统解决方案

人脸识别系统解决方案

深圳xx智能科技有限公司xx年6月13日目录一、概述 (3)1、背景分析 (3)2、设计原则 (3)二、系统介绍 (4)1、系统组成 (4)2、人脸识别特性 (4)3、主要功能 (6)4、产品特点 (6)三、主要设备介绍 (7)四、公司简介 (9)五、售后服务 (11)1、维修技术人员情况 (11)2、维护服务 (11)3、维修服务及应及维修时间安排 (11)4、售后服务流程 (12)5、以下情况不属保修范围 (12)6、更新改进服务 (12)7、建立用户档案,完善产品质量 (12)一、概述1、背景分析随着我国城镇化进程的加快,城市人口日趋密集,人口流动性也大大增加,社会犯罪率呈逐年升高的趋势。

在传统侦查工作方式中,多采用人工排查的方式,要排查重要场所人员身份,和限制外来人员进入固定区域,不仅费时费力,还可能造成遗漏等情况,排查效率大打折扣,同时给公共安全防范和社会维稳工作带来了极大的困难。

为切实解决重点复杂区域社会治理难题,夯实社会稳定和长治久安的基层基础,及高清技术、智能化技术、网络技术的日趋普及与成熟,我司立足实际需求,针对复杂区域流动人口多、身份难以核查、人员来访不易管理的局面,推出人脸识别系统解决方案。

系统采用先进的人脸识别算法,高速芯片作为识别算法的运行硬件平台,通过出入口的身份证信息采集、实时人脸抓拍和人证比对,从而实现人证合一验证。

并针对不同场所实现固定人员刷脸通行,访客人员人证比对登记,解决固定人员每次需要刷证或输入密码的问题,人证比对失败人员则需要安保人员或工作人员人工确认后手动放行。

2、设计原则系统设计遵循技术先进、深度学习算法、性能稳定、节约成本的原则;本系统设计内容是系统的、全面的、完整的、易用的以及符合人机交互的;方案设计具有科学性、合理性、可操作性。

二、系统介绍1、系统组成人脸识别系统由人证识别终端、通道闸、人脸识别管理客户端及平台组成。

人脸识别系统拓扑图2、人脸识别特性人脸识别系统核心组成部分主要包括人脸图像采集模块、动态人脸定位、人脸识别预处理、身份查找、身份比对、身份确认、执行机构和记录平台等,并通过一脸通平台判断人员身份及权限,开放相应的区域,保留人脸通行记录事件,并根据相应的权限命令各子系统作出响应,例如固定客户通道自动放行,访客只允许进入指定楼层等。

人脸识别门禁系统方案

人脸识别门禁系统方案

人脸识别门禁系统方案第1篇人脸识别门禁系统方案一、背景随着科技的发展,人工智能技术逐渐深入到社会的各个领域。

人脸识别作为生物识别技术的一种,凭借其便捷性、准确性和安全性,被广泛应用于各类场所。

本方案旨在制定一套合法合规的人脸识别门禁系统方案,以保障人员和财产的安全,提高管理效率。

二、目标1. 实现对人员和车辆的快速、准确识别。

2. 提高人员和财产的安全性。

3. 降低管理成本,提高管理效率。

4. 遵守国家法律法规,保护个人隐私。

三、系统设计1. 系统架构本方案采用分布式架构,分为前端设备、传输网络和后端管理平台三部分。

2. 前端设备前端设备主要包括人脸识别摄像机、门禁控制器、电子锁等。

人脸识别摄像机采用先进的深度学习算法,实现对人脸的快速、准确识别。

3. 传输网络传输网络采用有线和无线相结合的方式,确保数据传输的稳定性和安全性。

4. 后端管理平台后端管理平台负责对前端设备进行统一管理,包括人员信息管理、权限控制、数据统计等。

四、功能模块1. 人脸识别模块采用先进的人脸识别算法,实现对人脸的检测、跟踪和识别。

2. 权限管理模块对不同人员进行权限分级,实现精细化管理。

3. 数据统计模块统计人员出入记录、设备运行状态等数据,为管理者提供决策依据。

4. 实时监控模块实时监控前端设备运行状态,确保系统稳定运行。

5. 报警模块当发生异常情况时,如非法闯入、设备故障等,系统将及时报警。

五、合法合规性保障1. 法律法规遵守严格遵守国家关于人脸识别、个人信息保护等方面的法律法规。

2. 个人信息保护对采集到的人脸信息进行加密存储,防止泄露。

3. 透明告知在系统使用前,向用户明确告知采集目的、范围和方式,确保用户知情同意。

4. 数据安全建立完善的数据安全防护措施,防止数据被非法获取、篡改和删除。

六、实施与验收1. 设备安装按照设计方案,对前端设备进行安装、调试。

2. 系统部署在服务器上部署后端管理平台,配置相关参数。

3. 人员培训对管理人员进行系统操作、维护保养等方面的培训。

人脸识别门禁实施方案

人脸识别门禁实施方案

人脸识别门禁实施方案一、背景介绍。

随着科技的不断发展,人脸识别技术已经逐渐走进我们的生活,成为了一种便捷、高效的身份识别方式。

在现代社会,门禁系统作为一个重要的安全保障设施,也需要不断更新和升级,以适应社会的发展和需求。

因此,人脸识别门禁系统应运而生,成为了一种新型的门禁实施方案。

二、人脸识别门禁系统的优势。

1. 安全性高,人脸识别技术具有高度的安全性,能够有效防止冒用、伪造等安全隐患。

2. 便捷性强,无需携带任何门禁卡或钥匙,只需通过面部识别即可实现出入。

3. 实时监控,系统可以实时监控人员的出入情况,提高了安全管理的效率。

4. 数据分析,系统可以对人员出入的数据进行分析和统计,为安全管理提供更多的参考依据。

三、人脸识别门禁系统的实施方案。

1. 系统设备选择,选择具有高性能、高稳定性的人脸识别设备,以确保系统的正常运行和准确识别。

2. 设备布局规划,根据实际情况,合理规划设备的布局位置,确保可以有效覆盖需要管理的区域。

3. 系统联网设置,将人脸识别门禁系统与网络进行联网设置,实现远程监控和管理。

4. 数据管理和存储,建立完善的数据管理和存储系统,保障人员出入数据的安全和完整性。

5. 技术支持和维护,建立健全的技术支持和维护体系,确保系统的长期稳定运行。

四、人脸识别门禁系统的应用场景。

1. 企业办公楼,可以替代传统的门禁卡系统,提高员工出入的便捷性和安全性。

2. 学校教学楼,可以实现学生和教职工的出入管理,确保校园的安全和秩序。

3. 社区小区,可以对小区居民的出入进行管控,提高小区的安全防范能力。

4. 商场超市,可以对员工和顾客的出入进行管理,提高商场的安全管理水平。

五、人脸识别门禁系统的发展趋势。

随着人工智能技术的不断发展,人脸识别门禁系统将会更加智能化和个性化,能够实现更多的功能和应用场景。

同时,系统的安全性和稳定性也将会得到进一步的提升,为社会的安全管理提供更多的技术支持。

六、总结。

人脸识别门禁系统作为一种新型的门禁实施方案,具有诸多优势和应用前景。

(完整版)人脸识别技术方案-最全面

(完整版)人脸识别技术方案-最全面

(完整版)⼈脸识别技术⽅案-最全⾯第⼀章.⽅案概述1.1项⽬概况随着经济的发展,城镇建设速度加快,以及互联⽹的突飞猛进,导致城市中⼈⼝密集,流动⼈⼝增加,引发了城市建设中的交通、社会治安、重点区域防范、⽹络犯罪⽇益突出等城市管理问题,今后现代化城市的建设、⽹络信息必然将安全作为重中之重,与城市的经济建设处于同等重要的地位。

近年来,社会犯罪率呈逐年升⾼的趋势,特别是⽹络犯罪更加的严重,⽹络逃犯频频发⽣,罪犯的犯罪⼿法也更加隐蔽和先进,给⼴⼤公安⼈员侦破案件增加了难度。

同时,恶性事件时有发⽣,使⼈们对公共⽣活场所的安全感普遍降低。

同时公安⼈员在对通缉犯进⾏⼈⼯排查时如⼤海捞针,成功率极低,效果也不明显。

主要有如下实际问题:1.⾸先,由于罪犯群体不断扩⼤,要在数以百万计的⼈员照⽚库中找出犯罪嫌疑⼈,不仅费时费⼒,还有可能造成遗漏等情况,破案的效率⼤打折扣。

2.其次,⽬前公安机关侦察案件⼤多数仍然依靠事后追查和通缉,对已经发⽣的案件造成的损失很难有效弥补。

3.最后,如果在案发的同时即能防患于未然,就能第⼀时间将损失控制在最⼩范围内。

平安城市建设从最初的视频监控、卡⼝电警建设,系统已⼤量掌握了视频图像资源和卡⼝车辆数据和价值图⽚,但是针对⼈员侦查,⾝份确认还是需要通过技侦或⽹侦⼿段,⽆法充分利⽤视频图像资源快速定位⼈员⾝份。

即使出动⼤量警⼒,采⽤“⼈海战术”但受制于⾁眼识别劳动强度的极限,再加上⼈⼯排查效率不⾜,视频图像拍摄受光线、⾓度倾斜等不确定因素影响,⽆法保证查找的准确性和时效性,尤其出现突发紧急案件时,往往会贻误最佳破案时机。

如何提供更加丰富以及实⽤的“⼈像防控”应⽤,从“事后被动侦查”到“事前主动预警”将是平安城市下⼀建设阶段⾯临的主要需求。

1.2需求分析⼈像⼤数据系统采⽤⾼效的⼈脸检测定位及识别⽐对系统,可以第⼀时间帮助公安侦查⼈员快速识别辨别特定⼈员真实⾝份,把过去⼈⼯排查海量的视频图像资源⽐对需求变成现实,从⽽有效的为公安视频侦查、治安管理、刑侦⽴案等⼯作提供实战上的有效帮助和解决⽅法。

智能人脸识别系统技术设计方案

智能人脸识别系统技术设计方案

智能人脸识别系统技术设计方案一、方案概述:智能人脸识别系统是一种基于计算机视觉技术的人脸识别系统,通过对人脸图像进行特征提取和比对,实现对人的身份的识别。

本方案旨在设计一个高效、准确、安全可靠的智能人脸识别系统,能够广泛应用于人脸识别门禁系统、人脸支付、人脸考勤等领域。

二、系统组成:1.人脸采集模块:通过摄像头获取用户输入的人脸图像;2.人脸检测模块:对输入的图像进行检测,提取其中的人脸;3.人脸特征提取模块:使用深度学习算法提取人脸的特征信息;4.人脸识别模块:将提取的特征与已有的人脸库进行比对;5.结果输出模块:输出人脸识别结果;6.数据库模块:存储用户的人脸特征信息和相关用户信息;7.用户界面模块:提供用户交互接口,方便用户进行注册、信息查询和配置等操作。

三、技术实现:1.人脸检测:采用基于深度学习的卷积神经网络(CNN)算法,通过训练数据集进行模型训练,实现对人脸的准确检测和定位。

2. 人脸特征提取:使用深度学习算法中的Siamese网络结构进行训练,将输入的人脸图像映射到一个低维度的特征空间,得到鲁棒性较高的人脸特征信息。

3.人脸识别:采用余弦相似度算法对提取的人脸特征与数据库中存储的人脸特征进行比对,并匹配出最相似的人脸特征,从而实现人脸识别。

4.数据库管理:采用关系数据库管理系统(RDBMS)来存储用户的人脸特征信息和相关用户信息,使用索引技术加速数据的检索和更新操作,提高系统的查询效率和数据一致性。

5.用户界面设计:采用图形用户界面(GUI)设计,实现用户注册、信息查询和管理员配置等功能,提供友好的操作界面,方便用户使用。

四、性能评估:1.准确性评估:采用标准数据集和测试数据进行模型训练和测试,计算系统的准确率、召回率和F1得分等指标,评估系统的人脸识别准确性。

2.效率评估:基于实际使用场景,进行多用户并发测试,评估系统的处理速度、响应时间和吞吐量等性能指标,保证系统能够在高负载下正常工作。

人脸识别系统技术设计方案

人脸识别系统技术设计方案

人脸识别系统技术设计方案人脸识别系统是一种基于人脸生物特征进行身份验证和识别的技术。

它通过采集并分析人脸图像中的特征点、纹理、色彩等信息,来实现对个体身份的确定。

人脸识别系统在社会安防、人力资源管理、身份认证等领域有广泛的应用。

下面将从系统架构、人脸检测与识别、关键技术、应用场景等方面进行设计方案的介绍。

一、系统架构1.图像采集设备:可以是摄像头、监控摄像机等用于采集人脸图像的设备,保证图像质量对于后续的人脸检测和识别非常重要。

2.人脸检测与识别算法:采用经典的人脸检测算法、特征提取算法、人脸匹配算法等实现对人脸图像的处理和分析,提取出人脸的特征信息,进行比对和识别。

3.数据库:保存人脸图像的信息和对应的身份信息,系统将通过数据库进行存储、查询、匹配等操作。

4.用户界面:提供用户注册、登录、查询等功能界面,用户可以通过界面进行人脸信息的录入、查询和身份验证等操作。

二、人脸检测与识别人脸检测与识别是人脸识别系统的核心功能,其中包括以下步骤:1.人脸检测:通过图像采集设备获取的图像数据,使用人脸检测算法对图像进行处理,找到人脸区域,并进行归一化和预处理操作。

2.人脸特征提取:使用特征提取算法对归一化的人脸图像进行处理,提取出关键的特征点、纹理和色彩等信息。

3.特征匹配和识别:将提取出的人脸特征与数据库中的人脸特征进行比对,计算相似度或距离指标,确定是否匹配,并返回对应的身份信息。

三、关键技术1.归一化处理:人脸图像在采集过程中可能会受到光照、角度、尺度等因素的影响,需要对图像进行预处理和归一化,保证后续处理的准确性。

2.特征提取算法:特征提取算法是人脸识别中的关键,常见的方法有主成分分析(PCA)、线性鉴别分析(LDA)、局部二值模式(LBP)等。

3.数据库管理:对于大规模的人脸数据库,需要建立高效的索引和查询机制,保证实时的人脸检测和识别。

4.鲁棒性处理:人脸识别系统需要考虑到在不同光照、角度、表情等条件下的识别准确性,通过算法的改进和改善图像质量等方式提高系统的鲁棒性。

人脸识别系统技术方案

人脸识别系统技术方案

智能人脸识别系统技术方案20xx年3月目录1智能人像比对平台1.1系统结构建立标准统一的共享人像库,并在此基础上,部署完整的人像比对判定平台。

该系统由人像标准化采集系统,人像数据库子系统、基础比对服务平台、人脸识别应用平台4大部分组成,支持前端人像采集、静态人脸查询、移动警务通人脸识别一体化服务。

该平台支持统一人像数据交换接口,兼容大多数人像数据交换标准。

统一的安全标准接口,兼容PKI密钥,网络加密狗等常见的安全标准接口。

系统总体结构如下:系统采用B/S架构,以浏览器方式进行人像预处理、人像比对、结果查询、用户管理、系统运行状态查询等管理操作,减少了系统后台管理、人口治安及其他警种成百上千终端安装和维护难度,方便未来多警种共享应用。

系统可提供标准的WebService接口,将业务系统获取的人像照片与相关人像库进行比对。

1.2设计原则本着统一标准、分级管理、资源共享、无缝对接的设计原则,以人像比对算法为核心,整合多区域现有资源,实现准确识别、快速反映,覆盖全面的智能人像识别应用平台。

1.2.1先进性该平台算法由中国科学院自动化研究所研究员、国际知名人脸识别专家、IEEE院士李子青教授领衔研发,是基于中国自主知识产权,针对公安各警种业务特点专门研发的综合智能人像识别应用系统平台。

1.2.2开放性人像采集与比对平台具有统一的服务接口,兼容公安部拟指定的统一人像数据交换标准草案。

统一的安全验证,兼容PKI密钥,身份认证等常见的安全验证机制。

1.2.3扩展性整个平台系统接口分为系统级别之间的接口与单个系统开放出来的服务接口组成。

系统可“随需而变,以不变应万变”提供多种可靠服务功能。

1、系统级接口系统级接口指的是不同地区部署的人像辅助识别平台之间的接口,主要有两种访问方式第一种采用页面查询的方式,以只查询方式进行访问,通过系统提供的Guest权限进行页面访问。

适用于不同平台之间快速的调阅查询。

第二种通过请求服务与直接调阅的形式进行数据库的查询,系统预留标准数据库查询接口,以市,县二层结构进行数据库间的查询调用,采用本系统建立的数据中心,纵向上进行直接的调用,高层中心保留下级中心的数据库信息索引。

人脸识别方案

人脸识别方案
Safari version 6.0 or 以上
3-2. 详述



CB Scheme
UL
CE marking
CCC
CISPR22-B
FCC (15)
RoHs
WEEE
3-3. 说明


3-4 解决方案类型

人脸识别数据库容量超过3,000
解决方案
4. 大型监控系统组件
4-1. 每个产品类型的功能

2-6. 人脸识别技术--精准度
3. 系统概述
3-1. 系统需求

IP address:8080
操作系统
浏览器
Windows 7 或以上
Google’s chrome 32.பைடு நூலகம் or 以上
安桌 4.0.3 or 以上
Chrome version 18.0 or 以上
iOS 版本 6.1 or 以上
▌最 高 精 确 度
2-4. 人脸识别技术--高精度
▌▌▌▌

▌▌▌
▌更 快 的 匹 配 速 度
2-5. 人脸识别技术--匹配速度
0
1 8
1 6
1 4
1 2
1 0
8
6
42
C o g n ite c
L 1


祺麒
▐ C o gn it e cL 11
▐ ▐
35 32 2 70
1
人脸识别方案
1. 现存问题▌靠人力去监察▌
2. 解决方案
2-1. 人脸识别系统
▌▌
人脸识别
2-2. 使用案例

即使不同的人员使用,也只存在第一个使用的

人脸识别系统技术方案(一)2024

人脸识别系统技术方案(一)2024

人脸识别系统技术方案(一)引言概述:人脸识别系统技术方案(一)是一种应用于安全领域的先进技术,利用计算机视觉和模式识别技术,对输入的图像或视频中的人脸进行识别和验证。

该技术方案可以广泛应用于人脸解锁、人脸支付、人脸签到等应用场景中。

本文将从数据采集、特征提取、模型训练、系统部署以及性能优化等五个方面详细介绍人脸识别系统技术方案的具体实施步骤和关键要点。

正文:1. 数据采集:- 收集大规模人脸数据集,包括多个人脸姿态、表情、光照条件等;- 使用高清晰度摄像设备进行图像采集,并保证数据集的多样性和完整性;- 对采集的数据进行预处理,包括人脸对齐和人脸质量评估等。

2. 特征提取:- 基于深度学习的方法,通过卷积神经网络提取人脸图像的特征表示;- 利用经典的特征提取算法,如局部二值模式(LBP)和人脸关键点检测等方法提取人脸特征;- 结合不同方法的特征进行融合,提高人脸识别的准确性和鲁棒性。

3. 模型训练:- 构建深度学习模型,如卷积神经网络(CNN)、人脸识别网络(FaceNet)等;- 使用有标签的人脸图像数据对模型进行监督式训练;- 采用数据增强技术,如旋转、缩放、裁剪等操作扩充训练数据集,提高模型的泛化能力。

4. 系统部署:- 搭建人脸识别系统的服务器环境,包括硬件设施和软件配置;- 利用人脸检测算法定位输入图像中的人脸区域;- 对提取的人脸特征进行比对与匹配,以验证人脸识别结果的准确性;- 集成图像处理、特征匹配、识别结果输出等功能,构建完整的人脸识别系统。

5. 性能优化:- 优化模型的网络结构和参数设置,提高模型的识别准确率和速度;- 引入硬件加速技术,如GPU并行计算,加速模型的推理过程;- 针对不同场景和应用需求,进行系统性能的调优和适配。

总结:本文详细介绍了人脸识别系统技术方案的实施步骤和关键要点。

从数据采集、特征提取、模型训练、系统部署以及性能优化等五个方面进行讲解,旨在为人脸识别系统的开发和应用提供指导和参考。

人脸识别系统技术方案

人脸识别系统技术方案

人脸识别系统技术方案在如今这个科技飞速发展的时代,人脸识别技术正悄然改变着我们的生活。

从安防监控到手机解锁,这项技术真是无处不在。

它能迅速识别出一个人的面孔,甚至能在熙熙攘攘的人群中一眼认出你。

可是,背后到底有什么样的技术方案呢?让我们来深入探讨一下。

一、基础原理1.1 人脸检测首先,咱们得从人脸检测说起。

这一过程就像是在海量的图片中找宝藏。

计算机通过分析图像中的特征点,比如眼睛、鼻子和嘴巴的位置,来识别出人脸。

这个过程需要大量的数据和强大的计算能力。

人脸的形状、轮廓以及皮肤纹理都被认真对比。

想象一下,电脑就像个超级侦探,迅速从众多信息中提取出关键线索。

1.2 特征提取接下来,特征提取是个重要环节。

通过深度学习算法,系统会从检测到的人脸中提取出独特的特征向量。

就好比给每个人都制作了一张指纹卡。

这些特征向量是数字化的,能够被计算机高效处理。

不同的人脸有不同的特征,而这些特征就像一张身份证,准确且独特。

二、技术实现2.1 算法设计在算法设计上,很多公司采用卷积神经网络(CNN)。

这个神经网络像个多层筛子,可以从简单到复杂逐步分析图像。

最开始的时候,它能识别出边缘和简单形状,随着层数的加深,能够捕捉到越来越复杂的特征。

这种逐层分析的方式就像是从一层洋葱剥到另一层,每剥一层都能发现新的东西。

2.2 数据集构建一个好的系统离不开丰富的数据集。

建立一个包含多样化人脸的数据集是至关重要的。

各种肤色、性别和年龄的面孔都需要被纳入其中。

这样一来,系统才能学习到更多的特征,避免在真实场景中出现偏差。

想象一下,如果只有年轻人的照片,系统怎么能识别出老年人呢?因此,数据的多样性就显得尤为重要。

2.3 训练与优化训练模型是个漫长的过程。

系统通过不断地分析数据集,优化自己的算法。

这个过程需要大量的计算资源和时间。

在训练的过程中,系统会对错误的识别进行修正。

就像是一个学徒在磨练自己的技艺,经过无数次的失败和尝试,最终才能成为大师。

人脸识别门禁方案

人脸识别门禁方案

人脸识别门禁方案第1篇人脸识别门禁方案一、方案背景随着智能化技术的不断发展,人脸识别技术因其便捷性、安全性在各个领域得到广泛应用。

本方案旨在为企业、小区、学校等场所提供一套合法合规的人脸识别门禁系统,以提高安全性和管理效率。

二、方案目标1. 提高场所安全水平,防止未经授权人员擅自进入。

2. 减少管理人员的工作负担,提高工作效率。

3. 符合我国法律法规,保护公民个人信息安全。

4. 提升用户体验,便捷快速通行。

三、方案设计1. 技术选型(1)人脸识别算法:采用深度学习算法,实现高精度的人脸识别。

(2)硬件设备:高清摄像头、人脸识别终端、门禁控制器等。

(3)软件平台:具备用户管理、权限管理、数据统计等功能。

2. 系统架构(1)数据采集:通过高清摄像头实时采集人脸图像。

(2)人脸识别:将采集到的人脸图像与数据库中的人脸信息进行比对。

(3)门禁控制:根据比对结果,控制门禁开关。

(4)数据传输:采用加密算法,确保数据传输安全可靠。

3. 功能模块(1)用户注册:管理员为合法用户注册人脸信息,包括姓名、工号/学号等。

(2)权限管理:管理员根据用户角色分配不同的通行权限。

(3)人脸识别:系统实时抓拍人脸,与数据库中的人脸信息进行比对。

(4)门禁控制:根据比对结果,控制门禁开关。

(5)数据统计:统计用户通行记录,为管理者提供数据支持。

(6)访客管理:临时访客可由管理员登记人脸信息,发放临时通行权限。

四、合法合规性保障1. 遵循我国相关法律法规,如《中华人民共和国网络安全法》、《中华人民共和国个人信息保护法》等。

2. 加强数据安全保护,采用加密技术,防止用户信息泄露。

3. 用户注册时,需签订个人信息保护协议,确保用户知情同意。

4. 定期对系统进行安全检查和升级,确保系统安全稳定运行。

五、实施与验收1. 按照设计方案,采购相关硬件设备和软件平台。

2. 部署系统,进行设备调试和软件配置。

3. 对管理人员进行培训,确保其熟练掌握系统操作。

(完整版)人脸识别门禁系统方案

(完整版)人脸识别门禁系统方案

系统概述1 系统概述人脸识别基于人的脸部特征信息进行身份识别的一种生物识别技术。

用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部的一系列相关技术,包括人脸图像采集、人脸定位、人脸识别预处理、记忆存储和比对辨识,达到识别不同人身份的目的。

人脸识别门禁系统就是把人脸识别和门禁系统结合,并且通过人脸识别作为门禁开启的要素之一。

人脸识别技术的先天优势:非接触识别方便使用,人脸直观辨识;嵌入式解决方案大幅降低系统成本……2 设计原则由于安全性和高效率管理的需要,门禁系统的设计应遵循下列原则:系统的实用性门禁系统的功能应符合实际需要,不能华而不实。

如果片面追求系统的超前性,势必造成投资过大,离实际需要偏离太远。

因此,系统的实用性是首先应遵循的第一原则。

同时,系统的前端产品和系统软件均有良好的可学习性和可操作性。

特别是可操作性(便捷性),使具备电脑初级操作水平的管理人员,通过简单的培训就能掌握系统的操作要领,达到能完成值班任务的操作水平。

系统的稳定性由于门禁系统是一项不间断长期工作的系统,并且和我们的正常生活和工作息息相关,所以系统的稳定性显得尤为重要。

要求该产品系统要有五年以上市场的成功应用经验,拥有相应的客户群和客户服务体系。

系统安全性门禁系统中的所有设备及配件在性能安全可靠运转的同时,还应符合中国或国际有关的安全标准,并可在非理想环境下有效工作。

强大的实时监控功能和联动报警功能,充分保证使用者环境的安全性。

系统可扩展性门禁系统的技术不断向前发展,用户需求也在发生变化,因此门禁系统的设计与实施应考虑到将来可扩展的实际需要,亦即:可灵活增减或更新各个子系统,满足不同时期的需要,保持长时间领先地位,成为智能建筑的典范。

系统设计时,对需要实现的功能进行了合理配置,并且这种配置是可以改变的,甚至在工程完成后,这种配置的改变也是可能的和方便的。

系统软件根据开发商符合不同历史时期市场的需求进行相应的升级和完善,并为相应的应用客户进行软件升级.同时,可以扩展为考勤系统、会议签到系统、巡逻管理系统、就餐管理系统等一卡通工程。

安防行业人脸识别技术和视频监控系统方案

安防行业人脸识别技术和视频监控系统方案

安防行业人脸识别技术和视频监控系统方案第一章人脸识别技术概述 (2)1.1 技术背景 (2)1.2 技术原理 (2)1.3 发展趋势 (3)第二章人脸识别技术核心算法 (3)2.1 特征提取 (3)2.1.1 人脸检测 (3)2.1.2 特征提取方法 (4)2.2 特征匹配 (4)2.2.1 特征距离计算 (4)2.2.2 特征匹配算法 (4)2.3 模型训练与优化 (4)2.3.1 模型训练 (4)2.3.2 模型优化 (4)2.3.3 模型评估 (5)第三章人脸识别技术在安防行业的应用 (5)3.1 应用场景分析 (5)3.1.1 公共安全领域 (5)3.1.2 金融机构 (5)3.1.3 智能家居 (5)3.1.4 企事业单位 (5)3.2 实际案例介绍 (5)3.2.1 北京地铁人脸识别系统 (5)3.2.2 某银行人脸识别ATM机 (5)3.2.3 某小区人脸识别门禁系统 (6)3.3 效果评估与优化 (6)3.3.1 效果评估 (6)3.3.2 优化措施 (6)第四章视频监控系统概述 (6)4.1 系统组成 (6)4.2 技术特点 (7)4.3 发展趋势 (7)第五章视频监控系统的硬件设备 (8)5.1 摄像机 (8)5.1.1 模拟摄像机 (8)5.1.2 数字摄像机 (8)5.2 传输设备 (8)5.2.1 同轴电缆 (8)5.2.2 双绞线 (8)5.2.3 光纤 (8)5.3 存储设备 (8)5.3.1 硬盘录像机(DVR) (9)5.3.2 网络视频录像机(NVR) (9)第六章视频监控系统的软件平台 (9)6.1 系统架构 (9)6.2 功能模块 (9)6.3 系统集成 (10)第七章人脸识别与视频监控系统的融合 (10)7.1 技术融合原理 (10)7.2 系统架构设计 (11)7.3 应用案例介绍 (11)第八章安防行业人脸识别技术的挑战与对策 (11)8.1 技术难题 (12)8.2 安全隐私问题 (12)8.3 对策与建议 (12)第九章安防行业人脸识别技术与视频监控系统的未来发展趋势 (13)9.1 技术创新方向 (13)9.2 市场前景预测 (13)9.3 行业规范与标准 (13)第十章项目实施与运维管理 (14)10.1 项目实施流程 (14)10.2 系统测试与验收 (14)10.3 运维管理策略 (15)第一章人脸识别技术概述1.1 技术背景信息技术的飞速发展,安防行业对智能化、高效化的需求日益增长。

人脸识别系统方案

人脸识别系统方案

人脸识别系统方案一、系统框架1.数据采集模块:通过摄像头或者图像数据库,获取人脸图像。

2.预处理模块:对采集到的图像进行预处理,包括灰度化、增强对比度、人脸检测和对齐等操作。

3.特征提取模块:提取人脸图像中的关键特征,如主要轮廓、眼、鼻子和嘴巴等,常用的特征提取方法有PCA、LDA和深度学习等。

4.特征匹配模块:将提取到的特征与已有的人脸特征数据库进行比对,计算相似度。

5.识别与验证模块:根据特征匹配结果,进行人脸身份的识别和验证,判断是否为合法用户。

6.后台管理模块:包括用户信息管理、设备维护和系统日志等功能。

二、技术要点和关键技术1. 人脸检测和对齐:采用Haar、HOG、深度学习等算法,实现对人脸区域的自动检测和对齐,确保人脸对比的准确性。

2.特征提取:基于PCA、LDA等经典特征提取算法或者深度学习模型,对人脸图像进行特征提取,减少了对计算资源的需求。

3.特征匹配:采用欧氏距离、余弦相似度、支持向量机等算法,对提取到的特征与数据库中的特征进行匹配。

4.活体检测:通过分析人脸图像的纹理、形状和运动等信息,实现对假脸或者照片攻击等欺骗行为的检测。

5.多样化光照和姿态鲁棒性:采用多种光照和姿态变化下的数据集进行训练,提高系统对不同光照和姿态的适应能力。

6.高效的数据库管理:采用高效的数据库管理技术,如分布式数据库、索引技术和备份与恢复技术,确保系统的数据安全和高效查询。

三、系统特点和应用场景1.高准确性:采用先进的模式识别和深度学习算法,实现了较高的准确率。

2.实时性:对于大规模的人脸识别系统,能够在较短的时间内完成人脸的识别和验证,满足实时性要求。

3.可扩展性:采用分布式系统架构,支持多个节点同时工作,实现了系统的可扩展性,能够应对高并发的请求。

4.安全性:通过活体检测和对抗攻击等技术手段,提高了系统的安全性。

同时,采用数据加密和权限管理等措施,确保人脸数据的安全性和隐私保护。

5.应用场景广泛:人脸识别系统可以应用于公安、安防、金融、教育等领域,如人脸闸机、人脸考勤、人脸支付、人脸抓拍等。

人脸识别布控系统方案

人脸识别布控系统方案

布控系统作为一种新型的安防 手段,能够实现对特定区域、 特定人员的实时监控和预警。
人脸识别技术在布控系统中的 应用,可以大大提高布控系统 的准确性和效率,从而更好地 保障社会安全。
方案设计目标与原则
设计目标
构建一个高效、准确、稳定的人脸识别布控系统,实现对特 定区域、特定人员的实时监控和预警,提高社会安全保障水 平。
维护计划
根据系统运行情况和实际需求,制定合理的维护计划,包括维护周 期、维护内容、维护人员等。
故障预防与处理
通过定期检查和维护,及时发现并处理系统潜在的故障和问题,降低 系统故障率,提高系统稳定性。
数据安全保障策略
数据加密
对系统中存储和传输的人脸识别 数据、用户信息等敏感数据进行
加密处理,确保数据安全。
通过图像增强技术,提高算法在不同光照条件下的识别率。
针对不同角度和表情的识别
02
通过训练多角度和表情的人脸图像数据,提高算法对不同角度
和表情的识别能力。
针对不同人种和年龄的识别
03
通过训练不同人种和年龄的人脸图像数据,提高算法对不同人
种和年龄的识别率。
实际应用案例分享
公安布控
在公安领域,人脸识别布控系统广泛 应用于追捕逃犯、寻找失踪人员等方 面,有效提高了公安部门的办案效率 。
准确识别人脸。
服务器与存储设备
搭建高性能的服务器集群,配置大 容量、高速度的存储设备,以满足 人脸识别布控系统对计算和存储资 源的需求。
网络设备
选用稳定、可靠的网络设备,确保 数据传输的实时性和稳定性,避免 因网络故障导致系统失效。
软件平台对接流程
1 2 3
人脸识别算法
集成先进的人脸识别算法,包括人脸检测、人脸 跟踪、人脸比对等功能,以实现准确的人脸识别 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

智能人脸识别系统技术方案2018年3月目录1智能人像比对平台1.1系统结构建立标准统一的共享人像库,并在此基础上,部署完整的人像比对判定平台。

该系统由人像标准化采集系统,人像数据库子系统、基础比对服务平台、人脸识别应用平台4大部分组成,支持前端人像采集、静态人脸查询、移动警务通人脸识别一体化服务。

该平台支持统一人像数据交换接口,兼容大多数人像数据交换标准。

统一的安全标准接口,兼容PKI密钥,网络加密狗等常见的安全标准接口。

系统总体结构如下:系统采用B/S架构,以浏览器方式进行人像预处理、人像比对、结果查询、用户管理、系统运行状态查询等管理操作,减少了系统后台管理、人口治安及其他警种成百上千终端安装和维护难度,方便未来多警种共享应用。

系统可提供标准的WebService接口,将业务系统获取的人像照片与相关人像库进行比对。

1.2设计原则本着统一标准、分级管理、资源共享、无缝对接的设计原则,以人像比对算法为核心,整合多区域现有资源,实现准确识别、快速反映,覆盖全面的智能人像识别应用平台。

1.2.1先进性该平台算法由中国科学院自动化研究所研究员、国际知名人脸识别专家、IEEE院士李子青教授领衔研发,是基于中国自主知识产权,针对公安各警种业务特点专门研发的综合智能人像识别应用系统平台。

1.2.2开放性人像采集与比对平台具有统一的服务接口,兼容公安部拟指定的统一人像数据交换标准草案。

统一的安全验证,兼容PKI密钥,身份认证等常见的安全验证机制。

1.2.3扩展性整个平台系统接口分为系统级别之间的接口与单个系统开放出来的服务接口组成。

系统可“随需而变,以不变应万变”提供多种可靠服务功能。

1、系统级接口系统级接口指的是不同地区部署的人像辅助识别平台之间的接口,主要有两种访问方式第一种采用页面查询的方式,以只查询方式进行访问,通过系统提供的Guest权限进行页面访问。

适用于不同平台之间快速的调阅查询。

第二种通过请求服务与直接调阅的形式进行数据库的查询,系统预留标准数据库查询接口,以市,县二层结构进行数据库间的查询调用,采用本系统建立的数据中心,纵向上进行直接的调用,高层中心保留下级中心的数据库信息索引。

即市级中心直接查询市级与县级中心,市级中心直接查询县级中心。

横向上以请求服务形式进行调用,横向系统间不保留对方的数据库信息索引,而是通过请求服务方式进行。

2、服务接口服务接口适用于该系统与其他业务应用系统做二次开发或者集成用接口,包括所有系统级接口与平台应用接口。

人像基础比对服务平台通过WebService进行与其他系统的交换机制,通过标准的XML或者Jason格式文件进行数据交换,兼容《GA/T 922.2-2011标准第二部分人像数据采集标准》中的数据格式交换。

服务接口主要以WebService与ActiveX等方式提供。

满足各业务系统二次开发,集成使用。

服务接口说明1.2.4安全性人像采集比对平台采用统一的安全验证标准,所有的子系统采用统一安全验证机制,支持PKI加密狗,身份验证等常见的身份验证机制。

1.2.5抗灾性在设计硬件架构时,充分考虑了系统的可用性和抗灾性,使用了“计算节点冗余拓扑”的架构方案。

例如运行有2个比对服务实例,每一个服务实例都可以完成全部的比对服务功能。

在每一个服务实例中,每一个运算节点内存中只加载部分模板数据,这样能够显著提高比对效率。

但是每一个计算节点的磁盘中都保留有全部的模板数据,任意一个计算节点损坏都不会影响到数据完备性。

当有计算结点损坏时,集群控制器会收到通知并且发出服务请求让剩余的计算节点加载受损节点的模板数据。

1.3人像对比算法1.3.1技术选型标准根据公安部《关于加快推进人口信息人像比对技术应用的通知》(公治明发【2012】331号),原则上优先选用国内算法,如需选用国外算法,应在确保人口信息安全的情况下使用。

人口信息人像比对系统的承建单位不得具有外资背景,且须签订保密协议书。

禁止境外人员参与系统建设。

1.3.2算法性能系统主要性能指标1.3.3基本比对功能(1)1:1一对一比对,对输入系统的两张照片比对确认是否同一人;(2)1:N一对多比对,输入一张照片与选定的照片分库比对以返回最相似的照片和信息;(3)M:N多人对多人比对,提交多张照片与选定的照片分库比对以返回各自最相似的照片和信息;(4)自库查重:系统支持照片分库自我查询,例如出入境照片库进行库内滚动比对,查找“一人多证”的记录;(5)异库查找:系统支持不同照片分库之间进行滚动比对,查找人员在各库中的关联信息;1.4人像资源库1.4.1数据量要求资源库建设采用“统一规划、分类建库、各库关联、全面共享、冗余增长”的思路,设计容量约1000万张以上。

1.4.2建设基础人像库对全国在逃人员、国保重点人员、禁毒重点人员等八类照片数据入库建模,向客户全面开放人像核对查询功能,开放人像比对服务接口嵌入到各业务系统。

各部门及公安机关可结合业务需要,在人像资源库的基础上有针对性地开发适合本部门的人像比对应用系统平台。

1.4.3建设少数民族人像库建立少数民族人像库,按照民族种类建设少数民族人像基础库,加强流动的少数民族人员安全管理。

1.4.4建设宗教人像库因信教群众众多,宗教活动场所若干所,同时近年来在新疆、西藏发生多起教徒暴动事件,为较好控制公共安全,对各教众采集其标准人像信息,以宗教信仰为建库标准,分别建立各类人像库,加强对重点教众的监控,有效防止其借宗教势力组织、实施危害社会公共安全的宗教活动。

1.4.5建设重点关注人员库公安在多年执法办案过程中,遇到各类有前科的违法犯罪人员,这些人有的通过教育指导能改过自新,而有些却顽固不化,继续伺机作案,针对该类人员公安建设人像数据;系统自动检测各类业务照片数据库,如有更新,则根据用户设置的更新时间,自动提取照片,先与已有人像特征库进行比对,确保唯一性后再入库。

1.4.6数据更新与业务数据源的更新相配套,系统支持动态增量模板的加载和更新,以便动态更新的入库照片数据能够及时参与比对;系统自动检测各类业务照片数据库,如有更新,则根据用户设置的更新时间,自动提取照片,先与已有人像特征库进行比对,确保唯一性后再入库。

1.5软件系统介绍该系统平台利用公安各类业务系统采集的海量人像数据,建立标准的人脸特征数据库,利用先进的人脸识别技术和计算平台强大的数据处理能力,快速准确地确认人员的真实身份。

该系统主要面向持假身份证、多重身份、冒用身份、身份不明等公安业务。

1.5.1子系统功能(1)人像数据库建设该子系统针对常住人口的二代身份证库,建设人像特征数据库,系统入库率达到99.99%以上;支持建设亿级以上人脸数据库;支持数据库批量建模与文件夹建模;每个人像特征模板不大于2K,系统建库速度达到单机240个/秒以上;支持联网建库,通过提供的数据库接口,利用公安专网访问人像数据库。

(2)并行比对基础服务平台该子系统主要实现并行化比对运算处理,加快比对响应速度,包括比对应用服务(负责比对服务分发与结果汇总,以及比对服务资源检测控制管理),比对处理,服务接口三个部分。

系统支持比对负载均衡,合理分配比对任务,即从比对应用服务接收到比对请求后根据比对节点的繁忙程度,分发给相关比对节点,比对处理快速与指定范围内的模板进行比对,产生比对结果;支持比对计算节点的任意扩展;支持比对服务热备份,不因为计算节点的宕机而造成比对服务终止;支持多个人脸综合模板比对;支持1:N和1:1比对方式,能做多机并发比对方式;单机比对速度至少1120万次/秒;100万二代证人像库比对前50位命中率达到82%以上;支持WebServices形式的人像比对服务;支持HTTP,Socket等常见网络协议;支持RestFul API和WCF两种接口形式提供比对服务。

(3)人员身份查重系统可指定人脸数据库进行全库或指定范围的库内人脸比对,对于同人不同身份,同身份不同人进行甄别判定,将可疑的判定结果放入比对信息数据库中;支持常口库与常口库进行比对,缉控库与常口库进行比对,常口库照片与缉控库照片进行正比,缉控库与常口库照片进行反比;库与库比对通过调用并行比对服务平台中WebServices接口进行比对;支持可疑信息通过专门的B/S页面进行查询浏览,提供历史可疑数据与每日新增可疑数据;对动态新增的人脸数据,支持自动执行动态执行身份比对功能;3台机器并行100万人像库自库查重在5小时以内完成,单机在13小时以内完成;(4)Web人像搜索系统该子系统对高清照片能进行初步的人脸图像裁剪,提供带条件的人像查询,如性别,年龄,地区,面部特征,设置阈值。

支持人脸图像裁剪,针对用户提交照片先进行自动的人脸筛选,未达到要求的照片再进行手工裁;支持带条件比对识别,用户提交比对识别请求,可以同时附加约束条件,设置阈值等,接受比对识别结果,显示比对识别结果;提供快速查询(前台)与模糊比对(后台)查询两种查询方式,快速查询主要查询符合比对要求的照片,满足批量导入功能,对不符合要求照片,提供专业图片工具进行专业修正。

支持动态信息查询,显示入库图像数、拒绝入库数、非人脸图像数、图像质量不达标数等。

提供除入库图像数外的其余结果的数据查询连接,以便进行人工分析和干预;参数配置采用数据库方式,以提高安全等级;支持通过Web 服务对系统配置参数进行管理,包括数据源、数据分类、比对服务器IP列表、比对结果返回值大小、各类参数的阈值等;支持数据源设置,设置图像数据库、模板数据库、结果数据库等。

提供统一界面对系统所有服务器、系统服务进行启动和停止,当系统停止时,能对所有访问和请求马上返回错误信息。

(5)数据库管理系统使用Oracle 11g数据库,存储各类人像特征库,包括常住人口库、流动人口库、缉控库等各类重点关注人像库;保存人像图片和对应的基本信息、模板数据,以及异步比对模式下的比对结果等数据;支持自动数据库更新;支持多种与业务相关的查询统计功能;支持对不同业务用途的人脸图片及模板数据分库组、分库别保存;支持多个子库别,通过专用的C/S管理软件支持日志查询,能够获取每天更新的情况与历史日志。

1.5.2人机交互系统功能1、系统支持用户自定义功能(如可通过警号自定义用户),支持账户及权限管理,不同账户可以授予不同级别权限;系统整体风格支持自定义。

2、系统支持对登录系统账户的操作用户名、登录IP、操作记录、操作类型、操作时间的记录;支持系统日志历史数据详细搜索、支持系统日志Excel格式导出。

系统支持用户信息的自定义,支持当前用户密码的修改。

3、系统包含工作桌面、人像检索、人像比对、图像工具、讨论区以及系统工具等功能模块。

4、人像检索支持检类型和文本信息的组合条件检索。

相关文档
最新文档