点缺陷与位错的相互作用(精)
位错和缺陷之间的相互作用
02:58
刘志勇 14949732@
7
位错与空位的电学交互作用
▪ 刃位错压缩区原子间距小,电子密度增大,电子能量增大 ,刃位错膨胀区原子间距大,电子密度小,电子能量小 • 压缩区电子流向膨胀区,压缩区带正电,膨胀区带负电, 形成电偶极子 • 高价原子进入膨胀区,低价原子进入压缩区
下方原子受到拉应力,原子半径较大的置换型溶质原子和间隙原子位于位错滑 移面下方(即晶格受拉区)可以降低位错的应变能 小原子半径的间隙型溶质原子位于滑称面上方(晶格受压区)可以降低位错应 变能,使体系处于较低的能量状态
溶质原子与位错的交互作用
02:58
刘志勇 14949732@
3
位错与溶质原子的交互作用
• 作用力为弹性交互作用的1/5
02:58
刘志勇 14949732@
8
位错与空位的化学交互作用
▪ 置换式固溶体中溶质原子与层错化学交互作用,形成铃木 (Suzuki)气团
• 比弹性交互作用小1-2个数量级 • 由于堆剁层错作用,很难靠热起伏摆脱溶质原子束缚,有
好的高温稳定性,特别是Cottrell气团消失后作用显著 • 钉扎与位错类型无关,刃位错、螺位错钉扎强弱程度一样
02:58
刘志勇 14949732@
24
两根螺型位错的交截
值得注意的一种,如图所示
螺错L1向右运动,遇到与之垂直的 螺错L2发生交截
两螺型位错各自产生一刃型割阶。 图中为L1的割阶
割阶PP′,长度为b2
只能在PP与b1组成的平面内沿b1所指方向滑移,不能跟随螺型位错L1一 道滑移
只能通过攀移随着L1运动,与L1滑移方向不一致。但攀移在室温下困难 这一段位错成为L1位错运动的障碍、阻力,有人认为这是加工硬化的原因
第2章点缺陷和位错.
螺型位错示意图
38
(二)柏氏矢量
柏氏矢量 描述位错区域原子的畸变特征(包括畸变发生在什 么晶向以及畸变有多大)的物理参量,称为柏氏矢量(Burgers vector)。它是一个矢量,1939年由柏格斯(J. M. Burgers)率 先提出。
图5-7 刃型位错柏氏矢量的确定 a)实际晶体的柏氏回路 b)完整晶体的相应回路
例如,空位周围的原子,由于热激活,某个原子有可能
获得足够的能量而跳人空位中,并占据这个平衡位量;
这时,在该原子的原来位置上,就形成一个空位。这
一过程可以看作空位向邻近阵点位置的迁移。同理,
出于热运动,晶体中的间隙原子也可由一个间隙位置
迁移到另一个间隙位置。与此同时,由于能量起伏, 在其它地方可能又会出现新的空位和间隙原子,以保 持在该温度下的平衡浓度不变。
弗仑克尔(Яков Френкель)名字命名 缺陷; 以苏联物理学家雅科夫·
跑到其它空位中,使空位消失或使空位移位。另外, 在一定条件下,晶体表面上的原子也可能跑到晶体
内部的间隙位置形成间隙原子。
8
(a)Schottky空位形成示意图
(b)Frankel空位形成示意图
9
二、离子晶体中的空位及间隙原子
肖脱基缺陷 : 为了保持晶体的电的中性,空位只能 以与晶体相同的正离子 : 负离子的空位比率小组的 方式产生。这些电中性的正离子 -负离子 -空位丛簇
称为。
弗兰克缺陷:以空位/间隙对形式存在的缺陷群。
10
11
12
2.1.2 点缺陷的热力学分析
点缺陷可以导致:
点阵畸变
使晶体的内能升高,降低了晶体的热力学稳定性。 增大了原子排列的混乱程度,并改变了其周围原子的振动频 率,引起组态熵和振动熵的改变,使晶体熵值增大,增加了 晶体的热力学稳定性。 这两个相互矛盾的因素使得晶体中的点缺陷在一定的温 度下有一定的平衡浓度。它可根据热力学理论求得。
第4章 晶体缺陷
刃位错的滑移
螺位错的滑移
刃、螺型位错的滑移特点
特征差异:
切应力方向不同 刃型:F⊥l;螺型:F∥l
位错运动方向与晶体滑移方向关系 刃型:运动方向与滑移 方向一致;螺型:运动方向与滑移方向垂直。 统一之处: 两者的滑移情况均与各自的b一致。
b) 位错环(混合型位错)的滑移
A、B处为刃型位错,C、D处为螺型位错,其余各处为 混合型位错。 位错环可以沿法线方向向外扩张而离开晶体;也可以反 向缩小而消失。
透射电镜下观察到的位错线
第三节 位错的能量及交互作用
位错线周围的原子偏离平衡位置,处于较高的能量状 态,高出的这部分能量称为位错的应变能(位错能)
一、位错的应变能
位错的应变能可分为:位错中心畸变能Ec和位错应 力场引起的弹性应变能Ee。 Ec:位错中心点阵畸变较大,需借助点阵模型直接考虑晶体
结构和原子间的相互作用,其能量约为总应变能的1/10~ 1/15,常予以忽略。
和间隙原子的“间隙-空位”对。
Frenkel defect
化合物离子晶体中的两种点缺陷 金属晶体:弗兰克尔缺陷比肖脱基缺陷少得多 离子晶体:结构配位数低-弗兰克尔缺陷较常见
结构配位数高-肖脱基缺陷较重要
间隙原子
定义:晶体中的原子进入晶格的间隙位置而形成 的缺陷。
Interstitial defect
b 2 r
Gb 2 r
b 2 r dr L L Gb
位错线
半原子面
刃型位错的特点
滑移面
a、属于线型位错,但在晶体中为狭长的管道畸变区;
b、是晶体中滑移区与未滑移区的分界线,不一定是 直线,也可以是折线或曲线; c、不能中断于晶体内部
晶体缺陷-位错作用增殖与实际位错
第五节 位错与晶体缺陷间的交互作用
Interactions between dislocations and crystal defects
一、位错间的交互作用 1.一对平行刃位错的交互作用
2.一对平行螺位错的交互作用
3.一对平行刃位错和螺位错的交互作用
4.混合位错间的交互作用 5.非平行位错间的交互作用
1.3 ×10-6
层错能-----产生单位面积的层错所需能量. 层错是一种晶体缺陷,破坏了晶体排列的周
期性,引起能量升高。 层错能(高/低)-----(难/易)产生层错?
57
F:堆垛层错
不锈钢中的扩展位错
变形Cu-Al合金
58
扩展位错的平衡宽度:
d=Gb1b2/2
扩展位错的平衡宽度与层错能成反比: 层错能低(不锈钢,-黄铜):宽的扩展位错
m、n处为异号位 错相消,产生一 位错环, 内部DD′段还存 在。动画
Si单晶中的F-R源
位错绕过动画 动画-位错切过
(二)双交滑移增殖机制 (动画)
交滑移:螺位错在某一滑移面的滑移受阻时,位错离开 原滑移面到与其相交的其他滑移面继续滑移。
双交滑移:已交滑移的螺位错再一次交滑移到 与原滑移面平行的滑移面继续滑移。
fcc中:2个全位错合并为1个全位错。
(3) 位错重组:bcc中:
第六节 位错的增殖、塞积与交割 一、位错的增殖
Frank-Read源增殖机制 双交滑移增殖机制
小结
二、位错的塞积
三、位错的交割
2. 割阶和扭折使位错线长度增加,能量增加, 成为位错运动的阻碍。
1. 两位错交割,会产生台阶,自身柏氏矢量b不变, 2. 台阶大小取决于另一位错的b值。
Chapter 3-1 晶体缺陷-点缺陷、位错
杂质(异类)原子
定义: 任何纯金属中都或多或少会存在杂质, 即其它
元素, 这些原子称杂质(异类)原子
热缺陷: 热起伏促使原子脱离点阵位置而形成的点缺陷。 热缺陷的两种基本形式
弗伦克尔缺陷
肖特基缺陷
热缺陷示意图
弗兰克尔缺陷
肖特基缺陷
化合物离子晶体中的两种点缺陷
金属晶体:弗兰克尔缺陷比肖特基缺陷少得多 离子晶体:结构配位数低-弗兰克尔缺陷较常见
ρ理论
=
n理论 NA
V
M
=
4 6.022 1023
26.98
4.049 10-8 3
g
cm 3 = 2. 6997g
cm 3
空位数 cm3
ρ ρ theoretical
observed
NA
M 4.620 10 20 cm 3 Al
例5 MgO晶体的肖特基缺陷生成能为84KJ/mol,计算该晶体 1000K和1500K的缺陷浓度
平移对称性的示意图
平移对称性的破坏
②分类
点缺陷(零维缺陷)--原子尺度的偏离.
按
例:空位、间隙原子、杂质原子等
缺
陷 线缺陷(一维缺陷)--原子行列的偏离.
的
例:位错等
几 何
面缺陷(二维缺陷)--表面、界面处原子排列混乱.
形
例:表面、晶界、堆积层错、镶嵌结构等
态 体缺陷(三维缺陷)--局部的三维空间偏离理想晶体的周期性
CV ,1000
n N
exp( ΔGS RT
)
exp(
84000 8.3145 1000
) 4.096 10-5
CV ,1500
n N
ρ
( 单位晶胞原子数n )( 55.847g / mol ) ( 2.866 108 cm )3 ( 6.02 1023 / mol )
《材料科学基础》 第03章 晶体缺陷
第三节 位错的基本概念
三、位错的运动
刃位错的攀移运动:刃型位错在垂直于滑移面方向上的运动。 刃位错发生攀移运动时相当于半原子面的伸长或缩短,通常把 半原子面缩短称为正攀移,反之为负攀移。 滑移时不涉及单个原子迁移,即扩散。刃型位错发生正攀 移将有原子多余,大部分是由于晶体中空位运动到位错线上的 结果,从而会造成空位的消失;而负攀移则需要外来原子,无 外来原子将在晶体中产生新的空位。空位的迁移速度随温度的 升高而加快,因此刃型位错的攀移一般发生在温度较高时;另 外,温度的变化将引起晶体的平衡空位浓度的变化,这种空位 的变化往往和刃位错的攀移相关。切应力对刃位错的攀移是无 效的,正应力的存在有助于攀移(压应力有助正攀移,拉应力 有助负攀移),但对攀移的总体作用甚小。
第一节 材料的实际晶体结构
二、晶体中的缺陷概论
晶体缺陷按范围分类:
1. 点缺陷 在三维空间各方向上尺寸都很小,在原 子尺寸大小的晶体缺陷。
2. 线缺陷 在三维空间的一个方向上的尺寸很大(晶 粒数量级),另外两个方向上的尺寸很小(原子尺 寸大小)的晶体缺陷。其具体形式就是晶体中的 位错Dislocation 。
说明:这是一个并不十分准确的定义方法。柏氏矢量的方向与位错线方向的定义有关,应该首 先定义位错线的方向,再依据位错线的方向来定柏氏回路的方向,再确定柏氏矢量的方 向。在专门的位错理论中还会纠正。
第三节 位错的基本概念
二、柏氏矢量
柏氏矢量与位错类型的关系:
刃型位错 柏氏矢量与位错线相互垂直。(依方向关系可 分正刃和负刃型位错) 螺型位错 柏氏矢量与位错线相互平行。(依方向关系可 分左螺和右螺型位错) 混合位错 柏氏矢量与位错线的夹角非0或90度。
过饱和空位 晶体中含点缺陷的数目明显超过平衡 值。如高温下停留平衡时晶体中存在一平衡空位, 快速冷却到一较低的温度,晶体中的空位来不及移 出晶体,就会造成晶体中的空位浓度超过这时的平 衡值。过饱和空位的存在是一非平衡状态,有恢复 到平衡态的热力学趋势,在动力学上要到达平衡态 还要一时间过程。
晶体缺陷
一、概述1、晶体缺陷:晶体中原子(离子、分子)排列的不规则性及不完整性。
种类:点缺陷、线缺陷、面缺陷。
1) 由上图可得随着缺陷数目的增加,金属的强度下降。
原因是缺陷破坏了警惕的完整性,降低了原子间结合力,从宏观上看,即随缺陷数目增加,强度下降。
2) 随着缺陷数目的增加,金属的强度增加。
原因是晶体缺陷相互作用(点缺陷钉扎位错、位错交割缠结等),使位错运动的阻力增加,强度增加。
3) 由此可见,强化金属的方向有两个:一是制备无缺陷的理想晶体,其强度最高,但实际上很难;另一种是制备缺陷数目多的晶体,例如:纳米晶体,非晶态晶体等。
二、点缺陷3、点缺陷:缺陷尺寸在三维方向上都很小且与原子尺寸相当的缺陷(或者在结点上或邻近的微观区域内偏离晶体结构正常排列的一种缺陷),称为点缺陷或零维缺陷。
分类:空位、间隙原子、杂质原子、溶质原子。
4、肖特基空位:原子迁移到晶体表面或内表面正常结点位置使晶体内形成的空位。
5、弗仑克尔空位:原子离开平衡位置挤入点阵间隙形成数目相等的空位和间隙原子,该空位叫做弗仑克尔空位。
6、空位形成能EV:在晶体中取出一个原子放在晶体表面上(不改变晶体表面积和表面能)所需的能量。
间隙原子形成能远大于空位形成能,所以间隙原子浓度远小于空位浓度。
7、点缺陷为热平衡缺陷,淬火、冷变形加工、高能粒子辐照可得到过饱和点缺陷。
8、复合:间隙原子和空位相遇,间隙原子占据空位导致两者同时消失,此过程成为复合。
9、点缺陷对性能的影响:点缺陷使得金属的电阻增加,体积膨胀,密度减小;使离子晶体的导电性改善。
过饱和点缺陷,如淬火空位、辐照缺陷,还可以提高金属的屈服强度。
三、线缺陷10、线缺陷:线缺陷在两个方向上尺寸很小,另外一个方向上延伸较长,也称为一维缺陷。
主要为各类位错。
11、位错:位错是晶体原子排列的一种特殊组态;位错是晶体的一部分沿一定晶面与晶向发生某种有规律的错排现象;位错是已滑移区和未滑移区的分界线;位错是伯氏矢量不为零的晶体缺陷。
晶体缺陷线缺陷
Fd×dL×ds 外加切应力τ所做的功为:
τ×b×dL×ds 因为:Fd×dL×ds =τ×b×dL×ds 所以有: Fd =τ×b Fd 垂直于位错线沿位错线运动方向一致!
(2)位错滑移时作用在位错线上的力
Fd =τ×b
6.位错的交割
在滑移面上运动的某一位错,必与穿过 此滑移面上的其它位错相交截,该过程即为 “位错交割”。
空位
晶体结构中原来应该有原子的某些结点上因某种 原因出现了原子空缺而形成。
①肖特基空位 脱位原子进入其它空位或逐渐迁移至 晶面或界面。肖特基空位仅形成空位。
②弗兰克空位
脱位原子挤入节点的间隙,同时形成 间隙原子从而产生间隙原子-空位对。
间隙原子 晶体结构中间隙处因某种原因存在的同种原子。
一、点缺陷的类型 --- 空位和间隙原子
晶体缺陷名为缺陷但实际上是材料科学与工程的重要基础例如完美的晶体人们难以改变其性质而晶体的缺陷则赋予人们丰富的材料加工手段如材料的强化方法无不与位错有着直接或间接的关系材料的变形则是依赖于位错的运动实现的材料中的扩散主要借助于点缺陷及其运动
晶体缺陷线缺陷
复习:点 缺 陷
一、点缺陷的类型 --- 空位和间隙原子
“割阶”都是刃型位错,有滑移割阶和攀移割 阶,割阶不会因位错线张力而消失。
五、位错密度
单位体积晶体中所包含的位错线的总长度或穿越单位截 面积的位错线的数目(单位为m-2)。
ρ = S/V 或 ρ = n/A
①一般情况下,金属退 火后,位错密度为103 -104m/cm3。
②一般情况下,金属强 化后的位错密度为1014— 1016m/cm3。
1、位错的滑移
晶体缺陷点缺陷和位错
《材料科学与工程基础》
本章主要内容
3.1 点缺陷 3.2 位错 3.3 表面及界面
第3章 晶体缺陷
❖引 言
1、晶体缺陷(Defects in crystals)
定义:实际晶体都是非完整晶体,晶体中原子排 列的不完整性称为晶体缺陷。
2、缺陷产生的原因
(1)晶体生长过程中受到外界环境中各种复杂因 素的不同程度的影响;
作业
Cu晶体的空位形成能1.44x10-19J/atom,A=1, 玻尔兹曼常数k=1.38x10-23J/k。已知Cu的摩尔
质量为MCu=63.54g/mol, 计算: 1)在500℃以下,每立方米Cu中的空位数? 2) 500℃下的平衡空位浓度?
18
❖ 解:首先确定1m3体积内Cu原子的总数(已 知Cu的摩尔质量为MCu=63.54g/mol, 500℃ 下Cu的密度ρCu=8.96 ×106 g/m3
Ag
3980
0.372 25000 9.3×10-5 1.5×10-5
Cu
6480
0.490 40700 7.6×10-5 1.2×10-5
α-Fe
11000
2.75
68950 2.5×10-4 1.5×10-5
Mg
2630
0.393 16400 1.5×10-4 2.4×10-5
问题:计算结果和实验值相差甚远
3)位错线可以是任何形状的曲线。 4)点阵发生畸变,产生压缩和膨胀,形成应力场,
随着远离中心而减弱。
7.2 位错的基本知识
考虑一下,还 可以采用什么 方式构造出一 个刃型位错?
2、螺型位错
(1)螺型位错的形成
螺型位错的 原子组态:
晶体缺陷——位错运动(共25张PPT)
3.柏氏矢量的表示方法 第6次
〔1〕以其在晶轴上的分量a、b、c表示:
b=xa+yb+zc
〔2〕对立方晶系:a=b=c,因此用方向相同的晶向指数表示: b=a/n [u v w] 例: b=a[2 3 6]
b=a/2 [1 1 1]
3.2.3 位错的运动 P94 i. 位错可以在晶体中运动
ii. 材料的塑性变形就是通过位错运动实现的
其方向表示位错的性质和取向,即位错运动导致晶体滑移的方向 所有的割阶都是刃型位错,扭折可以是螺型位错也可以是刃型位错 位错运动根本形式: 滑移、攀移 一般情况下,攀移比滑移需要的能量高,在室温下不容易发生 实例1:两个柏氏矢量相互垂直的刃型位错交割 〔3〕混合型位错的滑移 图3. 一般情况下,攀移比滑移需要的能量高,在室温下不容易发生 对一个确定的位错正向,按照右手螺旋法那么获取的b具有唯一性、守恒性,与柏氏回路的起点和具体路径无关, 双交滑移:发生交滑移后的位错如果再转回到和原滑移面平行的面上继续滑移 〔5〕位错线不能中止在晶体内部——位错的连续性〔定义〕 对一个确定的位错正向,按照右手螺旋法那么获取的b具有唯一性、守恒性,与柏氏回路的起点和具体路径无关, 位错可以在晶体中运动 位错局部滑移、刃型位错攀移、两条位错线交割后,经常产生一段曲折线段 结果:较小的力使材料发生塑性变形 3 位错的运动 P94
3 位错的运动 P94
图 3.18 刃型位错的攀移运动模型
a) 未攀移的位错 b) 空位引起的正攀移 c)间隙原子引起的负攀移
特点: 螺型位错没有半原子面,故不会发生攀移 一般情况下,攀移比滑移需要的能量高,在室温下不
容易发生
高温淬火、冷变形加工、高能粒子辐照后,晶体中存在大量 点缺陷的情况下,容易发生位错的攀移〔刃型位错〕
3点缺陷及位错1
第三章 晶体缺陷
3.2 线缺陷-位错
3.2.0 位错的提出 “位错”这个概念是在1934年提出的。是为了解释晶体在切应力作用下变形所
3点缺陷及位错1
第三章 晶体缺陷
3.1 点缺陷 3.1.1 点缺陷的形成
三是跑到其他空位中,使 空位消失或使空位移位。
另外,在一定条件下,晶 体表面上的原子也可能跑 到晶体内部的间隙位置形 成间隙原子
第三章 晶体缺陷
3.1 点缺陷 3.1.2 点缺陷的平衡浓度
点缺陷形成的驱动力与温度有关,在一定的温度场下,能够使原子 离位形成点缺陷,那么点缺陷的数目会无限制增加吗?
从理论上分析可以知道:一定温度下,点缺陷的数目是一定的,这就 是点缺陷的平衡浓度。
第三章 晶体缺陷
3.1 点缺陷 3.1.2 点缺陷的平衡浓度
对点缺陷的平衡浓度如何来理解?从热力学的观点:点缺陷平衡浓度 是矛盾双方的统一。
(1)一方面,晶体中点缺陷的形成引起了点阵的畸变,使晶体的内能 增加,提高了系统的自由能。
无正应变,不会引起体积变化。在垂直于位错线的平面上投影,看 不到原子的位移,也看不到缺陷。 ⑤ 螺型位错周围的点阵畸变也只有几个或十几个原子的宽度。
第三章 晶体缺陷
3.2 线缺陷-位错 3.2.1 位错的基本类型和性质 (2)螺型位错
第三章 晶体缺陷
3.2 线缺陷-位错 3.2.1 位错的基本类型和性质 (3)混合型位错——位错线即不垂直也不平行于滑移方向,成任意角度 可以看成刃位错和螺位错混合而成。
si晶体中点缺陷和位错交互作用的分子动力学研究
si晶体中点缺陷和位错交互作用的分子动力学研究
Si 作为宽带隙半导体,其被广泛应用于电子电路中,但是晶体中的缺陷也会降低其性能。
研究Si晶体中点缺陷和位错的作用对于改善器件性能具有重要意义。
在过去几十年中,以分子动力学(MD)作为最有效的手段来研究点缺陷和位错交互作用,其结果表明引起Si晶体中ionicity缺陷吸附氧原子。
在Si晶体中,点缺陷会影响它们周围的原子结构,影响力学性质;位错可以大幅度地改变它们周围的原子结构,并对晶体的性质产生关键作用。
分子动力学方法在研究点缺陷和位错交互作用时具有很大的优势,它能够准确地反映晶体原子结构和力学性质的变化。
近期的研究表明,分子动力学模拟可以解释不同类型的位错及其作用对点缺陷的影响。
在轰击缺陷周围的晶格原子时,不同类型的位错可以改变缺陷的能量状态,有助于氧离子的吸附和氧原子的排除。
另一方面,利用分子动力学方法研究缺陷与位错之间的作用也是重要的。
结果表明,位错可以介导半导体中点缺陷的活性、变化速率和作用力学性质的变化。
例如,它们可以控制缺陷表面上氧原子的吸附能,并可能改变缺陷的热力学性质。
有趣的是,位错不受缺陷的影响,但却可以影响晶体中的缺陷。
综上所述,分子动力学是研究Si晶体中点缺陷和位错作用的有效方法。
它可以准确描述缺陷和位错与晶体原子结构之间的相互作用,以及它们之间相互影响的力学性质,为改善器件性能提供了有益的信息。
未来,分子动力学研究将继续深入了解缺陷-位错交互作用,以提高半导体元件的性能。
点缺陷与位错的相互作用
x3'
x1'
x2
x1
<-1-12>
<111>
<-110>
两种弹性相互作用
螺位错的应力场是间隙原子在位错线附近产生 局部有序排列,这种有序排列称斯诺克 (snoek)气团。和科垂尔气团相比,形成这 种气团不需要原子长程扩散,也不需要引起溶 质原子的聚集。
化学相互作用—Suzuki气团
• 在热平衡下, 溶质原子在层错区的浓度与基体不 同,它阻碍扩展位错运动---化学相互作用。层错 区富集的溶质原子称为铃木气团。
静电相互作用
体积变化: V V 4 Emax 15 费米能的变化: E f 3 N Emax 2 CV
2 3 2 3
刃型位错附近存在附加电场 静电相互作用 溶质原子周围存在库仑场
本章重点掌握内容
• 科垂耳气团,斯诺克气团,铃木气团的内 涵及相互区别
等能曲线和作用力的方向:
明显屈服现象
塑性形变
弹性形变
位错附近溶质原子的浓度
C C0 exp(U / kT ) Cm C0 exp(U m / kT )
溶质原子(间隙原子)对位错的钉扎作用:
2 AR0 x 3 3A F ( x) 2 , F ( x)max 2 2 2 ( x R0 ) 8R0
位错
应力场 交互作用 能量
弹性相互作用
• 溶质原子会使周围晶体产生弹性畸变,而产生应 力场,它与位错的应力场相互作用从而升高或降 低晶体中的弹性应变能。分科垂耳型(cottrell)和斯 诺克型(snoek)两种作用。 • 模型:在弹性介质中挖一个球形空洞,再在其中 放入刚性球,当球的半径与孔的半径不同时,便 需要给晶体做功,以使二者保持相对平衡。在完 整晶体中,溶质原子分布是随机的, 但有其他缺 陷(位错)产生应力场时,溶质原子产生的应变 能就要发生改变,即产生相互作用。
材料科学基础第四章6-2位错和点缺陷之间的交互作用
BCC金属在拉伸发生塑性变形后不久,卸载后,若立即加载,则应 力-应变曲线又沿原路上升;但若卸载后,放置一段时间,再加载,则 应力-应变曲线又出现一个更高的屈服点。
10
位错密度与加工硬化
y 理想单晶
非晶态
加工硬化
完全退火金 属
加工过程后(1011 ~1012/cm2)
106/cm2
11
脱钉力的计算:
z ( x y )
xy
2
Gb
(1
)
x(x2 y2) (x2 y2)2
yz zx 0
4
位错和点缺陷的交互作用力:
F E
x y z
E(x, y)--势函数 F(x, y)--力函数 二者是共轭调和函数 复势 W f (z) E(x, y) iF(x, y)
y
D
y r
P(x,y)
z D x
x
根据柯西-黎曼方程可由势函数和力函数中的一 个求出另一个。
5
可得出一系列等能面,如下图所示。
6
二、点缺陷的分布(柯氏气团)
刃位错与点缺陷的交互作用能:
E
p V
4 3
1 1
v
Gb
ra
3
s
in r
A
sin r
讨论:
• 当 = /2时,交互作用能达到极大值
32
(2)、U型位错源 Bardeen-Herring位错源 (B-H位错源)
A
D
b
B
C
x
BLeabharlann CADx33
34
FCC
28
FCC晶体中的双交滑移增殖机制:
A
① b v
I B
考研专业课:材料科学基础7 位错理论基础
5.位错滑移的点阵阻力(P-N力) 位错滑移会受到晶体点阵的阻力, 源自滑移面上下两层原子发生位移和错配导 致能量的变化,称其为点阵阻力,表示式为
b-位错柏氏矢量大小; W-称为位错宽度,一般w=(1-10)b。 位错受到的作用力大于点阵阻力时,才能进行 滑移。
晶体特性与P-N力: fcc结构的位错宽度大,其P-N力小,故其容易屈 服; bcc相反,其屈服应力大; 共价键和离子键晶体的位错宽度很小,所以表现 出硬而脆的特性。 滑移面滑移方向与P-N力: P-N力与(-d/b)成指数关系; 最密排面的面间距d最大,最密排方向的原子间 距最小(b最小); 所以,位错滑移面和滑移方向通常是原子密排面 和密排方向。
3.弯曲位错的受力 外力作用下,两端固定的位错弯曲成曲率半径r, 产生力F : 平衡条件:
由于ds=rd,当ds很小时
故:
外力、位错 b、r间关系式。
7.3 位错与晶体缺陷间的交互作用 位错具有应力场,且可移动; 其它位错或点缺陷也有应力场, 位错与其它应力场会相互作用,产生作用力。 一.位错间的交互作用 1.两平行螺型位错的交互作用 在b1应力场作用下,b2 受力为
•当y=0时(x轴上), 若x>0,则fx>0; 若x<0,则fx<0。
结论:
同号位错相互排斥, 位错间距越小,排斥 力越大。
(b)攀移力fy
fy与y同号; 当位错d2在位错d1的滑移面上部时, 攀移力fy是 正值,即指向上;
当d2在d1滑移面下部时, fy为负值,即指向下。
因此,两位错沿y轴方向是互相排斥的。
(2)两个平行的异号刃型位错
• fx和fy的方向与同号位错时相反,
位错d2的稳定位臵和介稳位臵正好互相对换, |x|=|y|时, d2处于稳定位臵。 • fy与y异号,