第二章晶体的基本概念

合集下载

晶体学基础

晶体学基础

图 六方晶系的一些晶向指数与晶面指数
4.晶带
相交于某一晶向直线或平行于此直线的晶面构成一个晶带, 此直线称为晶带轴 设晶带轴的指数为[uvw],则晶带中任何一个晶面的指数 (hkl)都必须满足:hu+kv+lw=0,满足此关系的晶面都属 于以[uvw]为晶带轴的晶带。→晶带定律 (a) 由两晶面(h1k1l1) (h2k2l2)求其晶带轴[uvw]:
简单晶胞计算公式
正交晶系
dhkl
1 h k l a b c
2 2 2
立方晶系
d hkl
d hkl
a h k l
2 2 2

六方晶系
1 4 h hk k l 2 3 a c
2 2 2 2
的一组晶向,用<uvw>表示。数字相同,但排列顺序不
同或正负号不同的晶向属于同一晶向族。
eg: 立方晶系中
[111 ], [1 11], [1 1 1], [11 1][11 1], [1 11][1 1 1], [111 ] 八个晶向是立方体中
四个体对角线的方向,其原子排列完全相同,属同一晶向族,故用<111>表示。
六方晶系的晶向指数和晶面指
数同样可以应用上述方法标定,
这时取a1,a2,c为晶轴,而 a1轴与a2轴的夹角为120度,c 轴与a1,a2轴相垂直。但这种 方法标定的晶面指数和晶向指 数,不能显示六方晶系的对称 性,同类型 晶面和晶向,其指 数却不相雷同,往往看不出他 们的等同关系。
根据六方晶系的对称特点,对六 方晶系采用a1,a2,a3及c四个
§2.2.2 晶系和布拉菲点阵
1.七个晶系
2. 十四种布拉菲点阵 按照“每个阵点的周围环境相同”的要求,最先是布拉菲 (A. Bravais)用数学方法证明了只能有14种空间点阵。通 常人们所说的点阵就是指布拉菲点阵。

晶体的概念是啥

晶体的概念是啥

晶体的概念是啥晶体是指具有一定空间排列和周期性的原子、离子或分子集合体,它们在固体状态下呈现出有序的结构。

晶体是固体中最基本的结构单位,其晶体结构的有序性是形成晶体的重要特征。

晶体的概念最早由斯托尼斯(Haüy)于18世纪末提出,他将晶体定义为具有层状结构的固体。

随后,发展出了现代晶体学,对晶体的研究有了更为深入的认识。

现代晶体学从晶体的结构和性质出发,研究晶体内部原子、离子或分子的排列方式,以及晶体与外界的相互作用。

晶体的结构具有三个基本特征:周期性、对称性和有序性。

晶体的周期性体现在晶格结构的重复性规律上,晶格是由一定数目的排列有序的“点”组成的三维结构。

晶格中的“点”被称为格点,它们代表着晶体原子、离子或分子的位置。

晶格的周期性使得晶体在宏观上具有各向同性,即不论从任何方向观察,晶体的性质都是相同的。

晶体的对称性指的是晶体结构在某一操作下保持不变,这些对称操作包括旋转、反射和平移等。

晶体的有序性则是指晶格上的原子、离子或分子排列有一定的规则,形成特定的晶体结构。

根据晶体的原子、离子或分子的排列方式,晶体可以分为几种基本类型。

最简单的是原子晶体,其中晶格上只有单个原子,例如金属中的众多晶体。

离子晶体则由阳离子和阴离子以离子键相互结合而成,如盐类晶体。

分子晶体则由分子以分子键相互结合形成的晶体,如冰晶体。

此外,还有复合晶体、聚合物晶体等多种类型的晶体。

晶体的结构对其性质起着决定性的作用。

晶体的物理性质包括晶格常数、密度、硬度、熔点等,这些性质取决于晶格结构的特征。

晶体的光学性质也与晶体结构密切相关,例如光的偏振、双折射等现象。

晶体的电学性质也具有很高的研究价值,例如电导率、电介质性能等。

此外,晶体还具有磁性、热传导等特殊性质。

晶体的研究对于物质科学、材料科学以及许多其他领域都具有重要意义。

通过研究晶体的结构和性质,可以揭示物质内部的微观世界,为制备新材料、改进材料性能提供理论和实验基础。

《结晶学及矿物学》复习要点

《结晶学及矿物学》复习要点

结晶学一、基本概念:1.晶体(crystal)的概念:内部质点在三维空间周期性重复排列构成的固体物质。

这种质点在三维空间周期性地重复排列称为格子构造,所以晶体是具有格子构造的固体。

2对称型(class of symmetry)晶体宏观对称要素之组合。

(点群,point group)3.空间群:一个晶体结构中,其全部对称要素的总和。

也称费德洛夫群或圣佛利斯群。

4.单形(Simple form):一个晶体中,彼此间能对称重复的一组晶面的组合。

即能借助于对称型之全部对称要素的作用而相互联系起来的一组晶面的组合。

5.双晶:两个以上的同种晶体,彼此间按一定的对称关系相互取向而组成的规则连生晶体。

6.平行六面体:空间格子中按一定的原则划分出来的最小重复单位称为平行六面体。

是晶体内部空间格子的最小重复单位,是由六个两两平行且相等的面网组成。

7.晶胞:能充分反映整个晶体结构特征的最小结构单元,其形状大小与对应的单位平行六面体完全一致。

8.类质同像:晶体结构中某种质点为性质相似的他种质点所替代,共同结晶成均匀的单一相的混合晶体,而能保持其键性和结构型式不变,仅晶格常数和性质略有改变。

9.同质多像:化学成分相同的物质,在不同的物理化学条件下,形成结构不同的若干种晶体的现象。

10.多型:一种元素或化合物以两种或两种以上层状结构存在的现象。

这些晶体结构的结构单元层基本上是相同的,只是它们的叠置次序有所不同。

二、晶体的6个基本性质1、均一性(homogeneity):同一晶体的任一部位的物理和化学性质性质都是相同的。

2、自限性(property of self-confinement):晶体在自由空间中生长时,能自发地形成封闭的凸几何多面体外形。

3. 异向性(各向异性)异向性(anisotropy):晶体的性质随方向的不同而有所差异。

4. 对称性(property of symmetry):晶体的相同部分(如外形上的相同晶面、晶棱或角顶,内部结构中的相同面网、行列或质点等)或性质,能够在不同的方向或位置上有规律地重复出现。

纯金属结构与结晶

纯金属结构与结晶
晶胞所含的原子数为 2个。
• 原子半径 ➢ 晶胞中相距最近的两个原子之
间距离的一半。体心立方晶胞 中原子相距最近的方向是体对 角线, 所以原子半径与晶格常 数a之间的关系为:
• 常见金属
R 3 a 4
➢ 钼(Mo)、钨(W)、钒(V)、α-铁
(α-Fe, <912℃)等。
4.3.2 面心立方晶格( FCC) • 原子排列方式 ➢ 金属原子分布在立方体的八
2.3.3 密排六方晶格( HCP) • 原子排列方式 • 十二个金属原子分布在六方体的十二个角上, 在上下底面的
中心各分布一个原子, 上下底面之间均匀分布三个原子。
• 密排六方晶胞的特征:
➢ 晶格常数:用底面正六边形的边长a和两 底面之间的距离c来表达, c/a=1.633,
两相邻侧面之间的夹角为120°, 侧面与 底面之间的夹角为90°。
树枝状长大的实际观察
树枝状结晶


属 的
属 的


枝 晶
枝 晶
金 属 的 树 枝
冰 的 树 枝 晶

2.5.4 金属结晶后晶粒的大小及力学性能的影响
• 晶粒度:单位体积内晶粒数目。为测量方便,常以单位界 面内晶粒数目
• 对金属材料的影响:
➢ 细晶强化。通过细化晶粒而使金属材料力学性能提高的方
法称为细晶强化。
动画--晶面指数的确定方法
15
晶面族
在晶体内凡晶 面间距和晶面上 原子排列分布情 况完全相同,只 是空间位向不同 的一组晶面的集 合称为晶面族。
16
(2)晶向指数 • 确定步骤 ➢ 建立坐标系,度量单位 ➢ 求坐标。u’,v’,w’ ➢ 化整数。 u,v,w. ➢ 加[ ]。[uvw]。 • 说明: ➢ 指数意义:代表相互平行、

金属的晶体结构

金属的晶体结构

离 共 子 价 健 健
第二节 实际金属的晶体结构 与晶体缺陷
一.单晶体与多晶体的基本概念 1.单晶体( single crystal )的特征: * 晶体由一个晶格排列方位完全一 致的晶粒组成。 * 晶体具有各向异性( aeolotropy )。 例如:单晶硅、单晶锗等。
单晶体结构示意图
2.多晶体( polycrystal )的特征
N= 12 ( 原子间的最近距离d = a )
属于密排六方晶格的金属有: 镁 ( Mg ) ; 锌 ( Zn ) ; 镉 ( Cd ) ;
α – 钛 ( α – Ti ) ; 铍 ( Be ) 等 。
5.晶面(crystal face): 在晶格中由一系 列原子所构成的平面称为晶面。
6.晶面指数(indices of crystallographic plane):用密勒(Miller)指数对晶格中 某一晶面进行标定。
1855年,法国学者布拉维(Bravais)用数学方法证 明了空间点阵共有且只能有十四种,并归纳为七个 晶系: 1). 三斜晶系 2). 单斜晶系 3). 正交晶系 4). 六方晶系 5). 菱方晶系 6). 正方晶系 7). 立方晶系 a=b=c, a=b=c, a=b=c, a=b=c, a=b=c, a=b=c, a=b=c, α = β = γ = 90° α = γ = 90° = β; α = β = γ =90° ; ° α=β= 90 ,γ=120 α = β = γ = 90°; α = β = γ = 90°; α = β = γ = 90°;
第二章 金属的晶体结构
第二章 金属的晶体结构 Crystal Structure of Metal
晶体结构的基础知识
实际金属的晶体结构与晶体缺陷

《晶体的常识》教案最全版

《晶体的常识》教案最全版

《晶体的常识》教案最全版第一章:引言1.1 教学目标让学生了解晶体的基本概念和特点。

激发学生对晶体研究的兴趣。

1.2 教学内容晶体的定义与分类晶体的基本特点晶体的重要性1.3 教学方法讲授法:介绍晶体的基本概念和特点。

互动法:引导学生讨论晶体的实际应用。

1.4 教学资源课件:展示晶体的图片和实例。

视频:播放晶体生长的实验过程。

1.5 教学步骤1. 导入:通过展示晶体图片,引发学生的好奇心。

2. 讲解:介绍晶体的定义、分类和基本特点。

3. 实例分析:分析晶体的实际应用。

4. 讨论:引导学生探讨晶体的重要性。

5. 总结:强调本节课的重点内容。

第二章:晶体的定义与分类让学生了解晶体的定义和分类。

2.2 教学内容晶体的定义晶体的分类:原子晶体、离子晶体、分子晶体和金属晶体2.3 教学方法讲授法:讲解晶体的定义和分类。

2.4 教学资源课件:展示晶体的定义和分类。

2.5 教学步骤1. 复习:回顾上一节课的内容。

2. 讲解:讲解晶体的定义和分类。

3. 示例:展示不同类型的晶体实例。

4. 练习:让学生区分不同类型的晶体。

5. 总结:强调本节课的重点内容。

第三章:晶体的基本特点3.1 教学目标让学生了解晶体的基本特点。

3.2 教学内容晶体的周期性结构晶体的点阵参数晶体的对称性讲授法:讲解晶体的基本特点。

互动法:引导学生探讨晶体的对称性。

3.4 教学资源课件:展示晶体的基本特点。

3.5 教学步骤1. 复习:回顾上一节课的内容。

2. 讲解:讲解晶体的周期性结构、点阵参数和对称性。

3. 示例:展示晶体的对称性实例。

4. 练习:让学生分析晶体的对称性。

5. 总结:强调本节课的重点内容。

第四章:晶体的重要性4.1 教学目标让学生了解晶体的重要性。

4.2 教学内容晶体在材料科学中的应用晶体在自然界中的分布晶体在现代科技领域中的应用4.3 教学方法讲授法:讲解晶体的重要性。

互动法:引导学生探讨晶体在实际应用中的重要性。

4.4 教学资源课件:展示晶体的重要性和应用实例。

第二章 晶体结构

第二章 晶体结构

晶胞
• 有实在的具体质点所 组成
平行六面体
• 由不具有任何物理、化学 特性的几何点构成。
是指能够充分反映整个晶体结构特征的最小结构单位, 其形状大小与对应的单位平行六面体完全一致,并可用 晶胞参数来表征,其数值等同于对应的单位平行六面体 参数。

晶胞棱边长度a、b、c,其单位为nm ,棱间夹角α、β、 γ。这六个参数叫做点阵常数或晶格常数。
面网密度:面网上单位面积内结点的数目; 面网间距:任意两个相邻面网的垂直距离。
相互平行的面网的面网密度
和面网间距相等; 面网密度大的面网其面网间 距越大。

空间格子―――连接分布在三维空间的结点构成空 间格子。由三个不共面的行列就决定一个空间格子。
空间格子由一系列 平行叠放的平行六 面体构成

2-1 结晶学基础
一、空间点阵
1.晶体的基本概念 人们对晶体的认识,是从石英开始的。 人们把外形上具有规则的几何多面体形态的 固体称为晶体。 1912年劳厄(德国的物理学家)第一次成功 获得晶体对X射线的衍射线的图案,才使研究 深入到晶体的内部结构,才从本质上认识了 晶体,证实了晶体内部质点空间是按一定方 式有规律地周期性排列的。
第二章 晶体结构
第二章 晶体结构
1
结晶学基础 晶体化学基本原理 非金属单质晶体结构
2
3 4 5
无机化合物晶体结构
硅酸盐晶体结构
重点:重点为结晶学指数,晶体中质点的堆 积,氯化钠型结构,闪锌矿型结构,萤石型 (反萤石型)结构,钙钛矿型结构,鲍林规 则,硅酸盐晶体结构分类方法。 难点:晶体中质点的堆积,典型的晶体结构 分析。
• 结点分布在平行六面
体的顶角; •平行六面体的三组棱长 就是相应三组行列的结 点间距。

晶体相关知识点总结

晶体相关知识点总结

晶体相关知识点总结一、基本概念1. 晶体的定义晶体是由原子、离子或分子按照一定的规则排列而形成的固体结构。

晶体具有高度有序性,具有一定的周期性和对称性。

晶体是凝聚态物质的一种主要形式,占据了固态物质的绝大部分。

2. 晶体的种类根据晶体结构的不同,晶体可以分为离子晶体、共价晶体、金属晶体和分子晶体等几种基本类型。

不同类型的晶体具有不同的物理性质和化学性质。

3. 晶体的分类根据晶体的外部形态,晶体可以分为单斜晶、正交晶、菱形晶、六方晶、四方晶、立方晶等几种基本类型。

不同类型的晶体具有不同的外部形态和对称性。

二、晶体结构1. 晶体的晶体结构晶体结构是指晶体中原子、离子或分子的排列方式和规律。

晶体结构可以分为周期性结构和非周期性结构两种形式。

周期性结构是指晶体中原子、离子或分子的排列具有一定的周期性,具有明显的晶格和对称性。

非周期性结构是指晶体中原子、离子或分子的排列没有明显的周期性,没有规则的晶格和对称性。

2. 晶体的晶格晶体的晶格是指晶体中原子、离子或分子所构成的三维空间排列的规则结构。

晶格可以分为周期性晶格和非周期性晶格两种类型。

周期性晶格是指晶格具有明显的周期性,有规则的排列和对称性。

非周期性晶格是指晶格没有明显的周期性,没有规则的排列和对称性。

3. 晶体的晶胞晶胞是指晶体中最小的具有完整晶体结构的基本单位。

晶胞可以分为原胞和扩展晶胞两种类型。

原胞是指晶体中最小的具有完整晶体结构的基本单位,包含了一个或多个原子、离子或分子。

扩展晶胞是指原胞在晶体结构中的重复排列,是构成晶体的基本单位。

三、晶体的生长1. 晶体生长的基本过程晶体生长是指在溶液、熔体或气相中,原子、离子或分子从溶液中萃取并在已生成的晶体上沉积,形成新晶体的过程。

晶体生长的基本过程包括成核、生长和成形几个阶段,成核是指溶液中原子、离子或分子聚集形成晶体的核心;生长是指晶体核心上原子、离子或分子的进一步沉积和排列生长;成形是指晶体的表面形态和结晶过程。

无机材料科学基础考研复习综述

无机材料科学基础考研复习综述

第一章、晶体结构基础1、晶体的基本概念晶体的本质:质点在三维空间成周期性重复排列的固体,或者是具有格子构造的固体。

晶体的基本性质:结晶均一性、各向异性、自限性、对称性、最小内能性。

对称性:同一晶体中,晶体形态相同的几个部分(或物理性质相同的几个部分)有规律地重复出现。

空间格子的要素:结点—空间格子中的等同点。

行列—结点沿直线方向排列成为行列。

结点间距—相邻两结点之间的距离;同一行列或平行行列的结点间距相等。

面网—由结点在平面上分布构成,任意两个相交行列便可以构成一个面网。

平行六面体:结点在三维空间的分布构成空间格子,是空间格子的最小体积单位。

2、晶体结构的对称性决定宏观晶体外形的对称性。

3、对称型(点群):一个晶体中全部宏观对称要素的集合。

宏观晶体中只存在32种对称型4、对应七大晶系可能存在的空间格子形式:14种布拉维格子三斜:简单;单斜:简单、底心;正交:简单、底心、体心、面心;三方:简单R四方:简单、体心;六方:简单;立方:简单、体心、面心;P(简单点阵) I(体心点阵) C(底心点阵) F(面心点阵)底心点阵:A(100) B (010) C(001) 面心立方晶系中对应的密排面分别为(111);体心立方(110);六方晶系(0001)低指数晶面间距较大,间距越大则该晶面原子排列越紧密。

高指数则相反5、整数定律:晶面在各晶轴上的截距系数之比为简单整数比。

6、宏观晶体中独立的宏观对称要素有八种:1 2 3 4 6 i m 4空间点阵:表示晶体结构中各类等同点排列规律的几何图形。

或是表示晶体内部结构中质点重复规律的几何图形。

空间点阵有,结点、行列、面网、平行六面体空间点阵中的阵点,称为结点。

7、晶胞:能充分反映整个晶体结构特征最小结构单位。

晶胞参数:表征晶胞形状和大小的一组参数(a0、b0、c0,α、β、γ)与单位平行六面体相对应的部分晶体结构就称为晶胞。

因此,单位平行六面体的大小与形状与晶胞完全一样,点阵常数值也就是晶胞常数值。

结晶化学chapter2

结晶化学chapter2

第二节 对称元素组合原理
一、反映面之间的组合
定理:两个反映面相交,其交线为旋转轴,基转角为反映面相交角的2倍。 如图2-14,在两个反映面进行连续动作时 A (Q) B,因为 OAC OCQ, QOD DOB, 故 AOB = 2 , 是二反映面的夹角。又OA=OB,图中两个反映面都垂直于 纸面,因此点A B相当于绕两反映面交线转了2 角。这说明O处是一基转角为2 的旋转 轴。 若我们维持交线位置和二反映面夹角不变,仅改变二反映面的取向,则只能改变中间过 渡点Q之位置,而对A、B点相对位置无影响,即动作的效果仍然一样。 推论:基转角为 的旋转轴可分解为两个反映面的 连续动作,其夹角为/2。
3.旋转轴:若图形中可找到一直线L,绕此直线将图形旋转某一角度,可使图形复原, 则此直线称为旋转轴。用Ln表示。 对立方体的旋转轴,立方体绕穿过相对面中心的直线旋转90, 180, 270, 360都能复原 (图2—7(a))。立方体绕体对角线转120,240,360°同样能复原(图2-7(b))。立方体绕相 对棱中点连线旋转180°,360°也能复原(图2—7(c))。2-7 定义:使图形复原的最小旋转角度称为该旋转轴的基转角。 可以证明,对任何旋转轴的基转角,总能找到一个正整数n,使,n = 360。如果 L()为对称动作,则L(2), L(3) … L(n)为对称动作。 n定义为该旋转轴的轴次。 运用基转角和轴次的概念可将立方体上的旋转轴归纳如下:
a 1 + a 2 + a3 = 0, c1+ c2 +c3 = 3c1, 于是 T1 + T2+ T3 = 3c1 = Tp . 根据平移群的性质, T1,T2, T3是平移群中的向量,则Tp也是平移群中的向量, 换言之,在与3次旋转轴平行的方向上有一组直线点阵,其周期为3c1。 把T1,T2, T3 相减: T1-T2 = a1 - a2 = TH , T2-T3 = a2 – a3 = TH’ . 这两个向量也应属于平移群,但它们决定了一组与3次轴垂直的平面点阵。

无机材料科学基础复习

无机材料科学基础复习
第五章、相平衡
相律以及相图中的一些基本概念 水型物质相图的特点(固液界线的斜率为负) 单元系统相图中可逆与不可逆多晶转变的特点 SiO2相图中的多晶转变(重建型转变、位移型转变) 一致熔化合物和不一致熔化合物的特点 形成连续固溶体的二元相图的特点(没有二元无变量点) 相图的坐标系统由什么来决定(相平衡系统中的最大自由度) 界线、连线的概念,以及他们的关系
01
等含量规则、线规则、切线规则、重心规则。
03
独立析晶(非平衡析晶)
04
三元相图析晶路径的分析
05
判断化合物的性质
06
划分副三角形
07
标出界线上的温度走向和界线的性质
08
确定无变量点的性质
09
分析具体的析晶路程
第六章、扩散与固相反应
1、固体中扩散的特点 2、菲克定律(宏观现象) 菲克第一定律:稳态扩散 菲克第二定律:不稳态扩散 3、扩散系数是一个什么样的参数 4、扩散推动力(化学位梯度) 5、扩散系数的一般热力学关系式 6、质点的扩散方式(五种、其中空位最常见,所需能量最小) 7、本征扩散、非本征扩散,及其相应的扩散系数D 产生本征扩散与非本征扩散的原因,分析、计算 8、萤石结构的ZrO2中Zr4+和O2-哪个扩散的活化能大? Zr4+
第七章、相变
1、相变的概念(相的概念等) 2、相变的分类 3、一级相变、二级相变 4、固态相变 马氏体相变、有序-无序相变 5、相变过程中的亚稳态 6、晶核的形成条件、临界晶核rk。(要有△T) 7、影响成核速率的因素:核坯的数目、质点加到核坯上的速率 Iv=P·D 8、均匀成核、非均匀成核,选择成核剂的要求。 9、晶体生长速率 10、成核与晶体生长相比,需要更大的△T

大一晶体结构知识点总结

大一晶体结构知识点总结

大一晶体结构知识点总结一、晶体结构的基本概念1. 晶体和非晶体晶体是指由具有一定周期性排列的原子、离子或分子所构成的固体。

晶体具有高度有序的排列结构和明显的晶格,因此具有明显的各向异性。

非晶体则是指由没有明显周期性排列的原子、离子或分子所构成的固体,它的原子结构没有规则的周期性,因此不具有晶格和各向异性。

2. 晶体结构的周期性晶体结构具有明显的周期性,晶体内的原子、离子或分子按照一定的规律排列,形成了具有周期性的结构单元,这种结构单元被称为晶胞。

晶体结构的周期性决定了晶体具有一些特殊的物理性质,如光学各向异性、磁学各向异性等。

二、常见的晶体结构类型1. 离子晶体结构离子晶体是由阳离子和阴离子通过静电力相互作用所构成的晶体。

常见的离子晶体结构包括简单离子晶体结构、复式离子晶体结构和过渡金属氧化物晶体结构等。

2. 共价晶体结构共价晶体是由原子通过共价键相互连接所构成的晶体。

共价晶体结构具有明显的共价键,在晶体中形成了三维的晶格结构。

典型的共价晶体结构包括金刚石结构、蛋白石结构等。

3. 金属晶体结构金属晶体是由金属原子通过金属键相互连接所构成的晶体。

金属晶体结构具有自由电子,并具有很好的导电性和热导性。

常见的金属晶体结构包括面心立方结构、体心立方结构和密堆积结构等。

4. 分子晶体结构分子晶体是由分子通过范德瓦尔斯力相互作用所构成的晶体。

分子晶体结构中的分子间相互作用比较弱,因此分子晶体通常具有较低的熔点和易挥发的性质。

典型的分子晶体结构包括葡萄糖晶体结构、苯晶体结构等。

三、晶体结构分析方法1. X射线衍射分析X射线衍射是一种常用的晶体结构分析方法,通过研究X射线在晶体中的衍射现象,可以确定晶体的晶格常数、晶体结构和原子位置等信息。

X射线衍射分析对于无机晶体和生物大分子的研究具有重要的意义。

2. 中子衍射分析中子衍射是另一种常用的晶体结构分析方法,它通常用来研究晶体中的轻原子和磁性物质。

与X射线相比,中子具有更大的散射截面,因此对于轻原子和磁性物质的研究更为适用。

晶体练习题及答案

晶体练习题及答案

晶体练习题及答案题目一:晶体的基本概念1. 什么是晶体?答案:晶体指的是由周期性重复排列的原子、分子或离子组成的固态物质。

2. 晶体的特点有哪些?答案:晶体具有以下特点:- 具有长程有序性:晶体中的原子、分子或离子按照规则的排列方式组成,形成周期性的结构。

- 具有各向同性或各向异性:晶体的物理性质在不同方向上可能存在差异。

- 具有平面外的周期性:晶体的周期性结构在三维空间中保持着重复。

- 具有清晰的外形:晶体通常具有规则的几何形状,如立方体、六角柱等。

题目二:晶体的结构与分类1. 晶体的结构有哪些类型?答案:晶体的结构可分为以下几种类型:- 离子晶体:由正、负离子通过电子静力作用排列而成。

- 分子晶体:由分子通过分子间相互作用力排列而成。

- 原子晶体:由原子通过原子间相互作用力排列而成。

2. 晶体的分类方法有哪些?答案:晶体可按照成分、结构和形貌等进行分类。

- 成分分类:包括无机晶体和有机晶体两大类。

- 结构分类:根据晶体的结构类型,可分为离子晶体、分子晶体、原子晶体和金属晶体等。

- 形貌分类:按照晶体外形,可分为短柱状、针状、板状、粒状等多种形态。

题目三:晶胞与晶体的晶格1. 什么是晶胞?答案:晶胞是指晶体中最小的具有周期性结构的单位,通常由一组原子、分子或离子组成。

2. 什么是晶格?答案:晶格是指晶体中晶胞之间的无限重复排列形成的空间网格结构。

3. 晶体的晶格类型有哪些?答案:晶体的晶格类型可分为以下几种:- 简单晶格:晶胞中只有一个原子或离子。

- 面心立方晶格:晶胞的各个面心上都有一个原子或离子。

- 体心立方晶格:晶胞的中心位置还有一个原子或离子。

- 其他复杂晶格:如六方密排晶格、菱面体晶格等。

题目四:晶体的缺陷1. 晶体的缺陷有哪些?答案:晶体的缺陷可分为点缺陷、线缺陷和面缺陷三种。

- 点缺陷:包括空位、间隙原子和杂质原子等在晶体中的缺陷点。

- 线缺陷:主要指晶体表面的位错和堆垛层错等。

第二章金属的晶体结构与结晶详解

第二章金属的晶体结构与结晶详解

晶胞:能够完全反映 晶格特征的、最小的 几何单元称为晶胞
在晶体学中,通常取晶胞角 上某一结点作为原点,沿其 三条棱边作三个坐标轴X、 Y、Z,并称之为晶轴,而 且规定坐标原点的前、右、 上方为轴的正方向,反之为 反方向,并以(晶格常数) 棱边长度和棱面夹角来表示 晶胞的形状和大小 。
整个晶格就是有许多大小、形状和位向相同的 晶胞在空间重复堆积而成的。
3、晶面、晶向
•在晶体中,由一系列原子所组成的平面称为晶 面。 •任意两个原子之间的连线称为原子列,其所指 方向称为晶向。
二、常见金属的晶格类型
原子半径是指晶胞中原子密度最大方向相邻两 原子之间距离的一半。 晶胞中所含原子数是指一个晶胞内真正包含的 原子数目。 致密度(K)是指晶胞中原子所占体积分数, 即K = n v′/ V 。 式中,n为晶胞所含原子数 v′为单个原子体积
三、金属的结晶过程
结晶时晶体在液体中从无到有(晶核形成),由小变 大(晶核长大)的过程,同时存在同时进行。
金 属 结 晶 过 程 示 意 图
晶核的长大方式—树枝状
金 属 的 树 枝 晶
金 属 的 树 枝 晶
冰 的 树 枝 晶
四、晶粒大小对金属力学性能的影响 晶粒的大小对金属的力学性能、物理性能和 化学性能均有很大影响。 细晶粒组织的金属强度高、塑性和韧性好、 耐腐蚀性好。作为软磁材料的纯铁,晶粒越 粗大,则磁导率越大,磁滞损耗减少。 金属结晶后晶粒大小取决于形核率N[晶核形 成数目(mm3.s)]和长大率G(mm/s)
(3)面缺陷(晶界和亚晶界) 面缺陷使金属强度、硬度增高,塑性变形困难 ——“细晶强化”。
第二节 纯金属的结晶与铸锭 (二、三节合并)
• • • • • 凝固与结晶的基本概念 冷却曲线和过冷现象 金属的结晶过程 晶粒大小对金属力学性能的影响 金属的铸态组织

02第二章-晶体结构-基础-结合力和结合能-140903

02第二章-晶体结构-基础-结合力和结合能-140903

D: [211]
在四方晶系中,晶面(110)与晶棱[110]相互( C)。
A: 正交
B: 平行
C: 斜交
D: A或B
School of materials Science and engineering
2.2 晶体中质点的结合力与结合能
2.2.1 晶体中质点间的结合力
(1)晶体中键 的类型
(略讲)
范德华键(分子键):通过“分子力”而产生的键合。
葛生力(Keesen force)或定向作用力: 发生在极性分子与极性分子间;
分子力
德拜力(Debye force)或诱导作用力:发 生在极性分子与非极性分子之间;
伦敦力(London force)或分散作用力 (色散力):发性在非极性分子与 非极性分子之间。
氢键 氢原子核与极性分子 弱 有方向性和饱和性
间的库仑引力
School of materials Science and engineering
(2)晶体中离子键、共价键比例的估算
1 离子键(%)=1 exp[ 4 ( X A
X B )2 ]
式中:XA、XB为A、B元素的电负性值。如:SiO2 离子键成分约45%,有的书中说47%。
(1)选坐标轴“一般标记为X(a)轴、 Y(b)轴、Z(c)轴”。三个坐标 轴的交点应位于晶体的中心。选坐 标轴不同任意的,一般选对称轴或 平行于晶棱的直线等。对于不同的 晶系的晶体,有不同的选择结晶轴 的方法。每两个坐标轴之间的交角 称为轴角,通常α=b∧c、β= c∧a、γ=a∧b。
(2)决定坐标轴的轴单位。
School of materials Science and engineering
晶向与晶面的关系

材料科学基础2-1

材料科学基础2-1
空间格子:为便于描述空间点阵的图形,可用许多平行的直线将 所有阵点连接起来,于是就构成一个三维几何格架。称为空间 格子,如图2.1 所示。
晶体结构=空间点阵+结构基元
实际晶体——质点体积忽略——空间点阵——阵点连线——晶格(空间格子)
2.晶胞----具有代表性的基本单元(最小平行六面体)作为点 阵的组成单元,称为晶胞
u1 u2 u3 v1 v2 v3 w1 w 2 =0,则三个晶轴同在一个晶面上 w3
h1 h2 h3
k1
l1
则三个晶面同属一个晶带 k 2 l2 =0,则三个晶轴同属一个晶带 k3 l3
• 若已知两个不平行的晶面(h1k1l1)和( h2k2l2 ),则其 晶带轴[uvw]可以用下式求得
或者写成
第三个问题:晶体的性质由什么决定?
决定 化学组成 结构 晶体性质
晶体结构 = 结构基元 + 空间点阵
结晶化学
晶体结构学
化学组成也会影响晶体结构!
2.2 金属的晶体结构
金属在固态下一般都是晶体。决定晶体结构的内在因素 是原子,离子,分子间键合的类型及键的强弱。金属晶体是 以金属键结合,其晶体结构比较简单,常见的有: 心立方结构A1或fcc(face—centered cubic)立方晶系
图2.2表示在二维点阵选取不同的晶胞
• 晶胞参数:

平行六面体的三根棱长a、b、c及其夹角α 、β 、γ 是表 示它本身的形状、大小的一组参数,称为点阵参数(晶胞 参数)
根据平行六面体中结点的分布情况,又可以分为四种格 子类型:简单格子(P)、底心格子(C)、体心格子(I) 和面心格子(F)。
5. 晶面间距
一般是晶面指数数值越小,其面间距较大,并且其阵点密度 较大

第二章 金属学的基本知识

第二章 金属学的基本知识
上一页 下一页
§ 2.1 金属与合金的晶体结构
合金中,具有同一化学成分且结构相同的均匀部分叫相。合金中相
与相之间有明显的界面。液态合金通常为单相液体。合金在固态下,
由一个固相组成时称为单相合金,由两个以上固相组成时称为多相合 金。
组成合金各相的成分、结构、形态、性能和各相的组合情况构成
了合金的组织。组织是合金的内部情景,还包括晶粒的大小、形状、 种类以及各种晶粒之间的相对数量和相对分布,可以用肉眼或借助各
固溶体,如图2-10(b)所示。
由于溶剂晶格的间隙有限,因此间隙固溶体都是有限固溶体。形成间 隙固溶体的条件是溶质原子与溶剂原子的比值r溶质/r溶剂≤0. 59。因此
形成间隙固溶体的溶质元素都是一些原子半径小的非金属元素,如氢、
硼、碳、氮、氧等。
上一页 下一页
§ 2.1 金属与合金的晶体结构
应当指出,所形成的固溶体虽然仍保持着溶剂金属的晶格类型, 但由于溶质与溶剂原子尺寸的差别,必然会造成晶格的畸变,如图 2-11。晶格畸变使合金的强度、硬度和电阻升高。这种通过溶人 溶质元素使固溶体的强度、硬度升高的现象称为固溶强化。固溶强 化是提高金属材料力学性能的重要途径之一。实践表明,适当控制
态的金属和合金。晶体具有一定的熔点,并具有各向异性的特征。
晶体中的原子排列情况如图2-1(a)所示。 2.晶体结构的基本知识 (1)晶格为了便于描述晶体中原子排列的规律及几何形状,人 为地将原子看作一个点,再用一些假想的线条,将原子的中心
下一页
§ 2.1 金属与合金的晶体结构
连接起来,使之构成一个空间格子,如图2-1 ( b)。这种抽象 的、用于描述原子在晶体中排列方式的空间格子叫做“晶格”。 晶格中的每个点叫做晶格结点。 (2)晶胞由于晶体中原子排列具有周期性特点,因此在研究晶 体结构时,为方便起见,通常只从晶格中选取一个能够完全反映 晶格特征的最小的几何单元来分析晶体中原子排列的规律,这个 最小的几何单元称为晶胞,如图2-1 (c)。实际上整个晶格就是 由许多大小、形状和位向相同的晶胞在空间重复堆积而成的。晶 胞的大小和形状常以晶胞的棱边长度a,b,c及棱边夹角α,β,γ来
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.678
3
固体的鉴定和分析:物相和成分
SrO + TiO2 SrTiO3
物相鉴定最常用的方法是X-射线衍射。它是基 于一种特定的相具有特征的结构参数,从而表现特征 的衍射参数。
2018/3/9
发现材
结构与性
探索和设
料性能 能的关系 计新材料
• 1986年,(La,Ba)2CuO4
Tc>30K
金刚石 C
石英 SiO2
萤石 CaF2
锆石 ZrSiO4
单晶体(single crystal)和多晶体(polycrystal)
单晶体:原子或离子按一定的几何规律完成周期排列的整块晶体。 多晶体:由许许多多单晶体微粒所形成的固体集合体。
single crystal
particle
polycrystal
对称性
例如食盐晶体具有立方体外形,云母片上的蜡熔化 图形呈椭圆形,而不是呈其他任意的不规则形状, 这些都说明有对称性存在。
晶体(crystal)与非晶体(non-crystal)的异同
non-crystal :Some substances, such as wax, pitch and glass, which posses the outward appearance of being in the solid state, yield and flow under pressure, and they are sometimes regarded as highly viscous liquid.
YBa2Cu3O7-z
90K
Bi2Sr2Can-1CunOz 7-110K
Tl2Ba2Can-1CunOz >93K • 它们是由钙钛矿衍生出来的准二维层状结构。
• 根据结构特点设计合成大量的超导铜氧化物,其中
HgBa2Ca2Cu3Oz 最高Tc达160K
第三节 本课程的主要内容
• 1669年,丹麦Steno发现晶体的面角守恒定律。 同年,丹麦Bartolins发现方解石的双折射现象。
晶体结构理论的发展 代表性理论
•Haüy晶体构造理论 (形态结晶学)
•惠更斯理论
•点阵结构理论
晶体构造理论
第一,同一种晶体是由同样的平行六面体的单位组成的,所以不论外 形如何不同,同一种晶体都具有完全一致的内部构造; 第二,这些平行六面体是用并排密积的方式堆砌起来的。
浩羽理论中 方解石偏三 角面体的结
• 1839年,英国Miller创立了表示晶面空间位置的米勒 指数。
• 1830年,德国Hessel首先推导晶体的32对称形(点群)。 1867年,俄国多加林加以严格的数学推导,从而奠定 了晶体分类的基础。
• 1842年,德国Frankenheim提出晶体的点阵结构理 论。1848年,法国Bravais修正前者的结果,于1855 年用数学方法推导出14种空间格子。成为近代晶体结 构理论的奠基人。
• 1889年,俄国的费多罗夫推导出晶体的230种空间群。 成为现代结晶学的奠基人。
• 1912年,德国的Laue第一次成功地进行X射线通过晶 体发生衍射的实验,验证了晶体的点阵结构理论。并 确定了著名的晶体衍射劳埃方程式。从而形成了一门 新的学科—X射线衍射晶体学。
• 1913年,英国Bragg导出X射线晶体结构分析的基本 公式,既著名的布拉格公式。并测定了NaCl的晶体结 构。
单晶体
晶体的基本性质
--各向异性 --自范性 --均匀性 --对称性
各向异性
同一晶体在不同方向上所测得的性质表现出差异的特性。 这是由于晶体内部各方向上原子排列的情况不同所致。
Note1: 气体、液体(As
molecular motion in a gas or liquid is free and random)无定形 体(the random arrangement of their constituent molecules)都不 具有各向异性,是各向同性的。
Note2:晶体在多数性质上表现为
各向异性,但不可认为无论何种晶 体,它在什么方向上都表现出各向 异性。试比较如下两个例子:
晶体的各向异 性
1
各向异性
力学各向异性:右图指出了 NaCl晶体在c方向、b+c方向和 在a+b+c方向上拉力的差异。
各向异性
各向同性
2018/3/9
自范性(自限性)
由于晶体生长速度的各向异性,晶体具有自发地形成封 闭的几何多面体外形的能力的性质。
• 结晶化学
–介绍密堆积理论和原子间化学键理论等晶体化 学基础知识 ,讨论一些典型结构化合物的结晶 化学,并对近年发现的新型无机材料的结构与 性能从结晶化学观点出发加以讨论。
• 主要参考书目
1、结晶学
周贵恩编
2、Elementary Crystallography
Martin J. Buerger
an introduction to the fundamental geometrical features of crystal
第二节 结晶化学研究的对象和内容
对晶体的研究不再限于化学组成,而深入到晶体结构 内部。从而产生了结晶学一个新的分支—结晶化学。
• 结晶化学是研究晶体结构规律,并通过晶体 结构特征的诠释,进一步探索晶体性质的一 门学科。
1、晶态固体的性质。 2、晶态固体的鉴定和表征。 3、晶态固体材料的设计和探索。
Study the properties of the crystals: component Structure
镍钛准 晶相的 电子衍 射图
从晶体经过液态晶体到液体的各个阶段
a-晶体(结构呈现周期性排列) b-各向异性的液体ቤተ መጻሕፍቲ ባይዱc-各向异性的液体(分子的轴向周期性已被破坏) d-各向同性的液体(分子的取向相同)
(b,c) Liquid crystals: molecules aligned into swarms; (d)isotropic true liquid: molecules in random arrangement.
第一节 晶体的定义 • 晶体
– 晶体是由内部原子周期性规则排列形成的 固体。
注意:此定义忽略了晶体缺陷,原子在晶体中的热运动
A crystal may be defined as a region of matter within which the atoms are arranged in a three-dimensional translationally periodic pattern.
第一节 晶体概念的发展
人类认识晶体首先是从观察天然矿物的外部 形态开始。
地理学家strabo研究了印度产水晶或石英,他对水晶与冰的相似 性印象深刻,于是用名词κρύσταλλος(过冷的冰)相称,从而 获得现在crystal的名称。
中世纪人们研究了许多矿物晶体后形成一个初步的概念: 晶体是具有规则多面体外形的固体。 如石英、食盐、金刚石、方解石.
构示意图
As a consequence of studies on cleavage, envisaged calcite crystals, of whatever habit, as built up by the packing together of “constituent molecules” in the form of minute rhombohedral units.
sp3 109o28’ 154.5
3.514 1014-1016
10 2.41
石墨 平面三角形
sp2 120.0o
141.8
2.266 10-4 (//) 0.2-1.0 (⊥)
<1
2.15 (//) 1.81 (⊥)
富勒烯 球面形 sp2.28(σ键s0.3p0.7)
116o
139.1(6/6) 145.5(6/5)
明矾晶种在其饱和溶液中的生长过程图
均匀性(均一性)
同一晶体的任何一个部分都具有相同的物理和化学性质的特 性。晶体的均匀性只可能在宏观观察中表现出来,它是由于 晶胞重复排列的结果。
以电导率为例说明各向异性和均匀性如何表现在同一晶体中: o各向异性:在晶体的每一点上按不同方向测量,电导率除对 称性联系起来的方向外都是不同的; o均匀性:在晶体的任一点按相同方向测量的电导率都相同。
课件地址:/~ychzhu/
4
2018/3/9
空间点阵
结构基元
晶体结构
n组
晶形
对称操作
宏观晶体
对称性
32点群
同形性
微观晶体 n套
对称性
等效点系
230空间群 对称操作
特征对称元素
点阵平移方式
7个晶系
对称性
14种空 间格子
第一章 晶体的基本概念
• 第一节 晶体概念的发展 • 第二节 空间点阵 • 第三节 阵点指数、晶向指数和晶面指数 • 第四节 晶体投影
• 随着X射线晶体结构分析工作的发展,对晶体的研究 不再限于化学组成,而深入到晶体结构内部。从而产 生了结晶学一个新的分支—结晶化学。
• 几何结晶学
–讲述晶体的空间点阵理论及点群、空间群理论, 这是研究晶体结构的理论基础。
• X射线衍射晶体学
–介绍X射线衍射理论和实验方法,这是研究晶 体结构的最主要工具 。
固体的同质多象Polymorphism (同质异构、同素异形)现象
(a)立方金刚石 (b)六方金刚石 (d)C60
(c)石墨
碳元素的四种结构
结构和性质 C原子的成键形式 C原子的杂化轨道
C-C-C键角 C-C键长/pm
密度/g.cm-3 电阻/Ω.cm
相关文档
最新文档