结构动力学概述

合集下载

第十章结构动力学

第十章结构动力学

度 法
m m11
yቤተ መጻሕፍቲ ባይዱ(t) 2 y(t) 0
Fm=y(1t) m 11
l EI
二阶线性齐次常微分方程
y(t) 11 F y(t) 11[my(t)]
11

1 k11
柔 度 法
其通解为
y(t) c1 cost c2 sin t
由初始条件 y(0) y0 y(0) y0
第二,结构在动荷载作用下,产生抵抗结构加速度的 惯性力。动力计算必须考虑惯性力。
4、结构动力计算中体系的自由度
自由度的定义
确定体系中所有质量位置所需的独立几何参数,称 作体系的动力自由度数。
自由度的简化
实际结构都是无限自由度体系,这不仅导致分析困难, 而且从工程角度也没必要。常用简化方法有:
结构动力学的研究内容 结构动力学是研究工程结构的动力特性及其在动荷载
作用下的动力反应分析原理和方法的一门理论和技术学科。
结构动力学的任务 讨论结构在动力荷载作用下反应的分析的方法。
寻找结构固有动力特性、动力荷载和结构反应三者间 的相互关系,即结构在动力荷载作用下的反应规律,为结 构动力可靠性设计、保证结构的经济与安全以及结构健康 诊断提供科学依据。
或者
y
ky
F P(t)
y 2 y FP (t)
m
上式就是单自由度体系强迫振动的微分方程
1、简谐振动作用时的强迫振动
运动方程及其解
F(t)
F(t) F sin t
l
F --荷载幅值 --荷载频率
运动方程
my(t) k11y(t) F sin t

y(t) 2 y(t) F sin t m

结构动力学

结构动力学
中国矿业大学
中国矿业大学
中国矿业大学
中国矿业大学
中国矿业大学
例题:
中国矿业大学
中国矿业大学
中国矿业大学
中国矿业大学
14-4 单自由度结构在简谐荷载作用下的强迫振动
所谓强迫振动,是指结构在动力荷载即外来干扰力 作用下产生的振动
惯性力:FI my 恢复力:Fe k11 y 阻尼力:FR y 干扰力:F (t ) FI FR Fe F (t ) 0 my y k11 y F (t )
2
式中: k
2
2
中国矿业大学
14-4 单自由度结构在简谐荷载作用下的强迫振动
F (t ) F sin t F 2 y y sin t y m y C1 sin t C2 cos t
2
中国矿业大学
14-4 单自由度结构在简谐荷载作用下的强迫振动
2 2
2C2 sin t C1 sin t C2 cos t
2 2
F sin t m
中国矿业大学
14-4 单自由度结构在简谐荷载作用下的强迫振动
即: F C1 2 2C2+C1 2- sin t= m
C -2C -C cos t
中国矿业大学
P(t) P t o
P(t) P t o
a ) 简谐荷载
b) 周期撞击荷载
P(t) P t o 图14 -2 冲击荷载 t2
o P
P(t)
t
图14-3 突加常值荷载
中国矿业大学
中国矿业大学
14-1 概述 3、动力自由度 自由度: 结构在弹性变形过程中确定全部质点位置所需的独立 参数的数目。 (1)集中质量法 (2)广义坐标法

对结构动力学的认识

对结构动力学的认识

结构动力学是一种研究结构在外部载荷下的动态响应和振动特性的学科。

它主要关注
的是结构在受到外部激励(如风、地震、交通等)时的振动响应,分析结构的稳定性、自然频率、振型和振幅等参数。

结构动力学的研究对于工程实践和安全评估具有重要
意义。

结构动力学研究的对象可以是各种类型的结构,如房屋、桥梁、塔楼、船舶、飞行器等。

在研究中,结构动力学通常采用数学模型来描述结构的振动响应,包括质点模型、连续体模型、有限元方法等。

在工程实践中,结构动力学的应用十分广泛。

例如,在建筑结构设计中,需要考虑地震、风荷载等外部载荷对结构的影响,通过结构动力学分析可以确定结构的合理构造
和材料选型;在航空航天领域,需要对飞行器结构进行动力学分析,以保证其安全性
和可靠性。

总之,结构动力学是一门研究结构在外部载荷下的动态响应和振动特性的重要学科,
对于工程实践和安全评估具有重要意义。

结构动力学_运动控制方程_分段解析法

结构动力学_运动控制方程_分段解析法

结构动力学运动控制方程分段解析法1. 引言1.1 概述在工程领域中,结构动力学是研究结构物体受外界力或激励下的响应和振动特性的一门学科。

结构动力学广泛应用于建筑、桥梁、飞机等领域,对于确保结构物的安全性和稳定性具有重要意义。

随着现代科技的发展,运动控制方程在结构动力学中扮演着至关重要的角色。

通过运动控制方程,我们可以深入理解和预测结构物运动的规律,并为其设计合适的控制策略。

因此,研究和解析这些方程是结构动力学研究中必不可少的一部分。

1.2 文章结构本文将按照以下顺序进行组织和阐述:首先,在第二部分中,我们将简要介绍结构动力学的定义和原理,以及涉及到的动力学方程。

接着,在第三部分中,我们将详细介绍分段解析法作为一种常见的求解方法,包括其基本原理、算法步骤以及相关应用案例。

在第四部分中,我们将描述所设计实验的参数设置,并对实验结果进行分析和讨论。

最后,在第五部分中,我们将总结本文的主要结论,并展望未来研究方向。

1.3 目的本文的主要目的是通过对结构动力学和运动控制方程的介绍,以及分段解析法的应用案例分析,进一步加深对相关理论和方法的理解。

同时,希望为研究者提供一个清晰、系统的框架,以便于更好地理解和应用这些内容。

鉴于分段解析法在结构动力学领域具有广泛应用和良好效果,本文还旨在为读者提供相关方法在实际工程问题中的指导参考。

2. 结构动力学2.1 定义和原理结构动力学是一门研究物体在受到外部力作用下的运动规律的领域。

它主要涉及质点的运动学和动力学,以及刚体与弹性体的运动特性。

在结构工程中,结构动力学用于分析和预测建筑物、桥梁、飞机等工程结构在自然环境或人为作用下的响应情况,并提供相应的设计依据。

2.2 动力学方程结构动力学理论通过牛顿定律和哈密顿原理等基本原理推导出结构系统的运动方程。

这些方程描述了结构物各个部分之间的相互关系,并包括质量、刚度、阻尼等参数。

根据实际工程问题,可以选择合适的数值解法求解这些方程,从而得到结构系统随时间变化的运动状态。

结构动力学克拉夫

结构动力学克拉夫

结构动力学克拉夫结构动力学是一门研究结构受力、振动和变形的学科。

它是结构力学的一个重要分支,主要研究结构的静力学和动力学行为。

结构动力学的研究可以帮助工程师设计和分析结构的稳定性,预测结构的振动响应,以及提高结构的动力性能。

结构动力学的研究对象是各种类型的结构体系,包括建筑物、桥梁、塔类结构、航空航天器、汽车等。

这些结构在使用过程中会受到各种外部荷载的作用,会发生变形和振动,甚至会发生破坏。

因此,必须通过结构动力学的研究来评估结构的受力情况,以便保证结构的安全和可靠性。

结构动力学的理论基础是力学、振动学和数学分析等。

力学用来描述结构的受力情况,振动学用来描述结构的振动响应,而数学分析则是结构动力学理论的基本工具。

在结构动力学的研究中,常用的数学方法包括牛顿第二定律、拉格朗日方程、哈密顿原理等。

在结构动力学的研究中,需要对结构的质量、刚度和阻尼进行建模。

质量是指结构对外界力的响应情况,通常可以用结构的质量矩阵来描述;刚度是指结构对位移的响应情况,通常可以用结构的刚度矩阵来描述;阻尼是指结构损耗能量的能力,通常可以用结构的阻尼矩阵来描述。

通过对这些参数的建模,可以得到结构的动力学方程。

结构动力学的研究包括两个主要方面:一是结构的自由振动,即结构在没有外界荷载作用下的振动行为;二是结构的强迫振动,即结构在受到外界荷载作用下的振动行为。

通过对这两方面的研究,可以得到结构的振动特性和响应情况。

总的来说,结构动力学是一门重要的学科,它通过对结构受力、振动和变形的研究,可以帮助工程师设计和分析各种类型的结构体系。

同时,结构动力学也为其他学科的研究提供了基础和支持,促进了工程技术的发展和进步。

结构动力学研究

结构动力学研究

结构动力学研究一、引言结构动力学研究是一门研究结构在外部作用下的响应行为的学科,主要研究结构的振动、动态响应、动力特性等问题。

它对于建筑物、桥梁、飞机、汽车等工程结构的设计、分析和优化具有重要意义。

本文将从动力学的基本概念入手,介绍结构动力学研究的相关内容。

二、动力学基础1. 动力学概述动力学是研究物体在外力作用下的运动规律的学科,它包括静力学和动力学两个方面。

静力学研究物体在平衡状态下的力学行为,而动力学研究物体在受到外力作用时的运动行为。

2. 振动与谐振振动是物体在固有频率下的周期性运动,谐振则是指物体在受到与其固有频率相同的外力作用下振幅不断增大的现象。

谐振现象在结构动力学中具有重要意义,需要进行合理的设计和控制,以避免结构破坏。

三、结构动力学分析方法1. 动力学方程结构动力学方程是描述结构在外力作用下的运动行为的数学模型,常用的动力学方程有牛顿第二定律方程和拉格朗日方程。

通过求解动力学方程,可以获得结构的振动响应。

2. 模态分析模态分析是结构动力学研究中常用的分析方法,它通过求解结构的特征方程和特征向量,得到结构的固有频率和振型。

模态分析可以帮助工程师了解结构的振动特性,为结构设计和优化提供依据。

3. 动力响应分析动力响应分析是研究结构在外力作用下的动态响应行为的方法。

通过施加不同的外力,可以得到结构在不同工况下的响应结果,如位移、速度、加速度等。

动力响应分析可以帮助工程师评估结构的安全性和稳定性。

四、结构动力学应用1. 地震工程地震是结构动力学研究中重要的外力作用,地震工程旨在研究结构在地震作用下的响应行为,以保证结构的安全性。

地震工程需要进行地震响应分析、地震动力试验等研究,以提高结构的抗震能力。

2. 振动控制振动控制是结构动力学研究的一个重要方向,它旨在通过合理的控制手段减小结构的振动响应。

常用的振动控制方法包括质量阻尼器、液体阻尼器、主动控制等。

振动控制技术的应用可以提高结构的舒适性和安全性。

结构动力学

结构动力学

结构动力学
结构动力学是一门应用物理和数学原理研究动态可塑结构行为的
工程学科。

它不仅涉及到结构力学中的结构响应,而且还涉及到动力
学中的系统性研究。

目标是了解和计算结构受外力作用时的运动行为,预测出结构所受冲击能量,强度和变形情况。

例如,对于一艘平衡船,结构动力学可以帮助我们发现哪些部件会受到激烈的冲击力,以及船
体什么时候会趋向平衡。

为了理解结构动力学,我们需要了解力学。

力学是一种使用物理
学原理的工程学科,主要关注作用在物体上的各种力和它们之间的作用。

例如,重力和导热力是两个典型的力,它们混斗在一起影响物体
的运动。

结构动力学是将力学概念应用于特定可塑结构上,用来分析结构
随时间改变的行为特性。

其中,最常见的类型包括结构稳定性和可塑性,它们可以被应用于从最小的桥梁到最大的建筑结构。

在更深层次上,结构动力学考察不同刚度结构之间的行为,并且考察这些行为如
何通过各种力学和外力来影响复杂系统。

此外,结构动力学还可以用来检查建筑结构的设计是否正确。


可以检查系统中机械强度,稳定性和结构完整性,以免因结构设计不
当而出现过分的变形和破坏。

总之,结构动力学是一门复杂的工程学科,研究的内容涉及到力学,动力学,计算机技术和材料科学等多个领域。

它被广泛用于建筑,船舶,飞机,汽车,桥梁,机器人和其他复杂结构的设计与研究中。

结构动力学 总结

结构动力学 总结

结构动力学 动力特性(天生就有的,爹妈给的,不随外界任何事物改变)自振频率ω:初速度或初位移引起自由振动的圆频率振型:结构按照某自振频率振动的位移形态阻尼:振动过程中的能量耗散(主要由结构内部的特征决定的)动力作用:周期荷载、冲击荷载、随机荷载(地震)动力反应(响应):动内力、动荷载、速度、加速度结构动力学是研究动力反应的规律的学问,一般思路是先研究自由振动(目的是搞清该结构的动力特性)再研究强迫振动(动力特性+动力作用)利用振型分解反应谱法,可以将每个基本振型的参与系数求出来,这样的最大好处是可以将耦联微分方程解耦。

刚度法通式:()()()()mY t cY t kY t F t ++=1、 单自由度无阻尼自由振动(分析自由振动的目的是确定体系的动力特性:周期、自振频率)()()0my t ky t += (()[()]y t my t δ=-) (令k m ω=) 解为:00()cos sin v y t y t t ωωω=+=sin()A t ωϕ+ (22002v A y ω=+,00tan y v ωϕ=) 重要结论:由微分方程的解可以知道,无阻尼振动是一个简谐振动,其周期和自振频率为2T πω=,k mω=周期和自振频率之和自己质量与刚度有关和外界因素无关。

2、单自由度有阻尼自由振动()()()0my t cy t ky t ++= (令=22c c mw mkξ=) 即微分方程为2()2()()0y t wy t w y t ξ++=(实际建筑结构的阻尼比1ξ<)解为000()[sin cos ]t d d dv y y t e t y t ξωξωωωω-+=+=sin()t d Ae t ξωωϕ-+(21d ωωξ=-) 221000000(),d d v y y A y tg v y ξωωϕωξω-+=+=+其中 重要结论:1)由方程的解看出弱阻尼情况下的自由振动是一种衰减振动,阻尼使振幅按指数规律衰减。

结构动力学理论及其在地震工程中的应用

结构动力学理论及其在地震工程中的应用

结构动力学理论及其在地震工程中的应用结构动力学(StructuralDynamics)是指研究结构物受外力影响时所产生的动态响应的一门学科。

结构动力学理论是工程力学中的一个重要研究方向,其研究内容涉及结构物力学特性、物理性能、振动响应等方面。

结构动力学理论与地震工程密切相关,在地震工程中有着重要的应用。

由于地震灾害多发于地震活跃区,而地震对结构物的影响是一种级数变化的过程,在各个阶段的振动具有不同的特征,所以对结构物的振动响应变化是有必要去全面地去研究的。

结构动力学理论就是用来研究结构物受外力影响时所产生的动态响应的理论。

因此,结构动力学理论在地震工程中可以被用来分析地震灾害发生时结构物的振动响应,从而有效地控制和减少振动对结构物造成的损伤,实现抗震。

结构动力学理论在地震工程中的应用主要有三个方面:一是地震动力学分析,即地震动作用下结构物的动力分析,采用结构动力学理论可以有效地估算结构物在地震作用下的振动、变形、受力等物理参数;二是地震防护结构设计,即对结构物进行地震防护结构设计,采用结构动力学理论可以有效优选地震防护措施,设计抗震性能更优的防护结构,从而减少地震破坏的可能性;三是地震控制,即采取各种措施控制地震作用下结构物的振动,采用结构动力学理论可以有效地设计抗震降谐装置,以阻抗地震震动对结构物的损伤。

总之,结构动力学理论及其在地震工程中的应用是地震灾害控制与防治方面的重要理论依据,其正确运用可以有效地控制和减少地震破坏的可能性,是实现抗震的重要技术手段。

在实际工程中,在防治地震灾害之前,必须充分利用结构动力学理论,做到实施有效的抗震设计。

以上就是有关结构动力学理论及其在地震工程中的应用的讨论。

由此可见,结构动力学理论在地震工程中的应用是不可或缺的,是地震灾害防治中的重要手段。

未来,结构动力学理论必将受到越来越多的关注,对抗震的研究也将更加深入,为提高地震灾害防治水平做出贡献。

结构动力学

结构动力学

结构动力学第一章概述1.动力荷载类型:根据何在是否随时间变化,或随时间变化速率的不同,荷载分为静荷载和动荷载根据荷载是否已预先确定,动荷载可以分为两类:确定性(非随机)荷载和非确定性(随机)荷载。

确定性荷载是荷载随时间的变化规律已预先确定,是完全已知的时间过程;非确定性荷载是荷载随时间变化的规律预先不可以确定,是一种随机过程。

根据荷载随时间的变化规律,动荷载可以分为两类:周期荷载和非周期荷载。

根据结构对不同荷载的反应特点或采用的动力分析方法不同,周期荷载分为简谐荷载(机器转动引起的不平衡力)和非简谐周期荷载(螺旋桨产生的推力);非周期荷载分为冲击荷载(爆炸引起的冲击波)和一般任意荷载(地震引起的地震动)。

2.结构动力学与静力学的主要区别:惯性力的出现或者说考虑惯性力的影响3.结构动力学计算的特点:①动力反应要计算全部时间点上的一系列解,比静力问题复杂且要消耗更多的计算时间②于静力问题相比,由于动力反应中结构的位置随时间迅速变化,从而产生惯性力,惯性力对结构的反应又产生重要的影响4.结构离散化方法:将无限自由度问题转化为有限自由度问题集中质量法:是结构分析中最常用的处理方法,把连续分布的质量集中到质点,采用真实的物理量,具有直接直观的优点。

广义坐标法:广义坐标是形函数的幅值,有时没有明确的物理意义,但是比较方便快捷。

有限元法:综合了集中质量法与广义坐标法的特点,是广义坐标的一种特殊应用,形函数是针对整个结构定义的;有限元采用具有明确物理意义的参数作为广义坐标,形函数是定义在分片区域的。

①与广义坐标法相似,有限元法采用了形函数的概念,但不同于广义坐标法在全部体系(结构)上插值(即定义形函数),而是采用了分片的插值(即定义分片形函数),因此形函数的公式(形状)可以相对简单。

②与集中质量法相比,有限元法中的广义坐标也采用了真实的物理量,具有直接直观的优点。

5.结构的动力特性:自振频率、振型、阻尼第二章分析动力学基础及运动方程的建立1.广义坐标:能决定质点系几何位置的彼此独立的量;必须是相互独立的参数2.约束:对非自由系各质点的位置和速度所加的几何或运动学的限制;(从几何或运动学方面限制质点运动的设施)3.结构动力自由度,与静力自由度的区别:结构中质量位置、运动的描述动力自由度:结构体系在任意瞬间的一切可能的变形中,决定全部质量位置所需要的独立参数的数目静力自由度:是指确定体系在空间中的位置所需要的独立参数的数目为了数学处理上的简单,人为在建立体系的简化模型时忽略了一些对惯性影响不大的因素确定结构动力自由度的方法:外加约束固定各质点,使体系所有质点均被固定所必需的最少外加约束的数目就等于其自由度4.有势力的概念与性质:有势力(保守力):每一个力的大小和方向只决定于体系所有各质点的位置,体系从某一位置到另一位置所做的功只决定于质点的始末位置,而与各质点的运动路径无关。

结构动力学克拉夫

结构动力学克拉夫

结构动力学克拉夫结构动力学是研究结构在外力作用下的变形和运动规律的学科。

它能够揭示结构的响应特性,并应用于工程和建筑物的设计、分析和优化等领域。

在结构动力学中,克拉夫方法是一种常用的数值分析方法,可以有效地求解结构的动力响应。

下面将详细介绍克拉夫方法的原理和应用。

克拉夫方法是一种离散激励动力分析方法,适用于求解线性多自由度系统的动力响应。

克拉夫方法的基本原理是离散化结构,将其简化为一系列互相连接的质点,然后通过求解质点的加速度、速度和位移来获取结构的动态特性。

克拉夫方法中引入了模态分析的概念,将结构的振型表示为一系列正交的模态,并通过求解每个模态的响应来得到结构的总响应。

在应用克拉夫方法进行结构动力分析时,首先需要建立结构的有限元模型。

该模型需要包括结构的几何形状、材料特性和边界条件等信息。

然后,通过解结构的动力方程可以得到结构的模态频率和振型。

一般情况下,结构的模态频率并不是均匀分布的,其中低频模态对结构的响应起主导作用。

因此,在求解结构的总响应时,可以只考虑前几个重要的低频模态。

在进行克拉夫分析时,需要给定一个外力激励。

这个外力激励可以是单个点的冲击载荷、均匀分布的动力载荷或者地震作用等。

通过将外力激励进行傅里叶变换,可以将其转化为频域中的振动谱。

然后,根据每个模态的频率和阻尼比,可以得到每个模态的响应谱。

最后,通过叠加所有模态的响应谱,可以得到结构的总响应谱。

这个总响应谱描述了结构在给定的外力激励下的动力响应特性。

克拉夫方法的优点是能够考虑结构的动态特性和边界条件,同时对结构的几何形状和材料特性并不敏感。

它可以用来分析和优化各种类型的结构,包括桥梁、建筑物、风力发电机塔等。

克拉夫方法可以帮助工程师预测结构的响应,并在设计阶段进行结构的优化,以提高结构的稳定性和安全性。

然而,克拉夫方法也有一些局限性。

首先,克拉夫方法仅适用于线性多自由度系统,对于非线性或者含有阻尼的系统,需要进行额外的处理。

结构动力学课件

结构动力学课件

m
EI = ∞
W=2
m m>>m梁 m +αm梁 I
厂房排架水平振动 时的计算简图
m 2I
I
单自由度体系 三个自由度体系
v(t) u(t) θ(t)
三个自由度 水平振动时的计算体系
三个自由度 顶板简化成刚性块
多自由度体系
复杂体系可通过加支 杆限制质量运动的办 法确定体系的自由度
§15-2 单自由度体系的运动方程 15建立运动方程的方法很多,常用的有“动静法” 虚功法、 建立运动方程的方法很多,常用的有“动静法”、虚功法、 变分法等。下面介绍建立在达朗泊尔原理基础上的“动静法” 变分法等。下面介绍建立在达朗泊尔原理基础上的“动静法”。 m
P(t )
&&(t ) y
m&&(t ) = P(t ) y
运动方程
m
P(t )
一、柔度法
− m&&(t ) y
惯性力 && 柔度法步骤: 柔度法步骤(t ) f I = −my : 1.在质量上沿位移正向加惯性力; P(t ) + [−m&&(t )] = 0 y 2.求外力和惯性力引起的位移; 形式上的平衡方程, 形式上的平衡方程,实质上的运动方程 3.令该位移等于体系位移。

δ 11
P (t )
柔度法步骤: 柔度法步骤: 1.在质量上沿位移正向加惯性力; 2.求外力和惯性力引起的位移; 3.令该位移等于体系位移。
三、列运动方程例题 例3.
&& my + ky = P(t )
P(t )
P(t )
m
EI1 = ∞

第1章 结构动力学概述

第1章 结构动力学概述

F (t ) A sin t F (t ) A cos t F (t ) A sin( t )
可以是机器转动引起的不平衡力等。
p (t)
t
建筑 物上 的旋 转机 械
(a) 简 谐 荷 载
2.非随机荷载的类型
高等结构动力学
非简谐周期荷载
定义:荷载随时间作周期性变化,是时间 t 的周期函数,但 不能简单地用简谐函数来表示。 例如:平稳情况下波浪对堤坝的动水压力;轮船螺旋桨产生
动力自由度:
动力分析中为确定体系在振动过程中任一时刻全部质量 的几何位置所需要的独立参数的数目。 独立参数也称为体系的广义坐标,可以是位移、转角或 其它广义量。 在振动的任一时刻,为了表示全部有意义的惯性力的作 用,所必须考虑的独立位移分量的个数,称为体系的动 力自由度
4.
离散化方法 W=2
高等结构动力学
结构动力分析的目的:
确定动力荷载作用下结构的内力和变形; 通过动力分析确定结构的动力特性。
结构力学:
研究结构体系的动力特性及其在动力荷载作用下的动力 反应分析原理和方法的一门理论和技术学科。
该学科的目的在于为改善工程结构体系在动力 环境中的安全性和可靠性提供理论基础。
1.结构动力分析的主要目的
高等结构动力学
W=1
W=2
W=2
记轴变时 W=3 不计轴变时 W=2
W=2
W=3
W=2
4.
离散化方法
高等结构动力学
离散化方法(二)—体系的简化方法 实际结构都是具有无限自由度的
离散化是把无限自由度问题转化为有限自由度的过程 三种常用的离散化方法: 1、集中质量法 2、广义坐标法 3、有限元法

第10章 结构动力学

第10章 结构动力学

5.与其它课程之间的关系
结构动力学以和数学为基础。 要求熟练掌握已学过的知识和数学知识(微分方程的求解)。 结构动力学作为结构抗震、抗风设计计算的基础。
2014-1-10
第10章
10.2体系的动力自由度
1.动力自由度的定义
动力问题的基本特征是需要考虑惯性力,根据达朗贝尔(D‘Alembert Jean Le Rond)原理,惯性力与质量和加速度有关,这就要求分析质量分布和质量位 移,所以,动力学一般将质量位移作为基本未知量。 确定体系中全部质量位置所需要的独立几何参数数目,成为体系的动力自由 度。
4 ( x) sin
2014-1-10

广义坐标法是一种数学简化方法
第10章
10.2体系的动力自由度
有限单元法:
可以看作是分区的广义坐标法,其要点与静力问题一样,是先把结构划分 成适当数量的区域(称为单元),然后对每一单元施行广义坐标法。详见 有限单元法参考资料,这里不再赘述。 一般地说,有限元法是最灵活有效的离散化方法,它提供了既方便又可靠 的理想化模型,并特别适合于用电子计算机进行分析,是目前最为流行的 方法,已有不少专用的或通用的程序可供结构动力学分析之用。 有限单元法也是一种数学简化方法
2014-1-10
第10章
10.1 概述
2.动力荷载及其分类
动力荷载分类方法有很多种,常见的是按动力作用随时间的变化规律来分。 周期性荷载:其特点是在多次循环中荷载相继呈现相同的时间历程。如旋 转机械装置因质量偏心而引起的离心力。 周期性荷载又可分为简谐荷载和非简谐周期荷载,所有非简谐周期荷载均 可借助Fourier级数分解成一系列简谐荷载之和。 冲击和突加载荷: 其特点是荷载的大小在极短的时间内有较大的变化。冲 击波或爆炸是冲击载荷的典型来源;吊车制动力对厂房的水平作用是典型 的突加荷载。 随机载荷:其时间历程不能用确定的时间函数而只能用统计信息描述。风 荷载和荷载均属此类。对于随机荷载,需要根据大量的统计资料制定出相 应的荷载时间历程(荷载谱)。 前两种荷载属于确定性荷载,可以从运动方程解出位移的时间历程并进一 步求出应力的时间历程。 随机荷载属于非确定性荷载,只能求出位移响应的统计信息而不能得到确 定的时间历程,因而~92层之间有一颗巨 大的‘金色大球’,由实 心钢板堆焊而成,直径约 5.4米,重达680吨,价值 400W美元。其实质是调质 阻尼器TMD(Tuned Mass Damper),作用是减轻飓 风、地震给大楼带来的震 动。

结构动力学第一章概述

结构动力学第一章概述

第1章概述研究结构在动荷载作用下的相应规律的学科称为结构动力学结构动力学着重研究结构关于动荷载的响应(如,位移、内力、速度、加速度等的时刻历程)以便确信结构的承载能力和动力学特性,或为改善结构的性能提供依据,结构动力学是抗震设计的基础,也是减震、隔震方法的理论依据。

§结构动力学研究对象与研究目的在动力作用下,结构产生振动,即结构在静平稳位置周围来回地运动(振动)。

振动的缘故,有的是结构本身固有的缘故引发的,如转动机械转子的偏心引发的振动;有的是外界干扰所引发的,如地震作用、风荷载作用,爆炸荷载的作用,和车辆行驶中由于路面不平顺引发的车辆及车辆引发的路面振动等。

因此结构动力学的研究对象正是工程结构的各类振动问题。

而结构动力学的研究目的确实是熟悉和了解工程结构的振动规律,并据此指导工程结构的设计实践及其他有关工作,有效地减轻以幸免有害的振动给工程结构造成破坏,从而为人类社会带来更多的福利,这确实是结构动力学研究的目的和意义。

1.1.1动荷载的概念作用在结构上的荷载是由三个因素确信的,即大小、方向和作用点。

若是这些因素不随时刻转变或随时刻缓慢转变,那么在求解结构的响应时可把其作为静荷载处置加以简化计算,如框架结构的衡宇在自身重力荷载作用下的内力和变形,水塔装满水后的内力和变形等都是结构静力学的范围。

若是作用在结构上的荷载的大小、方向和作用点随时刻转变,使得质量运动加速度所引发的惯性力与荷载相较大到不可轻忽时,那么把这种荷载称为动荷载。

如衡宇结构在风荷载作用下的内力和变形,桥梁结构在汽车荷载作用下的内力和变形,和轮船在海浪的冲击下的内力和变形等都是结构动力学的范围。

应当说明,静与动和加载慢与快是相对的,它与结构自振周期有紧密关系,假设荷载从零增至最大值的加载时刻远大于结构自振周期,例如前者为10s后者为1s,那么加载进程能够为是缓慢的,可作为静荷载对待。

可是假设荷载从零增至最大值的加载时刻接近或小于自振周期,那么加载进程应以为是快速的,这种荷载应作为动荷载来处置。

结构动力学

结构动力学

一、 结构动力学是研究什么的?包含什么内容?结构离散化有什么方法、特点?结构动力学:是研究结构体系的动力特性及其在动力荷载作用下的动力反应分析原理和方法的一门理论和技术学科。

目的:在于为改善工程结构体系在动力环境中的安全性和可靠性提供坚实的理论基础。

结构动力分析的目的:确定动力荷载作用下结构的内力和变形;通过动力分析确定结构的动力特性。

离散化方法:把无限自由度问题转化为有限自由度的过程。

1、 集中质量法:是结构动力分析最常见的处理方法,它把连续分布的质量集中为几个质量,这样就把一个原为无限(动力)自由度的问题转化为有限自由度。

特点:采用了真实的物理量,具有直接、直观的优点。

2、 广义坐标法:能决定体系几何位置的彼此独立的量。

特点:采用形函数的概念,在全部体系上插值。

虽然广义坐标表示了形函数的大小,如果形函数是位移量,则广义坐标具有位移的量纲,但只有n 项叠加后才是真实的位移物理量。

因而广义坐标实际上并不是真实的物理量。

3、 有限元法:将整个结构离散化为有限个单元,它们在有限个节点上连接,通过选用适当的形函数,对各个单元进行近似的力学分析处理,建立起单元的节点位移和相应节点之间的关系,然后按照在连接点上的力平衡条件与变形连续条件,把单元拼接成原结构。

特点:综合了集中质量法和广义坐标法的特点:1与广义坐标法相似,采用了形函数的概念,但为分片的插值,形函数的表达式相对简单;2与集中质量法相同,也采用了真实的物理量,具有直观、直接的优点。

3.每一分段所选择的位移函数可以是相同的,故计算得以简化。

4、每个节点位移仅影响其邻近的单元,所以这个方法所导得的方程大部分是非藕合的,因此解方程式的过程大大地简化。

(不作要求,仅供参考)动力荷载的类型:简谐荷载、非荷载周期荷载、冲击荷载、一般任意荷载。

(不作要求,仅供参考)结构动力计算的特点:1动力反应要计算全部时间点上的一系列的解,比静力问题复杂要消耗更多的计算时间。

第十四章 结构动力学(单自由度)

第十四章 结构动力学(单自由度)


3 / 77
第十四章
结构动力学
简谐周期荷载 (振动荷载)
五、动荷载的分类(按变化规律):
周期性荷载 确定性荷载 动 荷 载
一般周期荷载 冲击荷载 非周期性荷载 突加荷载
风荷载 地震荷载 其他无法确定变化规律的荷载 其他确定规律的 动荷载(如:快速 移动荷载)
不确定性荷载 (随机荷载)

4 / 77
动力分析的特点是要考虑惯性力,因此在确 定计算简图时,必须确定质量分布情况,确定质 点位移形态。 结构在弹性变形过程中确定全部质点位臵所 需的独立参数的数目,称为该结构振动的自由度。 具有一个自由度的结构称为单自由度结构。 自由度大于1的结构则称为多自由度结构。 确定结构振动的自由度方法有以下几种:


velocity
acceleration
21 / 77
加速度
第十四章
取质点为研究对象
结构动力学
W kys弹簧初拉力与质点重量相平衡
FI Fe ky k ( ys yd ) W kyd 称为弹簧拉力 Fe
FR
W
FR y yd 称为阻尼力 FI m md 称为惯性力 y y
与刚度法推出的运动方程相比较可见

24 / 77
第十四章
m FP(t)
结构动力学
2l 3 1 3 EI k
3 EI mu 3 u FP ( t ) 2l
设:真空中质量 m 的位移为 u ,向右为正。 试求:振动微分方程?
解:刚度法:问题是如何确定其中的刚度系数 k。
柔度法:则是将所有外力作用于质量 m,确定任意时 刻质点的位移y。

27 / 77

10结构动力学概论

10结构动力学概论

当 FP (t)为简谐荷载时,其解的形式为
第十章 结构动力学简介
y(t)
y0
cos ωt
ν0 ω
sin ωt
F
θ sin ωt
F
sin θt
m(ω2 θ 2 ) ω
m(ω2 θ 2 )
前两项为初始条件引起的自由振动;第三项为荷载(干扰力)引起的自由振 动,称为伴生自由振动。实际上,由于阻尼的存在,自由振动部分都很快 衰减掉。自由振动消失前的振动阶段称为过渡阶段。第四项为按荷载频率 进行的振动,此阶段为振动的平稳阶段,称为纯受迫振动或稳态振动。
2、平衡方程的建立
平衡方程的建立有两种方法:一是刚度法;一是柔度法。
my
y k
k
m
刚度法:根据达兰贝尔原理,沿位移正向,在质点上加上惯性力,列动态平 衡方程
ky my
k y ——总是与位移方向相反,指向平衡位置
平m衡y 方—程—与加速m度y方向相k反y 0
第十章 结构动力学简介
柔度法:在惯性力作用下,质点的位移等于实际位移
结构力学
STRUCTURAL MECHANICS
第十章 结构动力学简介
§10-1 概述
一、动力计算的内容
动力计算的内容:研究结构在动荷载作用下的动力反应的计算原理和方法。 涉及到内外两方面的因素: 1)确定动力荷载(外部因素,即干扰力); 2)确定结构的动力特性(内部因素,如结构的自振频率、周期、振型和 阻尼等等),类似静力学中的I、S等; 计算动位移及其幅值;计算动内力及其幅值。
纯受迫振动解的讨论请同学们课下自学完成!
第十章 结构动力学简介
三、阻尼对振动的影响
§10-3 单自由度体系的振动分析
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
▪ 虚功法: 根据虚功原理,即作用在体系上的全部力在虚位移 上所做的虚功总和为零的条件,导出以广义坐标表示的运动 方程。
▪ 变分法: 通过对表示能量关系的泛函的变分建立方程。根据 理论力学中的哈密顿原理或其等价形式的拉格朗日方程导出 以广义坐标表示的运动方程。
20
第二章 运动方程的建立
单自由度
c
体系模型
▪ 已有不少专用的或通用的程序(如SAP,ANSYS等)供结构分
析之用。包括静力、动力 和稳定分析。
17
大型桥梁结构 的有限元模型
18
§1-5 运动方程的建立
定义
在结构动力分析中,描述体系质量运动规律的数学 方程,称为体系的运动微分方程,简称运动方程。
▪ 运动方程的解揭示了体系在各自由度方向的位移随 时间变化的规律。
▪ 以广义坐标作为自由度,将无限自由度体系转化为有限个自由度。
▪ 所采用的广义坐标数代表了所考虑的自由度数。
15
3. 有限单元法
—— 将有限元法的思想用于解决结构的动力计算问题。
要点:
▪ 先把结构划分成适当(任意)数量的单元;
▪ 对每个单元施行广义坐标法,通常取单元的节点位移作 为广义坐标;
▪ 对每个广义坐标取相应的位移函数 (插值函数);
第一章 结构动力学概述
结构动力学是结构力学的一个分支,着 重研究结构对于动荷载的响应(如位移、应 力等的时间历程),以便确定结构的承载能 力和动力学特性,或为改善结构的性能提供 依据。
➢动荷载的特性
➢结构的动力特性
➢结构响应分析
1
结构动力体系
静荷载
大小 方向 作用点
结构体系
静力响应
输入
ቤተ መጻሕፍቲ ባይዱ
输出
input
作用时间: 恒载 活载 作用位置: 固定荷载 移动荷载 对结构产生的动力效应: 静荷载 动荷载
3
静荷载: 动荷载:
大小、方向和作用点不随时间变 化或变化很缓慢的荷载。
大小、方向或作用点随时间变化 很快的荷载。
快慢标准: 是否会使结构产生显著的加速度
显著标准: 质量运动加速度所引起的惯性力 与荷载相比是否可以忽略
Output
刚度、约束 杆件尺寸 截面特性
动荷载
大小 方向 作用点 时间变化
结构体系
动力响应
输入
输出
input
Output
质量、刚度 阻尼、约束 频率、振型
位移
内力
数值
应力
动位移 加速度 速度 动应力 动力系数 随时间变化
时间函数
2
§1-2 动荷载的定义和分类
荷载: 作用在结构上的主动力 荷载三要素: 大小、方向和作用点 荷载分类:
▪ 适用于质量分布比较均 匀,形状规则且边界条 件易于处理的结构。
▪ 例如:右图简支梁的变 形可以用三角函数的线 性组合来表示。
(
x)
n1
bn
sin
nπ l
x
( x)
πx b1 sin l
2π x b2 sin l
3π x b3 sin l
14
定义
假定具有分布质量的结构在振动时的位移曲线为 y(x,t),可用
▪ 建立运动方程是求解结构振动问题的重要基础。 ▪ 常用方法:直接平衡法、虚功法、变分法。
19
建立体系运动方程的方法
▪ 直接平衡法,又称动静法,将动力学问题转化为任一时刻的 静力学问题:根据达朗贝尔原理,把惯性力作为附加的虚拟 力,并考虑阻尼力、弹性力和作用在结构上的外荷载,使体 系处于动力平衡条件,按照静力学中建立平衡方程的思路, 直接写出运动方程。
400
地震作用 200
0
-200
t(sec)
0
5
10
15
20
25
30
35
40
45
50
9
结构在确定性荷载作用下的响应分析通 常称为结构振动分析。
结构在随机荷载作用下的响应分析, 被称为结构的随机振动分析。
本课程主要学习确定性荷载作用下的结 构振动分析。
10
§1-3 动力问题的基本特性
与结构静力学相比,动力学的复杂性表现在:
4
动荷载的定义
荷载在大小、方向或作用点方面随时 间变化,使得质量运动加速度所引起 的惯性力与荷载相比大到不可忽略时, 则把这种荷载称为动荷载。
问题:你知道有哪些动荷载?
5
6
动荷载的分类:
概念:动荷载是时间的函数!
分类:
动荷载
确定性荷载 非确定性荷载
周期性荷载 非周期性荷载
7
确定性荷载:荷载的变化是时间的确定性函数。
FP
t
例如: 简谐荷载
FP
冲击荷载
t
FP 突加荷载
t 8
非确定性荷载:荷载随时间的变化是不确定的或不确知的, 又称为随机荷载。
例如:
风荷载
25 Wind speed (m/s) 20 15 10
5
0
0
50
100
脉动风
平均风
150
200
t(sec)
250
300
Acceleration (cm/s 2)
一系列位移函数 k ( x)的线性组合来表示:
n
y( x,t) Ak (t)k ( x) k1
则组合系数Ak(t)称为体系的广义坐标。
(x)
bn
n1
sin
nπ l
x
广义坐标
位移函数
▪ 广义坐标表示相应位移函数的幅值,是随时间变化的函数。
▪ 广义坐标确定后,可由给定的位移函数确定结构振动的位移曲线。
• 动力问题具有随时间而变化的性质;
t
• 数学解答不是单一的数值,而是时间的函数;
• 惯性力是结构内部弹性力所平衡的全部荷载的一个重要部 分!
• 引入惯性力后涉及到二阶微分方程的求解;
• 需考虑结构本身的动力特性:刚度分布、质量分布、阻尼 特性分布的影响;
P
P (t)
11
§1-4 离散化方法
1. 集中质量法
▪ 由此提供了一种有效的、标准 化的、用一系列离散坐标
表示无限自由度的结构体系。
16
▪ 对分布质量的实际结构,体系的自由度数为单元节点可发生的 独立位移未知量的总个数。
▪ 综合了集中质量法和广义坐标法的某些特点,是最灵活有效的 离散化方法,它提供了既方便又可靠的理想化模型,并特别适 合于用电子计算机进行分析,是目前最为流行的方法。
把结构的分布质量按一定的规则集中到结构的某个或某些 位置上,成为一系列离散的质点或质量块 。
▪ 适用于大部分质量
m1
集中在若干离散点
上的结构。
m2
▪ 例如:房屋结构一
般简化为层间剪切
m3
模型。
12
▪ 例如:
m
m1
m2
m1x1
m2x2
mk
mN
mkxk
mN xN
13
2. 广义坐标法
假定具有分布质量的结构在振动时的位移曲线可用一系列 规定的位移曲线的和来表示:
k
y (t )
F(t) m
▪ 质量块m,用来表示结构的质量和惯性特性 ▪ 自由度只有一个:水平位移y(t)
▪ 无重弹簧,刚度为 k,提供结构的弹性恢复力
相关文档
最新文档