岩石力学重点知识汇编
岩石力学主要知识点
1、岩石力学定义:研究岩石的力学性状(behaviour)的一门理论科学,同时也是应用科学;是力学的一个分支;研究岩石对于各种物理环境的力场所产生的效应。
初期阶段(地应力):海姆静水压力假说,朗金假说,金尼克假说:经验理论阶段:普世理论,太沙基理论。
2、地下工程的特点:1).岩石在组构和力学性质上与其他材料不同,如岩石具有节理和塑性段的扩容(剪胀)现象等;2).地下工程是先受力(原岩应力),后挖洞(开巷);3).深埋巷道属于无限城问题,影响圈内自重可以忽略;4).大部分较长巷道可作为平面应变问题处理;5).围岩与支护相互作用,共同决定着围岩的变形及支护所受的荷载与位移;6).地下工程结构容许超负荷时具有可缩性;7).地下工程结构在一定条件下出现围岩抗力;8).几何不稳定结构在地下可以是稳定的.3、影响岩石力学性质和物理性质的三个重要因素:1).矿物:地壳中具有一定化学成分和物理性质的自然元素和化合物;2).结构:组成岩石的物质成分、颗粒大小和形状以及相互结合的情况;3).构造:组成成分的空间分布及其相互间排列关系。
4、岩石力学是固体力学的一个分支。
在固体力学的基本方程中,平衡方程和几何方程都与材料性质无关,而本构方程(物理方程/物性方程)和强度准则因材料而异。
岩石的基本力学性质主要包括2大类,即岩石的变形性质和岩石的强度性质。
5、研究岩石变形性质的目的,是建立岩石自身特有的本构关系或本构方程(constitutive law or equation),并确定相关参数。
研究岩石强度性质的目的,是建立适应岩石特点的强度准则,并确定相关参数。
6、岩石强度:岩石介质破坏时所能承受的极限应力;单轴抗压强度、单轴抗拉强度、多轴强度、抗剪强度。
7、研究岩石强度的意义:1).岩石分类、分级中的重要数量指标;2).作为强度准则判别:当前计算点处于全应力应变曲线哪个区;3).计算处或测定处的岩土工程是否稳定;4).在简单地下工程条件下,可作为极限平衡条件(塑性条件),求解弹塑性问题的塑性区范围,以及弹性区和塑性区的应力与位移.8、岩石的破坏形式:1).拉伸破坏: (a)为直接拉伸,(b)为劈裂破坏2).剪切破坏3)塑性流动4).拉剪组合9、岩石单轴强度定义:岩石试件在无侧限和单轴压力作用下抵抗破坏的极限能力;公式: σc=P/A 式中,σc——单轴抗压强度,MPa,也称无侧限强度;P——无侧限条件下岩石试件的轴向破坏荷载; A ——试件的截面面积。
岩石力学 知识点整理
岩石力学第一章 绪论1、岩石力学是研究岩石或者岩体在受力的情况下变形、屈服、破坏及破坏后的力学效应。
2、岩石的吸水率的定义。
演示吸水率是指岩石在大气压力下吸收水的质量w m 与岩石固体颗粒质量s m 之比的百分数表示,一般以a w 表示,即w 0s a s sm w 100%m m m m -==⨯ 第二章 岩石的物理力学性质1、影响岩石的固有属性的因素主要包括试件尺寸、试件形状、三维尺寸比例、加载速度、湿度等。
2、简述量积法测量岩石容重的适用条件和基本原理。
适用条件:凡能制备成规则试样的岩石均可基本原理:G/A*HH :均高;A :平均断面;G :重量3、简述劈裂试验测岩石抗压强度的基本原理。
在试件上下支承面与压力机压板之间加一条垫条,将施加的压力变为线性荷载以使试件内部产生垂直于上下荷载作用方向的拉应力在对径压缩时圆盘中心点的压应力值为拉应力值的3倍而岩石的抗拉强度是抗压强度的1/10,岩石在受压破坏前就被抗拉应力破坏4、简述蜡封法测量岩石容重的适用条件和基本原理。
适用条件:不能用量积法或水中称量法(非规则岩石试样且遇水易崩解,溶解及干缩湿胀的岩石) 基本原理:阿基米德浮力原理首先选取有代表性的岩样在105~110℃温度下烘干24小时。
取出,系上细线,称岩样重量(g s ),持线将岩样缓缓浸入刚过熔点的蜡液中,浸没后立即提出,检查岩样周围的蜡膜,若有起泡应用针刺破,再用蜡液补平,冷却后称蜡封岩样的重量(g 1),然后将蜡封岩样浸没于纯水中称其重量(g 2),则岩石的干容重(γd )为:γd =g s /[(g 1-g 2)/γw -(g 1-g s )/γn]式中,γn 为蜡的容重(kN/m 3),.γw 为水的容重(kN/m 3)附注:1. g 1- g 2即是试块受到的浮力,除以水的密度,(g 1- g 2)/γw 即整个试块体积。
2. (g 1- g s )/γn 为蜡的体积第三章 岩石的力学性质1、岩石的抗压强度随着围压的增大而(增大或减小)?增大而增大。
岩体力学复习重点
岩体力学复习重点名词解释:1、软化性:软化性是指岩石浸水饱和后强度降低的性质;2、软化系数:是指岩石时间的饱和抗压强度于干燥状态下的抗压强度的比值;3、形状效应:在岩石试验中,由于岩石试件形状的不同,得到的岩石强度指标也就有所差异;这种由于形状的不同而影响其强度的现象称为“形状效应”;4、尺寸效应:岩石试件的尺寸愈大,则强度愈低,反之愈高,这一现象称为“尺寸效应”;5、延性度:指岩石在达到破坏前的全应变或永久应变;6、流变性:指在应力不变的情况下,岩石的应变或应力随时间而变化的性质;7、应力松弛:是指当应力不变时,岩石的应力随时间增加而不断减小的现象;8、弹性后效:是指在加荷或卸荷条件下,弹性应变滞后于应力的现象;9、峰值强度:若岩石应力--应变曲线上出现峰值,峰值最高点的应力称为峰值强度.10、扩容:在岩石的单轴压缩试验中,当压力达到一定程度以后,岩石中的破列或微裂纹继续发生和扩展,岩石的体积应变增量有由压缩转为膨胀的力学过程,称之为扩容.11、应变硬化:在屈服点以后在塑性变形区,岩石材料的应力—应变曲线呈上升直线,如果要使之继续变形,需要相应的增加应力,这种现象称之为应变硬化.12、延性流动:是指当应力增大到一定程度后,应力增大很小或保持不变时,应变持续增长而不出现破裂,也即是有屈服而无破裂的延性流动.13、强度准则:表征岩石破坏时的应力状态和岩石强度参数之间的关系,一般可以表示为极限应力状态下的主应力间的关系方程: σ1=fσ2,σ3或τ=fσ.14、结构面: ①指在地质历史发展过程中,岩体内形成的具有一定得延伸方向和长度,厚度相对较小的宏观地质界面或带. ②又称若面或地质界面,是指存在于岩体内部的各种地质界面,包括物质分异面和不连续面,如假整合,不整合,褶皱,断层,层面,节理和片理等.15、原生结构面:在成岩阶段形成的结构面.16、次生结构面:指在地表条件下,由于外力的作用而形成的各种界面.17、结构体:结构面依其本身的产状,彼此组合将岩体切割成形态不一,大小不等以及成分各异的岩石块体,被各种结构面切割而成的岩石块体称为结构体.18、结构效应:岩体中结构的方向性质密度和组合方式对岩体变形的影响;19、剪胀角:岩体结构面在剪切变形过程中所发生的法向位移与切向位移之比的反正切值;20、岩体基本质量:岩体所固有的影响工程掩体稳定性的最基本属性,岩体基本质量由岩石坚硬程度和岩石完整程度决定;21、自稳能力:在不支护条件下,地下工程岩体不产生任何形式的能力;22、地应力:自然状态下在原岩岩体中存在的由于岩石自重和构造应力形成的分布应力,也称天然应力23、原岩应力:在工程中指天然存在于岩体中而与任何认为因素无关的应力;24、残余应力:没有外力作用时在岩体内部由于某种原因在整个岩体内的不均匀的变形而引起的应力25、初始地应力:岩体中存在的未受工程扰动的原始应力状态下的应力26、自重应力:由于岩体自重而产生的天然应力27、构造应力:由于地质构造活动在岩体中引起的应力场,这种应力与一定范围地质构造有关,其主要特点是水平应力大于覆岩垂直应力分量;这一作用可以持续到底层深处;28、应力重分布:岩体受到工程活动扰动,引起岩体中初始应力的转移变化形成的新的应力场状态;29、二次应力:相对于初始应力而言,岩体上或岩体内部受到工程活动扰动,引起初始应力自然平衡状态的改变,使一定范围内的原始应力重分布形成的新的应力为二次应力,或称次生应力,直接与工程稳定性有关;30、岩爆:是地下洞室开挖过程中围岩发生突然脆性破坏的现象;一般在地应力较大部位,岩石被挤压超过其弹性限度,聚集的能量会突然释放出来,伴随有声音、碎石飞散、坠落等现象;31、构造线:指区域性挤压应力所形成的构造形迹,也就是指与产生地质构造运动的压应力方向相垂直的平面和地面的交线;32、围岩:指由于人工开挖使岩体的应力状态发生了变化,而这部分被改变了应力状态的岩体称为围岩;地下工程开挖过程中,在发生应力重分布的那一部分工程岩体称为围岩;33、围岩压力:地下洞室围岩在重分布应力作用下产生过量的塑性变形或松动破坏,进而引起施加于支护衬砌上的压力;作用在支护物上的围岩的变形挤压力或塌坍岩体的重力称为围岩压力;34、围岩抗力:在有压洞室中,作用有很高的内水压力,并通过衬砌或洞壁传递给围岩,这时围岩将产生一个反力,称为围岩抗力;35、静水应力状态:在岩石力学中,地下深部岩体在自重作用下,岩体中的水平应力和垂直应力相等的应力状态;36、形变围岩压力:指围岩在二次应力作用下局部进入塑性,缓慢的塑性变形作用在支护上形成的压力,或者是有明显流变性能的围岩的粘弹性或者粘弹—粘塑性变形形成的支护压力;一般发生在塑性或者流变性较显着的地层中;37、松动围岩压力:指因围岩应力重分布引起的或施工开挖引起的松动岩体作用在隧道或坑道井巷等地下工程支护结构上的作用压力;一般是由于破碎的、松散的、分离成块的或被破坏的岩体坍滑运动造成的;38、冲击围岩压力:1是地下洞室开挖过程中,在超过围岩弹性限度的压力作用下,围岩产生内破坏,发生突然脆性破坏并涌向开挖采掘空间的一种动力现象;2强度较高且完整的弹脆性岩体过渡受力后突然发生岩石弹射变形所引起的围岩压力;39、膨胀围岩压力:在遇到水分的条件下围岩常常发生不失去整体性的膨胀变形和位移,表现在顶板下沉、地板隆起和两帮挤出,并在支护结构上形成形变压力的现象;40、应力集中:受力物体或构件在其形状或尺寸突然改变之处引起应力在局部范围内显着增大的现象;41、应力集中系数:指岩体中二次应力与原始应力的比值,也可用井巷开挖后围岩中应力与开挖前应力的比值来表示;42、围岩弹性抗力系数:促使隧洞洞壁围岩产生单位径向位移所需要的内水压力值:K=P/Δα,P:隧洞受到来自隧洞内部的压力,洞壁围岩向外产生一定的位移Δα;43、单位抗力系数:在工程上规定洞径为200cm时隧洞围岩的抗力系数定义为单位抗力系数;44、岩体力学研究方法:工程地质研究法,试验法,数学力学分析法,综合分析法45、岩块:不含显着结构面的岩石块体,是构成岩体的最小岩石单元体;46、岩块构造:岩石内矿物颗粒的大小、形状、排列方式及微结构面发育情况与粒间连结的方式等反映在岩块构成上的特征;47、粒间连结方式:结晶连结、胶结连结硅质胶结的强度>铁质、钙质>泥质;基底式胶结>孔隙式>接触式;48、岩块构造:矿物集合体间及其与其他组分之间的排列组合方式;49、剪胀效应爬坡效应:当法向应力较小时,在剪切过程中,上盘岩体主要是沿结构面产生滑动破坏;50、啃断效应:当法向应力达到一定值后,破坏沿结构面滑动转化为剪断凸起而破坏;51、法向刚度:在法向应力的作用下,结构面产生单位法向变形所需要的应力;填空:1、影响蠕变性质的因素:岩性、应力、温湿度;2、岩石的块体密度可采用规则试件的量积法 ,不规则试件的蜡封法测定;3、岩石的颗粒密度属于实测指标,常用比重瓶法进行测量;4、岩石的弹性变形特性常用弹性模量和泊松比两个常数来表示;当这两个常数为已知时,就可用三维应力条件下的广义胡克定律计算出给定应力状态下的变形;5、岩石的变形性质按卸荷后变形是否可以恢复可分为弹性变形和塑性变形两类;6、岩石的破坏是指岩石材料的应力超过了岩石的极限或者变形超过了岩石的使用限制;7、岩石的力学性质可分为变形性质和强度性质两类,变形性质主要通过本构关系来反映,强度性质主要通过强度理论来反映;8、岩石的流变主要包括蠕变、松弛和弹性后效;9、根据变形速率的不同特点,软弱岩石的典型流变曲线可以划分为瞬时蠕变阶段、初始蠕变阶段、等速蠕变阶段和加速蠕变阶段三个阶段;10、在岩石的流变试验中,可以根据作用在岩石试件上应力或荷载大小的不同,将岩石蠕变曲线分为稳定蠕变曲线和加速发展蠕变曲线两类;11、研究岩石变形的时间效应,一般而言采用两种方法寻找其蠕变规律,即经验方法和蠕变模型方法;12、对于初始蠕变和等速蠕变,目前的经验方程主要有三种,即幂函数、对数函数和指数函数;13、岩石流变的Maxwall模型是由弹性体和粘性体串联而成,其能反应岩石的弹—粘弹性特征;14、对于常见的岩石而言,当围压一定时,随着温度的升高,岩石的延性将增加 ,并且将会出现屈服现象,同时其强度降低 ;15、根据延性度的不同,岩石的破坏可分为脆性破坏、延性破坏和过渡性破坏;16、按照岩石在变形过程中所表现出来的应力—应变—时间关系的不同,可以将岩石的变形划分为弹性变形、塑性变形和粘性变形三种形式各异的基本变性作用;17、大量的实验和观察证明,就破坏形式而言,岩石的破坏主要有脆性破坏、延性破坏和弱面剪性破坏;18、在岩石室内压缩试验中,岩石峰值后的荷载—位移曲线,实质上是岩石的破坏过程曲线;19、目前,实验室抗拉强度的测定常采用劈裂法进行,当用长度为L,直径为D的圆形试件进行试验时,在压力P max作用下,岩石发生了破坏,则此岩石试件的抗拉强度为2P max/πLD;如采用边长为a的立方块,则其抗拉强度为Pt=2P max/πa2 ;20、岩石的室内剪切试验常用的仪器有直剪仪、变角板剪力仪和岩石三轴试验机 ;21、岩体是指经历过多次地质作用,经历过变形,遭受过破坏,形成了一定的岩石成分和结构,赋存于一定地地质环境中的地质体;因此,岩体力学性质与岩体中的结构面、结构体岩块以及赋存条件环境密切相关;22、在工程岩体范围内,结构面按贯通情况可分为贯通性、半贯通性以及非贯通性三种类型;23、岩体抵抗外力作用的能力称为岩体的力学性质;它包括岩体的稳定特征、变性特征和强度特征等;24、岩体结构面的剪切变形与岩石的强度、结构面的粗糙程度和法向应力有关;25、岩体结构面的几何特性是反映节理的外貌,它的组成要素包括:走向、倾向、连续性、粗糙度以及起伏度和组合关系;26、岩体的力学性质不仅取决于岩石本身及结构面的力学性质,也与结构面的空间组合密切相关;27、岩体的强度不仅与组成岩体的岩石的性质有关,而且与岩体内的软弱结构面有关,此外还与岩体所受的应力状态有关;28、岩体中存在各种结构面,结构面的变形大小主要由结构面和结构面填充物控制的;29、大量的岩体实验表明,岩体的压力——变形曲线可以化分为四种类型,即:直线型、上凹型和下凹型、复合型;30、岩体变形的结构效应是指岩体结构对其变形性质的影响与控制作用,包括结构面、结构体以及两者的组合关系三个方面,其结构面对岩体变形的作用效应尤为突出;31、粗糙起伏无充填的规则锯齿状结构面的剪切机制一方面是爬坡摩擦效应;另一方面是凸起体剪切;32、岩体基本质量应由受岩石的坚硬程度和岩石的完整性程度两个因素确定;33、国际工程岩体分级标准规定,对岩石坚硬程度和岩体完整程度应采用定性划分和定量指标两种方法确定;34、当人类还不能对原岩应力进行测量之前,认为原岩应力是由岩土自重引起的,因此把原岩应力单纯的看成自重应力;35、近期地质力学的观点认为,从全球范围来看,构造应力的总规律是以水平应力为主;根据地质构造运动的发展阶段,一般可把构造应力分为以下三种阶段原始构造应力,残余构造应力,现代构造应力;36、影响原岩应力分布的因素有地形,岩体结构面,岩体力学性质,剥蚀作用,37、重力作用和构造运动是引起地应力的主要原因,其中尤以水平方向的构造运动对地应力的形成影响最大;38、岩体天然应力测量方法主要包括:水压致裂法,扁千斤顶法和钻孔套心应力解除法;39、地质构造运动的结果,使构造应力的特点主要表现在具有强烈方向性,数值较大的水平应力,从而形成构造区域水平应力大于垂直应力的情况;、40、原岩应力主要由自重应力和构造应力组成;41、研究岩石应力状态的目的在于正确认识岩石的力学性能,阐述围岩的破坏机制,充分利用和发挥围岩的自承能力,是工程设计更加合理安全和经济;42、岩体变形的不均匀导致围岩局部破裂的原因是应力分布的不均匀性和强度不均匀性;43、岩石在三轴压缩时,随着侧向应力σ3和σ1—σ3的增加,岩石强度也随之增大:岩石发生破坏后,仍保留一定的承载能力;44、隧洞根据其内部的受力情况可分为有压洞室和无压洞室两大类;45、对于无衬砌有压洞室,洞内水压力P在围岩中所产生的径向和切向应力随隧洞半径r的增大而迅速降低,在6r处该应力基本可以忽略不计,在有些有压隧洞中常见到新形成的,平行于洞轴线的放射状张裂隙,这主要是由于内水压力使围岩产生的应力抵消了围岩的压应力,并超过了岩体的抗拉强度所致;46、围岩在不产生破坏的条件下,当岩石性质由硬岩,中硬岩,到软岩的变化过程中,对于同一种支护形式而言,围岩位移增长会越来越大,相应要求支护结构所承担的压力会越来越大,对于同一种岩石来说,随围岩的不断变化要求支护结构所承担的压力会越来越小;解答:1、在三轴试验中,围压对岩石的力学性质有什么影响1破坏前岩块的总应变随围压增大而增加2随围压增大,岩块的塑性也不断增大,且由脆性破坏逐渐转化为延性破坏3随围压的增大,岩块三轴极限强度明显增大4随围压增大,弹性模量和泊松比不同程度的提高5当围压达到一定值时,出现应变硬化现象2、结构面的成因类型与分类结构面的成因分为两类:地质成因和力学分类:1地质成因类型包括原生结构面沉积结构面、岩浆结构面、变质结构面构造结构面断层、节理、劈理和层间错动面次生结构面卸荷裂隙、风化裂隙、次生夹泄层、泥化夹层2力学成因类型有剪性结构面逆断层、平移断层、多数正断层张性结构面羽状张裂面、纵张及横张破裂面和岩浆岩中的冷凝节理3、结构面的分级:由结构面的伸长度、切割深度、破碎带宽度及其力学效应可分为5级:1级指大断层或区域性断层,延伸数公里至数十公里以上破碎宽约数米至几百米以上;2级指延伸长、宽度不大数百米至数千米,宽数十厘米至数米;3级长数十米至数百米的断层、区域性节理、延伸较好的层面及层间错动等,宽数厘米至一米左右;4级延伸较差的节理、层面等长一般10mm~30mm,宽数厘米;5级微结构面有隐节理、微层面等;规模小、连续性差、常包含在岩块内;4、结构面特征及其影响:产状结构面与最大主应力间的关系控制着岩体的破坏机制与强度、连续性对岩体的变形、变形破坏机理、强度及渗透性都有很大影响、密度控制着岩体的完整性和岩块的块度,密度越大,岩体完整性越差,块度越小,导致岩体力学性质变差,渗透性增强、张开度、形态对岩体的力学性质及水力学性质存在明显影响、充填胶结特征经胶结的结构面力学性质改善,未胶结的力学性质取决于充填物成分、厚度、含水性和壁岩性质等、结构面的组合关系控制着可能滑移岩体的几何边界条件、形态、规模、滑动方向及滑移破坏类型;5、岩块的力学属性:弹性、塑性、粘性、脆性、延性;1弹性:在一定应力范围内,物体受外力作用产生全部变形,而去除外力后能立即恢复其原有形状和尺寸大小的性质;2塑性:物体受力后产生变形,外力去除后不能完全恢复的性质;不能恢复的那部分变形称为塑性变形或永久变形或残余变形;3粘性:物体受力后,变形不能瞬时完成,且变形速率随应力增加而增加的性质;4脆性:物体受力后,变形很小时就发生破裂的性质;5延性:物体能承受较大塑性变形而不丧失其承载力的性质;6、单轴压缩应力-应变曲线:εv=εl+εd阶段:Ⅰ:孔隙裂隙压密阶段:原有张开性结构面或微裂隙逐渐闭合,岩石被压密,早期非线性变形,呈上凹形,斜率随应力增大而增大,微裂隙的闭合在开始较快随后逐渐下降;Ⅱ:弹性变形至为微破裂稳定发展阶段:近似直线,开始为直线,应力增加,变为曲线,出现弹性极限,之后为塑性变形,出现新裂隙和微破裂,随着应力发展而发展,达到屈服极限;Ⅲ:非稳定破裂发展阶段:破裂不断发展,薄弱部位首先破坏,应力重分布,次薄弱部位破坏,体积压缩转为扩容,达到峰值强度或单轴抗压强度;Ⅳ:破坏后阶段:裂隙快速发展,交叉且联合成宏观断裂面,岩块沿其滑移,试件承载力迅速下降但不为0;7、变形参数:变形模量弹性模量:单轴压缩条件下,轴向压应力与轴向压应变之比;E=σ/ε初始模量:曲线原点处的切线斜率,Ei=σi/εi切线模量:曲线上任一点处的切线斜率,Et=σ2-σ1/ ε1-ε2割线模量:曲线上某特定点原点连线的斜率,通常取σc/2处的点与原点连线的斜率,Es=σ50/ε50泊松比:单轴压缩条件下,横向应变与轴向应变之比,μ=-εd/εl8、结构面的强度性质分类:平直无充填的结构面、粗糙起伏无充填~、非贯通断续~、有充填的软弱结构面;9、岩体中天然应力的分布特征1重力应力场与构造应力场的分布特点①重力应力场:以垂直应力为主,垂直应力大于水平应力;应力为压应力;应力随深度增加而增加;②构造应力场:应力有压应力,也可有拉应力;以水平应力为主,水平应力大于垂直应力;分布很不均匀,通常以地壳浅部为主;2地壳浅部3km原岩应力的规律:原岩应力是非稳定的应力场,其大小和方向随空间和时间而变化;实测垂直应力基本上等于上覆岩体的重力;水平应力普遍大于垂直应力;10、各类结构围岩的变形破坏特点1整体状和块状岩体围岩:破坏形式主要有岩爆、脆性开裂及块体滑移等;2层状岩体围岩:破坏形式主要有:沿层面张裂、折断塌落、弯折内鼓等;3碎裂状岩体围岩:变形破坏形式常表现为塌方和滑动;4散体状岩体围岩:其变形破坏形式以拱形冒落为主;11、岩爆的产生条件1围岩应力条件;判断岩爆发生的应力条件有两种方法:一是用洞壁的最大环向应力σθ与围岩单轴抗压强度σc之比作为岩爆产生的应力条件;另一种是用天然应力中的最大主应力σ1与岩块单轴抗压强度σc之比进行判断;σθ≤σc时,洞壁不出现岩爆;σc<σθ≤~σc时,洞壁围岩出现岩射和剥落;σθ>σc时,洞壁出现岩爆和猛烈岩射;另外,根据我国已产生岩爆的地下洞室资料统计,得出当岩体中最大天然主应力σ1与σc达到σ1≥~σc时,将产生岩爆;2岩性条件;当弹性变形能系数ω>70%时,会产生岩爆,ω越大发生岩爆的可能性越大;12、影响岩爆的因素1地质构造;岩爆大都发生在褶皱构造中,岩爆与断层、节理构造也有密切的关系;2洞室埋深;随着洞室埋深增加,岩爆次数增多,强度也增大;此外,地下开挖尺寸、开挖方法、爆破震动及天然地震等对围岩也有明显的影响;13、影响岩体边坡变形破坏的因素1岩性;这是决定岩体边坡稳定性的物质基础;一般来说,构成边坡的岩体越坚硬,又不存在产生块体滑移的几何边界条件时,边坡不易破坏,反之则容易破坏而稳定性差; 2岩体结构;岩体结构及结构面的发育特征是岩体边坡破坏的控制因素;首先,岩体结构控制边坡的破坏形式及其稳定程度,其次,结构面的发育程度及其组合关系往往是边坡块体滑移破坏的几何边界条件;3水的作用;水的渗入使岩土的质量增大,进而使滑动面的滑动力增大;其次,在水的作用下岩土被软化而抗剪强度降低;另外,地下水的渗入对岩体产生动水压力和静水压力,这些都对岩体边坡的稳定性产生不利影响;4风化作用;风化作用使岩体内裂隙增多、扩大,透水性增强,抗剪强度降低;5地形地貌;边坡的坡形、坡高及坡度直接影响边坡内的应力分布特征,进而影响边坡的变形破坏形式及边坡的稳定性;6地震;因地震波的传播而产生的地震惯性力直接作用于边坡岩体,加速边坡破坏;7天然应力;影响边坡拉应力及剪应力的分布范围与大小;在天然应力大的地区开挖边坡时,由于拉应力及剪应力的作用,常直接引起边坡变形破坏;8人为因素;边坡的不合理设计、爆破、开挖和加载,大量生产生活用水的渗入等都造成边坡变形破坏,甚至整体失稳;。
《岩石力学》全书复习资料
第一章 绪论1、岩石力学定义:岩石力学是研究岩石的力学性质的一门理论与应用科学;它是力学的一个分支;它探讨岩石对其周围物理环境中力场的反应。
2、岩石力学研究的目的:科学、合理、安全地维护井巷的稳定性,降低维护成本,减少支护事故。
3、岩石力学的发展历史与概况: (1)初始阶段(19世纪末—20世纪初)1912年,海姆(A.Hmeim )提出了静水压力理论:金尼克(A.H.ΠHHHHK )的侧压理论: 朗金(W.J.M.Rankine )的侧压理论: (2)经验理论阶段( 20世纪初—20世纪30年代)普罗托吉雅克诺夫—普氏理论:顶板围岩冒落的自然平衡拱理论; 太沙基:塌落拱理论。
4、地下工程的特点:(1)岩石在组构和力学性质上与其他材料不同,如岩石具有节理和塑性段的扩容(剪胀)现象等; (2)地下工程是先受力(原岩应力),后挖洞(开巷); (3)深埋巷道属于无限域问题,影响圈内自重可以忽略; (4)大部分较长巷道可作为平面应变问题处理;(5)围岩与支护相互作用,共同决定着围岩的变形及支护所受的荷载与位移; (6)地下工程结构容许超负荷时具有可缩性; (7)地下工程结构在一定条件下出现围岩抗力; (8)几何不稳定结构在地下可以是稳定的; 5、影响岩石力学性质和物理性质的三个重要因素矿物:地壳中具有一定化学成分和物理性质的自然元素和化合物; 结构:组成岩石的物质成分、颗粒大小和形状以及相互结合的情况; 构造:组成成分的空间分布及其相互间排列关系;第二章 岩石力学的地质学基础 1、岩石硬度通常采用摩氏硬度,选十种矿物为标准,最软是一度,最硬十度。
这十种矿物由软到硬依次为:l-滑石; 2-石膏;3-方解石;Hγ1νλν=-H λγH λγ4-萤石;5-磷灰石;6-正长石;7-石英;8-黄玉; 9-刚玉;10-金刚石;2、解理:是指矿物受打击后,能沿一定方向裂开成光滑平面的性质,裂开的光滑平面称为解理面。
岩石力学知识要点(打印)
矿山岩石力学知识要点1 Rock mechanics and mining engineering(1)岩石力学定义/definition of rock mechanics:(P1)(2)岩石力学固有复杂性/inherent complexities in rock mechanics:(P2-4)rock structure/岩石内部普遍存在岩石结构面,size effect,tensile strength,effect of groundwater,weathering (3)岩石力学项目实施过程/implementation of a rock mechanics program:(P7-9)(Fig.1.3)通常按照下列五个方面依次进行,即Site characterization/,mine model formulation,design analysis,rock performance monitoring,retrospective analysis,而基于现场实测的反分析结果又进一步指导进行必要的、新的Site characterisation,mine model formulation和design analysis,改善实施效果。
2 Stress and infinitesimal strain(1)应力/stress:(P10)the intensity of internal forces set up in a body under the influence of a set of applied surface forces.(2)正应力/normal stress component:(P11)应力在其作用截面的法线方向的分量。
(3)剪应力/shear stress component:(P11)应力在其作用截面的切线方向的分量。
(4)体力:分布在物体体积内的力。
岩石力学知识点整理
岩石力学知识点整理采矿 12-1 班矿山岩石力学知识点整理一、名词解释 1. 岩石力学:研究岩体在各种不同受力状态下产生变形和破坏规律的科学。
2. 质量密度(ρ)和重力密度(γ):单位体积的岩石的质量称为岩石的质量密度。
单位体积的岩石的重力称为岩石的重力密度(重度)。
所谓单位体积就是包括孔隙体积在内的体积。
γ= G/Vγ=ρg (kN /m3)式中:G――岩石试件的重量(kN) ;V——岩石试件的体积(m3)3. 岩石的相对密度就是指岩石的干重量除以岩石的实体积(不包括岩石中孔隙体积)所得的量与 1 个大气压下 40C 纯水的容重之比值。
Gs——岩石的相对密度;GsWs Vs? wWs——干燥岩石的重量(kN);Vs——岩石固体体积(m3);w —— 40C 时水的重度(kN/m3)4. 孔隙率是岩石试件内孔隙的体积占试件总体积的百分比。
n ? VV ? 100% Vn ? 1? ?d Gs?w5. 孔隙比是指岩石试件内孔隙的体积(V v)与岩石试件内固体矿物颗粒的体积(Vs)之比。
e ? VV ? VV ? n Vs V ? VV 1 ? n1采矿 12-1 班6. 岩石含水率(V1 ):是指天然状态下岩石中水的重量W1 与岩石烘干重量Wd 之比。
V1W1 Wd100%7.岩石的饱水率(V2 )是指高压(150 个大气压)或真空条件下,岩石吸入水的重量W2 与岩石干重量之比,即V2W2 Wd100%8.岩石的饱水系数( KS )是指岩石的吸水率与饱水率之比,即 KSV1 V29. 软化系数:是指岩石试件在饱水状态下的抗压强度(? c )与在干燥状态下的抗压强度(? 'c )的比值,即??c ? 'c。
10. 透水性是指在一定的压力作用下,地下水可以透过岩石的性能称为岩石的透水性,其衡量指标为渗透率。
11.岩石的碎胀性是指岩石破碎后其体积比原体积增大的性能。
12.结构面:是指具有一定方向、延展较大、厚度较小的二维面状地质界面。
岩石力学复习
岩石力学复习重点1.1、岩体:岩体是指在一定的地质条件下,含有诸如裂隙、节理、层理、断层等不连续的结构面组成的现场岩石,它是一个复杂的地质体。
2.1、岩石的渗透性:在一定的水力梯度或压力作用下,有压水可以透过岩石的孔隙或裂隙流动。
岩石这种能透水的能力称为岩石渗透性。
2.2、结构体:结构体是不同产状和不同规模结构面相互切割而形成的、大小不一、形态各异的岩石块体。
2.3、结构面的类型:按成因可分为原生结构面、构造结构面、次生结构面。
2.4、岩层产状三要素:走向、倾向、倾角。
2.5、RQD概念:用来表示岩体良好度的一种方法。
根据修正的岩芯采取率来决定的。
2.6、RMR法评价岩体的方法:该分类系统由完整岩石强度、RQD值、节理间距、节理状态及地下水状况5类指标组成。
具体做法为:(1)根据各类指标的数值,逐次计分,求和得总分RMR值(P27页表2-10);(2)根据节理、裂隙的产状变化对RMR的初值加以修正(P27页表2-11),以强调节理、裂隙对岩体稳定产生的不利影响。
3.1、脆性破坏、塑性(延性)破坏、弱面剪切破坏的基本概念;脆性破坏:岩石发生破坏时,无显著变形,声响明显,一般发生在单轴或低围压坚硬岩石(岩爆)。
塑形破坏:岩石发生破坏时,变形较大,有明显的“剪胀”效应,一般发生在较软弱岩石或高围压坚硬岩石。
沿软弱结构面(原生)剪切破坏:由于岩层中存在节理、裂隙、层理、软弱夹层等软弱结构面,岩层整体性受到破坏;在外荷载作用下,当结构面上的剪应力大于该面上的强度时,岩体发生沿弱面的剪切破坏。
3.2、影响岩石抗压强度的因素;矿物成分、结晶程度和颗粒大小、胶结情况、生成条件、风化作用、密度、水的作用、试件形状和尺寸、加载速率。
3.3、形态效应和尺寸效应的含义;因应力集中,通常圆柱形试件的强度高于棱柱形试件的强度。
对于棱柱形试件,截面边长越多,其强度越高,这种影响称为形态效应。
岩石试件的尺寸越大,其强度越低,这一现象称为尺寸效应。
岩石力学复习重点
岩石力学复习重点1. 、绪论1. 岩石材料的特殊性:岩石材料不同于一般的人工制造的固体材料,岩石经历了漫长的地质构造作用,内部产生了很大的压应力,具有各种规模的不连续面和孔洞,而且还可能含有液相和气相,岩石远不是均匀的、各向同性的弹性连续体。
2. 岩石与岩体的区别:(1)岩石:是组成地壳的基本物质,他是由矿物或岩屑在地质作用下按一定规律凝聚而成的自然地质体。
(2)岩体:是指一定工程范围内的自然地质体,他经历了漫长的自然历史过程,经受了各种地质作用,并在地应力的长期作用下,在其内部保留了各种永久变形和各种各样的地质构造形迹如不整合褶皱断层层理节理劈理等不连续面。
重要区别就是岩体包含若干不连续面。
起决定作用的是岩体强度,而不是岩石强度。
3. 岩体结构的两个基本要素:结构面和结构体。
结构面即岩体内具有一定方向、延展较大、厚度较小的面状地质界面,包括物质的分界面与不连续面。
被结构面分割而形成的岩块,四周均被结构面所包围,这种由不同产状的结构面组合切割而形成的单元体称为结构体。
2. 岩石的物理力学性质1. 名词解释:孔隙比:孔隙的体积(Vv)与岩石固体的体积的比值。
孔隙率:是指岩石试样中孔隙体积与岩石总体积的百分比。
吸水率:干燥岩石试样在一个大气压和室温条件下吸入水的重量与岩石干重量之比的百分率。
其大小取决于岩石中孔隙数量多少盒细微裂隙的连通情况。
膨胀性:是指岩石浸水后体积增大的性质。
崩解性:岩石与水相互作用时失去粘结力,完全丧失强度时的松散物质的性质。
扩容:岩石在压缩载荷作用下,当外力继续增加时,岩石试件的体积不是减小,而是大幅度增加的现象。
蠕变:应力恒定,变形随时间发展。
松弛:应变恒定,应力随时间减少。
弹性后效:在卸载过程中弹性应变滞后于应力的现象。
长期强度:当岩石承受超过某一临界应力时,其蠕变向不稳定蠕变发展,当小于该临界值时,其蠕变向稳定蠕变发展,称该临界值为岩石的长期强度。
2. 岩石反复冻融后强度下降的原因:①构成岩石的各种矿物的膨胀系数不同,当温度变化时由于矿物的涨缩不均而导致岩石结构的破坏;②当温度减低到0C以下时岩石孔隙中的水将结冰,其体积增大约9%会产生很大的膨胀压力,使岩石的结构发生改变,直至破坏。
岩石力学知识点总结
岩石力学知识点总结一、岩石的力学性质岩石的力学性质是指岩石在外力作用下的响应和变形规律,包括抗压强度、抗拉强度、抗剪强度、弹性模量等。
这些性质对于工程设计和地质灾害的防治非常重要。
岩石的力学性质受到多种因素的影响,包括岩石的成分、结构、孔隙度、水分含量等。
1. 抗压强度抗压强度是指岩石在受到垂直方向外力作用下的抵抗能力。
岩石的抗压强度可以通过实验或者间接方法来进行测定,通常以MPa为单位。
抗压强度受到岩石成分和密度的影响,通常晶体颗粒越大、结晶度越高的岩石其抗压强度越高。
2. 抗拉强度抗拉强度是指岩石在受到拉伸力作用下的抵抗能力。
通常岩石的抗拉强度远远低于其抗压强度,因为岩石在自然界中很少受到拉力的作用。
抗拉强度常常通过实验来进行测定,其数值对于岩石的岩石工程设计和地质灾害防治具有重要意义。
3. 抗剪强度抗剪强度是指岩石在受到切割或者剪切力作用下的抵抗能力。
岩石的抗剪强度与其结构和组成有关,一般来说,岩石中存在着一定的位移面和剪切面,这些面的摩擦和滑移对于岩石的抗剪强度产生了重要的影响。
4. 弹性模量弹性模量是指岩石在受到外力作用下的弹性变形能力。
弹性模量也叫做“模量”,其数值越高,说明岩石在受到外力作用下的变形越小。
弹性模量对于岩石的岩石工程设计和地质灾害防治具有重要的意义。
二、岩石的变形和破坏规律岩石在受到外力作用下会发生变形和破坏,其变形和破坏规律对于地质工程的设计和地质灾害的防治具有重要的意义。
岩石的变形和破坏规律受到多种因素的影响,包括岩石的力学性质、结构、孔隙度、水分含量等。
1. 岩石的变形规律岩石在受到外力作用下会发生变形,其变形规律通常表现为弹性变形、塑性变形和破坏。
弹性变形是指岩石在受到外力作用后能够恢复原状的变形,塑性变形是指岩石在受到外力作用后不能够恢复原状的变形,破坏是指岩石在受到外力作用后达到极限状态,无法继续承受力的作用。
2. 岩石的破坏规律岩石在受到外力作用下会发生破坏,其破坏规律通常表现为压缩破坏、拉伸破坏和剪切破坏。
岩石力学复习资料
岩石力学复习资料1、岩石力学——研究岩石的力学性状和岩石对各种物理环境的立场产生效应的一门理论科学。
2、岩石——组成地壳的基本物质,它是由矿物或岩屑在地质作用下按一定规律聚集而成的自然体。
3、岩体——岩体是地质体,一定工程范围内的自然地质体,经过各种地质运动,内部含有构造与裂隙。
4、岩石结构——岩石矿物颗粒的大小、形状、表面特征、颗粒相互关系、脉结类型。
5、岩石构造——岩石的组成部分在空间排列的情况。
6、渗透系数——表征岩石渗透性能的大小。
7、软化系数——岩石试件的饱和抗压强度与干抗压强度的比值。
8、弹性——在一定应力范围内,物体受外力作用产生全部变形,而去除外力后立即回复其原有的形状和尺寸大小的性质,称为弹性。
产生的变形称为弹性变形。
9、岩石的变形指标有弹性模量、变形模量、泊松比。
10、弹性模量——在单向压缩条件下,弹性变形范围为轴向应力与试件轴向应变之比。
11、变形模量——在单轴压缩条件下,轴向应力与轴向总应变之比。
12、泊松比——横向应变与轴向应变之比。
13、单轴抗压强度——岩石试件在无侧隙的条件下,受轴向压力作用至破坏时,单位横截面积上所承受的最大压应力。
14、抗拉强度——岩石在拉伸载荷作用下达到破坏时所能承受的最大拉应力。
15、抗剪强度——岩石在剪切载荷作用下抵抗剪切破坏的最大剪应力。
16、流变性——指介质在外力不变的条件下,应力或应变随时间变化的性质。
17、蠕变——介质在大小和方向均不改变的外力作用下,其变形随着时间的变化而增大的现象。
18、松弛——介质的变形保持不变时,内部应力随时间变化而降低的现象。
19、弹性后效——对介质加载或卸载时,弹性应变滞后于应力的现象。
20、结构面——指岩体中存在着各种不同成因和不同特性的地质界面,包括物质的分界面、不连续面。
21、准岩体强度——由完整岩石试件的强度和完整性系数K确定。
22、完整性系数——弹性波在岩体中传播纵波速度的平方与在岩石中传播纵波速度的平方之比。
岩石力学重要知识点总结,期末考试复习
第一章1.岩石力学:固体力学的分支,研究岩石在不同物理环境的力场中产生力学效应的学科,也称为岩体力学。
研究对象:岩石与岩体2.岩石:地质作用下矿物或岩屑按一定规律聚集形成的自然物体。
可以有微小裂纹、间隙、层理等缺陷,但没有弱面,是较完整的岩块。
3.影响岩石的力学和物理性质的三个重要因素:(1)矿物:构成岩石的自然元素和化合物,如方解石、石英、云母等。
(2)结构:构成岩石的物质成分、颗粒大小和形状、相互结合情况。
(3)构造:组成成分的空间分布及其相互间排列关系。
4. 岩石按成因分类(1)岩浆岩:岩浆冷凝形成,也称火成岩。
大数由结晶矿物组成,成分和物性均一稳定,强度较高。
代表:玄武岩、花岗岩。
(2)沉积岩:母岩经风化剥蚀、搬运、海湖沉积、硬结成岩,由颗粒和胶结物组成,显著层状特点。
力学特性与矿物、岩屑、胶结物、沉积环境相关。
代表:砾岩、砂岩、石灰岩。
(3)变质岩:地壳中母岩受变质作用(高温、高压及化学流体)形成。
力学性能与母岩性质、变质作用及变质程度有关。
代表:大理岩、石英岩。
注:沉积岩和变质岩的层理构造产生各向异性特征,应注意垂直及平行于层理构造方向工程性质的变化。
5. 岩体:在地质环境中经受变形、破坏,具有一定结构的地质体。
包括岩石结构体和一定的结构面(地质构造形迹),强度远小于岩石。
6.岩体结构要素:结构面和结构体(1)结构面:一定方向,延展较大,厚度较小的面状地质界面,包括物质的分界面和不连续面,如断层、节理、层理、片理、裂隙等。
结构面产状、切割密度、粗糙度和黏结力、填充物性质等是评定岩体强度和稳定性能的重要依据。
(2)结构体:四周被不同产状结构面分割包围的岩块。
常见的结构体形式:块状、柱状、板状、菱形、楔形等。
7. 岩体结构类型及特征8.岩体特征(1)岩体是非均质各向异性材料;(2)岩体内存在着原始应力场。
主要包括重力和地质构造力,重力应力场以铅垂应力为主,构造应力场是以水平应力为主。
(3)岩体内存在着一个裂隙系统。
岩石力学知识要点
岩石力学知识要点第一章1、 岩石:经过地质作用而天然形成的(一种或多种)矿物集合体2、 岩体:在一定的地址条件下,含有诸如裂隙、节理、层理、断层等不连续结构面组成的现场岩石,它是一个复杂的地质体3、 岩石力学研究的基本内容:① 基本理论:岩体地应力、岩体强度、岩体变形、裂隙水力学 ② 材料试验:现场试验和室内试验③ 工程应用:边坡工程、地下洞室、坝基稳定 第二章1、岩石的裂隙连通率:岩裂隙面方向ba a n +=(a 为裂隙面长度,b 为岩桥长度)2、横管各向异性:同一层面内力学性质相同,而不同层面内力学性质有差异的性质3、岩石的物理性质指标:(1)孔隙率:岩石内空隙体积与总体积之比,%1001%100n s v ⨯-=⨯=)(VV VV(2)吸水率: ①自然吸水率:岩石在常温下浸水48小时后岩体内的含水量与岩石干重量的比值%100%100ss1a s1w a ⨯-=⨯=W W W W W W②饱和吸水率:岩样在强制状态下(真空、煮沸或高压下)岩样最大吸水量与岩石干重量的比值%100%sssa sa⨯-=W W W W )((3)软化系数:岩石试件的饱和抗压强度与干抗压强度的比值,用c η表示,干饱和)()(c c cR R =η 4、岩石的渗透系数:受承压水作用的岩体,在节理裂隙等结构面上将产生渗流,其渗透性大小工程上一般用渗透系数k 表示(cm/s )注意:k 不仅与岩体性质有关,还与岩体的应力状态有关,即拉压有关。
① 当外壁水压力大于内壁水压力时,水从外壁流向内壁,岩样受压1k ② 当内壁水压力大于外壁水压力时,水从内壁流向内壁,岩样受拉2k 一般来说2k >1k5、岩体质量指标RQD 值的概念:%100cm 10ll cm 10ii⨯>==∑钻孔总进尺)(钻孔总进尺后的长度扣除岩芯长度小于(修正岩芯采取率)RQD6、岩体分类应考虑的因素:岩块强度、RQD 值、节理间距、节理条件及地下水第三章1、岩石的三种破坏形式及特征? ①脆性破坏:发生破坏时变形很小,明显声响,一般发生单轴或者是地围压坚硬岩石(岩爆) ②延性破坏(塑性破坏):破坏时变形较大,有明显的“剪胀效应”,一般发生在较软弱岩石或者是高围压坚硬岩石③弱面剪切破坏:岩层中存在节理、裂隙、层理、软弱夹层等软弱结构面,岩层整体性受到破坏,在外荷载作用下当结构面上的剪应力大于该面上的强度时,岩体 发生沿弱面的剪切破坏2、岩石的抗剪断强度、抗剪强度的概念:①抗剪强度:岩石沿原生结构面或已被剪断的结构面剪切滑动时的“摩擦阻力” ②抗剪断强度:完整岩块、岩石被剪断时表现出的“抵抗剪切破坏”的强度3、岩石的单轴抗压、抗拉、抗剪强度的概念:①单轴抗压强度:岩石试件在单轴压力(无围压而轴向加压力)下抵抗破坏的极限能力或极限强度,数值上等于破坏时的最大压应力②抗拉强度:岩石的抗拉强度是指岩石试件在单向拉伸条件下试件达到破坏的极限值,它在数值上等于破坏时的最大拉应力。
岩石力学期末复习总结
岩石力学期末复习总结岩石力学期末复习一、知识点部分1.线密度K":指结构面法线方向单位测线长度上交切结构面的条数2.粗糙度:可用粗糙系数JRC表示,随粗糙度的增大,结构面的摩擦角也增大3.结构面填充分类:薄膜填充、断续填充、连续填充、层厚填充4.疲劳强度:疲劳强度是指材料在无限多次交变载荷作用而不会产生破坏的最大应力,称为疲劳强度或疲劳极限。
5.流变:在外部条件不变的情况下,岩石的变形或应力随时间而变化的现象6.弹性后效:弹性后效指的是材料在弹性范围内受某一不变载荷作用,其弹性变形随时间缓缓增长的现象。
在去除载荷后,不能立即恢复而需要经过一段足够时间之后才能逐渐恢复原状,应变恢复总是落后于应力7.三轴压缩强度:试件在三向应力作用下能抵抗的最大轴向应力i.σ$%=$'()*?$,()*?σ-+2C$'()*?$,()*?ii.σ$%=σ-tan445°+?4+2C tan(45°+?4)8.RQD:大于10cm的岩芯累计长度与钻孔进尺长度之比的百分数9.本构关系(名词解释):指岩体在外力作用下,应力或应力速率与其应变或应变速率的关系10.强度理论:采用判断推理的方法,推测材料在复杂应力状态下破坏原因,从而建立强度准则的假说11.典型岩体变形的本构规律1)弹性均质完整结构岩体变形本构规律2)弹性均质断续结构和碎裂结构岩体变形本构规律3)黏弹性材料块状或平卧层状完整结构岩体变形本构规律12.围岩压力:地下洞室围岩在重分布应力作用下产生过量的塑性变形或松动破坏,进而引起施加于支护衬砌上的压力13.形变围岩压力:由于围岩塑性变形,如塑性挤入、膨胀内鼓、弯折内鼓等形成的挤压力14.松动围岩压力:由于围岩拉裂塌落、块体滑移及重力坍塌等破坏引起的压力15.冲击围岩压力:由岩爆形成的一种特殊围岩压力16.岩爆:在具有高天然应力的弹脆性岩体中,进行各种有目的的地下开挖工程时,由开挖卸载及特殊地质构造作用引起开挖周边岩体中应力高度集中,岩体中积聚了很高的弹性应变能。
岩石力学复习知识要点提纲7页word
《岩石力学》课程知识要点一、基本概念 1.岩石力学 2.应力3.正应力/normal stress component :应力在其作用截面的法线方向的分量。
4.剪应力/shear stress component :应力在其作用截面的切线方向的分量。
5.体力:分布在物体体积内的力。
面力:分布在物体表面上的力。
6.弹性力学的基本假定7.内力:物体本身不同部分之间相互作用的力。
8.正面:外法线沿着坐标轴的正方向的截面。
正面上的应力分量与坐标轴方向一致为正,反之为负。
9.负面:外法线是沿着坐标轴的负方向的截面。
负面上的应力分量与坐标轴方向相反为正,反之为负。
10.应力变换公式11.主平面:单元体剪应力等于零的截面。
12.主应力:主平面上的正应力。
13.三维主应力方程与应力不变量:σ1,σ2,σ3最大主应力、中间主应力和最小主应力.14.主应力之间相互正交条件:1212120x x y y z z λλλλλλ++=15.静水应力分量与主偏应力分量 1112233,,,3m m m m I S S S σσσσσσσ==-=-=-16.静力平衡方程17.平面问题的主应力及其方向计算 18应变、位移关系方程 19.体积应变xx yy zz εεε∆=++20.变形协调方程/strain compatibility equations :(P28) 22222yy xy xxyx x yεγε∂∂∂+=∂∂∂∂ 21.虎克定律22.岩土力学关于位移、应力、应变正负的规定(i)沿坐标轴正向作用的力和位移分量为正;(ii)收缩正应变为正;(iii)压缩正应力为正;(iV)若截面内法线相对于坐标的原点向内指,则截面上剪应力方向相对于坐标原点向内为正,反之亦然。
23.强度(峰值强度) 24.残余强度 25.应变软化 26.塑性变形 27.屈服28.岩石单轴压缩与三轴压缩典型特性岩石单轴压缩特性:从变形的四个阶段理解:弹性变形、塑性变形、(峰值强度以后)应变软化、残余变形。
岩石力学知识点总结归纳
岩石力学知识点总结归纳一、岩石力学的基本概念岩石力学是研究岩石在受力作用下的物理性质及其变化规律的一门学科。
岩石在地质作用过程中经历了变形、破裂、流动等多种力学过程,岩石力学的研究内容主要包括以下几个方面:1. 岩石的力学性质:包括岩石的强度、变形特性、破裂特性等。
2. 岩石的应力状态:描述了岩石在外力作用下的应力分布情况,可以通过数学模型和实验方法进行研究。
3. 岩石的变形特征:描述了岩石在受力条件下的变形形态、速率和规律。
4. 岩石的破裂特征:描述了岩石在受力作用下发生破裂的条件、形态和机制。
二、岩石力学的研究方法岩石力学的研究方法主要包括实验方法、数值模拟和野外观测等多种手段。
1. 实验方法:可以通过室内试验和野外试验进行岩石的强度、变形、破裂等力学性质的研究。
室内试验主要包括拉压试验、剪切试验、压缩试验等,野外试验主要包括岩石体应力测试、岩体位移观测等。
2. 数值模拟:通过数学模型和计算机仿真手段,可以对岩石的应力状态、变形特征、破裂机制等进行模拟分析。
数值模拟方法可以有效地预测岩石的力学性质和岩体工程行为。
3. 野外观测:通过野外实际观测手段,可以对岩石的受力状态和破裂特征进行直接观测和记录,为岩石力学研究提供实际数据支持。
三、岩石力学的应用领域岩石力学作为一个重要的地质力学分支学科,在岩石工程、地质灾害防治、地下岩体开采和地质资源勘探等方面有着广泛的应用。
1. 岩石工程:岩石力学的研究成果为岩石工程设计和施工提供了理论指导和技术支持,如岩体边坡稳定分析、地下隧道开挖设计等。
2. 地质灾害防治:岩石力学可以帮助预测和评估地质灾害的危险性,如地质滑坡、岩爆等,为防治工作提供依据。
3. 地下岩体开采:岩石力学研究对于矿山开采、煤矿支护、油田注水等地下工程具有重要的指导意义。
4. 地质资源勘探:岩石力学可以帮助评价和预测地质资源的分布、产量和利用价值,为资源勘探提供依据。
综上所述,岩石力学作为地质力学的一门重要分支学科,对于岩石工程、地质灾害防治、地下岩体开采和地质资源勘探等领域具有重要的理论和实践价值。
岩石力学复习资料整理
第一章1、岩石和岩体的区别——岩石是组成地壳的基本物质,它是由矿物或岩屑在地质作用下按一定规律凝聚而成的自然地质体;岩体是指一定范围内的自然地质体,它经历了漫长的自然历史过程,经历了各种地质作用,并在地应力的长期作用下,在其内部保留了各种永久变形和各种各样的地质构造形迹。
岩体包含若干不连续面,岩体强度远低于岩石强度2、岩体结构的两个基本要素——结构面和结构体第二章1、岩石含水率、吸水率和饱水率的区别——含水率,天然状态下岩石中水的重量与岩石烘干重量比值的百分率;吸水率,指干燥岩石试样在一个大气压和室温条件下吸入水的重量与岩石干重量之比的百分率;饱水率,岩样在强制状态下,岩样的最大吸入水的重量与岩样的烘干重量的比值的百分率2、饱水系数和抗冻性的关系——岩石饱水指标反映岩石中张开型裂隙和孔隙的发育情况,对岩石的抗冻性有较大影响。
饱水系数(吸水率与饱水率百分比)一般在0.5~0.8之间。
试验表明,饱水系数<91%时,可免遭冻胀破坏。
3、岩石的软化系数——岩样饱水状态下得抗压强度与干燥状态的抗压强度的比值4、岩石的强度定义——在荷载作用下破坏时所承受的最大荷载应力5、岩石抗压、抗剪、抗拉强度指标,试验方法及其优缺点——抗压指标试验方法有直接单轴抗压试验,普通三轴试验和真三轴试验。
抗拉指标试验有直接抗拉试验(缺点:试样制备困难,且不易与拉力机固定),霹雳法(优点:简单易行,只要有普通压力机就可以进行试验)。
抗剪指标试验方法有直接剪切试验(缺点:强度曲线并不是绝对严格的直线),契形剪切试验,三轴压缩试验(优点:结果较精确)。
6、脆性破坏——由于应力作用下岩石中裂隙的产生和发展的结果,岩石达到破坏时不产生明显的变形;塑性破坏——在塑性流动状态下发生,由于组成物质颗粒间相互滑移所致,破坏时会产生明显的塑性变形而不呈现明显的破坏面。
格里菲斯脆性破坏(是什么破坏)——脆性破坏是拉伸破坏,而不是剪切破坏。
7、岩石的应力、应变曲线及各阶段的特点——反应岩石在压缩条件下由变形到破坏的全过程关系曲线,分五阶段:压密阶段、弹性变形阶段、微裂隙发生和稳定发展阶段、微裂隙加速扩展阶段、破坏后阶段。
岩石力学知识点总结归纳
岩石力学知识点总结归纳
岩石力学是研究岩石在不同应力下的力学性质和变形行为的科学。
以下是岩石力学的一些重要知识点总结归纳:
1. 岩石的力学性质:
- 抗压强度:指岩石抵抗压缩破坏的能力。
- 抗拉强度:指岩石抵抗拉伸破坏的能力。
- 剪切强度:指岩石抵抗剪切破坏的能力。
2. 岩石的应力和应变:
- 应力:指岩石内部受到的力的分布状态。
- 压缩应变:指岩石在受到压力作用下发生的变形。
- 拉伸应变:指岩石在受到拉力作用下发生的变形。
- 剪切应变:指岩石在受到剪切力作用下发生的变形。
3. 岩石的变形特征:
- 弹性变形:指岩石受到外力作用后发生弹性恢复的变形。
- 塑性变形:指岩石受到外力作用后发生不可逆的变形。
- 蠕变变形:指岩石在长时间作用下由于内部结构的改变而发生的变形。
4. 岩石的断裂:
- 抗拉断裂:指岩石受到拉伸力作用下发生的断裂。
- 抗剪断裂:指岩石受到剪切力作用下发生的断裂。
5. 岩石的变形机制:
- 塑性变形机制:指岩石在受到足够大的应力作用下,其晶体结构发生可塑性变形。
- 蠕变变形机制:指岩石在长时间作用下,其内部结构发生改变导致变形。
以上是关于岩石力学的一些重要知识点的总结归纳。
希望对您有所帮助!。
岩石力学重点总结
1.基性和超基性岩石主要由易于风化的橄榄石.辉石及基性斜长石组成;酸性岩石主要由较难风化的石英.钾长石.酸性斜长石及少量暗色矿物(多为黑云母)组成。
2.变质岩形成的地质环境,大多是地壳最活跃的部位,使得变质岩类岩石组合特别复杂。
变质岩的性质与变质作用的特点及原岩的性质有关。
3.变质岩的分类:接触变质岩,动力变质岩,区域变质岩。
4.岩石的容重:岩石的单位体积(包括岩石内孔隙体积)的;式中γ为岩石容重(KN/m3),重量称为岩石的容重。
表达式为γ=WVW为被测岩样的重量(KN),V为被测岩样的体积(m3)。
岩石容重和岩石密度之间的关系:γ=ρg,g为重力加速度(可取9.8m/s2)。
5.岩石的强度其影响因素:1)试件尺寸,2)试件形状,3)试件三围尺寸比例,4)加载速率, 5)湿度。
6.单轴抗压强度:岩石在单轴压缩荷载作用下达到破坏前所能承受的最大压应力称为岩石的单轴抗压强度,或者非限制性抗压强度。
7.单轴压缩荷载作用下破坏时分为:1)X状共轭斜面剪切破坏,2)单斜面剪切破坏,3)拉伸破坏。
8.岩石的变形有:弹性变形,塑性变形,粘性变形三种。
9.岩石变形的典型全应力-应变曲线;1)孔隙裂隙压密阶段(OA段)。
2)弹性变形至微弹性裂隙稳定阶段(AC段)。
3)非稳定破裂发展阶段,或称累进性破裂阶段(CD段)。
4)破裂后阶段(D点以后阶段)。
10.岩石的扩容:岩石具有的一种普遍性质,是岩石在荷载作用下,在其破坏之前产生的一种明显的非弹性体积变形。
11.岩石的各向异性:岩石的全部或部分物理.力学性质随方向不同而表现出差异的现象称为岩石的各向异性。
12.岩体结构单元包括结构面和结构体。
结构面包括坚硬结构面(干净的)和软弱结构面(加泥的,夹层);结构体包括块状结构体(短轴的),板状结构体(长厚比大于15的)。
13.岩体的赋存环境主要包括地应力.地下水和地温三部分。
14.岩体结构面:通常分为三种类型:原生结构面.构造结构面.和次生结构面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学大纲第一章概论§1.1岩石力学的基本概念——什么是岩石力学?传统的概念和理论美国科学院岩石力学委员会定义岩石力学固体力学和其他力学学科的本质区别岩石力学的重新定义§1.2岩石力学的应用——岩石力学服务于哪些工程领域采矿工程水利水电工程隧道和公路建设工程土木建筑工程石油工程海洋勘探与开发工程核电站建设与核废料处理工程地热开发工程地震监测与预报工程§1.3岩石力学与工程研究的特点力学荷载条件的特殊性和多因素性研究对象的复杂性和不确定性研究内容的广泛性和工程实用性研究方法的多样性、系统性和综合性第二章岩石的物理力学性质§2.1岩石的物理性质孔隙度密度,容重渗透性声波速度(在岩石中的传播速度)§2.2岩石力学性质的试验和研究非限制性压缩强度试验点荷载强度试验三轴压缩强度试验拉伸强度试验剪切强度试验全应力—应变曲线及破坏后强度试验第三章岩石与岩体分类§3.1按地质组成分类具有结晶组织的岩石具有碎屑组织的岩石非常细颗粒的岩石有机岩石§3.2按力学效应分类均质连续体弱面体散体§3.3按岩体结构分类完整块状结构层状结构碎裂结构散体结构§3.4 CSIR岩体质量分级CSIR岩体质量分级指标体系RMR岩体质量评分标准§3.5 NG1隧道岩体质量分级NG1岩体质量分级指标体系Q岩体质量评分标准第四章岩石强度理论(破坏准则)§4.1莫尔—库仑破坏准则§4.2经验破坏准则§4.3格里菲斯破坏准则§4.4各向异性岩体的破坏第五章岩石流变理论§5.1岩石流变的基本概念§5.2 流变模型三个流变元件模型圣维南(St. Venant)体马克斯威尔Maxwell体开尔文(Kelvin)体广义开尔文(Modified Kelvin)体饱依丁—汤姆逊体(Poyting-Thomson)理想粘塑性体(Ideal viscous-plastic material)宾汉姆(Bingham)体伯格模型(Burger)体第一章概论1.1岩石力学的基本概念-什么是岩石力学?●岩石力学是近代发展起来的一门新兴学科和边缘学科,是一门应用性和实践性很强的应用基础学科。
岩石力学是随着采矿和岩土工程的不断发展而成长起来的,它是使采矿和岩土工程从skill technology上升到science,从经验类比设计上升到科学定量计算、优化设计的有力工具。
●传统概念和理论:采矿和岩石工程中的数学力学理论就是岩石力学岩石力学起始(萌芽)于19世纪末、20年代初,产生了一些初步的简单的理论,以解决岩体开挖的力学计算问题。
静水压力的理论海姆(A.Heim,1912):地下岩石处于一种静水压力状态,作用在地下岩石工程上的垂直压力和水平压力相等,均等于单位面积上覆岩层的重量,即 =γH。
朗金(W.J.M.Rankine):2tan()42Hπφσγ=-⋅。
金尼克(А.Н.ДИННИК):1vH vσγ=⋅-。
塌落拱理论根据生产经验提出的地压理论(地压理论是岩石力学理论的一个组成部分)开始用材料力学和结构力学的方法分析地下工程的支护问题。
普氏理论(ММ.Лротодьяконов,1926):围岩开挖后自然塌落成抛物线拱形,作用在支架上的压力等于冒落拱内岩石的重量,仅是上覆岩石重量的一部分。
普氏理论也称为自然平衡拱学说。
(附图1)太沙基(K.Terzahi):认为塌落拱的形状是矩形,而不是抛物线型。
塌落拱理论是相应于当时的支护型式和施工水平提出来。
事实上,围岩的坍塌并不是围岩压力的唯一来源。
围岩和支护并不完全是荷载和结构的关系,围岩和支护应形成一个共同承载系统。
维持岩石工程稳定性最根本的是要发挥围岩自身的承载作用(现代岩石力学的精髓之一,玲珑金矿主运巷塌方加固治理工程是具有开拓性的示范工程)。
固体力学理论弹性力学和塑性力学被引入岩石力学,从材料的基本力学性质出发来认识岩石工程的稳定问题,确立了一些经典计算公式,这是认识方法上的重要进展,为简单岩石工程的力学计算和分析迈出了新的一步。
萨文(Р. Н. Савин):《孔附近的应力集中》(《弹性力学》的基本理论公式,理想弹性体)。
卡斯特纳(H.Kastner)方程:轴对称圆巷,均匀应力场,理想弹塑性体,根据塑性区确定支护设计(附图1-1)。
鲁滨湟特(К. В. Руллененит)方程:一般圆巷,弹塑性分析。
塞拉塔(S.Serata)方程:用流变模型进行隧洞围岩的粘弹性分析。
早期的固体力学理论是连续介质理论,忽视了对岩体非连续性本质和对地应力作用的正确认识,忽视了开挖的概念和施工因素的影响,因而做出的计算和分析结果往往脱离工程实际;太多的假设、太多的理想化,导致计算和分析结果缺少实际应用意义。
同时,早期的固体力学计算方法只适用于圆形(椭圆形)巷道等个别情况,而对普通的岩石开挖工程无能为力,因为没有现成的弹性或弹塑性理论解析解(closed form solution)可供应用。
现代计算机和数值分析技术的发展为岩石力学的定量计算和分析创造了条件。
地质力学理论20世纪20年代由法国人克罗斯(H.Cloos)创立。
著名代表——奥地利学派(阿尔卑斯山隧道工程)。
强调要重视对岩体节理、裂隙的研究,重视岩体结构面对岩石工程稳定性的影响和控制作用。
同时重视岩石工程施工过程中应力、位移和稳定性状态的监测,提出了著名的“新奥法”(NATM,New Austrain Tunnelling Method),这是现代岩石力学和岩石工程信息设计和施工的雏形。
1962年,国际岩石力学学会的成立,标志着岩石力学已经成为一门真正的学科。
代表人物L.Muller为国际岩石力学学会第一任主席。
该理论的缺陷是过分强调节理、裂隙的作用,过分依赖经验,而忽视理论的指导作用。
完全反对把岩体作为连续介质看待,也是不正确的和有害的。
●美国科学院岩石力学委员会定义(1966年):岩石力学是研究岩石的力学性状的一门理论和应用科学,它是力学的一个分支,是探讨岩石对其周围物理环境中力场的反应。
缺点:从"材料"的概念出发的,带有材料力学或固体力学的深深烙印。
●岩石力学与固体力学和其他力学学科的本质区别①不能把"岩石"看成固体力学中的一种材料,所有岩石工程中的"岩石"是一种天然地质体,或者叫做岩体,它具有复杂的地质结构和赋存条件,是一种典型的"不连续介质"。
(附图2)②岩体中存在地应力,它是由于地质构造和重力作用等形成的内应力。
由于岩石工程的开挖引起地应力的释放,正是这种"释放荷载"才是引起岩石工程变形和破坏的作用力。
岩石力学的研究思路和研究方法与以研究“外载荷作用”为特征的固体力学、弹性力学、弹塑性力学、材料力学、结构力学等有本质的不同。
(附图3)③采矿和岩土工程是多步骤的多次开挖过程,其力学行为和工程稳定性与施工因素密切相关。
必须把岩石工程看成是一个“人——地”系统,用系统论的方法来进行岩石力学与工程的研究。
●岩石力学重新定义:岩石力学是一门认识和控制岩石系统的力学行为和工程功能的科学。
●根据这一定义,岩石力学既不能完全套用传统的固体力学连续介质理论,也不能完全依靠以节理、裂隙和结构面分析为特征的传统地质力学理论,而必须把岩石工程看成是一个“人—地”系统,用系统论的方法来进行岩石力学与工程的研究。
用系统概念来表征“岩体”,可使岩体的“复杂性”得到全面的科学的表述。
从系统来讲,岩体的组成、结构、性能、赋存状态及边界条件是构成其力学行为和工程功能的基础,岩石力学研究的目的是认识和控制岩石系统的力学行为和工程功能。
1.2岩石力学的应用-岩石力学服务于那些工程领域?岩石力学服务于一切与岩石工程相关的工程领域,这些工程领域对国民经济的发展,国家的安全和人民的生活均有至关重要的影响和作用。
一方面,岩石力学是上述工程领域的理论基础:另一方面,正是上述工程领域的实践促使了岩石力学的诞生和发展。
采 矿工 程水 利水 电工 程 土 木工 程铁 道 工 程 公 路工 程 地 下工 程核 废 料 储 存地 震 预 报军 事工 程 海 洋工 程石 油工 程 岩 石 力 学采矿工程●露天矿边坡设计及稳定加固技术;(附图4)●地下矿开采设计优化;(附图5)●井下开采中巷道和采场围岩稳定性问题(附图6),特别是软岩巷道和深部开采地压控制问题;●深部开采动力灾害评价,预测及防治;(附图7)●矿井突水预测、预报及预处理理论和技术;●煤与瓦斯突出预测及预处理理论和技术;●采空区处理及地面沉降问题;●排土场、尾矿库稳定性及加固问题;●岩石破碎问题。
水利水电工程●坝基及坝肩稳定性,防渗加固理论和技术;我国三峡工程大坝高度达到350m,装机容量1768万kW,为当前世界上最大的岩石建设工程。
(附图8)●大跨度高边墙地下厂房的围岩稳定及加固技术;●船闸位移控制;●高速水流冲刷的岩石力学问题;●水库诱发地震的预报问题;●库岸边坡稳定及加固方法;●有压和无压引水隧道设计、施工及加固理论技术;南水北调工程(附图9)西线从金沙江、雅砻江、大渡河调水170亿m3到黄河。
全长约350~400km,7坝14洞,隧洞总长321km(长洞最长72km),施工问题,运行稳定性问题。
铁道和公路建设工程●铁道和公路穿过特殊地层(青藏铁路)●线路边坡稳定性分析;●隧道设计和施工技术;已建海底隧道:英吉利海峡隧道长达50km;日本青函跨海隧道长达53.85km;拟建的美俄海峡隧道,穿越白令海峡,总长约90km;欧非大陆海底隧道,穿越直布罗陀海峡,全长60km;日韩海底隧道,穿越东对马海峡和西对马海峡,全长约250km;大陆-台湾海底隧道,广东-海南海底隧道,沪通长江隧道。
●隧道施工中的地质超前预报及处理;●高地应力区的岩爆预测及处理;●地铁施工技术。
土木建筑工程●高层建筑地基处理与加固技术;●大型地下硐室、地下建筑空间设计、施工与加固理论技术;●地面建筑物沉降、倾斜控制和纠偏技术;(附图10)●山城或山坡及临陡建筑物基础滑坡监测预报与防治技术。
石油工程●岩石应力与岩石渗透性;●岩石力学与地球物理勘探综合研究;●钻探技术与钻井稳定性;●岩石力学与采油技术(水压致裂、水平钻孔);●油层压缩及地表沉陷;●石油、天然气运输、储存工程及环境影响。
海洋勘探与开发工程核电站建设与核废料处理工程地热资源开发工程地震监测与预报工程汶川地震的若干问题(附图11)1.3岩石力学与工程研究的特点●力学荷载条件的特殊性和多因素性▼地层中存在一个天然的地应力场采矿、土木、水利水电、交通等岩石开挖工程等都是在这样一个已经存在的天然应力场的作用之下进行的。