光学第一章习题及答案教学教材
《光学教程》课后习题解答
对 的第三个次最大位
即:
9、波长为的平行光垂直地射在宽的缝上,若将焦距为的透镜紧贴于缝的后面,并使光聚焦到屏上,问衍射图样的中央到⑴第一最小值;⑵第一最大值;⑶第三最小值的距离分别为多少?
解:⑴第一最小值的方位角为:
⑵第一最大值的方位角为:
⑶第3最小值的方位角为:
10、钠光通过宽的狭缝后,投射到与缝相距的照相底片上。所得的第一最小值与第二最小值间的距离为,问钠光的波长为多少?若改用X射线()做此实验,问底片上这两个最小值之间的距离是多少?
解:
⑴
⑵级光谱对应的衍射角为:
即在单缝图样中央宽度内能看到条(级)光谱
⑶由多缝干涉最小值位置决定公式:
第3xx 几何光学的基本原理
1、证明反射定律符合费马原理
证明:
设A点坐标为,B点坐标为
入射点C的坐标为
光程ACB为:
令
即:
*2、根据费马原理可以导出近轴光线条件下,从物点发出并会聚到像点的所有光线的光程都相等。由此导出薄透镜的物像公式。
另一个气泡
, 即气泡离球心
13、直径为的球形鱼缸的中心处有一条小鱼,若玻璃缸壁的影响可忽略不计,求缸外观察者所看到的小鱼的表观位置和横向放大率。
解:由球面折射成像公式:
解得 ,在原处
14、玻璃棒一端成半球形,其曲率半径为。将它水平地浸入折射率为的水中,沿着棒的轴线离球面顶点处的水中有一物体,利用计算和作图法求像的位置及横向放大率,并作光路图。
解:
由球面折射成像公式:
15、有两块玻璃薄透镜的两表面均各为凸球面及凹球面,其曲率半径为。一物点在主轴上距镜处,若物和镜均浸入水中,分别用作图法和计算法求像点的位置。设玻璃的折射率为,水的折射率为。
光学教程答案(第一章)
1. 波长为nm 500的绿光投射在间距d 为cm 022.0的双缝上,在距离cm 180处的光屏上形成干涉条纹,求两个亮条纹之间的距离.若改用波长为nm 700的红光投射到此双缝上,两个亮条纹之间的距离又为多少?算出这两种光第2级亮纹位置的距离.解:由条纹间距公式λd r y y y j j 01=-=∆+ 得cm 328.0818.0146.1cm146.1573.02cm818.0409.02cm573.010700022.0180cm 409.010500022.018021222202221022172027101=-=-=∆=⨯===⨯===⨯⨯==∆=⨯⨯==∆--y y y drj y d rj y d r y d r y j λλλλ2.在杨氏实验装置中,光源波长为nm 640,两狭缝间距为mm 4.0,光屏离狭缝的距离为cm 50.试求:(1)光屏上第1亮条纹和中央亮条纹之间的距离;(2)若p 点离中央亮条纹为mm 1.0,问两束光在p 点的相位差是多少?(3)求p 点的光强度和中央点的强度之比.解:(1)由公式λd r y 0=∆得λd r y 0=∆ =cm 100.8104.64.05025--⨯=⨯⨯(2)由课本第20页图1-2的几何关系可知52100.01sin tan 0.040.810cm 50y r r d d dr θθ--≈≈===⨯521522()0.8106.4104r r πππϕλ--∆=-=⨯⨯=⨯(3) 由公式2222121212cos 4cos 2I A A A A A ϕϕ∆=++∆= 得8536.042224cos 18cos 0cos 421cos 2cos42cos 422202212212020=+=+==︒⋅=∆∆==πππϕϕA A A A I I pp3. 把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置为中央亮条纹,试求插入的玻璃片的厚度.已知光波长为6×10-7m .解:未加玻璃片时,1S 、2S 到P 点的光程差,由公式2rϕπλ∆∆=可知为 Δr =215252r r λπλπ-=⨯⨯=现在1S 发出的光束途中插入玻璃片时,P 点的光程差为()210022r r h nh λλϕππ'--+=∆=⨯=⎡⎤⎣⎦所以玻璃片的厚度为421510610cm 10.5r r h n λλ--====⨯-4. 波长为500nm 的单色平行光射在间距为0.2mm 的双狭缝上.通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样.求干涉条纹间距和条纹的可见度.解:6050050010 1.250.2r y d λ-∆==⨯⨯=mm122I I = 22122A A =12A A =()()122122/0.94270.94121/A A V A A ∴===≈++5. 波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ。
工程光学第3版第一章习题答案
n sinቤተ መጻሕፍቲ ባይዱI3 sin I 4 , I 4 60
[习题15]一直径为20mm的玻璃球,其折射率 为 3 ,今有一光线以60入射角入射到该玻璃 球上,试分析光线经过玻璃球的传播情况。
同理,由B点发出的反射光线可以 到达C点处,并发生反射折射现象。 C点发出的反射光线再次到达A点, 并发生反射折射现象。 即在ABC三点的反射光线构成正三 角形的三条边,同时,在这三点 有折射光线以60°角进入空气中。
lr i u r n i i n u u i i i l r (1 ) u h lu l u
[习题20] 一球面镜半径r=-100mm,求=0、0.1×、-0.2×、-1×、1×、5×、10×、时的物距 和像距。
解:根据球面反射镜成像及垂轴放大率公式
[习题16解答]
(3)光束先经左侧球面折射形成 , 像 A1 ,再经右侧球面反射形成像 A2 。 最后经左侧球面折射形成像 A3 由(1)得,l2 30 代入公式: 1 1 2 l l r l2 10, 2 0 得, l2 l2
12 12 0
[习题16]一束平行细光束入射到一半径为 r=30mm、折射率n=1.5的玻璃球上,求其会聚 点的位置。如果在凸面镀上反射膜,其会聚点 应在何处?如果在凹面镀反射膜,则反射光束 在玻璃中的会聚点又在何处?反射光束经前表 面折射后,会聚点又在何处?说明各会聚点的 虚实。
[习题16解答]
(1)折射玻璃球 成像过程:光束先经左侧 球面折射形成像 A 1 ,再经 。 右侧球面折射形成像 A2 n n n n l l r nl1 求得: l1 90, 1 0 nl1
1 1 2 l l r l l
光学第1章习题及答案
光学第1章习题及答案第一章习题答案1-1速度为v 的非相对论α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角为104- rad解:α粒子在实验室系及在质心系下的关系有:由此可得: ⎩⎨⎧=+=cc L cc c L v v v v vθθθθααααsin sin cos cos ①由此可得:uC CL+=θθθcos sin tan 其中u=αc cv v②()c e v m m v m +=αα0Θ0v m m m v ec +=∴αα③∵ce c c e v -=-=ααα 与坐标系的选择无关 ∴cec v v v-=α0④ 又∵0=+ce e v m vm αα ∴0v m m veceα-=代入④式,可得:v m m m v e ec αα+=由此可以得到:ecm m vvαα=代入②式中,我们可以ααc c v v v +=αc vce ve vcvαv得到:rad m m m m ec ec L 410cos sin tan -≈≤+=ααθθθ 证毕解法二:α粒子与电子碰撞,能量守恒,动量守恒,故有:⎪⎩⎪⎨⎧+'='+=e e v m v M v M v M mv Mv ρρρ222212121 ⎪⎪⎩⎪⎪⎨⎧='-='-⇒222e e v M m v v v Mm v v ρρρ e v m p ρρ=∆e p=mv p=mv ∴∆∆,其大小: (1) 222(')(')(')e m v v v v v v v M-≈+-=近似认为:(');'p M v v v v ∆≈-≈22e m v v v M∴⋅∆=有 212e p p Mmv ⋅∆=亦即: (2) (1)2/(2)得22422210e e m v m p Mmv M -∆===p 亦即:()ptg rad pθθ∆≈=-4~10 1-2(1)动能为5.00Mev 的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大?(2)如果金箔厚1.0µm ,则上述入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射例子的百分之几? 解:(1)由库仑散射公式可得:b=2a cot 2θ=21Ee Z Z 02214πεcot 2θ=21⨯E Z Z 21⨯024πεe cot 4π=21⨯5792⨯⨯1.44⨯1=22.752 fm(2)在大于90°的情况下,相对粒子数为:⎰NdN '=nt(E Z Z 421⨯024πεe )2⎰Ω2sin4θd =tN MA Aρ(E Z Z 421⨯024πεe )2Ω⎰d ππθθπ242sinsin 2=9.4⨯105-1-1 试问:4.5MeV 的α粒子与金核对心碰撞的最小距离是多少?若把金核改为7Li 核,则结果如何?解:α粒子与金核对心碰撞时金核可看作静止,由此可得到最小距离为: r m=a=Ee Z Z 02214πε=E Z Z 21⨯024πεe =1.44⨯105-⨯5792⨯≈50.56 fmα粒子与7Li 核对心碰撞时,我们可以在质心系下考虑,此时α粒子与锂核相对于质心的和动量为零,质心系能量为各粒子相对于质心的动能之和,因此有:221v E C μ==mr e Z Z 02214πε+0=LLiLiE mm m+α其中LE =21mv 2为入射粒子实验室动能 由此可以得到mr =024πεe L E Z Z 21LiLim m m +α=3.02 fm1-4(1)假定金核的半径为7.0fm 试问:入射质子需要多少能量,才能在对头碰撞时刚好到达金核的表面?(2)若金核改为铝核,使质子在对头碰撞时刚好到达铝核表面,那么,入射质子的能量应为多少?设铝核半径为4.0fm.解:仍然在质心系下考虑粒子的运动,由1-3题可知:EC=mr e Z Z 02214πε(1)对金核可视为静止,实验系动能与质心系动能相等,由此得到E=16.25MeV(2)对铝核,E=1.44⨯AlAl pmmm +⨯413=4.85MeV 1-5 动能为1.0MeV 的窄质子束垂直地射在质量厚度为1.5mg/cm 2的金箔上,计数器纪录以 60°角散射的质子,计数器圆形输入孔的面积为1.5cm ²,离金箔散射区的距离为10cm ,输入孔对着且垂直于射到它上面的质子。
光学教程第1章参考答案
光学教程第1章_参考答案光学教程第1章参考答案光学是研究光的传播、反射、折射、干涉和衍射等现象的科学。
光学是一门非常重要的学科,广泛应用于各个领域,包括物理学、化学、生物学、医学、通信等等。
本章主要介绍了光的基本性质和光的传播规律。
1. 光的基本性质光是一种电磁波,具有波粒二象性。
光波的波长和频率决定了光的颜色和能量。
光的传播速度是光在真空中的速度,约为每秒3×10^8米。
2. 光的传播规律光的传播遵循直线传播原则。
当光传播到介质边界时,会发生反射和折射现象。
反射是光从界面上反射回去,折射是光从一种介质传播到另一种介质中。
根据菲涅尔定律,入射角、反射角和折射角之间满足一定的关系。
3. 光的反射和折射光的反射是光从界面上反射回去的现象。
根据角度关系,入射角等于反射角。
光的折射是光从一种介质传播到另一种介质中的现象。
根据斯涅尔定律,入射角、折射角和两种介质的折射率之间满足一定的关系。
4. 光的干涉和衍射光的干涉是指两束或多束光波相遇时产生的干涉现象。
干涉可分为构造性干涉和破坏性干涉。
光的衍射是指光通过一个小孔或绕过一个障碍物后产生的衍射现象。
衍射使得光的传播方向发生偏转。
5. 光的偏振光的偏振是指光波中的电矢量在某一平面上振动的现象。
光的偏振可以通过偏振片来实现。
偏振片可以选择只允许某一方向的偏振光通过。
6. 光的吸收和散射光的吸收是指光能量被介质吸收并转化为其他形式的能量的现象。
光的散射是指光在介质中传播时与介质中的微粒发生相互作用,并改变光的传播方向的现象。
总结:光学是研究光的传播、反射、折射、干涉和衍射等现象的科学。
光的传播遵循直线传播原则,当光传播到介质边界时会发生反射和折射现象。
光的干涉是指光波相遇时产生的干涉现象,光的衍射是指光通过小孔或绕过障碍物后产生的衍射现象。
光的偏振是指光波中的电矢量在某一平面上振动的现象,可以通过偏振片来实现。
光的吸收是光能量被介质吸收并转化为其他形式的能量,光的散射是光在介质中传播时与介质中的微粒发生相互作用并改变光的传播方向的现象。
(完整版)光学第一章习题及答案解析
物理与机电工程学院 2011级 应用物理班姓名:罗勇 学号:20114052016第一章 习题一、填空题:1001.光的相干条件为 两波频率相等 、相位差始终不变和 传播方向不相互垂直。
1015.迈克尔逊干涉仪的反射镜M 2移动0.25mm 时,看到条纹移动的数目为1000个,若光为垂直入射,则所用的光源的波长为_500nm 。
1039,光在媒介中通过一段几何路程相应的光程等于折射率和__路程_的乘积 。
1089. 振幅分别为A 1和A 2的两相干光同时传播到p 点,两振动的相位差为ΔΦ。
则p 点的光强I =2212122cos A A A A ϕ++∆1090. 强度分别为1I 和2I 的两相干光波迭加后的最大光强max I =12+I I 。
1091. 强度分别为I 1和I 2的两相干光波迭加后的最小光强min I =。
12I I -1092. 振幅分别为A 1和A 2的两相干光波迭加后的最大光强max I =12122A A A A ++。
1093. 振幅分别为A 1和A 2的两相干光波迭加后的最小光强min I =12122A A A A +-。
1094. 两束相干光叠加时,光程差为λ/2时,相位差∆Φ=π。
1095. 两相干光波在考察点产生相消干涉的条件是光程差为半波长的()2j+1倍,相位差为π的()2j+1倍。
1096. 两相干光波在考察点产生相长干涉的条件是光程差为波长的2j 倍,相位差为π的2j 倍。
1097. 两相干光的振幅分别为A 1和A 2,则干涉条纹的可见度v=1221221A A A A ⎛⎫⎪⎝⎭⎛⎫+ ⎪⎝⎭。
1098. 两相干光的强度分别为I 1和I 2,则干涉条纹的可见度v=1212I I I I -+。
1099.两相干光的振幅分别为A 1和A 2,当它们的振幅都增大一倍时,干涉条纹的可见度为不变。
1100. 两相干光的强度分别为I 1和I 2,当它们的强度都增大一倍时,干涉条纹的可见度 不变。
光学 第一章 习题及答案
物理与机电工程学院 2011级 应用物理班姓名:罗勇 学号:20114052016第一章 习题一、填空题:1001.光的相干条件为 两波频率相等 、相位差始终不变和 传播方向不相互垂直。
1015.迈克尔逊干涉仪的反射镜M 2移动0.25mm 时,看到条纹移动的数目为1000个,若光为垂直入射,则所用的光源的波长为_500nm 。
1039,光在媒介中通过一段几何路程相应的光程等于折射率和__路程_的乘积 。
1089. 振幅分别为A 1和A 2的两相干光同时传播到p 点,两振动的相位差为ΔΦ。
则p 点的光强I =2212122cos A A A A ϕ++∆1090. 强度分别为1I 和2I 的两相干光波迭加后的最大光强max I =12+I I 。
1091. 强度分别为I 1和I 2的两相干光波迭加后的最小光强min I =。
12I I -1092. 振幅分别为A 1和A 2的两相干光波迭加后的最大光强max I =12122A A A A ++。
1093. 振幅分别为A 1和A 2的两相干光波迭加后的最小光强min I =12122A A A A +-。
1094. 两束相干光叠加时,光程差为λ/2时,相位差∆Φ=π。
1095. 两相干光波在考察点产生相消干涉的条件是光程差为半波长的()2j+1倍,相位差为π的()2j+1倍。
1096. 两相干光波在考察点产生相长干涉的条件是光程差为波长的2j 倍,相位差为π的2j 倍。
1097. 两相干光的振幅分别为A 1和A 2,则干涉条纹的可见度v=1221221A A A A ⎛⎫⎪⎝⎭⎛⎫+ ⎪⎝⎭。
1098. 两相干光的强度分别为I 1和I 2,则干涉条纹的可见度v=1212I I I I -+。
1099.两相干光的振幅分别为A 1和A 2,不变。
1100. 两相干光的强度分别为I 1和I 2,当它们的强度都增大一倍时,干涉条纹的可见度 不变。
蔡履中光学第一章课后答案
所以β=arcsin (n2-sin2i)1/2
1-2解:证明:①由折射定律
sin i1=nsin i1' n shin i2=sin i2' i1'=i2
所以sin i1=sin i2' i1=i2'
②OP=h/cos i1'∠POQ=i1-i1'
远视眼:s=-25cm s´= -1m
Φ=1/f´=-1+1/0.25=3D=300度
1-44解:M=(-△/fo`)/(-25cm/fe`)△=20-1-3=16
所以M=(-16/1)*(25/3)=-133.3
目镜成象1/s`+1/s=1/f `所以1/(-25)+1/s=1/3得s=2.678
光学第一章课后习题解答
1-1解:由折射定律sin i=nsin i'
在三角形OAB中:由正弦定理R/sin(90+i`)=OB/sinβ′R=OA为半径设OB=d
cos i' = sinβ′再由折射定理nsinβ′= sinββ′为球面折射入射角
所以sinβ=n sinβ'= n cos i'=n (1-sin2i`)1/2
tg a3=3/12=0.25
所以a1最小
所以孔阑即为光阑
入瞳:距L14.5cm.在右侧孔径为3cm
出瞳:即光阑对L2成象1/s`+1/2=1/3 s`=-6β1=-s`/s=6/2=3
y`=β1y=2*3 =6
出瞳:距L26cm在左侧,口径6cm
1-29解:
AB经平面镜成象为A'B'为正立的象β1=1
大学物理-游璞-于国萍-光学-课后习题-答案
第一章 习题
1.2 解:从图中可以看出: i2=i1+q
激光器
i2+q=i1+a
∴a=2q
又
tana = 5
50
a=5.71o ∴ q=2.86o
i2 q
q
i1 i1
i2
O
a
50cm
A 5cm
B
用途:平面镜微小的角度改变,转化为屏幕上可测量的长度改 变。力学中钢丝杨氏模量的测量、液体表面张力的测量等。
)2
=
( n1 n1
− +
n2 n2
)2
=
0.04
Rp
=
rp 2
=
( n1 cos i1 n1 cos i1
− n2 + n2
cos i2 cos i2
)2
=
( n2 n2
− n1 )2 + n1
=
0.03
3.4 解:(1)不加树脂胶时,两个透镜之间有空气,所以当自然光正入射
时,在第一个透镜与空气的分界面I上,
R2 + f 2 = nz + x2 + y2 + ( f − z)2 (n2 −1)z2 − z(n R2 + f 2 − f )z − (x2 + y2 ) = −R2
1.11 证明 n' − n = n' − n p' p r
1 +1 =2 p' p r
f = f= r 2
1.13 解:
f '=
Ey
=
A cos[ (t
−
z) c
光学教程姚启钧课后习题解答
光学教程姚启钧习题解答 第一章 光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离;若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少算出这两种光第2级亮纹位置的距离;解:1500nm λ= 改用2700nm λ=两种光第二级亮纹位置的距离为:2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少⑶求P 点的光强度和中央点的强度之比;解:⑴7050640100.080.04r y cm d λ-∆==⨯⨯= ⑵由光程差公式⑶中央点强度:204I A = P 点光强为:221cos4I A π⎛⎫=+ ⎪⎝⎭3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度;已知光波长为7610m -⨯解: 1.5n =,设玻璃片的厚度为d 由玻璃片引起的附加光程差为:()1n d δ'=-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上;通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度;解:7050500100.1250.02r y cm d λ-∆==⨯⨯= 由干涉条纹可见度定义: 由题意,设22122A A =,即12A A =5、波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ;解:700,20,180,1nm r cm L cm y mm λ===∆= 由菲涅耳双镜干涉条纹间距公式6、在题 图所示的劳埃德镜实验中,光源S 到观察屏的距离为1.5m ,到劳埃德镜面的垂直距离为2mm ;劳埃德镜长40cm ,置于光源和屏之间的中央;⑴若光波波长500nm λ=,问条纹间距是多少⑵确定屏上可以看见条纹的区域大小,此区域内共有几条条纹提示:产生干涉的区域P 1P 2可由图中的几何关系求得解:由图示可知:7050050010,40.4, 1.5150nm cm d mm cm r m cm λ-==⨯==== ①70150500100.018750.190.4r y cm mm d λ-∆==⨯⨯== ②在观察屏上可以看见条纹的区域为P 1P 2间即21 3.45 1.16 2.29P P mm =-=,离屏中央1.16mm 上方的2.29mm 范围内可看见条纹;P 2 P 1 P 0题图7、试求能产生红光700nm λ=的二级反射干涉条纹的肥皂膜厚度;已知肥皂膜折射率为1.33,且平行光与法向成300角入射;解:2700, 1.33nm n λ==由等倾干涉的光程差公式:22λδ=8、透镜表面通常镀一层如MgF 2 1.38n =一类的透明物质薄膜,目的是利用干涉来降低玻璃表面的反射;为了使透镜在可见光谱的中心波长550nm 处产生极小的反射,则镀层必须有多厚解: 1.38n =物质薄膜厚度使膜上下表面反射光产生干涉相消,光在介质上下表面反射时均存在半波损失;由光程差公式:9、在两块玻璃片之间一边放一条厚纸,另一边相互压紧,玻璃片l 长10cm ,纸厚为0.05mm ,从600的反射角进行观察,问在玻璃片单位长度内看到的干涉条纹数目是多少设单色光源波长为500nm解:02cos602o n hδ=+相邻亮条纹的高度差为:605005001012cos60212oh nm mm n λ-∆===⨯⨯⨯可看见总条纹数60.0510050010H N h -===∆⨯ 则在玻璃片单位长度内看到的干涉条纹数目为: 即每cm 内10条;10、在上题装置中,沿垂直于玻璃表面的方向看去,看到相邻两条暗纹间距为1.4mm ;已知玻璃片长17.9cm ,纸厚0.036mm ,求光波的波长;解:当光垂直入射时,等厚干涉的光程差公式: 可得:相邻亮纹所对应的厚度差:2h nλ∆=由几何关系:h H l l ∆=∆,即l h H l∆∆= 11、波长为400760nm 的可见光正射在一块厚度为61.210m -⨯,折射率为1.5的薄玻璃片上,试问从玻璃片反射的光中哪些波长的光最强;解:61.210, 1.5h m n -=⨯= 由光正入射的等倾干涉光程差公式:22nh λδ=-使反射光最强的光波满:足22nh j λδλ=-=12、迈克耳逊干涉仪的反射镜M 2移动0.25mm 时,看到条纹移过的数目为909个,设光为垂直入射,求所用光源的波长;解:光垂直入射情况下的等厚干涉的光程差公式:22nh h δ==移动一级厚度的改变量为:2h λ∆=13、迈克耳逊干涉仪的平面镜的面积为244cm ⨯,观察到该镜上有20个条纹,当入射光的波长为589nm 时,两镜面之间的夹角为多少解:由光垂直入射情况下的等厚干涉的光程差公式: 22nh h δ==相邻级亮条纹的高度差:2h λ∆=由1M 和2M '构成的空气尖劈的两边高度差为:M 1 M214、调节一台迈克耳逊干涉仪,使其用波长为500nm 的扩展光源照明时会出现同心圆环条纹;若要使圆环中心处相继出现1000条圆环条纹,则必须将移动一臂多远的距离若中心是亮的,试计算第一暗环的角半径;提示:圆环是等倾干涉图样,计算第一暗环角半径时可利用21sin ,cos 12θθθθ≈≈-的关系;解:500nm λ=出现同心圆环条纹,即干涉为等倾干涉 对中心2h δ=15、用单色光观察牛顿环,测得某一亮环的直径为3mm ,在它外边第5个亮环的直径为4.6mm ,所用平凸透镜的凸面曲率半径为1.03m ,求此单色光的波长;解:由牛顿环的亮环的半径公式:r = 以上两式相减得:16、在反射光中观察某单色光所形成的牛顿环,其第2级亮环与第3级亮环间距为1mm ,求第19和20级亮环之间的距离;解:牛顿环的反射光中所见亮环的半径为:即:2r =则:)2019320.160.40.4rr r r r mm ∆=-==-==第2章 光的衍射1、单色平面光照射到一小圆孔上,将其波面分成半波带;求第k 个带的半径;若极点到观察点的距离0r 为1m ,单色光波长为450nm ,求此时第一半波带的半径;解:由公式对平面平行光照射时,波面为平面,即:R →∞2、平行单色光从左向右垂直射到一个有圆形小孔的屏上,设此孔可以像照相机光圈那样改变大小;问:⑴小孔半径应满足什么条件时,才能使得此小孔右侧轴线上距小孔中心4m 的P 点的光强分别得到极大值和极小值;⑵P 点最亮时,小孔直径应为多大设此光的波长为500nm ;解:⑴04400r m cm == 当k 为奇数时,P 点为极大值 当C 数时,P 点为极小值⑵由()112P k A a a =±,k 为奇,取“+”;k 为偶,取“-” 当1k=,即仅露出一个半波带时,P 点最亮;10.141,(1)H R cm k ==,0.282D cm =3、波长为500nm 的单色点光源离光阑1m ,光阑上有一个内外半径分别为0.5mm 和1mm 的透光圆环,接收点P 离光阑1m ,求P 点的光强I 与没有光阑时的光强0I 之比;解:即从透光圆环所透过的半波带为:2,3,4 设1234a a a a a ==== 没有光阑时光强之比:2204112I a I a ==⎛⎫ ⎪⎝⎭4、波长为632.8nm 的平行光射向直径为2.76mm 的圆孔,与孔相距1m 处放一屏,试问:⑴屏上正对圆孔中心的P 点是亮点还是暗点⑵要使P 点变成与⑴相反的情况,至少要把屏分别向前或向后移动多少解:由公式对平面平行光照射时,波面为平面,即:R →∞2290 2.7623632.8101H R k r λ-⎛⎫ ⎪⎝⎭===⨯⨯, 即P 点为亮点; 则 0113kr R ⎛⎫=⨯+ ⎪⎝⎭, 注:0,r R 取m 作单位向右移,使得2k=,031.5, 1.510.52r m r m '==∆=-= 向左移,使得4k =,030.75,10.750.254r m r m '==∆=-=5、一波带片由五个半波带组成;第一半波带为半径1r 的不透明圆盘,第二半波带是半径1r 和2r 的透明圆环,第三半波带是2r 至3r 的不透明圆环,第四半波带是3r 至4r 的透明圆环,第五半波带是4r 至无穷大的不透明区域;已知1234:::r r r r =用波长500nm 的平行单色光照明,最亮的像点在距波带片1m 的轴上,试求:⑴1r ;⑵像点的光强;⑶光强极大值出现在哪些位置上;解: ⑴由1234:::r r r r =波带片具有透镜成像的作用,2HkR f k λ'=⑵2242,4A a a a I a =+==无光阑时,2201124I a a ⎛⎫== ⎪⎝⎭即:016I I =,0I 为入射光的强度; ⑶由于波带片还有11,35f f ''…等多个焦点存在,即光强极大值在轴上11,35m m … 6、波长为λ的点光源经波带片成一个像点,该波带片有100个透明奇数半波带1,3,5,…,199;另外100个不透明偶数半波带;比较用波带片和换上同样焦距和口径的透镜时该像点的强度比0:I I ;解:由波带片成像时,像点的强度为: 由透镜成像时,像点的强度为: 即014I I = 7、平面光的波长为480nm ,垂直照射到宽度为0.4mm 的狭缝上,会聚透镜的焦距为60cm ;分别计算当缝的两边到P 点的相位差为/2π和/6π时,P 点离焦点的距离;解:对沿θ方向的衍射光,缝的两边光的光程差为:sin b δθ= 相位差为:22sin b ππϕδθλλ∆==对使2πϕ∆=的P 点对使6πϕ∆=的P `点8、白光形成的单缝衍射图样中,其中某一波长的第三个次最大值与波长为600nm 的光波的第二个次最大值重合,求该光波的波长;解:对θ方位,600nm λ=的第二个次最大位对 λ'的第三个次最大位 即:5722b bλλ'⨯=⨯ 9、波长为546.1nm 的平行光垂直地射在1mm 宽的缝上,若将焦距为100cm 的透镜紧贴于缝的后面,并使光聚焦到屏上,问衍射图样的中央到⑴第一最小值;⑵第一最大值;⑶第三最小值的距离分别为多少解:⑴第一最小值的方位角1θ为:1sin 1b θλ=⋅⑵第一最大值的方位角1θ'为: ⑶第3最小值的方位角3θ为:3sin 3bλθ=⋅10、钠光通过宽0.2mm 的狭缝后,投射到与缝相距300cm 的照相底片上;所得的第一最小值与第二最小值间的距离为0.885cm ,问钠光的波长为多少若改用X 射线0.1nm λ=做此实验,问底片上这两个最小值之间的距离是多少解:单缝衍射花样最小值位置对应的方位θ满足: 则 11sin 1bλθθ≈=⋅11、以纵坐标表示强度,横坐标表示屏上的位置,粗略地画出三缝的夫琅禾费衍射包括缝与缝之间的干涉图样;设缝宽为b ,相邻缝间的距离为d ,3d b =;注意缺级问题;12、一束平行白光垂直入射在每毫米50条刻痕的光栅上,问第一级光谱的末端和第二光谱的始端的衍射角θ之差为多少设可见光中最短的紫光波长为400nm ,最长的红光波长为760nm解:每毫米50条刻痕的光栅,即10.0250dmm mm == 第一级光谱的末端对应的衍射方位角1θ末为第二级光谱的始端对应的衍射方位角2θ始为13、用可见光760400nm 照射光栅时,一级光谱和二级光谱是否重叠二级和三级怎样若重叠,则重叠范围是多少解:光谱线对应的方位角θ:sin kdλθθ≈=即第一级光谱与第二级光谱无重叠 即第二级光谱与第三级光谱有重叠 由2152015203,506.73nm nm d dλθλ==⨯==末即第三级光谱的400506.7nm 的光谱与第二级光谱重叠;14、用波长为589nm 的单色光照射一衍射光栅,其光谱的中央最大值和第二十级主最大值之间的衍射角为01510',求该光栅1cm 内的缝数是多少解:第20级主最大值的衍射角由光栅方程决定 解得20.4510d cm -=⨯15、用每毫米内有400条刻痕的平面透射光栅观察波长为589nm 的钠光谱;试问:⑴光垂直入射时,最多功能能观察到几级光谱⑵光以030角入射时,最多能观察到几级光谱解:61,58910400dmm mm λ-==⨯⑴光垂直入射时,由光栅方程:sin d j θλ= 即能看到4级光谱⑵光以30o角入射16、白光垂直照射到一个每毫米250条刻痕的平面透射光栅上,试问在衍射角为030处会出现哪些波长的光其颜色如何解:1250dmm =在30o的衍射角方向出现的光,应满足光栅方程:sin 30od j λ=17、用波长为624nm 的单色光照射一光栅,已知该光栅的缝宽b 为0.012mm ,不透明部分的宽度a 为0.029mm ,缝数N 为310条;求:⑴单缝衍射图样的中央角宽度;⑵单缝衍射图样中央宽度内能看到多少级光谱⑶谱线的半宽度为多少解:0.012,0.029b mm a mm ==⑴6062410220.1040.012rad b λθ-⨯∆==⨯= ⑵j 级光谱对应的衍射角θ为:即在单缝图样中央宽度内能看到()2317⨯+=条级光谱⑶由多缝干涉最小值位置决定公式:sin j Ndλθ'=⋅第3章 几何光学的基本原理1、证明反射定律符合费马原理 证明:设A 点坐标为()10,y ,B 点坐标为()22,x y入射点C 的坐标为(),0x光程ACB为:∆=令2sin sin 0x x d i i dx -∆'==-=即:sin sin i i '=2、根据费马原理可以导出近轴光线条件下,从物点发出并会聚到像点的所有光线的光程都相等;由此导出薄透镜的物像公式;3、眼睛E 和物体PQ 之间有一块折射率为1.5的玻璃平板见题图,平板的厚度d 为30cm ;求物体PQ 的像P `Q`与物体PQ 之间的距离2d 为多少解:由图:()121211tan tan sin sin 1sin BB d i d i d i i d i n ⎛⎫'=-≈-=-⎪⎝⎭4、玻璃棱镜的折射角A 为060,对某一波长的光其折射率n 为1.6,计算:⑴最小偏向角;⑵此时的入射角;⑶能使光线从A 角两侧透过棱镜的最小入射角;解:⑴ 由()()()1212112211i i i i i i i i i i A θ'''''=-+-=+-+=+- 当11i i '=时偏向角为最小,即有221302o i i A '=== ⑵15308oi '= 5、略6、高5cm 的物体距凹面镜顶点12cm ,凹面镜的焦距是10cm ,求像的位置及高度,并作光路图解:由球面成像公式: 代入数值1121220s +='-- 得:60s cm '=- 由公式:0y y s s '+='7、一个5cm 高的物体放在球面镜前10cm 处成1cm 高的虚像;求⑴此镜的曲率半径;⑵此镜是凸面镜还是凹面镜解:⑴5,10y cm s cm ==-1y cm '=, 虚像0s '>由y s y s''=- 得:2s cm '=⑵由公式112s s r+=' 5r cm =为凸面镜8、某观察者通过一块薄玻璃板去看在凸面镜中他自己的像;他移动着玻璃板,使得在玻璃板中与在凸面镜中所看到的他眼睛的像重合在一起;若凸面镜的焦距为10cm ,眼睛距凸面镜顶点的距离为40cm ,问玻璃板距观察者眼睛的距离为多少解:由题意,凸面镜焦距为10cm ,即10r = 玻璃板距观察者眼睛的距离为1242dPP cm '==9、物体位于凹面镜轴线上焦点之外,在焦点与凹面镜之间放一个与轴线垂直的两表面互相平行的玻璃板,其厚度为1d ,折射率为n ;试证明:放入该玻璃板后使像移动的距离与把凹面镜向物体移动()11/d n n -的一段距离的效果相同;证明:设物点P 不动,由成像公式s s r+='由题3可知:11110PP d d n ⎛⎫==-> ⎪⎝⎭入射到镜面上的光线可视为从1P 发出的,即加入玻璃板后的物距为s d +反射光线经玻璃板后也要平移d ,所成像的像距为11s s d '''=- 放入玻璃板后像移量为:()()()1122r s d rss s s d s d r s r +''''∆=-=--+--凹面镜向物移动d 之后,物距为s d + 0,0s d <>2s '相对o 点距离()()222r s d s s d d s d r+'''=-=-+-10、欲使由无穷远发出的近轴光线通过透明球体并成像在右半球面的顶点处,问这透明球体的折射率应为多少解:由球面折射成像公式:n n n n s s r''--=' 解得: 2n '=11、有一折射率为1.5、半径为4cm 的玻璃球,物体在距球表面6cm 处,求:⑴物所成的像到球心之间的距离;⑵像的横向放大率;解:⑴P 由球面1o 成像为P ',P '由2o 球面成像P ''211s cm '=,P ''在2o 的右侧,离球心的距离11415cm += ⑵球面1o 成像1111y s y s n β''==⋅ 利用P194:y s ny s n ''=⋅'球面2o 成像12、一个折射率为1.53、直径为20cm 的玻璃球内有两个小气泡;看上去一个恰好在球心,另一个从最近的方向看去,好像在表面与球心连线的中点,求两气泡的实际位置;解:设气泡1P 经球面1o 成像于球心,由球面折射成像公式:n n ns s r'--=' 110s cm =-, 即气泡1P 就在球心处 另一个气泡2P2 6.05s cm =-, 即气泡2P 离球心10 6.05 3.95cm -=13、直径为1m 的球形鱼缸的中心处有一条小鱼,若玻璃缸壁的影响可忽略不计,求缸外观察者所看到的小鱼的表观位置和横向放大率;解:由球面折射成像公式:n n n ns s r''--=' 解得 50s cm '=-,在原处14、玻璃棒一端成半球形,其曲率半径为2cm ;将它水平地浸入折射率为1.33的水中,沿着棒的轴线离球面顶点8cm 处的水中有一物体,利用计算和作图法求像的位置及横向放大率,并作光路图;解:由球面折射成像公式:s sr-='15、有两块玻璃薄透镜的两表面均各为凸球面及凹球面,其曲率半径为10cm ;一物点在主轴上距镜20cm 处,若物和镜均浸入水中,分别用作图法和计算法求像点的位置;设玻璃的折射率为1.5,水的折射率为1.33;解:由薄透镜的物像公式:211212n n n n n n s s r r ---=+' 对两表面均为凸球面的薄透镜: 对两表面均为凹球面的薄透镜:16、一凸透镜在空气的焦距为40cm ,在水中时焦距为136.8cm ,问此透镜的折射率为多少水的折射率为1.33若将此透镜置于CS 2中CS 2的折射率为1.62,其焦距又为多少解:⑴ 薄透镜的像方焦距:21212n f n n n n r r '=⎛⎫--+ ⎪⎝⎭12n n = 时,()111211n f n n r r '=⎛⎫-- ⎪⎝⎭在空气中:()1121111f n r r '=⎛⎫-- ⎪⎝⎭在水中:()2121.33111.33f n r r '=⎛⎫-- ⎪⎝⎭两式相比:()()12 1.33401.331136.8n f f n -'=='- 解得 1.54n = ⑵12 1.62n n ==而:()11211111f n r r '-=⎛⎫- ⎪⎝⎭则:()1.6240 1.541437.41.54 1.62f cm '=⨯⨯-=--第4章 光学仪器的基本原理1、眼睛的构造简单地可用一折射球面来表示,其曲率半径为5.55mm ,内部为折射率等于4/3的液体,外部是空气,其折射率近似地等于1;试计算眼球的两个焦距;用肉眼观察月球时月球对眼的张角为01,问视网膜上月球的像有多大解:由球面折射成像公式:n n n ns s r''--=' 令43,5.55 2.22413n s f r cm n n ''=-∞=⋅=⨯='--令1,5.5516.7413n s f r cm n n '=∞=-⋅=-⨯=-'--2、把人眼的晶状体看成距视网膜2cm 的一个简单透镜;有人能看清距离在100cm 到300cm 间的物体;试问:⑴此人看远点和近点时,眼睛透镜的焦距是多少⑵为看清25cm 远的物体,需配戴怎样的眼镜解:⑴对于远点:11300,2s cm s cm '=-= 由透镜成像公式:111111s s f -='' 对于近点:2211121001.961f f cm-='-'= ⑵对于25cm 由两光具组互相接触0d =组合整体:110.030cm f -=''近视度:300o3、一照相机对准远物时,底片距物镜18cm ,当镜头拉至最大长度时,底片与物镜相距20cm ,求目的物在镜前的最近距离解:由题意:照相机对准远物时,底片距物镜18cm , 由透镜成像公式:111s s f -=''4、两星所成的视角为4',用望远镜物镜照相,所得两像点相距1mm ,问望远镜物镜的焦距是多少解: 3.14118060rad '=⨯5、一显微镜具有三个物镜和两个目镜;三个物镜的焦距分别为16mm 、4mm 和1.9mm ,两个目镜的放大本领分别为5和10倍;设三个物镜造成的像都能落在像距为160cm 处,问这显微镜的最大和最小的放大本领各为多少解:由显微镜的放大本领公式: 其最大放大本领: 其最小放大本领:6、一显微镜物镜焦距为0.5cm ,目镜焦距为2cm ,两镜间距为22cm ;观察者看到的像在无穷远处;试求物体到物镜的距离和显微镜的放大本领;解:由透镜物像公式:111s s f -=''解得:0.51s cm =- 显微镜的放大本领:1212252522255500.52s l M f f f f '=-⋅≈-⋅=-⨯=-'''' 7、略8、已知望远镜物镜的边缘即为有效光阑,试计算并作图求入光瞳和出射光瞳的位置;9、 10、13、焦距为20cm 的薄透镜,放在发光强度为15cd 的点光源之前30cm 处,在透镜后面80cm 处放一屏,在屏上得到明亮的圆斑;求不计透镜中光的吸收时,圆斑的中心照度;解:230Sd Id Iφ=Ω= S 为透镜的面积P 点的像点P '的发光强度I '为:14、一长为5mm 的线状物体放在一照相机镜头前50cm 处,在底片上形成的像长为1mm ;若底片后移1cm ,则像的弥散斑宽度为1mm ;试求照相机镜头的F 数;解:由y s y s''= 1550s '= 得10s cm '=由透镜物像公式:111s s f -=''由图可见,100.11d = 1d cm = F 数:508.336f d '==15、某种玻璃在靠近钠光的黄色双谱线其波长分别为589nm 和589.6nm 附近的色散率/dn d λ为1360cm --,求由此种玻璃制成的能分辨钠光双谱线的三棱镜,底边宽度应小于多少解:由色分辨本领:dnP d λδλλ==∆ 16、设计一块光栅,要求⑴使波长600nm 的第二级谱线的衍射角小于030,并能分辨其0.02nm 的波长差;⑵色散尽可能大;⑶第三级谱线缺级;求出其缝宽、缝数、光栅常数和总宽度;用这块光栅总共能看到600nm 的几条谱线解:由sin d j θλ= 由第三级缺级 由 P jN λλ==∆ 光栅的总宽度:315000 2.41036L Nd mm -==⨯⨯=由sin 9024004600od j λ=== 能看到0,1,2±±,共5条谱线17、若要求显微镜能分辨相距0.000375mm 的两点,用波长为550nm 的可见光照明;试求:⑴此显微镜物镜的数值孔径;⑵若要求此两点放大后的视角为2',则显微镜的放大本领是多少解:⑴由显微镜物镜的分辨极限定义⑵ 3.1418060387.70.000375250M ⨯==18、夜间自远处驶来汽车的两前灯相距1.5m ;如将眼睛的瞳孔看成产生衍射的圆孔,试估计视力正常的人在多远处才能分辨出光源是两个灯;设眼睛瞳孔的直径为3mm ,设光源发出的光的波长λ为550nm ;解: 1.5U L=当0.610URλθ==才能分辨出19、用孔径分别为20cm 和160cm 的两种望远镜能否分辨清月球上直径为500m 的环形山月球与地面的距离为地球半径的60倍,面地球半径约为6370km ;设光源发出的光的波长λ为550nm ;解:63500 1.31060637010Urad -==⨯⨯⨯ 孔径20cm 望远镜:孔径160cm 望远镜:1U θ'<,即用孔径20cm 望远镜不能分辨清 1U θ''>,即用孔径160cm 望远镜能分辨清20、电子显微镜的孔径角028u =,电子束的波长为0.1nm ,试求它的最小分辨距离;若人眼能分辨在明视距离处相距26.710mm -⨯的两点,则此显微镜的放大倍数是多少解: 3.144sin sin 4180o n uu u ⨯====第五章光的偏振1、试确定下面两列光波的偏振态;解:①()10cos cos 2x y E A e t kz e t kz πωω⎡⎤⎛⎫=-+-- ⎪⎢⎥⎝⎭⎣⎦有:22211x y E E A += 分析()(),0000,2x y x y E At kz A E E t kz A E Aωπω=⎧⎪-=⎨=⎪⎩=⎧⎪-=⎨=⎪⎩为左旋圆偏振光②()20sin sin 2x y E A e t kz e t kz πωω⎡⎤⎛⎫=-+-- ⎪⎢⎥⎝⎭⎣⎦有:22211x y E E A += 分析()()0,,002x y x y E t kz A E A E A t kz A E ωπω=⎧⎪-=-⎨=-⎪⎩=⎧⎪-=⎨=⎪⎩为左旋圆偏振光2、为了比较两个被自然光照射的表面的亮度,对其中一个表面直接进行观察,另一个表面通过两块偏振片来观察;两偏振片的透振方向的夹角为060;若观察到两表面的亮度相同;则两表面实际的亮度比是多少已知光通过每一块偏振片后损失入射光能量的0010;解:由于被光照射的表面的亮度与其反射的光的光强成正比;设直接观察的表面对应的光强为1o I ,通过两偏振片观察的表面的光强为2o I通过第一块偏振片的光强为:通过第二块偏振片的光强为: 由1220.1o o I I I ==则:120.1ooI I = 3、两个尼科耳N 1和N 2的夹角为060,在它们之间放置另一个尼科耳N 3,让平行的自然光通过这个系统;假设各尼科耳对非常光均无吸收,试问N 3和N 1的透振方向的夹角为何值时,通过系统的光强最大设入射光强为0I ,求此时所能通过的最大光强;解:令:20dI d α=得:()tan tan 60αα=- 4、在两个正义的理想偏听偏振片之间有一个偏振片以匀角速度ω绕光的传播方向旋转见题图,若入射的自然光强为0I ,试证明透射光强为()011cos 416I I t ω=- 证明:5、线偏振光入射到折射率为1.732的玻璃片上,入射角是060,入射光的电矢量与入射面成030角;求由分界面上反射的光强占入射光强的百分比;解:设入射线偏振光振幅为A ,则入射光强为20I A = 入射光平行分量为:1cos 30oP A A = 入射光垂直分量为:1sin 30o S A A = 由:21sin603sin i =得:230o i =由:()()()()121112tan 6030tan 0tan tan 6030oPo P i i A A i i --'===++ 6、一线偏振光垂直入射到一方解石晶体上,它的振动面和主截面成030角;两束折射光通过在方解石后面的一个尼科耳棱镜,其主截面与入射光的振动方向成050角;计算两束透射光的相对强度;解:当光振动面与N 主截面在晶体主截面同侧: 当光振动面与N 主截面在晶体主截面两侧:7、线偏振光垂直入射到一块光轴平行于表面的方解石波片上,光的振动面和波片的主截面成030角;求:⑴透射出来的寻常光和非常光的相对强度为多少⑵用钠光入时如要产生090的相位差,波片的厚度应为多少589nm λ=解:⑴1sin 302o o A A A ==214o I A = ⑵ 方解石对钠光 1.658 1.486o e n n ==由()2o e n n d πϕλ∆=-8、有一块平行石英片是沿平行于光轴方向切成一块黄光的14波片,问这块石英片应切成多厚石英的01.552, 1.543,589e n n nm λ===;解:()2o e n n d πϕλ∆=-9、⑴线偏振光垂直入射到一个表面和光轴平行的波片,透射出来后,原来在波片中的寻常光及非常光产生了大小为π的相位差,问波片的厚度为多少0 1.5442, 1.5533,500e n n nm λ===⑵问这块波片应怎样放置才能使透射出来的光是线偏振光,而且它的振动面和入射光的振动面成090的角解:⑴()()221o e n n d k πϕπλ∆=-=+⑵振动方向与晶体主截面成45o角10、线偏振光垂直入射到一块表面平行于光轴的双折射波片,光振动面和波片光轴成025角,问波片中的寻常光和非常光透射出来后的相对强度如何解:cos 25oe A A =11、在两正交尼科耳棱镜N 1和N 2之间垂直插入一块波片,发现N 2后面有光射出,但当N 2绕入射光向顺时针转过020后, N 2的视场全暗,此时,把波片也绕入射光顺时针转过020,N 2的视场又亮了,问:⑴这是什么性质的波片;⑵N 2要转过多大角度才能使N 2的视场以变为全暗;解:⑴由题意,当2N 绕入射光向顺时针转动20o 后,2N 后的视场全暗,说明A '与1N 夹角为20o;只有当波片为半波片时,才能使入射线偏振光出射后仍为线偏振光;⑵把波片也绕入射光顺时针转过020,2N 要转过040才能使2N 后的视场又变为全暗12、一束圆偏振光,⑴垂直入射1/4波片上,求透射光的偏振状态;⑵垂直入射到1/8波片上,求透射光的偏振状态;解:在xy 平面上,圆偏振光的电矢量为: ()()cos sin x y E A t kz e A t kz e ωω=-±- +为左旋;-为右旋圆偏振光设在波片入射表面上为 ⑴波片为14波片时,2πϕ∆= 即透射光为振动方向与晶片主截面成45o角的线偏振光⑵波片为18波片时,4πϕ∆= 即透射光为椭圆偏振光;13、试证明一束左旋圆偏振光和一束右旋圆偏振光,当它们的振幅相等时,合成的光是线偏振光;解:左旋圆偏振光 右旋圆偏振光 即E 为线偏振光14、设一方解石波片沿平行光轴方向切出,其厚度为0.0343mm ,放在两个正交的尼科耳棱镜间,平行光束经过第一尼科耳棱镜后,垂直地射到波片上,对于钠光589.3nm 而言,晶体的折射率为 1.658, 1.486o e n n ==;问通过第二尼科耳棱镜后,光束发生的干涉是加强还是减弱如果两个尼科耳棱镜的主截面是互相平行的,结果又如何解:①1N 与2N 正交时,即通过第二个尼科耳棱镜后,光束的干涉是减弱的; ②1N 与2N 互相平行时,即通过第二个尼科耳棱镜后,光束的干涉是加强的;15、单色光通过一尼科耳镜N 1,然后射到杨氏干涉实验装置的两个细缝上,问:⑴尼科耳镜N 1的主截面与图面应成怎样的角度才能使光屏上的干涉图样中的暗条纹为最暗⑵在上述情况下,在一个细缝前放置一半波片,并将这半波片绕着光线方向继续旋转,问在光屏上的干涉图样有何改变解:⑴尼科耳镜N 1的主截面与图面应成90的角度时,光屏上的干涉图样中的暗条纹为最暗;⑵在一个细缝前放置一半波片,并将这半波片绕着光线方向继续旋转,光屏上的干涉图样随半波片的旋转而由清晰变模糊再由模糊变清晰的改变;16、单色平行自然光垂直入射在杨氏双缝上,屏幕上出现一组干涉条纹;已知屏上A 、C 两点分别对应零级亮纹和零级暗纹,B 是AC 的中点,如题图所示,试问:⑴若在双缝后放一理想偏振片P,屏上干涉条纹的位置、宽度会有何变化A 、C 两点的光强会有何变化⑵在一条缝的偏振片后放一片光轴与偏振片透光方向成045的半波片,屏上有无干涉条纹A 、B 、C 各点的情况如何答:⑴若在双缝后放一理想偏振片P,屏上干涉条纹的位置、宽度不全有变化;A 、C 两点的光强会减弱;⑵在一条缝的偏振片后放一片光轴与偏振片透光方向成045的半波片,屏上有无干涉条纹位置不变,A 、B 、C 各点的光强有变化,干涉图样可见度下降了; C B A。
工程光学第3版第一章习题答案
选择题答案
B. 光波的波长越长,频率 越高。
A. 光波的频率越高,波长 越短。
选择题答案
01
03 02
选择题答案
C. 光波的振幅越大,亮度越高。
D. 光波的相位越稳定,干涉现象越明显。
判断题答案
总结词
光的干涉现象
光的干涉现象
干涉是光波动性的重要表现之一。当两束或多束相干光波同时作用在某一点时,它们的光程差会引起 光强的变化,形成干涉现象。干涉现象在光学实验中经常被用来验证光的波动性。
简答题2
02
03
简答题3
光在介质中的传播速度与介质的 折射率有关,折射率越大,光速 越小。
光在同一种均匀介质中沿直线传 播,当遇到不同介质时,会发生 折射或反射。
计算题答案
1 2
计算题1
根据光的折射定律,当光从空气射入水中时,入 射角为30°,折射角为18.4°,求介质的折射率。
计算题2
一束光在玻璃中的波长为λ,在空气中的波长为 λ0,求玻璃的折射率。
根据干涉相长条件和干涉相消条件,可以计算出 干涉条纹的位置和宽度。
论述题答案
论述题1
论述题3
论述光的干涉现象在光学仪器中的应 用。
论述光的偏振现象在光学仪器中的应 用。
论述题2
论述光的衍射现象在光学仪器中的应 用。
04 习题1.4答案
简答题答案
01
02
03
04
简答题1
光在真空中的传播速度 最快,约为299,792, 458米/秒。
简答题2
光波在各向异性介质中传 播时,其波前与波阵面不 重合。
简答题3
光的干涉现象是两束或多 束相干光波在空间某一点 叠加时,产生明暗相间的 干涉条纹的现象。
(完整版)物理光学-第一章习题与答案
物理光学习题 第一章 波动光学通论一、填空题(每空2分)1、.一光波在介电常数为ε,磁导率为μ的介质中传播,则光波的速度v= 。
【εμ1=v 】2、一束自然光以 入射到介质的分界面上,反射光只有S 波方向有振动。
【布儒斯特角】3、一个平面电磁波波振动表示为 E x =E z =0, E y =cos[⎪⎭⎫⎝⎛-⨯t c x 13102π], 则电磁波的传播方向 。
电矢量的振动方向 【x 轴方向 y 轴方向】4、在光的电磁理论中,S 波和P 波的偏振态为 ,S 波的振动方向为 , 【线偏振光波 S 波的振动方向垂直于入射面】5、一束光强为I 0的自然光垂直穿过两个偏振片,两个偏振片的透振方向夹角为45°,则通过两偏振片后的光强为 。
【I 0/4】6、真空中波长为λ0、光速为c 的光波,进入折射率为n 的介质时,光波的时间频率和波长分别为 和 。
【c/λ0 λ0 /n 】7、证明光驻波的存在的维纳实验同时还证明了在感光作用中起主要作用是 。
【电场E 】8、频率相同,振动方向互相垂直两列光波叠加,相位差满足 条件时,合成波为线偏振光波。
【0 或Π】9、会聚球面波的函数表达式 。
【ikre rA r E -)(=】 10、一束光波正入射到折射率为1.5的玻璃的表面,则S 波的反射系数为 ,P 波透射系数: 。
【-0.2 0.2 】11、一束自然光垂直入射到两透光轴夹角为θ的偏振片P 1和P 2上,P 1在前,P 2在后,旋转P 2一周,出现 次消光,且消光位置的θ为 。
【2 Π/2】12、当光波从光疏介质入射到光密介质时,正入射的反射光波 半波损失。
(填有或者无) 【有】13、对于部分偏振光分析时,偏振度计算公式为 。
(利用正交模型表示) 【xy x y I I I I P +-=】二、选择题(每题2分)1.当光波从光密介质入射到光疏介质时,入射角为θ1,布儒斯特角为θB ,临界角为θC ,下列正确的是 ( )A .0<θ1<θB , S 分量的反射系数r S 有π位相突变 B .0<θ1<θB , P 分量的反射系数r P 有π位相突变C .θB <θ1<θC , S 分量的反射系数r S 有π位相突变D .θB <θ1<θC , P 分量的反射系数r P 有π位相突变 【B 】2.下面哪种情况产生驻波 ( ) A .两个频率相同,振动方向相同,传播方向相同的单色光波叠加 B .两个频率相同,振动方向互相垂直,传播方向相反的单色光波叠加 C .两个频率相同,振动方向相同,传播方向相反的单色光波叠加 D .两个频率相同,振动方向互相垂直,传播方向相同的单色光波叠加 【C 】3.平面电磁波的传播方向为k ,电矢量为E ,磁矢量为B, 三者之间的关系下列描述正确的是 ( ) A .k 垂直于E , k 平行于B B .E 垂直于B , E 平行于k C .k 垂直于E , B 垂直于k D .以上描述都不对 【C 】4、由两个正交分量]cos[0wt kz A x E x -= 和]87cos[0π+-=wt kz A y E y表示的光波,其偏振态是( )A 线偏振光B 右旋圆偏振光C 左旋圆偏振光D 右旋椭圆偏振光 【D 】5、一列光波的复振幅表示为ikre rA r E =)(形式,这是一列( )波 A 发散球面波 B 会聚球面波 C 平面波 D 柱面波 【A 】6、两列频率相同、振动方向相同、传播方向相同的光波叠加会出现现象( ) A 驻波现象 B 光学拍现象 C 干涉现象 D 偏振现象 【C 】7、光波的能流密度S 正比于( )A E 或HB E 2或H 2C E 2,和H 无关D H 2,和E 无关 【B 】8、频率相同,振动方向互相垂直两列光波叠加,相位差满足( )条件时,合成波为二、四象限线偏振光波。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理与机电工程学院 2011级 应用物理班姓名:罗勇 学号:20114052016第一章 习题一、填空题:1001.光的相干条件为 两波频率相等 、相位差始终不变和 传播方向不相互垂直。
1015.迈克尔逊干涉仪的反射镜M 2移动0.25mm 时,看到条纹移动的数目为1000个,若光为垂直入射,则所用的光源的波长为_500nm 。
1039,光在媒介中通过一段几何路程相应的光程等于折射率和__路程_的乘积 。
1089. 振幅分别为A 1和A 2的两相干光同时传播到p 点,两振动的相位差为ΔΦ。
则p 点的光强I =2212122cos A A A A ϕ++∆1090. 强度分别为1I 和2I 的两相干光波迭加后的最大光强max I =12+I I 。
1091. 强度分别为I 1和I 2的两相干光波迭加后的最小光强min I =。
12I I -1092. 振幅分别为A 1和A 2的两相干光波迭加后的最大光强max I =12122A A A A ++。
1093. 振幅分别为A 1和A 2的两相干光波迭加后的最小光强min I =12122A A A A +-。
1094. 两束相干光叠加时,光程差为λ/2时,相位差∆Φ=π。
1095. 两相干光波在考察点产生相消干涉的条件是光程差为半波长的()2j+1倍,相位差为π的()2j+1倍。
1096. 两相干光波在考察点产生相长干涉的条件是光程差为波长的2j 倍,相位差为π的2j 倍。
1097. 两相干光的振幅分别为A 1和A 2,则干涉条纹的可见度v=1221221A A A A ⎛⎫⎪⎝⎭⎛⎫+ ⎪⎝⎭。
1098. 两相干光的强度分别为I 1和I 2,则干涉条纹的可见度v=1212I I I I -+。
1099.两相干光的振幅分别为A 1和A 2,当它们的振幅都增大一倍时,干涉条纹的可见度为不变。
1100. 两相干光的强度分别为I 1和I 2,当它们的强度都增大一倍时,干涉条纹的可见度 不变。
1101. 振幅比为1/2的相干光波,它们所产生的干涉条纹的可见度V=45。
1102. 光强比为1/2的相干光波,它们所产生的干涉条纹的可见度V=13。
1103. 在杨氏双缝干涉实验中,缝距为d ,缝屏距为D ,屏上任意一点p 到屏中心p 点的距离为y ,则从双缝所发光波到达p 点的光程差为1104. 在杨氏双缝干涉实验中,缝距为d ,缝屏距为D ,波长为λ,屏上任意一点p 到屏中心p 0点的距离为y ,则从双缝所发光波到达p 点的相位差为2πλ 1105. 在杨氏双缝干涉实验中,缝距为d ,缝屏距为D ,波长为λ,屏上任意一点p 到对称轴与光屏的交点p 0的距离为y ,设通过每个缝的光强是I 0,则屏上任一点的光强I=()01cos I V ϕ+∆。
1106. 在杨氏双缝干涉实验中,缝距为d ,缝屏距为D ,入射光的强度为I 0,波长为λ,则观察屏上相邻明条纹的距离为Ddλ。
1107. 波长为600nm 的红光透射于间距为0.02cm 的双缝上,在距离1m 处的光屏上形成干涉条纹,则相邻明条纹的间距为__3_mm 。
1108. 在杨氏双缝干涉实验中,缝距为d ,缝屏距为D ,屏上干涉条纹的间距为Δy 。
现将缝距减小一半,则干涉条纹的间距为2y ∆。
1109. 在杨氏双缝干涉实验中,用一薄云母片盖住实验装置的上缝,则屏上的干涉条纹要向_上移_____移动,干涉条纹的间距不变_____。
1110. 在杨氏双缝干涉实验中,得到干涉条纹的的间距为Δy ,现将该装置移入水中,(n=3/4),则此时干涉条纹的焦距为3y 4∆。
1111. 用波长为500 nm 的单色光照射杨氏双缝,入用折射率为1.5的透明薄片覆盖下缝,发现原来第五条移至中央零级处,则该透明片的厚度为___4510cm-⨯____________。
1112. 增透膜是用氟化镁(n=1.38)镀在玻璃表面形成的,当波长为λ的单色光从空气垂直入射到增透膜表面是,膜的最小厚度为_5.52λ____________。
1113. 在玻璃(n 0=1.50)表面镀一层MgF 2(n=1.38)薄膜,以增加对波长为λ的光的反射,膜的最小厚度为______2.76λ________。
1114. 在玻璃(n=1.50)表面上镀一层ZnS (n 0=2.35),以增加对波长为λ的光的反射,这样的膜称之为高反膜,其最小厚度为9.40λ。
1115. 单色光垂直照射由两块平板玻璃构成的空气劈,当把下面一块平板玻璃缓慢向下平移时,则干涉条纹___下移_______,明暗条纹间隔____不变_______。
1116. 波长为λ的单色光垂直照射劈角为α的劈形膜,用波长为的单色光垂直照射,则在干涉膜面上干涉条纹的间距为___2tan λα_____________。
1117. 空气中折射率为n ,劈角为α的劈形膜,用波长为λ的单色光垂直折射,则在干涉膜面上干涉条纹的间距为____2tan n λα________。
1118. 由平板玻璃和平凸透镜构成的牛顿环仪,置于空气中,用单色光垂直入射,在反射方向观察,环心是__暗的_________,在透射方向观察,环心是_____亮的_____。
1119. 通常牛顿环仪是用平凸透镜和平板玻璃接触而成,若平凸透镜的球面改为 ______圆锥_______面,则可观察到等距同心圆环。
1120. 在牛顿环中,将该装置下面的平板玻璃慢慢向下移动,则干涉条纹向环心缩小___________。
1121. 牛顿环是一组内疏外密的,明暗相间的同心圆环,暗环半径与_其干涉级的二分之一次方__________成正比。
1122. 用波长为λ的单色光产生牛顿环干涉图样,现将该装置从空气移入水中(折射率为n),则对应同一级干涉条纹的半径将是原条纹半径的____1n_________倍。
1123. 当牛顿环装置中的平凸透镜与平板玻璃之间充以某种液体时,原来第10个亮环的直径由1.4 cm变为1.27 cm,则这种液体的折射率为______1.10___________。
1124. 在迈克尔逊干涉仪中,当观察到圆环形干涉条纹时,这是属于___等倾_________干涉。
1125. 在迈克尔逊干涉仪实验中,当M1和M2垂直时,可观察到一组明暗相间的同心圆环状干涉条纹,环心级次_最高_______,环缘级次_最低_______。
1126. 观察迈克尔逊干涉仪的等倾圆环形条纹,当等效空气薄膜的厚度增大时,圆环形条纹____沿法线放向外扩大_________________。
1127. 在调整迈克尔逊干涉仪的过程中,在视场中发现有条纹不断陷入,这说明等效空气膜的厚度在_______变小___________。
1128. 调整好迈克尔逊干涉仪,使M1和M2严格垂直的条件下,干涉条纹将是一组同心圆环。
当移动动镜使等效薄膜厚度连续增大,则视场中观察到干涉条纹从中心__涌出_______,条纹间距___变大____________。
1129. 调整好迈克尔逊干涉仪,使M1和M2严格垂直的条件下,干涉条纹将是一组同心圆环。
当移动动镜使等效薄膜厚度连续减小,则视场中观察到干涉条纹从中心__缩进_______,条纹间距___变小___________。
1130. 用波长为600nm的光观察迈克尔逊干涉仪的干涉条纹,移动动镜使视场中移过100个条纹,则动镜移动的距离为__0.03mm_________。
1131. 在迈克尔逊干涉仪的一条光路中,放入一折射率为n,厚度为d的透明介质片,放入后两光路的程差改变____2(n-1)d___________。
1132. 迈克尔逊干涉仪的一臂重插有一折射率为n,厚度为h的透明膜片,现将膜片取走,为了能观察到与膜片取走前完全相同级次的干涉条纹,平面镜移动的距离为___2h(n-1)__________。
二、选择题:2007.将扬氏双缝干涉实验装置放入折射率为n的介质中,其条纹间隔是空气中的(C)(A(B倍(C)1n倍(D)n倍2013.用迈克耳逊干涉仪观察单色光的干涉,当反射镜M1移动0.1mm时,瞄准点的干涉条纹移过了400条,那么所用波长为(A )(A)500nm。
(B)498.7nm。
(C)250nm。
(D)三个数据都不对。
2015.用单色光观察牛顿环,测得某一亮环直径为3mm,在它外边第5个亮环直径为4.6mm,用平凸透镜的凸面曲率半径为1.0m,则此单色光的波长为(B )(A)590.3 nm (B)608nm (C)760nm (D)三个数据都不对2024.以波长为650nm的红光做双缝干涉实验,已知狭缝相距10-4m,从屏幕上测量到相邻两条纹的间距为1cm,则狭缝到屏幕之间的距离为多少m?( B )(A)2 (B)1.5 (C)1.8 (D)3.22025.玻璃盘中的液体绕中心轴以匀角速度旋转,液体的折射率为4/3,若以波长600nm的单色光垂直入射时,即可在反射光中形成等厚干涉条纹,如果观察到中央是两条纹,第一条纹的半径为10.5mm,则液体的旋转速度为多少rad/s?( B )(A)0.638 (B)0.9 (C)1.04 (D)0.1042096,两光强均为I的相干光干涉的结果,其最大光强为(C )(A)I (B)2I (C)4I (D)8I2097,两相干光的振幅分别为A1和A2,他们的振幅增加一倍时,干涉条纹可见度( C )(A)增加一倍(B)增加1/2倍(C)不变(D)减小一半2098,两相干光的光强度分别为I1和I2,当他们的光强都增加一倍时,干涉条纹的可见度(C )(A)增加一倍(B)增加1/2 倍(C)不变(D)减小一半2099,两相干光的振幅分别为A1和2A1,他们的振幅都减半时,干涉条纹的可见度( C )(A)增加一倍(B)增加1/2 倍(C)不变(D)减小一半2100,两相干光的光强分别为I1和2I1,当他们的光强都减半时,干涉条纹的可见度( D )(A)减小一半(B)减为1/4 (C)增大一倍(D)不变2101,在杨氏干涉花样中心附近,其相邻条纹的间隔为( B )(A)与干涉的级次有关(B)与干涉的级次无关(C)仅与缝距有关(D)仅与缝屏距有关2102,在杨氏双缝干涉试验中,从相干光源S1和S2发出的两束光的强度都是I o,在双缝前面的光屏上的零级亮条纹的最大光强度为( D )(A)I o(B)2I o(C)3I o (D)4I o2103,在杨氏双缝干涉试验中,如果波长变长,则( A )(A)干涉条纹之间的距离变大(B)干涉条纹之间的距离变小(C)干涉条纹之间的距离不变(D)干涉条纹变红2104.在杨氏双缝干涉试验中,若将两缝的间距加倍,则干涉条纹的间距( D )(A)是原来的两倍(B)是原来的四倍(C)是原来的四分之一(D)是原来的二分之一2105,将整个杨氏试验装置(双缝后无会聚透镜),从空气移入水中,则屏幕上产生的干涉条纹( C )(A)间距不变(B)间距变大(C)间距变小(D)模糊2106,在杨氏双缝干涉试验中,若用薄玻璃片盖住上缝,干涉条纹将( A )(A)上移(B)下移(C)不动(D)变密2107,若用一张薄云母片将杨氏双缝干涉试验装置的上缝盖住,则( D )(A)条纹上移,但干涉条纹间距不变(B)条纹下移,但干涉条纹间距不变(C)条纹上移,但干涉条纹间距变小(D)条纹上移,但干涉条纹间距变大2108,用白光作杨氏干涉试验,则干涉图样为(A )(A)除了零级条纹是白色,附近为内紫外红的彩色条纹(B)各级条纹都是彩色的(C)各级条纹都是白色的(D)零级亮条纹是白色的,附近的为内红外紫的彩色条纹2109,日光照在窗户玻璃上,从玻璃上、下表面反射的光叠加,看不见干涉图样的原因是(D )(A)两侧光的频率不同(B)在相遇点两束光振动方向不同(C)在相遇点两束光的振幅相差太大(D)在相遇点的光程差太大2110,雨后滴在马路水面上的汽油薄膜呈现彩色时,油膜的厚度是( A )(A)十的-5次方(B)十的-6次方(C)十的-7次方(D)十的-8次方2111,白光垂直照射在肥皂膜上,肥皂膜呈彩色,当肥皂膜的厚度趋于零时,从反射光方向观察肥皂膜( D )(A)还是呈彩色(B)呈白色(C)呈黑色(D)透明无色2112,单色光垂直入射到两平板玻璃板所夹的空气劈尖上,当下面的玻璃板向下移动时,干涉条纹将( A )(A)干涉条纹向棱边移动,间距不变(B)干涉条纹背离棱编移动,间距不变(C)干涉条纹向棱边密集(D)干涉条纹背向棱边稀疏2113,单色光垂直入射到两块平板玻璃板所形成的空气劈尖上,当劈尖角度逐渐增大时,干涉条纹如何变化( A )(A)干涉条纹向棱边密集(B)干涉条纹背向棱边密集(C)干涉条纹向棱边稀疏(D)干涉条纹内向棱边稀疏2114,单色光垂直照射在空气劈尖上形成干涉条纹,若要使干涉条纹变宽,可以( C )(A)增大劈角(B)增大光频(C)增大入射角(D)充满介质2115,在两块光学平板之间形成空气薄膜,用单色光垂直照射,观察等厚干涉若将平板间的空气用水代替,则( A )(A)干涉条纹移向劈棱,条纹间距变小(B)干涉条纹移向劈背,条纹艰巨变小(C)干涉条纹移向劈背,条纹间距变大(D)干涉条纹移向劈棱,条纹间距变大2116,利用劈尖干涉装置可以检验工件表面的平整度,在钠光垂直照射下,观察到平行而且等距的干涉条纹,说明工作表面是(A )(A)平整的(B)有凹下的缺陷(C)有突起的缺陷(D)有缺陷但是不能确定凸凹2117.利用劈尖干涉装置可以检测工件表面的平整度,在钠光垂直照射下,观察到在平行而且等距的干涉条纹中,有局部弯曲背向棱边的条纹,说明工作表面是( B )(A)平整的(B)有凹下的缺陷(C)有突起的缺陷(D)有缺陷但是不能确定凸凹2118,在两块光学平板玻璃板形成劈形空气膜,用单色光垂直入射时,观察到平行干涉条纹,当上面的玻璃板向下移动时,干涉条纹( B )(A)向棱边移动(B)背向棱边移动(C)不动(D)向中心移动2119,在两块光学平板玻璃板形成劈形空气膜,用单色光垂直入射时,观察到平行干涉条纹,当上面的玻璃板向下移动时,干涉条纹( B )(A)向棱边移动(B)背向棱边移动(C)不动(D)向中心移动2120.用力下压牛顿环实验装置的平凸透镜时,干涉条纹将( B )(A)向中心收缩(B)向外扩散(C)不动(D)变窄2121,在透射光中观察白光所形成的牛顿环,则零级条纹是( D )(A)暗(B)红色亮斑(C)紫色亮斑(D)白色亮斑2122,等倾干涉花样和牛顿环相比,他们的中心明暗情况是( C )(A)等倾干涉花样中心是亮的,牛顿环中心是暗的(B)等倾干涉和牛顿环干涉花样中心都是亮的(C)等倾干涉和牛顿环干涉花样的中心都是暗的(D)等倾干涉花样的中心可亮可暗,牛顿环干涉花样中心一定是暗的2123, 等倾干涉花样和牛顿环干涉花样干涉级分布是( B )(A)等倾干涉,干涉级向外递增,牛顿环干涉级向外递减(B)等倾干涉,干涉级向外递减,牛顿环干涉级向外递增(C)等倾干涉和牛顿环干涉级都是向外递增(D)等倾干涉和牛顿环干涉级都是向外递减2124,迈克尔孙干涉仪的两块平面反射镜互相垂直时,从该干涉仪中观察到的干涉图样是一组同心圆圈,他们是:( C )(A)内圈的干涉级数高于外圈的等厚干涉条纹;(B)内圈的干涉级数低于外圈的等厚干涉条纹;(C)内圈的干涉级数高于外圈的等倾干涉条纹;(D)内圈的干涉级数低于外圈的等倾干涉条纹;2125在迈克尔孙干涉仪实验中,调整平面镜M2的像M′2与另一平面镜之间的距离d,当d 增加时:( B )(A)干涉圈环不断在中心消失,且环的间距增大;(B)干涉圈环不断在中心冒出,且环的间距增大;(C)干涉圈环不断在中心消失,且环的间距减小;(D)干涉圈环不断在中心冒出,且环的间距减小;2126 在迈克尔孙的等倾干涉实验中,可以观察到环形干涉条纹,干涉仪的平面反射镜M 2由分光板所成的像为M ′2,当M ′2与干涉仪的另一块平面反射镜M 1之间的距离变小时,则:( B )(A )条纹一个一个地从中间冒出,条纹间距变小; (B )条纹一个一个地向中间陷入,条纹间距变大; (C )条纹不变,但条纹的可见度下降; (D )条纹不变,但条纹的可见度提高。