材料成型及工艺

合集下载

材料成型原理及工艺

材料成型原理及工艺

材料成型原理及工艺材料成型是指将原料通过一定的工艺过程,使其获得所需形状的过程。

在材料成型中,最常见的方式包括热成型、冷成型和粉末冶金成型等。

这些成型工艺的原理和应用在各个领域都有广泛的应用。

热成型是指通过加热材料使其软化并塑性变形以达到所需形状的一种成型方法。

主要包括热压成型、热拉伸成型、热挤压成型等。

其原理是通过加热使材料达到一定的软化点或熔点,然后通过外力施加,使材料塑性变形并成型。

热成型适用于塑料、玻璃、金属等材料的成型,并且可以制造复杂形状的产品。

冷成型是通过机械力作用在室温下进行的成型方法。

冷成型主要包括挤压成型、压铸成型、冷轧成型等。

其中,冷挤压是常见的一种冷成型方式,主要应用于金属材料的成型。

其原理是通过施加机械力,使材料在室温下产生塑性变形,并达到所需形状。

具有高精度、高效率的特点。

粉末冶金成型是一种将粉末材料在一定温度下进行成型的方法。

其主要过程包括压制和烧结两个过程。

首先将粉末材料经过一定的工艺处理得到一定的物理性质,然后该粉末被用来制造一种新型的成型工艺。

原理是通过压制使粉末粒子结合,并在一定的温度下进行烧结,最终得到所需形状的产品。

其优点是可以制造复杂形状的产品,同时可以利用废料进行再利用。

在材料成型过程中,还有一些辅助工艺和辅助设备的应用,以实现更好的成型效果。

例如模具是实现材料成型的重要工具,通过对模具进行设计和制造,可以获得不同形状和尺寸的产品。

在热成型过程中,需要控制加热温度、保持时间、冷却速率等参数,以确保产品的质量。

在冷成型过程中,需要选择合适的冷却介质和冷却方式,以使产品达到所需的硬度和强度。

在粉末冶金成型过程中,需要控制压制力、压制时间和烧结温度等参数,以实现产品的致密度和力学性能。

总结起来,材料成型的原理和工艺非常丰富多样,根据不同材料和产品的要求选择合适的成型方式可以实现高效率、高质量的制造。

随着科技的进步和工艺的改进,材料成型在各个行业的应用也越来越广泛。

材料成型原理与工艺

材料成型原理与工艺

04
材料成求极高,需要具备轻质、高强度、 耐高温等特性。材料成型原理与工艺的发展为航空航天领域 提供了更多的选择,如钛合金、复合材料等。
这些新型材料的应用有助于减轻飞机和航天器的重量,提高 其性能和安全性。
汽车工业领域的应用
随着环保意识的提高和新能源汽车的 兴起,汽车工业对轻量化材料的需求 越来越大。
件。
锻造工艺
01
02
03
04
自由锻造
利用自由锻锤或压力机对坯料 进行锻打,形成所需形状和尺
寸的锻件。
模锻
利用模具对坯料进行锻打,使 坯料在模具中形成所需形状和
尺寸的锻件。
热锻
将坯料加热至高温后进行锻打 ,使材料易于塑性变形。
冷锻
在常温下对坯料进行锻打,适 用于塑性较差的材料。
焊接工艺
熔化焊
压力焊
材料成型原理与工艺的发展使得汽车 零部件的制造更加高效、精确,如铝 合金、镁合金等轻质材料的广泛应用 ,有助于降低汽车能耗和排放。
能源领域的应用
能源领域如核能、太阳能等需要大量的特殊材料,如耐高 温、耐腐蚀的材料。
材料成型原理与工艺的进步为能源领域提供了可靠的材料 解决方案,如高温合金、耐腐蚀涂层等,有助于提高能源 利用效率和安全性。
材料成型原理与工艺
• 材料成型原理概述 • 材料成型工艺介绍 • 材料成型原理与工艺的发展趋势 • 材料成型原理与工艺的应用前景
01
材料成型原理概述
材料成型的基本概念
材料成型是通过物理或化学手 段改变材料的形状,以达到所 需的结构和性能的过程。
材料成型涉及多种工艺和技术, 如铸造、锻造、焊接、注塑等。
泡沫金属
通过在金属基体中引入孔洞,制备 出具有轻质、高比强度的泡沫金属 材料。

材料成型与工艺

材料成型与工艺

材料成型与工艺
材料成型与工艺是现代制造业中非常重要的一环,它涉及到材料的选择、成型
工艺、加工工艺等多个方面。

在制造业中,材料成型与工艺的选择对产品的质量、成本和效率都有着重要的影响。

因此,深入了解材料成型与工艺的相关知识,对于提高产品质量、降低成本、提高生产效率具有重要意义。

首先,材料成型与工艺的选择需要考虑材料的特性和产品的要求。

不同的产品
对材料的要求是不同的,比如机械零件对材料的强度、硬度要求较高,而外壳类产品对材料的外观要求较高。

因此,在选择材料时,需要充分考虑产品的使用环境、使用要求和成本等因素,选择合适的材料。

其次,材料成型工艺对产品的成型质量有着重要的影响。

成型工艺包括压铸、
注塑、挤压、锻造等多种方式,不同的产品需要采用不同的成型工艺。

在选择成型工艺时,需要考虑产品的形状、尺寸、材料特性等因素,以确保产品能够满足设计要求。

另外,加工工艺也是材料成型与工艺中的重要环节。

加工工艺包括机加工、焊接、表面处理等多个方面,它对产品的精度、表面质量和耐久性都有着重要的影响。

在选择加工工艺时,需要充分考虑产品的设计要求、材料特性和生产效率等因素,以确保产品能够达到预期的要求。

总的来说,材料成型与工艺对于产品的质量、成本和效率都有着重要的影响。

在现代制造业中,要想生产出高质量、高性能的产品,就需要充分了解材料成型与工艺的相关知识,合理选择材料和工艺,以确保产品能够达到设计要求。

只有这样,才能在激烈的市场竞争中立于不败之地,赢得更多客户的青睐。

机械工程材料成型及工艺

机械工程材料成型及工艺

机械工程材料成型及工艺在机械工程中,材料成型主要包括以下几个方面:锻造、压力加工、冷成型、热成型、焊接和铸造等。

这些成型方式根据材料的性质和产品的设计要求选择不同的加工方法和工艺。

锻造是一种通过加热和施加压力来改变原始材料形状的方法。

它可以改变材料的内部结构和物理性质,提高材料的强度和韧性,并将其加工成各种形状的零件。

锻造分为冷锻和热锻两种方式,冷锻适用于一些具有良好延展性的材料,而热锻主要适用于高硬度的合金材料。

压力加工是通过施加压力来使材料发生塑性变形的方法。

它主要包括拉伸、压缩、弯曲、剪切等加工过程。

压力加工可以使材料具有更高的强度、硬度和韧性,并且可以通过精确的控制来获得各种形状和尺寸的零件。

冷成型是指在常温下对金属材料进行塑性加工的方法。

它主要包括冲压、拉伸、挤压、弯曲等加工过程。

冷成型可以保持材料的硬度和强度,同时可以通过模具和设备的精确控制来得到高精度的成型零件。

热成型是指在高温下对金属材料进行塑性加工的方法。

它主要包括热挤压、热压缩、热拉伸、热弯曲等加工过程。

热成型可以使材料的塑性增加,改善材料的流动性和可塑性,从而得到复杂形状的零件。

焊接是将两个或多个材料通过加热或施加压力使其在原子层面上相互结合的方法。

它主要用于连接零件、修复损坏的零件和制造复合材料等方面。

焊接的方式有多种,包括电弧焊、气体焊、激光焊等,可根据不同的需求选择适当的焊接方式。

铸造是通过将熔融的金属或合金注入到模具中,经过冷却和凝固后得到特定形状的零件或产品的方法。

铸造是一种常用的成型方式,可以生产大批量、复杂形状的零件,同时也可以制造出内部空腔的零件。

总之,机械工程材料成型及工艺是实现产品设计和制造的重要环节。

不同的成型方式和工艺可根据材料的性质和产品的要求灵活选择,通过合理的加工和控制,可以获得高精度、高质量的零件和产品。

复合材料成型工艺大全及说明

复合材料成型工艺大全及说明

复合材料成型工艺大全及说明复合材料是由两种或更多种材料组合而成的材料,其具有优异的性能和特点,广泛应用于飞机、汽车、船舶、建筑等领域。

复合材料的成型工艺是制造复合材料制品的关键环节之一,不同的复合材料需要采用不同的成型工艺。

1.手工层压法:将预先切割好的复合材料层压,通过手工操作来制作各种复材制品。

这种方法比较简单,适用于小批量生产和复杂形状的制品,但效率相对较低。

2.沉积法:将复合材料纤维按一定角度布置在模具中,然后通过注塑或浸渍等方式将树脂混合物或熔融金属填充至模具中,经固化或冷却后取出制成复材制品。

这种方法适用于生产中等规模的制品,具有较高的生产效率。

3.拉毛法:将纤维与树脂分别放置在两个模具中,然后通过拉拔的方法,使纤维与树脂相结合,形成复材制品。

这种方法适用于制造纤维增强塑料制品。

4.自动层压法:将预先切割好的复合材料通过自动层压机进行层压,该机器根据预先设定的程序,自动完成复合材料的层压过程,提高了生产效率。

5.真空吸气层压法:将纤维和树脂依次放置在模具中,然后通过抽气装置产生真空环境,使纤维和树脂充分接触并固化,最终得到复材制品。

这种方法适用于制造大型复材制品,可以提高产品的质量和性能。

6.热压成型法:将预先切割好的纤维和树脂放置在模具中,然后通过加热和压力使树脂固化,最终形成复材制品。

这种方法适用于制造较薄的复材板材。

7.包覆成型法:将纤维和树脂分别涂抹在模具表面上,然后通过挤压或滚压的方法,使纤维和树脂充分接触,形成复材制品。

这种方法适用于制造大型、复杂形状的复材制品。

8.精密成型法:通过机械或人工辅助来对复合材料进行定位、定厚、定形,然后进行固化,最终得到产品。

这种方法适用于制造高精度和高质量的复材制品。

除了上述的成型工艺,还有一些特殊的成型工艺,如搅拌铸造法、注塑法、喷涂法、压铸法等,它们都具有各自的优点和适用范围,可以根据具体的需求选择合适的成型工艺。

随着科学技术的发展,复合材料的成型工艺也在不断创新和完善,以满足不同行业对复材制品的需求,同时也提高了复材制品的质量和性能。

金属材料八大成形工艺

金属材料八大成形工艺

金属材料八大成形工艺
(6)金属型铸造(gravity die casting) 金属型铸造:指液态金属在重力作用下充填金属铸型并在型中 冷却凝固而获得铸件的一种成型方法。 应用:金属型铸造既适用于大批量生产形状复杂的铝合金、镁 合金等非铁合金铸件,也适合于生产钢铁金属的铸件、铸锭等。
金属材料八大成形工艺
金属材料八大成形工艺
(3)挤压 挤压:坯料在三向不均匀压应力作用下,从模具的孔口或 缝隙挤出使之横截面积减小长度增加,成为所需制品的加 工方法叫挤压,坯料的这种加工叫挤压成型Байду номын сангаас 应用:主要用于制造长杆、深孔、薄壁、异型断面零件。
金属材料八大成形工艺
(4)拉拔 拉拔:用外力作用于被拉金属的前端,将金属坯料从小于 坯料断面的模孔中拉出,以获得相应的形状和尺寸的制品 的一种塑性加工方法。 应用:拉拔是金属管材、棒材、型材及线材的主要加工方 法。
金属材料八大成形工艺
(10)连续铸造(continual casting) 连续铸造:是一种先进的铸造方法,其原理是将熔融的金属, 不断浇入一种叫做结晶器的特殊金属型中,凝固(结壳)了的 铸件连续不断地从结晶器的另一端拉出,它可获得任意长或特 定的长度的铸件。 应用:用连续铸造法可以浇注钢、铁、铜合金、铝合金、镁合 金等断面形状不变的长铸件,如铸锭、板坯、棒坯、管子等。
金属材料八大成形工艺
(4)低压铸造(low pressure casting) 低压铸造:是指使液体金属在较低压力(0.02~0.06MPa)作用下 充填铸型,并在压力下结晶以形成铸件的方法.。 应用:以传统产品为主(气缸头、轮毂、气缸架等)。
金属材料八大成形工艺
(5)离心铸造(centrifugal casting) 离心铸造:是将金属液浇入旋转的铸型中,在离心力作用下填 充铸型而凝固成形的一种铸造方法。 应用:离心铸造最早用于生产铸管,国内外在冶金、矿山、交 通、排灌机械、航空、国防、汽车等行业中均采用离心铸造工 艺,来生产钢、铁及非铁碳合金铸件。其中尤以离心铸铁管、 内燃机缸套和轴套等铸件的生产最为普遍。

复合材料成型工艺及应用

复合材料成型工艺及应用

复合材料成型工艺及应用引言复合材料是由两种或两种以上的材料组合而成的新材料,具有优异的性能和广泛的应用领域。

复合材料的成型工艺对于材料的性能和应用具有重要影响。

本文将深入探讨复合材料成型工艺及其应用。

成型工艺1. 碳纤维复合材料成型工艺碳纤维复合材料是一种常见的复合材料,其成型工艺有以下几个步骤:1.原材料准备–碳纤维布预浸树脂–模具2.布料叠层–将预浸树脂的碳纤维布按照设计要求叠加在一起3.真空吸气–将叠层的碳纤维布放置在真空袋内–利用真空泵抽取袋内空气,将袋与布料牢固贴合4.热固化–将真空吸气后的碳纤维布置于热压机中进行热固化–在一定的温度和压力下,树脂固化和纤维之间形成牢固的结合2. 玻璃纤维复合材料成型工艺玻璃纤维复合材料是另一种常用的复合材料,其成型工艺包括以下步骤:1.玻璃纤维制备–将原始玻璃熔融并通过喷丝机进行拉伸成细长纤维2.纤维增强–将玻璃纤维与树脂混合物浸渍,使纤维饱和3.成型–将纤维增强的玻璃纤维复合材料放置在模具中–利用压力或真空将复合材料与模具表面充分接触4.固化–在一定的温度和时间下,树脂固化并与玻璃纤维形成牢固结合应用领域复合材料因其独特的性能,广泛应用于以下领域:1. 航空航天业复合材料在航空航天业中具有重要地位。

其轻量化和高强度的特性,使其成为航空器结构中的关键材料。

例如,飞机机翼、机身和尾翼等部件都采用碳纤维复合材料制造,以提高飞行性能和燃油效率。

2. 汽车工业复合材料在汽车工业中的应用越来越广泛。

通过使用复合材料,汽车的整体重量可以降低,燃油效率可以提高。

此外,复合材料还能提供更好的碰撞安全性能和外观设计自由度。

3. 建筑业复合材料在建筑业中的应用也越来越受欢迎。

由于其轻质、高强度和耐腐蚀性能,复合材料可以用于建筑结构、墙体和屋顶等部件的制造。

同时,复合材料还能提供独特的外观效果,满足建筑设计的需求。

4. 化工工业复合材料在化工工业中的应用主要体现在储罐、管道和设备等方面。

材料成型工艺基础

材料成型工艺基础

材料成型工艺基础
材料成型工艺是指将原材料通过一系列工艺加工操作,变成形状和尺寸符合要求、性能稳定的零件或产品的过程。

常见的材料成型工艺有:
1. 热压成型:将材料加热至一定温度,然后放入模具中进行压制成型。

常见的热压成型工艺有热挤压、热拉伸、热压铸等。

2. 冷压成型:将材料放入模具中进行压制成型,常见的冷压成型工艺有冷挤压、冷拉伸等。

3. 注塑成型:将熔化的塑料注入模具中,通过加压和冷却固化成型。

常见的注塑成型工艺有射出成型、吹塑成型、挤出成型等。

4. 粉末冶金成型:将粉末材料放入模具中,在高压下压制成型,通过烧结或烤模固化成型。

常见的粉末冶金成型工艺有烧结成型、热等静压成型、烤模成型等。

5. 造型成型:将液态、半固态或塑性的材料通过造型工具或手工造型进行成型。

常见的造型成型工艺有砂型铸造、蜡型铸造、压铸等。

以上是常见的材料成型工艺,每种工艺都有各自的特点和适用范围,应根据材料的性质、需求和经济性等因素选择适合的工艺。

成型加工方法的工艺

成型加工方法的工艺

成型加工方法的工艺
成型加工方法通常包括以下几种工艺:
1. 锻造:通过对金属材料施加压力,使其在强大的力量下变形,从而得到所需形状的方法。

常见的锻造方法包括冷锻、热锻、自由锻和数控锻造等。

2. 压力加工:利用压力将金属材料塑性变形,通过压制、拉伸、弯曲等方式改变材料形状。

常见的压力加工方法包括冲压、拉伸、弯曲、镦粗、滚压等。

3. 切削加工:通过在工件表面切削掉一部分材料,使工件达到所需形状的方法。

常见的切削加工方法包括车削、铣削、钻孔、插齿、磨削等。

4. 焊接:将两个或更多金属材料通过加热或施加压力的方法连接在一起的过程。

常见的焊接方法包括电弧焊、气焊、激光焊、电阻焊等。

5. 拉伸成型:将材料在拉力的作用下,通过拉伸变形来改变材料形状的方法。

常见的拉伸成型方法包括拉伸、扩张、冷挤压、深冲等。

6. 注塑成型:将熔化或溶解的材料注入模具中,经过冷却、凝固后得到所需形状的方法。

常见的注塑成型方法包括塑料注塑、金属注塑、橡胶注塑等。

7. 压力成型:通过应用压力将材料挤压成所需形状的方法。

常见的压力成型方
法包括挤压、冲压、滚压等。

以上是一些常见的成型加工方法,不同材料和产品的加工要求可能会有所不同,工艺选择应根据具体情况进行。

金属材料成型工艺

金属材料成型工艺

金属材料成型工艺:基本要求与注意事项一、引言金属材料是工业制造中的重要组成部分,其成型工艺对于产品的质量、性能和外观都具有至关重要的影响。

本文将详细介绍金属材料的几种主要成型工艺,包括铸造、锻造、焊接、粉末冶金等,并阐述在金属制作成型和制作过程中需要注意的问题及工艺。

二、金属材料成型工艺1.铸造工艺:铸造是将熔融的金属倒入模具中,待其冷却凝固后形成所需形状的工艺。

铸造工艺适用于制造复杂形状的零件,但易产生气孔、缩孔等缺陷。

2.锻造工艺:锻造是将金属坯料放在砧铁上,通过冲击或压力使其变形,达到所需形状和尺寸的工艺。

锻造工艺适用于制造高强度、耐腐蚀的零件,但易产生变形和裂纹。

3.焊接工艺:焊接是通过高温或压力将两块金属连接在一起的工艺。

焊接工艺适用于制造大型或复杂的零件,但易产生热影响区和应力裂纹。

4.粉末冶金工艺:粉末冶金是将金属粉末在高温下烧结成型的工艺。

粉末冶金工艺适用于制造复杂形状、高精度和小批量零件,但成本较高。

三、金属制作成型和制作需要注意的问题及工艺1.材料选择:根据产品要求选择合适的金属材料,考虑其物理性能、化学成分、力学性能等因素。

2.模具设计:根据产品要求设计合理的模具结构,确保模具的强度、刚度和精度。

3.成型过程控制:严格控制成型过程中的温度、压力、时间等因素,确保产品达到预期的形状和尺寸。

4.质量检测:对成型后的产品进行质量检测,包括外观检查、尺寸检测、无损检测等,确保产品质量符合要求。

5.环境保护:在金属制作成型和制作过程中要注意环境保护,减少废气、废水、废渣的产生,降低能源消耗和碳排放。

6.生产效率:在保证产品质量的前提下,要尽可能提高生产效率,降低生产成本,提高市场竞争力。

四、结论金属材料成型工艺是工业制造中的重要环节,对于产品的质量、性能和外观具有决定性的影响。

在实际生产中,要根据产品要求选择合适的成型工艺,注意材料选择、模具设计、成型过程控制、质量检测、环境保护和生产效率等方面的问题,以确保产品的质量和生产的顺利进行。

常见的材料成型及加工工艺流程

常见的材料成型及加工工艺流程

常见的材料成型及加工工艺流程材料成型及加工工艺流程是制造业中非常重要的一部分,它涉及到了原材料的加工、成型和组装等过程。

在不同的制造行业中,常常会遇到各种不同的材料成型及加工工艺流程。

本文将针对常见的材料成型及加工工艺流程进行介绍与分析,以便读者有更清晰的了解。

一、金属材料成型及加工工艺流程金属材料是制造业中最为常见的一种原材料,它可以用于各种不同的制造过程中。

在金属材料成型及加工工艺流程中,常见的工艺流程包括:锻造、铸造、切削、焊接、热处理等。

1.锻造锻造是将金属坯料置于模具内,通过施加压力使其产生流变形,从而得到所需形状和尺寸的加工工艺。

常见的锻造设备包括:锻压机、锤击机、压力机等。

锻造工艺可以用于生产各种不同形状和尺寸的金属制品,如:车轮、曲轴、车轴等。

2.铸造铸造是将金属熔化后,倒入模具中,经冷却后得到所需形状和尺寸的加工工艺。

常见的铸造工艺包括:砂型铸造、金属型铸造、压铸等。

铸造工艺可以用于生产各种不同形状和尺寸的金属制品,如:汽车零部件、机械零部件等。

3.切削切削是利用刀具对金属进行切削加工,从而得到所需形状和尺寸的加工工艺。

常见的切削设备包括:车床、铣床、磨床等。

切削工艺可以用于生产各种不同形状和尺寸的金属制品,如:螺栓、螺母、螺旋桨等。

4.焊接焊接是将金属件通过加热或加压等方法,使其熔化后再连接在一起,从而得到所需形状和尺寸的加工工艺。

常见的焊接方法包括:气焊、电弧焊、激光焊等。

焊接工艺可以用于生产各种不同形状和尺寸的金属制品,如:焊接结构、焊接零件等。

5.热处理热处理是将金属件加热至一定温度,使其组织结构发生改变后再冷却,从而得到所需性能的加工工艺。

常见的热处理方法包括:退火、正火、淬火、回火等。

热处理工艺可以用于提高金属制品的强度、硬度、韧性等性能,如:弹簧、轴承、齿轮等。

二、塑料材料成型及加工工艺流程塑料材料在制造业中也是一种非常常见的原材料,它可以用于各种不同的制造过程中。

机械工程材料成型及工艺

机械工程材料成型及工艺
箱盖浇注时的位置
•机械工程材料成型及工艺
d)具有大平面的铸件,应将铸件的大平面朝下。
e)尽量减少型芯的数目,最好使型芯位于下型以便下芯 和检查,同时应保证型芯在铸型中安放牢靠、排气通畅。
•机械工程材料成型及工艺
(2)分型面的选择
分型面为铸型组元间的接合面,选择分型面应考 虑以下原则:
a)分型面应尽量采用平面分型,避免曲面分型, 并应尽量选在最大截面上,以简化模具制造和造型工 艺。
•机械工程材料成型及工艺
(二)机器造型
机器造型是指用机器全部完成或至少完成紧砂操 作的造型工序。机器造型铸件尺寸精确、表面质量好、 加工余量小,但需要专用设备,投资较大,适合大批 量生产。
机器造型方法分类: 常用的机器造型方法有:压实紧实、高压紧实、 震击紧实、震压紧实、微震紧实、抛砂紧实、射压紧 实、射砂紧实。
一、砂型铸造
用型砂紧实成型的铸造方法称为砂型铸造。砂型铸造 是应用最广泛的一种铸造方法,其主要工序包括:制 造模样,制备造型材料、造型、造芯、合型、熔炼、 浇注、落砂、清理与检验等。
砂型铸造的生产工艺流程
•机械工程材料成型及工艺
二、造型方法的选择
用造型材料及模样等工艺装备制造铸型的过程称 为造型。造型是砂型铸造的最基本工序,通常分为手 工造型和机器造型两大类。 (一)手工造型
•机械工程材料成型及工艺
活块造型
活块造型是在制模时将铸件上的妨碍起模的小凸 台,肋条等这些部分作成活动的(即活块)。起模时, 先起出主体模样,然后再从侧面取出活块。其造型费 时,工人技术水平要求高。主要用于单件、小批生产 带有突出部分、难以起模的铸件。
•机械工程材料成型及工艺
刮板造型
刮板造型是用刮板代替实体模样造型,它可降低 模样成本,节约木材,缩短生产周期。但生产率低, 工人技术水平要求高。用于有等载面或回转体的大、 中型铸件的单件、小批生产、如带轮、铸管、弯头等。

材料成型加工与工艺学

材料成型加工与工艺学

材料成型加工与工艺学材料成型加工与工艺学是一门关注材料制造过程的学科。

它研究材料在成型过程中的变形、变化与性能,从而建立了一套完整的工艺技术和理论体系。

它不仅仅是对材料工程技术的应用和推广,更是材料工程学、机械工程学和控制工程学多个学科的交叉融合。

一、材料成型加工材料成型加工是指将材料通过加工工艺,按照一定的形状、尺寸、特性要求,制成具有一定形状、尺寸和性能的产品。

材料成型加工既包括传统的热加工、冷加工等机械加工过程,也包括现代的激光加工、等离子加工、电子束加工等非传统加工过程。

材料成型加工的目的是为了满足不同的工业、农业、军事需求,因此它广泛应用于各种机械制造、电子电器、汽车、航空航天、船舶、建筑装潢和纺织等行业。

在加工过程中,材料会发生形变和变形,因此材料科学与工艺学必须紧密结合,分析材料的力学性能及其在加工过程中的行为规律。

二、材料成型工艺学材料成型工艺学是材料工程中一个重要的分支科学。

它研究材料在成型加工过程中产生的形变、失稳、断裂等问题,明确从设计到加工的全过程,使得材料的性能可以得到最好的保持和发挥。

材料成型工艺学的主要任务是确定合理的成型工艺工序、过程参数和设备特性,合理地选择适当的材料,并设计合理的工艺方案。

在材料成型加工的各个环节中,都需要通过实验和数学模型来对加工过程进行分析,对材料状态、材料性能的变化和工艺参数之间的相互作用进行研究。

三、现代随着技术的不断发展,现代化的材料成型加工与工艺学得到了快速发展。

在传统材料制造领域,广泛采用CAD/CAM、MES、ERP等智能化控制技术来优化生产质量和生产效率。

此外,还出现了许多新型材料,比如纳米材料、光子晶体、量子点等材料,在这些材料的成型加工与工艺学的研究中展现出巨大潜力。

传统材料加工中,主要靠经验和传统工艺,而现代材料成型加工则以理论、新技术和新材料为基础,使加工经验和工艺得到完善和提升。

同时,也为研发新型高性能、高效能材料提供了理论与设备基础。

各种材料成形工艺流程

各种材料成形工艺流程

各种材料成形工艺流程各种材料成形工艺流程材料成形是工业生产中的重要环节之一,通过将原材料加工成特定形状,用于制造各种产品。

不同的材料适用于不同的成形工艺,下面将介绍一些常见的材料成形工艺流程。

1. 金属材料成形工艺:金属材料成形通常包括铸造、锻造、压力加工、焊接、剪切等工艺。

首先,铸造是将熔化的金属倒入模具中,冷却后得到所需形状的零件。

其次,锻造是将金属材料经过高温和压力处理,使其改变形状和性能,得到所需的零件。

然后,压力加工是将金属材料放入模具中,经过压力和形变来制造零件。

最后,焊接是将两个或多个金属材料通过加热或压力连接在一起。

剪切是通过切割金属材料来得到所需的形状。

2. 塑料材料成型工艺:塑料材料成型通常包括注塑成型、挤压成型、吹塑成型等工艺。

注塑成型是将塑料颗粒熔化,注入模具中,通过冷却固化得到所需形状的零件。

挤压成型是将熔化的塑料通过模具挤出,通过冷却固化得到所需形状的产品。

吹塑成型是将熔化的塑料通过吹塑机吹气而成型,用于制造中空的产品。

3. 玻璃材料成形工艺:玻璃材料成形主要包括浮法成形和玻璃制品成形两种工艺。

浮法成形是将玻璃熔化后,在液面上浮动,经过冷却后得到所需形状的平板玻璃。

制造玻璃制品的成形工艺包括玻璃吹制、拉伸、压延等。

玻璃吹制是将熔化的玻璃通过吹管吹气形成中空的形状,然后经过冷却后固化。

玻璃拉伸是在玻璃材料上施加拉力,使其形成所需形状。

玻璃压延是将玻璃材料通过辊子的压力来改变形状。

4. 陶瓷材料成形工艺:陶瓷材料成形主要包括成型、干燥、烧结等工艺。

成型是将陶瓷材料通过压制或注塑等工艺制造成所需形状的零件。

干燥是将成型的陶瓷材料进行适当的烘干处理,去除水分。

烧结是将干燥的陶瓷材料置于高温环境中,使其粒子着密,得到所需性能和形状的陶瓷零件。

综上所述,不同的材料适用于不同的成形工艺。

金属材料成形通常包括铸造、锻造、压力加工、焊接、剪切等工艺;塑料材料成型通常包括注塑成型、挤压成型、吹塑成型等工艺;玻璃材料成形主要包括浮法成形和玻璃制品成形两种工艺;陶瓷材料成形主要包括成型、干燥、烧结等工艺。

材料成型方法及工艺的应用

材料成型方法及工艺的应用

材料成型方法及工艺的应用材料成型方法及工艺是制造工业中非常重要的一环。

它涵盖了诸多工艺和方法,用于将原材料转化为最终产品的形状和尺寸。

这些方法和工艺包括了各种加工方式,如锻造、压力成型、铸造、切削、焊接和粉末冶金等。

本文将以笔者的理解为基础,对材料成型方法及工艺的应用进行探讨。

首先,我们来谈一谈锻造。

锻造是一种通过施加压力将金属原料塑形成所需形状的方法。

锻造方法广泛应用于制造行业,特别适合生产高强度和高韧性的零部件,如汽车引擎曲轴、矿山机械零件和飞机组件等。

锻造也可用于生产军工产品,因为它可以提供更均匀的晶格结构和更高的疲劳强度。

另一个重要的成型方法是压力成型。

这个方法包括了挤压、冲压和拉伸等工艺。

挤压是将金属坯料通过挤压机器或挤压模具挤压成所需形状的一种方法。

冲压则是通过模具将金属板材冲压成所需形状的过程。

拉伸是通过将金属坯料加热和拉伸来制造金属管材。

压力成型方法广泛应用于制造压力容器、管件、汽车零部件和家电等领域,因为它可以生产出形状复杂且精度高的产品。

铸造是另一种常见的成型方法。

它通过将熔化的金属或合金倒入模具中,冷却后获得所需形状的产品。

铸造方法被广泛应用于制造金属零件、汽车引擎、铁路轨道和建筑物等。

通过铸造,可以制造出大型和复杂形状的产品,而且成本相对较低。

切削也是一种常见的成型方法。

它是通过在工件上切削、刻蚀、磨削或通过激光切割等方式将材料去除,以获得所需形状和尺寸的方法。

切削广泛应用于制造行业,特别适用于高精度和形状复杂的产品制造。

例如,汽车发动机缸体、飞机零部件和电子设备的外壳等。

焊接也是一种重要的成型方法。

它通过加热和熔化金属,使两个或多个金属件连接在一起。

焊接广泛应用于各个领域,如油气管道、船舶制造、建筑和汽车工业等。

焊接方法种类繁多,包括电弧焊、气体保护焊、激光焊和电阻焊等。

最后,粉末冶金是一种特殊的成型方法。

它通过将粉末材料装填入模具中,然后将其加热和压缩成为致密的坯料,在高温下进行烧结,最终得到所需的产品形状。

材料成型原理与工艺

材料成型原理与工艺
2 机器人技术
利用机器人系统进行生产操作,减少人力投入,提高安全性和稳定性。
3 自动化装备
使用自动化设备和机械装置进行生产操作,提高生产效率和精度。
计算机辅助制造
计算机辅助设计
利用计算机软件进行产品设计和模具设计,提高设计效率和精度。
计算机辅助加工
利用计算机控制系统进行数控加工和自动化加工,提高加工效率和精度。
计算机辅助检测
利用计算机设备进行产品检测和质量控制,提高产品质量和稳定性。
通过外力使材料在超过其弹性极限的条件下发生形变,达到所需形状。
2 热变形
利用高温使材料达到可塑性,并通过外力使其变形,实现成型。
3 剪切成形
通过剪切力将材料切割成所需形状。
材料成型的工艺流程
1
进料和送料
2
将原材料送入成型设备,准备进行下
一步的成型过程。
3
后处理
4
对成型后的材料进行必要的处理,如 修整、清洁、检验等。
材料成型原理与ቤተ መጻሕፍቲ ባይዱ艺
本演示文稿旨在介绍材料成型的原理与工艺。通过深入了解材料成型的分类、 重要性和应用等方面,帮助您更好地理解这一领域。让我们开始探索吧!
材料成型的定义
材料成型是指通过外力和热力使原材料改变形状和性质的加工过程。它是材 料加工的重要环节,广泛应用于制造业各个领域。
材料成型的原理
1 塑性变形
力将其挤压成所需形状。
3
橡胶挤压
将橡胶材料置于挤压机内,通过挤压 力将其挤压成所需形状。
模具的设计和制造
模具是材料成型过程中的重要工具,它决定了成品的形状和质量。模具的设计和制造需要考虑材料特性、 工艺要求和设备条件等因素。
生产成型的自动化技术

材料成型与工艺培训

材料成型与工艺培训

材料成型与工艺培训材料成型与工艺培训是一门非常重要的技能培训课程,它涉及到许多工业和制造行业的领域。

这一培训旨在使学员掌握材料的成型和加工工艺,从而提高生产效率和产品质量。

材料成型是指将原始材料转变为所需形状和尺寸的过程。

这个过程可以通过多种方式进行,如压力,温度和机械力等。

当原始材料经过成型过程后,它们可以用于制造各种产品,如汽车零件,电子设备和建筑材料等。

工艺是指将成型材料加工成所需产品的过程。

加工工艺可以包括切割,焊接,钻孔,铣削等。

这些过程需要特定的工具和技术来完成,因此在培训过程中,学员将学习使用各种工具和设备,如机床,钳工工具和数控机床等。

在材料成型与工艺培训中,学员将学习材料的特性和属性,包括机械性能,热性能和化学性能等。

这将使他们能够选择适合特定产品要求的材料,并了解如何优化成型过程以提高产品质量。

此外,学员还将学习如何分析和解决材料成型过程中可能出现的问题,如缺陷,变形和破损等。

他们将研究不同的成型工艺和技术,并了解如何使用它们来解决这些问题。

材料成型与工艺培训还强调安全和环保意识。

学员将了解如何正确使用工具和设备,以及如何处理和处置废弃材料和废水等废弃物。

最后,材料成型与工艺培训还将培养学员的团队合作和沟通能力。

在实际操作中,学员通常需要与其他团队成员合作,共同完成项目。

因此,学员将学会有效地与他人合作,分享信息,并解决问题。

总之,材料成型与工艺培训是一门非常实用和重要的课程。

通过这种培训,学员将获得掌握材料成型和加工工艺的技能,提高生产效率和产品质量。

这将使他们在工业和制造行业中获得更广阔的就业机会,并为公司的发展做出贡献。

材料成型与工艺培训是一个综合性的课程,涵盖了各种成型和加工工艺的知识和技能。

在这个培训中,学员将学习不同类型的材料,如金属、塑料、陶瓷和复合材料等的成型过程和工艺。

他们还将了解不同的成型方法,如压力成型、注塑成型、挤出成型和锻造等,并学会如何选择适当的工艺来满足产品需求。

材料成型工艺

材料成型工艺

材料成型工艺
材料成型工艺是指将原材料通过一定的加工方式,使其形状、尺寸和性能得到
满足要求的过程。

在工业生产中,材料成型工艺是非常重要的一环,它直接影响着产品的质量和成本。

本文将从材料成型工艺的基本概念、工艺流程、常见问题及解决方法等方面进行探讨。

首先,材料成型工艺的基本概念。

材料成型工艺是指通过加工手段,将原材料
加工成所需形状和尺寸的工艺过程。

这些加工手段包括了多种多样的方式,例如锻造、铸造、压延、焊接等。

不同的材料和产品要求,需要采用不同的成型工艺,以确保产品的质量和性能。

其次,材料成型工艺的工艺流程。

一般来说,材料成型工艺的流程包括原料准备、成型加工、热处理、表面处理等环节。

在原料准备阶段,需要对原材料进行筛选、配料、预处理等工作。

在成型加工阶段,根据产品的要求,选择合适的成型工艺进行加工。

在热处理和表面处理阶段,通过热处理工艺和表面处理工艺,改善材料的性能和表面质量。

再次,常见问题及解决方法。

在材料成型工艺中,常见的问题包括成型不良、
尺寸偏差、表面缺陷等。

针对这些问题,可以采取一些解决方法,如优化工艺参数、改进模具设计、加强设备维护等。

另外,也可以通过引进先进的成型设备和技术,提高生产效率和产品质量。

综上所述,材料成型工艺在工业生产中起着至关重要的作用。

通过对材料成型
工艺的基本概念、工艺流程、常见问题及解决方法的探讨,可以更好地理解和应用材料成型工艺,提高产品质量,降低生产成本,推动工业生产的发展。

希望本文对您有所帮助,谢谢阅读。

工程材料及成型工艺基础

工程材料及成型工艺基础

工程材料及成型工艺基础
工程材料
1. 金属材料
金属材料是各种工程材料中使用最广泛的一类,其具有较高的强度和
韧性,良好的导电导热性能,以及良好的可加工性。

常见的金属材料
包括钢材、铝材、铜材和锌材等。

2. 非金属材料
非金属材料的应用范围也非常广泛,包括了塑料、陶瓷、橡胶、玻璃、复合材料等。

这类材料的主要特点是密度小,比强度高,电绝缘性能好,耐腐蚀能力强。

3. 复合材料
复合材料是由两种或两种以上的不同材料组合而成的材料,常见的包
括碳纤维复合材料、玻璃纤维复合材料等。

它具有较高的强度、韧性、耐腐蚀能力以及耐磨性,但价格较高。

成型工艺
1. 焊接
焊接是两个工件通过熔化,使两个工件之间形成稳定的结合方式。


见的焊接方法包括电弧焊、气体保护焊和激光焊等。

2. 铸造
铸造是将液态金属或合金注入到预制的模具中,冷却凝固形成所需形状的成型方法。

常见的铸造形式有砂型铸造、永久模铸造和压铸等。

3. 塑料加工
塑料加工是指将塑料在加热的状态下挤压、吹塑、注塑等方式在模具中成型。

常用的加工方法有挤出成型、挤压成型以及注塑成型等。

4. 机械加工
机械加工是指通过旋转或移动切削工具对工件进行切削、加工和成型的过程。

常见的机械加工方法包括车削、铣削和钻孔等。

5. 热处理
热处理是通过加热和冷却的方式改变金属材料的组织结构和性能,可以使金属材料具有更好的耐腐蚀性、韧性和强度。

常见的热处理方法包括淬火、退火和正火等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、复合材料成型工艺概述:复合材料成型工艺是复合材料工业的发展基础和条件。

随着复合材料应用领域的拓宽,复合材料工业得到迅速发展,其老的成型工艺日臻完善,新的成型方法也不断涌现,目前复合材料的成型方法大概有以下工艺在国内广泛地用于工业化生产,如:(1)手糊成型工艺;(2)喷射成型工艺;(3)浇铸成型技术;(4)定长缠绕制管工艺;(5)连续缠绕制管工艺;(6)拉挤成型工艺;(7)袋压法(压力袋);(8)片状模压成型工艺(SMC);(9)团装模压成型工艺(BMC);(10)热塑性片状模塑料制造技术(GMT);(11)真空袋压成型(真空导流工艺);(12)树脂传递模塑成型技术(rtm);(13)真空辅助轻质rtm(L-RTM)(14)其他成型工艺(略)。

从以上工艺的排列顺序来看,复合材料成型所用模具由开放式到半开放逐步向封闭的转变过程。

根据不同产品特性,视所选用的树脂基体材料的不同,进而选择不同的成型工艺,上述复合材料液体闭模成型工艺共同特点:(1)材料制造与制品成型同时完成一般情况下,复合材料的生产过程,也就是制品的成型过程。

材料的性能必须根据制品的使用要求进行设计,因此在造反材料、设计配比、确定纤维铺层和成型方法时,都必须满足制品的物化性能、结构形状和外观质量要求等。

(2)制品成型比较简便一般热固性复合材料的树脂基体,成型前是流动液体,增强材料是柔软纤维或织物,因此,用这些材料生产复合材料制品,所需工序及设备要比其它材料简单的多,对于某些制品仅需一套模具便能生产。

二、工艺的具体区别(一)、RTM树脂传递模塑成型简称rtm,起始于50、60年代,是手糊成型工艺改进的一种闭模成型技术,可以生产出两面光的制品。

RTM的基本原理是将玻璃纤维增强材料铺放到闭模的模腔内,用专用压力设备将树脂胶液注入模腔,浸透玻纤增强材料,然后固化,脱模成型制品。

rtm成型技术的特点:1、可以制造两面光的制品;2、成型效率高,适合于中等规模的玻璃钢产品生产(20000件/年);3、rtm为闭模操作,不污染环境,不损害工人健康;4、增强材料可以任意方向铺放,容易实现按制品受力状况例题铺放增强材料;5、原材料及能源消耗少;6、建厂投资相对少,项目容易上马。

rtm技术适用范围很广,目前已广泛用于建筑、交通、电讯、卫生、航空航天等工业领域。

已开发的产品有:汽车壳体及部件、娱乐车构件、天线罩、机器罩、浴盆、沐浴间、游泳池板、座椅、水箱、电话亭、小型游艇等。

RTM工艺设备、模具、原材料RTM成型工艺过程中,注射设备是必须的,要求设备的固化剂的比例可调,一般从0.5% 到3.5%之间不等比例的产品,每分钟流量5-10升左右,注射压力从0.1到8个大气压。

可以预设置注射树脂量,带自循环的通过循环泵的简易通道,能够实现简单的设备维护。

一般RTM模具模腔内是3-6公斤正压,因此对于模具的刚度有一定要求,如若模具刚度不够的话,不能够保证产品的尺寸精确性也很容易出现爆模意外。

RTM用的原材料有树脂、增强材料和填料。

树脂体系RTM工艺用的树脂主要是不饱和聚酯树脂,要求粘度适中。

一般RTM的增强材料主要是玻璃纤维,其含量为45%~55%;常用的增强材料有玻璃纤维连续毡、复合毡及方格布。

填料对RTM工艺很重要,它不仅能降低成本,改善性能,而且能在树脂固化放热阶段吸收热量。

常用的填料有氢氧化铝、玻璃微珠、碳酸钙、云母等。

其用量为20%~40%。

RTM全部生产过程各工序的操作人员及工具、设备位置固定,模具由小车运送,依次经过每一道工序,实现流水作业。

模具在流水线上的循环时间,基本上反映了制品的生产周期,小型制品一般只需十几分钟,大型制品的生产周期可以控制在1小时以内完成。

(二)、真空导流工艺真空导流工艺分为干法盒湿法2种。

湿法是将手糊或者喷射成型未固化的制品,加盖一层真空袋膜,制品处于薄膜和模具之间,密封周边,抽真空(0.07MPa),使制品中的气泡和挥发物排除。

干法是将增强玻纤铺放到模具上,将真空袋膜与模具周边密封,在抽真空的同时将树脂从模具的另一端由管路导入到模具中,将增强玻纤浸润。

2种工艺的区别在于干法的玻纤含量可以做的更高。

真空导流成型技术的特点:1、可以制造单面光的制品;2、成型效率一般,适合于中等规模的玻璃钢产品生产(1000件/年);3、为闭模操作,不污染环境,不损害工人健康;4、增强材料可以任意方向铺放,容易实现按制品受力状况例题铺放增强材料;5、一次性耗材较多、垃圾回收是个问题,成本相对高;目前用于船艇、风能等大型制品;如豪华游艇,风电叶片、机舱罩等等。

工艺过程根据制品的形状复杂程度以及面积的大小而有所差异,一般从1—4、5小时不等。

真空导流工艺设备、模具、原材料真空导流成型工艺过程中,不需要注射设备,只需要一台真空泵就可以了;模具只需要单模一般模腔内是负压0.1Mpa ,真空导流工艺所用的原材料有树脂体系、增强材料,不添加填料。

该工艺用的树脂主要是要求粘度要低,在180—300厘泊左右。

增强材料主要是玻璃纤维,其含量为50%~65%;常用的增强材料有玻璃纤维短切毡、复合毡及方格布等。

(三)、软模RTM工艺软模RTM工艺兼顾了RTM和真空导流工艺的优点,将RTM的刚性上模改成硅胶或者橡胶的软模,其作用相当于一层真空袋膜,制品处于软模和模具之间,密封周边,抽真空(0.1MPa 左右),在抽真空的同时将树脂从模具的另一端由管路导入到模具中,将增强玻纤浸润。

固化后脱模。

软模RTM成型技术的特点:1、可以制造两面光的形状结构复杂的制品;2、成型效率一般,适合于中等规模的玻璃钢产品生产(1000件/年以内);3、为闭模操作,不污染环境,不损害工人健康;4、增强材料可以任意方向铺放,容易实现按制品受力状况例题铺放增强材料;5、软模的使用寿命在10—50次左右,成本介于RTM和真空导流工艺之间目前用于船艇、汽车零部件、工程车覆盖件等等。

软模RTM工艺设备、模具、原材料软模RTM成型工艺过程中,同样不需要注射设备,只需要一台真空泵就可以了;模具需要单面刚性模一般模腔内是负压0.1Mpa ,所用的原材料与真空导流的材料基本一样。

该工艺效率介于RTM和真空导流之间,其可取之处主要在于所使用真空辅助材料的可重复利用性,以及其在施工过程中提现出来的方便性,优点一、耗材可多次重复利用,降低成本;优点二、可根据模具做成各种复杂形状,便于铺敷,且可有效地避免架桥和干区;优点三、韧性极好,注射过程如有白斑和干区,可大力扯动,人为制造树脂导流路线,不用担心真空袋被破坏。

(四)、L-RTM在液体闭模工艺发展过程中,真空辅助RTM工艺(L-RTM)的开发成功可谓具有里程碑意义,真空辅助成型L-RTM技术是一种新型的低成本的复合材料大型制件的成型技术,它主要原理为首先在模腔中铺放好按性能和结构要求设计好的增强材料预成型体,采用注射设备将专用低粘度注射树脂体系注入闭合模腔,模具具有周边密封和紧固以及注射从排气系统以保证树脂流动顺畅并排出模腔中的全部气体和彻底浸润纤维,是在真空状态下排除纤维增强体中的气体,通过树脂的流动,渗透,实现对纤维及织物的浸渍,并在室温下进行固化,形成一定的树脂及纤维比例的工艺方法。

其技术路线上与传统RTM的不同之处,在于有一半模具是半刚性的,模具的厚度可以做到很薄。

L-RTM工艺的特点:1、可以制造两面光的制品;2、成型效率高,适合于中等规模的玻璃钢产品生产(3000件/年);3、L-RTM为闭模操作,不污染环境,不损害工人健康;4、增强材料可以任意方向铺放,容易实现按制品受力状况例题铺放增强材料;5、原材料及能源消耗少。

对于尺寸、大面积的复合材料制件,L-RTM是一种十分有效的成型方法,采用以往的复合材料成型工艺,大型模具的选材困难,而且成本昂贵,制造十分困难,尤其是对于大厚度的船舶、汽车、飞机等结构件。

L-RTM工艺制造的复合材料制件具有成本低、空隙率含量小、成型过程中产生的VOC挥发气体少、环境污染小(有机挥发份小于50ppm,是唯一符合国际环保要求的复合材料成型工艺)。

产品的性能好等优点,并且工艺具有很大的灵活性。

被广泛应用于中小型游艇、风电机舱罩、汽车大包围、工程车覆盖件等等领域。

L-RTM工艺设备、模具、原材料L-RTM成型工艺过程中,除了真空泵是必须的以外,注射设备是可选的,设备要求同RTM所用设备基本一样。

如果不采用树脂注射设备也可以达到相同的目的,只是效率上稍有差异。

L-RTM模具模腔内是0.2-0.8公斤正压,因此对于产品内表面模具的刚度要求不高,主要是为了体现一个“轻”字。

L-RTM用的原材料有基体树脂、增强玻纤材料。

L-RTM工艺用的树脂可以是不饱和聚酯树脂,也可以是乙烯基或者环氧树脂,主要要求:(1)低粘度,仅借助真空即可在增强剂堆积的高密度预成型体中流动、浸润、浸透。

(粘度指标180—300厘泊)(2)适用周期长,较长的凝胶时间,较快的固化速度,这样有利于浸透、排气。

(3)可在室温下固化,树脂工作寿命满足结构要求。

(4)固化时无需额外压力,只需真空负压。

(5)具有良好的韧性与高于一般树脂的弹性模量,以及抗腐蚀性。

一般L-RTM的增强材料主要是玻璃纤维,其含量为45%~55%;常用的增强材料也是玻璃纤维连续毡、复合毡及方格布。

L-RTM工艺过程因产品不同,操作的时间过程也不尽相同。

由此可看出,L-RTM工艺属于半机械化的复合材料成型工艺,工人只需将设计好的干纤维或者预成型体放到模具中并合模,随后的工艺则完全靠模具和注射系统来完成和保证,没有任何树脂的暴露,并因而对工人的技术和环境的要求远远低于手糊工艺并可有效地控制产品质量。

L-RTM成型技术在国外的应用非常广泛,很多公司都采用该技术制造大型结构制件,在船舶制造工业中应用尤为突出。

另外,航天飞机舱壁、导弹的鼻锥、导弹自动瞄准头的整流罩、雷达罩、扫雷艇、推进器、火箭发射简等均在采用L-RTM技术成型。

由于L-RTM工艺采用闭模成型工艺,也特别适宜一次成型整体的风力发电机叶片(纤维、夹芯和接头等可一次在模腔中共成型),而无需二次粘接。

与手糊工艺生产叶片相比,不但节约了粘接工艺的各种工装设备,而且节约了工作时间,提向了生产效率。

降低了生产成本。

同时由于采用了低粘度树脂浸润纤维以及采用加温固化工艺,大大提高了复合材料质量和生产效率。

L-RTM 工艺生产较少的依赖工人的技术水平,工艺质量仅仅依赖确定好的工艺参数,产品质量易于保证,产品的废品率低于手糊工艺(笔者曾利用此技术申请过2项国家专利)。

因此,目前国外的高质量复合材料风机叶片往往采用模压、L-RTM、缠绕及预浸料/真空导流工艺制造。

其中模压工艺投资较大,适宜小尺寸风机叶片的大批量生产(>10000片/年);L-RTM工艺适宜中小尺寸风机叶片的中等批量生产(1000~5000片/年);缠绕及预浸料/真空导流工艺适宜大型风机叶片批量生产。

相关文档
最新文档