翻硬币问题诀窍翻硬币问题诀窍

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作者: 杨金珏翻硬币问题诀窍翻硬币问题诀窍

硬币问题是公务员考试出现的数学运算题型,属于逻辑类考题,这类问题变化复杂,对考生的推理能力要求高。博大弘仕杨金珏老师将在这里介绍翻硬币问题的快速解题技巧。

首先要明白什么是“翻硬币问题”,通常题面形式是这样的:

M个硬币全部正面朝上,现在要求每次必须同时翻转其中的N个硬币,至少翻转多少次才能使全部硬币反面朝上?

那么可能出现四种情况:

硬币总数(M)每次翻硬币数量(N)

奇奇

奇偶

偶奇

偶偶

上面四种情况中,只有当硬币总数是奇数个并且每次翻偶数个硬币时,不能完成要求,其他三种都可以完成翻转。

为什么不能完成这种情况呢?根据奇偶的基本性质可以推导出来,每个硬币必须翻转奇数次才能实现反面朝上,现在总数是奇数,那么所有硬币翻转总数就是奇数个奇数,其结果必定是个奇数。但是每次翻转偶数个硬币,那么硬币被翻动的总数为偶数乘以翻动次数,结果必定是偶数。所以这种情况下是不可能完成任务的。

翻硬币问题形式多样,这里总结出了一个基本的解题步骤。

第一步:判断总个数是否与每次翻的个数呈倍数关系。如果是倍数关系,翻动次数=M÷N

第二步:如果没有倍数关系,考虑硬币总数的奇偶情况。

当总数为偶数

(1)每次翻的个数是总数减一

【例1】现有6个一元面值硬币正面朝上放在桌子上,你可以每次翻转5个硬币(必须要翻转5个),问你最少要经过几次翻转可以使这6个硬币全部反面朝上?

次次次次

【解析】本题属于归纳推理问题。一个硬币要翻面,需要翻奇数次,一共有6个硬币,每一次翻转5个,那么必须翻转偶数次才能保证每一枚硬币翻转奇数次,故排除A、C。因为每次翻五个,则有一个没被改变,或者说每次是在原来的基础上变一个,一共有6个硬币,每次变一个,那么需要6次才能全部变完。具体过程如下:

故需要6次,故正确答案为B。

这类问题的解答公式为:翻动次数=M

翻动方法:只要按照第一次第一个不翻,第二次第二个不翻,按照此方法进行操作就可以成功。

(2)除了上述以外情况,要计算翻动次数,我们采用余数分析法。

首先用总数(M)÷每次翻的个数(N),表达式为:

M÷N=a……b

上面式子中,a为商,b为余数。那么我们把余数分成三种情况:

①b=1,翻动次数=a+1

【例2】共有10个硬币正面朝上,每次翻动3个,总共翻动几次才能反面朝上?

次次次次

【解析】利用公式:M÷N=10÷3=3……1。余数b=1,翻动次数=3+1=4。

这个公式在怎么推导出来的呢?

此题计算为10÷3=3……1,余数为1,我们需要改写余数为10÷3=2……4,相当于翻了2次3个硬币,还剩下4个硬币没有翻过来。

OOOOOO OOOO

XXXXXX OOOO

那么我们将这4个硬币分成两组,每组两个。接下来翻其中的2个硬币和前面已经翻成反面的1个硬币。

XXXXXO XXOO

最后把剩下的两个正面硬币和刚才翻成正面的那个硬币一起翻过来。

XXXXXX XXXX

只要余数是偶数,都可以采用这样的方法翻转。

再回过头来看下最初计算式子,10÷3=3……1,我们改写余数为10÷3=2……4,商减少了1,余数变成了1+3=4,余数加除数。根据奇偶基本性质,这里变化的余数一定是个偶数,因为被除数是偶数,被除数=除数×商+1,要使余数为1,除数和商必定也是奇数。所以变化后的余数等于1+除数,结果必定为偶数。偶数就需要2步完成翻转,总体上在原来商的基础上只增加了1,所以余数b=1时,翻动次数=a+1。

②b=偶数,翻动次数=a+2

【例3】共有92个杯口朝上的杯子,每次翻动11个杯子,使其杯口朝下,总共翻动几次才能让所有杯子反面朝下?

次次次次

【解析】利用公式:M÷N=92÷11=8……4。余数b=偶数,翻动次数=8+2=10。

翻动方法和上一道例题相同,将最后剩下的4个杯子分成两组,先翻其中的2个和前面已经翻过的2个,然后刚好剩下4个杯口朝上的杯子。总共需要10次。翻动方法如图所示:

(第8次) XXX …… XXX XXX XXX OOOO

(第9次) XXX …… OOO OOO OOO XXOO

(第10次)XXX …… XXX XXX XXX XXXX

③b=奇数,翻动次数=a+3

【例4】有18个房间开着灯,如果每次同时拨动5个房间的开关,经过几次拨动,灯全部关上?

次次次 D.几次也不能

【解析】利用公式:M÷N=18÷5=3……3。余数b=奇数,翻动次数=3+3=6。

余数是奇数时,为什么要翻3次呢?是如何翻转的呢?下面我们用硬币翻转来代替灯的开关。

首先完成三次翻转,如图所示:

OOOOO OOOOO OOOOO OOO

XXXXX OOOOO OOOOO OOO

XXXXX XXXXX OOOOO OOO

XXXXX XXXXX XXXXX OOO

接下来将剩下的3个全部翻转,并且把前面翻过来的2个再次翻转。

XXXXX XXXXX XXXOO XXX

现在就和前面讲的余数是偶数情况相同了。把剩下的分成两组,先翻其中的一组,不够的在前面翻过里面翻转。

OOOOX XXXXX XXXXO XXX

最后剩下的刚好翻完。

XXXXX XXXXX XXXXX XXX

前面我们讨论的是总数是偶数,总数是奇数时有两种情况:

(1)每次翻转的个数为奇数,那么按照上面讲的余数分析法解决。

M÷N=a……b

①b=1,翻动次数=a+1

②b=偶数,翻动次数=a+2

③b=奇数,翻动次数=a+3

(2)每次翻转的个数为偶数,这种情况下无法完成任务。

【例5】有7个杯口全部向上的杯子,每次将其中4个同时翻转,经过几次翻转,杯口可以全部向下?【09山西】

次次次 D.几次也不能

【解析】根据公式,不可能完成任务。所以选D。要想杯子杯口朝下的话,需要翻转奇数次,所以七个杯口要全部向下的话,翻转的总次数为7个奇数的和,必定也是奇数,所以总共也是需要翻转奇数次才行。但是每次翻转其中4个,不论翻多少次总数都是偶数,因此无论翻几次都不行。正确答案为D。

下面我们总结一下翻硬币问题的解题方法。

M个硬币每次翻N个需要几次

一、倍数成立 m/n

二、无倍数

1、m为奇数,n为偶数,无法完成

相关文档
最新文档