变压器冷却方式

合集下载

变压器冷却系统冷却方式的表示是什么

变压器冷却系统冷却方式的表示是什么

变压器冷却系统冷却方式的表示是什么电力变压器的冷却系统包括两电阻部分:内部冷却系统,它保证绕组、铁芯的热量散入到周围的介质中;外部冷却系统,保证外热传导中的热散到变压器外。

根据变压器容量的大小,介质和循环种类的不同,变压器装配不同的冷却方式。

一、冷却方式的表示变压器的冷却方式一般采用四个代号组合来表示,按照从左到右分别表示如下:例如:ONAN表示油浸自冷式,即内部油自然循环,外部空气自然循环二、变压器的冷却方式油浸式电力变压器的冷却方式,按其容量的大小,冷却系统可分为:油浸自冷式、油浸风冷式、强迫油循环风冷式、强迫木炭循环水冷式等几种。

1、油浸自冷式油浸液氢自冷式冷却系统没有特殊的空气冷却设备,油在电阻器内自然循环,传至和绕组所发出的热量依靠油的对流作用铁芯油箱壁或水箱。

按变压器容量的深浅,又可分为三种有所不同的结构:1.1、平滑式箱壁。

容量很小的变压器采用这种结构,箱壳是用钢板焊接而成,箱壁是事实上平滑的;1.2、散热筋式箱壁。

在平滑箱弯曲壁上焊接一些散热筋,扩大了与空气接触的面积,适合于容量稍大的变压器;1.3、散热管或散热器式冷却。

容量更大一点儿的变压器,为了增大油箱的冷却表面,则在油箱外加装若干散热器,散热器就是具有上、下联箱的一组散热管,水箱散热器通过法兰与油箱连接,是可拆部件。

图1所示为带有散热管的油浸自冷式变压器的油流路径。

变压器运行时,油箱内的油因铁芯和绕组发热而受热,热油会上升至油箱顶部,然后从散热管的上端入口进入散热管内,散热管的外表面与外界冷空气相接触,使油得到冷却。

冷油在散热管内下降,由管的下端再流入下端变压器油缸下部,自动进行油流循环,使变压器铁芯和绕组得到有效冷却。

油浸自冷式冷却系统结构非常简单、可靠性高,广泛用于容量10,000kVA以下的变压器。

2、油浸风冷式油浸风冷式冷却系统,也称油自然循环、强制风冷式冷却系统。

它是在电气设备油箱的风扇各个散热器旁安装一个至几个风扇,把氧气的自然对流作用改变为强制对流作用,以增强散热器的散热能力。

变压器冷却方式

变压器冷却方式

变压器冷却方式变压器是电力系统中必不可少的设备之一,它起着将电力转换为适合传输和分配的电压的作用。

在运行过程中,变压器会产生大量的热量,如果不进行有效的散热,会导致设备过热、损坏甚至起火。

因此,选择合适的冷却方式对于变压器的正常运行至关重要。

本文将针对常见的变压器冷却方式进行讨论。

1. 自然风冷却自然风冷却是最常见也是最简单的一种冷却方式。

变压器通常安装在通风良好的地方,通过自然对流的方式进行散热。

变压器外壳设计有许多散热片,利用空气流动在散热片间产生对流热交换,将变压器内部产生的热量散发到空气中。

这种方式适用于小型变压器或者运行负载较小的情况。

2. 强制风冷却强制风冷却是在自然风冷却的基础上增加了风扇系统,通过强制对流来加速热量的散发。

一般情况下,变压器内部设置有风扇,它们可以通过空气对流将热量迅速从变压器内部带走。

这种冷却方式适用于中小型变压器,特别是在环境温度较高或变压器运行负荷较大的情况下,可以提高冷却效果,防止设备过热。

3. 油冷却油冷却方式是将变压器内部的绕组和铁芯完全浸泡在冷却油中,通过油的循环流动来吸收和散发热量。

这种方式具有较高的冷却效果,可以适应大功率变压器的散热需求。

冷却油通常是绝缘的,除了具有冷却功能之外,还能提高绝缘性能,保护变压器的安全运行。

4. 水冷却水冷却方式是采用水作为冷却介质,通过水的流动来带走变压器产生的热量。

水冷却方式具有较高的散热能力,可以适应大功率和超高压变压器的需求。

相比于油冷却方式,水冷却方式更加环保,可以实现循环利用。

但是水冷却系统的设计和维护成本较高,需要考虑到水的供应和排放问题。

5. 油-水混合冷却油-水混合冷却是将油冷却和水冷却两种方式相结合的一种冷却方式。

它的原理是通过冷却油和冷却水的热交换来实现散热效果。

在设计中,通常将油和水分别流过变压器内部的不同部位,以达到最佳的冷却效果。

这种冷却方式相对于单独采用油冷却或水冷却,能够提供更高的散热能力。

变压器常用的冷却方式有以下几种

变压器常用的冷却方式有以下几种

变压器常用的冷却方式有以下几种:1、油浸自冷(ONAN);2、油浸风冷(ONAF);3、强迫油循环风冷(OFAF);4、强迫油循环水冷(OFWF);5、强迫导向油循环风冷(ODAF);6、强迫导向油循环水冷ODWF)。

按变压器选用导则的要求,冷却方式的选择推荐如下:1、油浸自冷31500kVA及以下、35kV及以下的产品;50000kVA及以下、110kV产品。

2 、油浸风冷12500kVA~63000kVA、35kV~110kV产品;75000kVA以下、110kV产品;40000kVA及以下、220kV产品。

3、强迫油循环风冷50000~90000kVA、220kV产品。

4 、强迫油循环水冷一般水力发电厂的升压变220kV及以上、60MVA及以上产品采用。

5 、强迫导向油循环风冷或水冷(ODAF或ODWF) 75000kVA及以上、110kV产品;120000kVA及以上、220kV产品;330kV级及500kV级产品。

选用强油风冷冷却方式时,当油泵与风扇失去供电电源时,变压器不能长时间运行。

即使空载也不能长时间运行。

因此,应选择两个独立电源供冷却器使用。

选用强油水冷方式时,当油泵冷却水失去电源时,不能运行。

电源应选择两个独立电源。

冷却方式的标志对于干式变压器,冷却方式的标志按GB6450的规定。

对于油浸式变压器,用四个字母顺序代号标志其冷却方式。

第一个字母表示与绕组接触的内部冷却介质:O矿物油或燃点不大于300。

C的合成绝缘液体;K燃点大于300。

C的绝缘液体;1燃点不可测出的绝缘液体。

注:燃点用“克利夫兰开口杯法”试验。

第二个字母表示内部冷却介质的循环方式:N流经冷却设备和绕组内部的油流是自然的热对流循环;F冷却设备中的油流是强迫循环,流经绕组内部的油流是热对流循环;D冷却设备中的油流是强迫循环,(至少)在主要绕组内的油流是强迫导向循环。

第三个字母表示外部冷却介质:A空气;W水。

第四个字母表示外部冷却介质的循环方式:N自然对流;F强迫循环(风扇、泵等)。

变压器冷却方式标准代号

变压器冷却方式标准代号

变压器冷却方式标准代号变压器是电力系统中常见的电气设备,用于将高电压变换为低电压或低电压变换为高电压。

在变压器的运行过程中,会产生大量的热量,如果不及时散热,会导致变压器温度过高,影响其正常运行,甚至损坏设备。

因此,变压器的冷却方式非常重要。

变压器的冷却方式通常由国际电工委员会(IEC)制定的标准代号来表示。

这些标准代号是根据变压器的冷却介质和冷却方式来命名的。

下面是一些常见的变压器冷却方式标准代号:1. AN:自然冷却自然冷却是指变压器通过自然对流来散热。

变压器的外壳通常设计成散热片状,增加表面积以提高散热效果。

这种冷却方式适用于小型变压器或运行环境温度较低的情况。

2. AF:强制风冷强制风冷是指通过风扇强制对变压器进行冷却。

变压器内部设置有风道,风扇通过风道将冷却空气吹入变压器内部,加速热量的散发。

这种冷却方式适用于中小型变压器或运行环境温度较高的情况。

3. AA:强制风冷和自然冷却的组合强制风冷和自然冷却的组合方式是指变压器既可以通过自然对流散热,也可以通过风扇强制冷却。

这种冷却方式适用于大型变压器或运行环境温度变化较大的情况。

4. FA:强制水冷和自然冷却的组合强制水冷和自然冷却的组合方式是指变压器既可以通过自然对流散热,也可以通过水冷系统进行冷却。

水冷系统通过循环水来吸收变压器产生的热量,然后通过冷却设备将热量散发出去。

这种冷却方式适用于大型变压器或运行环境温度较高的情况。

5. FN:强制水冷强制水冷是指变压器通过水冷系统进行冷却。

水冷系统通过循环水来吸收变压器产生的热量,然后通过冷却设备将热量散发出去。

这种冷却方式适用于大型变压器或运行环境温度较高的情况。

除了上述几种常见的冷却方式标准代号外,还有一些其他的冷却方式,如强制油冷、自冷式干式变压器等。

不同的冷却方式适用于不同的变压器类型和运行环境,选择合适的冷却方式可以提高变压器的散热效果,延长设备的使用寿命。

总之,变压器的冷却方式标准代号是根据变压器的冷却介质和冷却方式来命名的。

变压器常用的冷却方式有以下几种

变压器常用的冷却方式有以下几种

变压器常用的冷却方式有以下几种公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]变压器常用的冷却方式有以下几种: 1、油浸自冷(ONAN); 2、油浸风冷(ONAF); 3、强迫油循环风冷(OFAF); 4、强迫油循环水冷(OFWF); 5、强迫导向油循环风冷(ODAF); 6、强迫导向油循环水冷ODWF)。

按变压器选用导则的要求,冷却方式的选择推荐如下: 1、油浸自冷 31500kVA及以下、35kV 及以下的产品; 50000kVA及以下、产品。

2 、油浸风冷 12500kVA~63000kVA、35kV~110kV产品;75000kVA以下、110kV产品; 40000kVA及以下、220kV产品。

3、强迫油循环风冷 50000~90000kVA、220kV产品。

4 、强迫油循环水冷一般水力发电厂的升压变220kV及以上、60MVA及以上产品采用。

5 、强迫导向油循环风冷或水冷(ODAF或ODWF) 75000kVA及以上、110kV产品; 120000kVA及以上、220kV产品; 330kV级及500kV级产品。

选用强油风冷冷却方式时,当油泵与风扇失去供电电源时,变压器不能长时间运行。

即使空载也不能长时间运行。

因此,应选择两个独立电源供使用。

选用强油水冷方式时,当油泵冷却水失去电源时,不能运行。

电源应选择两个独立电源。

冷却方式的标志对于,冷却方式的标志按GB6450的规定。

对于,用四个字母顺序代号标志其冷却方式。

第一个字母表示与绕组接触的内部冷却介质:O 矿物油或燃点不大于300。

C的合成绝缘液体;K 燃点大于300。

C的绝缘液体;1 燃点不可测出的绝缘液体。

注:燃点用“克利夫兰开口杯法”试验。

第二个字母表示内部冷却介质的循环方式:N 流经冷却设备和绕组内部的油流是自然的热对流循环;F 冷却设备中的油流是强迫循环,流经绕组内部的油流是热对流循环;D 冷却设备中的油流是强迫循环,(至少)在主要绕组内的油流是强迫导向循环。

变压器冷却方式说明

变压器冷却方式说明

对于油浸式变压器,用四个字母顺序代号标志其冷却方式①②③④
1.1 ①表示与绕组接触的内部冷却介质:
o-矿物油或燃点不大于300℃的合成绝缘液体.
K-燃点大于300℃的绝缘液体,
L-燃点不可测出的绝缘液体。

1.2 ②表示内部冷却介质循环方式:
N-流经冷却设备和绕组内部的油流是自然的热对流循环.
F-油流是强迫循环,流经绕组内部的油流是热对流循环,
D-油流是强迫循环,(至少)在主要绕组内的油流是强迫导向循环.
1.3 ③表示外部冷却介质:A-空气,w-水
1.4 ④表示外部冷却介质的循环方式:N-自然对流,F-强迫循环(风扇、泵等).
注:①在强迫导向油循环的变压器中(第二字母代号为D),流经主要绕组的油流量取决于泵,原则上不由负载决定;从冷却设备流出的油流,也可能有一小部分有控制地导向流过铁心和主要绕组以外的其他部分。

调压绕组和(或)其他容量较小的绕组也可为非导向油循环.
②在强迫非导向冷却的变压器中(第二个字母的代号为F),通过所有绕组的油流量是随负载变化的,与流经冷却设备的用泵抽出的油流没有直接关系。

一台变压器规定有几种不同的冷却方式时,在说明书中和铭牌上,有给出不同冷却方式下的容量值,以便在某一冷却方式及所规定的容量下运行时,能保证温升不超过规定的限值.在最大冷却能力下的相应容量便是变压器的(或多绕组变压器中某一绕组的)额定容量。

不同的冷却方式一般是按冷却能力增大的次序进行排列。

2、干式变按其所采用的冷却方式用字母给以标志
2.1 冷却介质的种类:空气-A ,气体-G
2.2 循环种类:自然循环-N,强迫循环-F。

变压器 冷却方式 变压器油

变压器 冷却方式 变压器油

变压器常用的冷却方式有以下几种:油浸自冷(ONAN);油浸风冷(ONAF);强迫油循环风冷(OFAF);强迫油循环水冷(OFWF);强迫导向油循环风冷(ODAF);强迫导向油循环水冷ODWF)。

按变压器选用导则的要求,冷却方式的选择推荐如下:1 油浸自冷31500kVA及以下、35kV及以下的产品;50000kVA及以下、110kV产品。

2 油浸风冷12500kVA~63000kVA、35kV~110kV产品;75000kVA以下、110kV产品;40000kVA及以下、220kV产品。

3 强迫油循环风冷50000~90000kVA、220kV产品。

4 强迫油循环水冷一般水力发电厂的升压变220kV及以上、60MVA及以上产品采用。

5 强迫导向油循环风冷或水冷(ODAF或ODWF)75000kVA及以上、110kV产品;120000kVA及以上、220kV产品;330kV级及500kV级产品。

产生气体原因:内部局部过热,放电等,都会造成变压器油分解,而产生气体.中频电炉用变压器发热量按1%考虑。

如8800kVA变压器发热量为88kW。

电源柜为0.5%,即8800kW发热量为44kW。

变压器冷却(transformer cooling)变压器运行时,绕组和铁心中的损耗所产生的热量必须及时散逸出去,以免过热而造成绝缘损坏。

对小容量变压器,外表面积与变压器容积之比相对较大,可以采用自冷方式,通过辐射和自然对流即可将热量散去。

自冷方式适用于室内小型变压器,为了预防火灾,一般采用干式,不用油浸。

由于变压器的损耗与其容积成比例,所以随着变压器容量的增大,其容积和损耗将以铁心尺寸三次方增加,而外表面积只依尺寸的二次方增加。

因此,大容量变压器铁心及绕组应浸在油中,并采取以下各种冷却措施。

油浸自冷绝大多数配电变压器和许多电力变压器都采用这种方式。

容量较小的变压器,光滑油箱表面就足以将油冷却;中等容量变压器,油箱表面要做成皱纹形以增加散热面,或加装片式或扁管散热器,使油在散热器中循环流动;大容量变压器油箱表面应加设辐射散热器。

onaf冷却方式中各字母含义

onaf冷却方式中各字母含义

onaf冷却方式中各字母含义
ONAF冷却方式中ON代表油浸,A代表自冷,F代表风冷。

所以ONAF冷却方式的含义是油浸自冷风冷。

变压器常用的冷却方式有以下几种:油浸自冷(ONAN);油浸风冷(ONAF);强迫油循环风冷(OFAF)。

制冷设备的冷却方式有直接冷却和间接冷却两种。

直接冷却是将制冷机的蒸发器装设在制冷装置的箱体或建筑物内,利用制冷剂的蒸发直接冷却其中的空气,靠冷空气冷却需要冷却的物体。

这种冷却方式的优点是冷却速度快,传热温差小,系统比较简单,因而得到普遍应用。

变压器的四种冷却方式

变压器的四种冷却方式

变压器的四种冷却方式变压器是电力系统中常用的电力设备,它的工作原理是利用电磁感应原理,将输入电压变换为输出电压。

在变压器运行时,会产生一定的热量,如果不能及时散热,就会影响变压器的使用寿命。

因此,变压器需要进行冷却,常见的变压器冷却方式有四种,分别是自然冷却、强制风冷却、强制油冷却和强制水冷却。

自然冷却是指变压器在运行时,通过自然对流和辐射的方式散热。

这种方式适用于小型变压器,通常不需要专门的冷却设备,只需要将变压器放置在通风良好的环境中即可。

自然冷却的优点是结构简单、维护成本低,但是由于散热效率相对较低,所以适用于小型变压器。

强制风冷却是指通过风扇将空气强制循环冷却变压器。

这种方式适用于中小型变压器,通常在变压器外部安装风扇,通过风扇将空气吹到变压器表面,加速热量的散发。

强制风冷却的优点是散热效率高、使用寿命长,但是需要专门的风冷装置,增加了成本和维护难度。

强制油冷却是指通过油泵将变压器内部的冷却油强制循环冷却。

这种方式适用于大型变压器,通常在变压器内部安装散热器和油泵,通过油泵将冷却油循环流动,以达到高效散热的目的。

强制油冷却的优点是散热效率高、使用寿命长,但是需要专门的油冷装置,增加了成本和维护难度。

强制水冷却是指通过水泵将水强制循环冷却变压器。

这种方式适用于大型变压器,通常在变压器内部安装散热器和水泵,通过水泵将水循环流动,以达到高效散热的目的。

强制水冷却的优点是散热效率高、使用寿命长,但是需要专门的水冷装置,增加了成本和维护难度。

变压器冷却方式的选择应根据变压器的规模和使用环境来确定。

不同的冷却方式各有优缺点,在选择时需要综合考虑。

只有选择了合适的冷却方式,才能确保变压器的正常运行和长寿命。

低风速环境下变压器冷却方式的选择与优化

低风速环境下变压器冷却方式的选择与优化

低风速环境下变压器冷却方式的选择与优化随着电力系统的发展,变压器作为电力传输和配电的重要组成部分,承担着保持电力稳定供应和电能转换的关键任务。

在变压器运行过程中,由于内部电路的工作,会产生一定的热量,为了保持变压器的正常运行和延长其寿命,必须采取有效的冷却措施。

在低风速环境下,变压器冷却方式的选择与优化就显得格外重要。

变压器冷却方式主要分为自然冷却和强迫冷却两种方式。

自然冷却主要依靠自然对流和辐射传热,而强迫冷却则通过风扇或冷却器等设备辅助散热。

在低风速环境下,由于自然冷却的传热效果相对较差,因此需要进行相应的选择和优化。

首先,对于较小型的变压器,自然冷却方式可能仍然可以满足需求。

在低风速环境下,可以通过优化变压器的散热表面积和增强散热渠道来提高自然冷却的效果。

例如,在变压器的外壳上增加散热片,增大散热表面积;或者在变压器内部设置风道,利用内部空气流动来加强热量的传递。

这些措施可以降低变压器的工作温度,确保其正常运行。

其次,对于大型的变压器,强迫冷却方式更为常见。

在低风速环境下,强迫冷却可以通过风扇或冷却器等设备来提高散热效率。

首先,可以选择具有更高风速的风扇,或者增加风扇的数量,以增强热量的散发。

其次,可以采用辅助冷却器,利用冷却介质进行热量的传递与分散。

这些措施可以有效降低变压器的工作温度,提高其运行的可靠性和稳定性。

除了冷却方式的选择外,还可以通过一些优化措施来提高整体的冷却效果。

首先,可以合理布局变压器与其他设备的位置,避免互相影响和阻碍空气流动。

其次,可以进行变压器的绝缘设计和材料选择,提高绝缘效果,并减少能量转化过程中的损耗。

此外,在低风速环境下,还可以使用具有更好散热性能的材料来进行冷却装置的制造,以提高整体散热的效果。

总结而言,低风速环境下变压器冷却方式的选择与优化是确保变压器正常运行的重要环节。

根据变压器的规模和工作要求,可以选择自然冷却或强迫冷却方式,并通过增加散热表面积、增强散热渠道、增加风扇数量或选择更合适的冷却器等方式来优化冷却效果。

变压器常用的冷却方式

变压器常用的冷却方式

变压器常用的冷却方式变压器常用的冷却方式有以下几种:油浸自冷(ONAN);油浸风冷(ONAF);强迫油循环风冷(OFAF);强迫油循环水冷(OFWF);强迫导向油循环风冷(ODAF);强迫导向油循环水冷ODWF)。

按变压器选用导则的要求,冷却方式的选择推荐如下:1 油浸自冷31500kVA及以下、35kV及以下的产品;50000kVA及以下、110kV产品。

2 油浸风冷12500kVA~63000kVA、35kV~110kV产品;75000kVA以下、110kV产品;40000kVA及以下、220kV产品。

3 强迫油循环风冷50000~90000kVA、220kV产品。

4 强迫油循环水冷一般水力发电厂的升压变220kV及以上、60MVA及以上产品采用。

5 强迫导向油循环风冷或水冷(ODAF或ODWF)75000kVA及以上、110kV产品;120000kVA及以上、220kV产品;330kV级及500kV级产品。

选用强油风冷冷却方式时,当油泵与风扇失去供电电源时,变压器不能长时间运行。

即使空载也不能长时间运行。

因此,应选择两个独立电源供冷却器使用。

选用强油水冷方式时,当油泵冷却水失去电源时,不能运行。

电源应选择两个独立电源。

第一个字母表示与绕组接触的内部冷却介质:O矿物油或燃点不大于300。

C的合成绝缘液体;K燃点大于300。

C的绝缘液体;1燃点不可测出的绝缘液体。

注:燃点用“克利夫兰开口杯法”试验。

第二个字母表示内部冷却介质的循环方式:N流经冷却设备和绕组内部的油流是自然的热对流循环;F冷却设备中的油流是强迫循环,流经绕组内部的油流是热对流循环;D冷却设备中的油流是强迫循环,(至少)在主要绕组内的油流是强迫导向循环。

第三个字母表示外部冷却介质:A空气;W水。

第四个字母表示外部冷却介质的循环方式:N自然对流;F强迫循环(风扇、泵等)。

变压器的连接组标号Y表示星形连接,中性点不引出;Y0表示星形连接(新国标用YN yn表示),中性点引出;△表示三角形连接;老国标中高低压都用大写字母,新国标高压侧用大写字母,低压侧用小写字母。

不同电压等级变压器冷却方式

不同电压等级变压器冷却方式

不同电压等级变压器冷却方式一、引言在电力系统中,变压器是不可或缺的重要设备之一,它主要用于变换电压,以便实现电能传输和分配。

变压器的正常运行离不开有效的冷却系统,因为变压器在工作过程中会产生大量的热量,如果不能及时有效地散热,将会导致变压器过热甚至发生故障。

本文将介绍不同电压等级变压器的冷却方式,包括油浸冷却、风冷和水冷。

二、油浸冷却油浸冷却是一种常见的变压器冷却方式,尤其适用于中低压等级的变压器。

变压器的线圈和铁芯都被浸泡在绝缘油中,通过油的循环流动,将产生的热量传递给油,然后通过散热器将热量散发到周围空气中。

油浸冷却具有散热效果好、可靠性高的特点,但需要定期检查和更换绝缘油,且占地面积较大。

三、风冷风冷是一种常用的变压器冷却方式,适用于中压等级的变压器。

风冷变压器采用风扇将周围空气吹向变压器的散热器,通过强制对流的方式将热量带走。

风冷变压器不需要使用绝缘油,减少了维护成本,但由于依赖于自然风力或风扇,散热效果受到环境温度和风速的影响。

四、水冷水冷是一种高效的变压器冷却方式,主要适用于高压等级的变压器。

水冷变压器利用水来吸收和带走变压器产生的热量,通过水循环流动,将热量传递给冷却水,然后通过换热器将热量散发到周围环境中。

水冷变压器散热效果好,可靠性高,并且可以适应大功率变压器的散热需求,但需要专门的水冷系统,增加了设备成本和维护工作量。

五、比较分析油浸冷却、风冷和水冷是常见的变压器冷却方式,它们各有优缺点。

油浸冷却具有散热效果好、可靠性高的特点,适用于中低压等级的变压器;风冷变压器不需要使用绝缘油,减少了维护成本,但散热效果受到环境温度和风速的影响,适用于中压等级的变压器;水冷变压器散热效果好,可适应大功率变压器的散热需求,但需要专门的水冷系统,增加了设备成本和维护工作量,适用于高压等级的变压器。

六、结论根据变压器的电压等级不同,可以选择不同的冷却方式。

油浸冷却适用于中低压等级的变压器,具有散热效果好、可靠性高的特点;风冷适用于中压等级的变压器,不需要使用绝缘油,减少了维护成本;水冷适用于高压等级的变压器,散热效果好,可适应大功率变压器的散热需求。

变压器常用的冷却方式

变压器常用的冷却方式

变压器常用的冷却方式
听说干式冷却啊,就是那种啥也不加的,自然风吹吹,热就散了。

这种方法简单又省钱,适合那些小一点的变压器。

想想看,风一吹,热就走了,是不是跟咱们夏天扇扇子一样?
油浸自冷呢,就是变压器里倒点油,让它自己热了就飘上去,冷了就沉下来。

这油就像个热传导员,把热量带到外面去。

这种方法适合那种中等的、不那么挑剔的变压器。

啊,你听说过强迫油循环风冷吗?那就是给油加点儿动力,让它转得快一点儿。

再弄几个风扇吹吹风,热量就嗖嗖地往外跑了。

这就像咱们跑步,跑得快,风一吹,就不那么热了。

啊,对了,还有水冷却呢!那就是直接用水来降温,效果特别好,但是得花点儿钱。

想想看,水那么凉,一倒进去,热量就全跑了。

不过这种高级的方法,一般都是给那些特别大的、需要特别照顾的变压器用的。

干式变压器冷却方式

干式变压器冷却方式

干式变压器冷却方式
干式变压器是指在变压器内部引入空气作为冷却剂,变压器绕组表面暴露在空气中,
通过空气与绕组的直接热交换,以保持变压器的正常工作。

由于空气是无价量的引热剂,
它可以大大节约能源消耗,具有高效率、结构简单、体积小等优点。

高温环境下,空气变压器的冷却效果需要比水冷、油冷变压器更加优秀。

一般情况下,冷却半径可以增大,以提高空气变压器的散热效果。

同时,空气变压器还可以采用多种冷
却方式来提高冷却效率,下面就介绍几种常见的冷却方式。

第一种冷却方式是自然冷却方式,这种方式是设置一个特定的冷却导管,通过导管将
空气引入变压器内部,达到空气循环的目的,这种方式可以节约能源消耗量,但效率不够高,适用于温差较小的地方。

第二种冷却方式是热换器冷却方式,这种方式主要是利用外部的热换器冷却变压器,
冷却液需要经过换热器的热交换,将换热器暴露在室外,当外界空气中的温度很高时,有
利于变压器的冷却效果。

第三种冷却方式是加热的方式,一般情况下,变压器的绕组是安装在一段金属管内,
将这段金属管连接室外的加热单元,当外界环境温度较低时,加热单元通过加热变压器绕组,达到冷却效果,而当外界温度较高时,加热单元不会工作,也可以保证变压器的正常
工作。

以上就是干式变压器的几种常见的冷却方式,每一种方式都有其特点,不同的应用环
境需要选择不同的冷却方式,以便于发挥出最佳的冷却效果,可以采用多种冷却方式来融
合使用,以达到节能,高效的冷变效果。

变压器冷却方式分类

变压器冷却方式分类

变压器冷却方式分类
1. 嘿,你知道吗,变压器冷却方式那可是有好几种呢!就好像人有不同的乘凉办法一样。

油浸自冷式,就像是大热天里静静待在树荫下的人,让油自然地散热,比如那些老小区里的变压器很多就是这样的。

2. 还有风冷式呢!这就好比在热天里吹着小风扇,加速空气流动来降温呀,一些小型的变压器就常用这种方式呢,你说神奇不神奇?
3. 哎呀,水冷式也很有意思啊!这不就跟人冲个凉水澡来降温一样吗?一些大型的变压器就会用到这种厉害的方式哦。

4. 强油风冷式,那可厉害了!就像给发热的机器配上了强力风扇,呼呼地吹,让热量快速跑掉,一些工厂里的变压器就是这样工作的呢。

5. 强油水冷式呢,哇,就像是给机器来了个高级的水冷系统,高效又厉害,好多重要的电力设施都靠它来保持冷静呢!
6. 还有一种叫导向风冷式,就好像给风指了个明确的方向,专门往需要的地方吹,这种方式也挺特别的,在一些特定场合可好用了。

7. 最后说说导向水冷式,这就好比给水流也定了个方向,让水冷更精准更有效呀!你想想,是不是很有意思呢?总之,变压器冷却方式真的是各有各的妙处,太神奇啦!
我的观点结论:变压器冷却方式丰富多样,每一种都有其独特的适用场景和优势,共同保障着电力系统的正常运行。

变压器的冷却方式有几种教学提纲

变压器的冷却方式有几种教学提纲

变压器的冷却方式有几种教学提纲一、概述变压器作为电力系统中的重要设备之一,其正常运行需要保持合适的工作温度。

因此,对变压器进行冷却是至关重要的。

变压器的冷却方式可以分为几种不同的类型,包括自然冷却、强制冷却和液体冷却。

本文将详细介绍这几种常见的变压器冷却方式。

二、自然冷却自然冷却也被称为自冷却或者自然通风冷却。

这种冷却方式基于空气对变压器散热的作用。

自然冷却分为两种类型:干式自然冷却和湿式自然冷却。

1.干式自然冷却干式自然冷却适用于小功率的变压器,其特点是变压器的外壳不带有冷却器,仅依靠自然通风来散热。

这种冷却方式的优点是结构简单,无需额外的冷却设备,因此造价低廉。

但是,由于依赖自然通风,其散热能力受到温度、空气流动以及变压器构造的影响。

2.湿式自然冷却湿式自然冷却适用于大功率的变压器,其特点是变压器的外壳带有冷却器,且冷却器通入冷却冷水。

这种冷却方式的优点是冷却效果好,可靠性高,适用于恶劣环境下的变压器。

但是,相对于干式自然冷却,湿式自然冷却的成本较高。

三、强制冷却强制冷却是通过外部设备的帮助,引入强制空气流动来提高散热能力。

主要的强制冷却方式包括风扇冷却和液力风扇冷却。

1.风扇冷却风扇冷却使用电动风扇,通过强制空气流动来提高变压器的散热能力。

这种冷却方式适用于小型和中型的变压器,其结构简单、成本较低。

但是,在需要长时间运行时,风扇冷却可能会导致噪音和振动问题。

2.液力风扇冷却液力风扇冷却利用液力传动来带动风扇,通过强制空气流动来达到散热的目的。

这种冷却方式适用于大型变压器,具有较大的冷却能力。

液力风扇冷却相对于传统风扇冷却的优势在于噪音和振动较小,能够提供更好的散热效果。

但是,液力风扇冷却的成本相对较高。

四、液体冷却液体冷却是指通过将冷却剂引入变压器内部,利用冷却剂的良好导热性能来实现散热的方式。

主要的液体冷却方式包括油冷却和水冷却。

1.油冷却油冷却是目前应用最广泛的液体冷却方式之一,特点是稳定性好、冷却效果佳。

变压器冷却方式

变压器冷却方式

变压器的冷却方式是由冷却介质和循环方式决定的。

干式变压器冷却方式分为自然空气冷却(AN)和强迫空气冷却(AF);油浸变压器常用的冷却方式一般分为三种:油浸自冷式、油浸风冷式、强迫油循环。

变压器常用的冷却方式有以下几种:1、油浸自冷(ONAN);2、油浸风冷(ONAF);3、强迫油循环风冷(OFAF);4、强迫油循环水冷(OFWF);5、强迫导向油循环风冷(ODAF);6、强迫导向油循环水冷ODWF)。

按变压器选用导则的要求,冷却方式的选择推荐如下:1、油浸自冷31500kVA及以下、35kV及以下的产品;50000kVA及以下、110kV产品。

2 、油浸风冷12500kVA~63000kVA、35kV~110kV产品;75000kVA以下、110kV产品;40000kVA及以下、220kV产品。

3、强迫油循环风冷50000~90000kVA、220kV产品。

4 、强迫油循环水冷一般水力发电厂的升压变220kV及以上、60MVA及以上产品采用。

5 、强迫导向油循环风冷或水冷(ODAF或ODWF)75000kVA及以上、110kV产品;120000kVA及以上、220kV产品;330kV级及500kV级产品。

选用强油风冷冷却方式时,当油泵与风扇失去供电电源时,变压器不能长时间运行。

即使空载也不能长时间运行。

因此,应选择两个独立电源供冷却器使用。

选用强油水冷方式时,当油泵冷却水失去电源时,不能运行。

电源应选择两个独立电源。

油浸式变压器冷却方式选择油浸式变压器可有自冷式、风冷式、强油风冷或水冷式冷却方式可供选择。

随着低损耗技术的发展,采用油浸、自冷式冷却的容量上限制在增加,40000kVA及以下额定容量的变压器可选用油浸自冷冷却方式。

优点是不要辅助供风扇用的电源,没有风扇所产生的噪声,散热器可直接持在变压器油箱上,也可集中装在变压器附近,油浸自冷式变压器的维护简单,始终可在额定容量下运行。

如选用可膨胀式散热器,变压器可不装储油柜并可设计成全密封型,维护量更少了,一般可在2500kV及以下配电变压器上采用。

变压器常用的冷却方式有以下几种资料

变压器常用的冷却方式有以下几种资料

变压器常用的冷却方式有以下几种变压器常用的冷却方式有以下几种: 1、油浸自冷(ONAN); 2、油浸风冷(ONAF); 3、强迫油循环风冷(OFAF); 4、强迫油循环水冷(OFWF); 5、强迫导向油循环风冷(ODAF); 6、强迫导向油循环水冷ODWF)。

按变压器选用导则的要求,冷却方式的选择推荐如下: 1、油浸自冷 31500kVA及以下、35kV 及以下的产品; 50000kVA及以下、110kV产品。

2 、油浸风冷 12500kVA~63000kVA、35kV~110kV产品; 75000kVA以下、110kV产品; 40000kVA及以下、220kV产品。

3、强迫油循环风冷 50000~90000kVA、220kV产品。

4 、强迫油循环水冷一般水力发电厂的升压变220kV及以上、60MVA及以上产品采用。

5 、强迫导向油循环风冷或水冷(ODAF或ODWF) 75000kVA及以上、110kV产品;120000kVA及以上、220kV产品; 330kV级及500kV级产品。

选用强油风冷冷却方式时,当油泵与风扇失去供电电源时,变压器不能长时间运行。

即使空载也不能长时间运行。

因此,应选择两个独立电源供冷却器使用。

选用强油水冷方式时,当油泵冷却水失去电源时,不能运行。

电源应选择两个独立电源。

冷却方式的标志对于干式变压器,冷却方式的标志按GB6450的规定。

对于油浸式变压器,用四个字母顺序代号标志其冷却方式。

第一个字母表示与绕组接触的内部冷却介质:O矿物油或燃点不大于300。

C的合成绝缘液体;K燃点大于300。

C的绝缘液体;1燃点不可测出的绝缘液体。

注:燃点用“克利夫兰开口杯法”试验。

第二个字母表示内部冷却介质的循环方式:N流经冷却设备和绕组内部的油流是自然的热对流循环;F冷却设备中的油流是强迫循环,流经绕组内部的油流是热对流循环;D冷却设备中的油流是强迫循环,(至少)在主要绕组内的油流是强迫导向循环。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。




3、三相强迫油循环风冷式(OFA) 主要有SFP系列。冷却方式:在油浸自冷式的基础 上. 利用油泵强迫油循环,并且在散热器外加风扇 风冷,以提高散热效果。 4、三相强迫油循环水冷式(OFWF〉 主要有SSP系列。冷却原理:在油浸自冷式的基础 上. ; 用循环水作冷却介质,以提高散热效果。 变压器冷却方式随容量增大而有所不同。变压器 容量越大,变压器冷却方式要求越高。

(2)铁心类型。变压器的铁心因绕组放置的 位置不同,可分芯式和壳式,见表1-4。

(3)铁心柱与铁扼的装配工艺。 铁心由铁心柱与铁轭构成,铁心柱是铁心 安装绕组的部分,铁扼是连接铁心柱形成 闭合磁路的铁心部分,如图1-2所示。

铁心柱与铁辄的装配工艺有对接式和叠接 式两种,见表1-5。

思考题: 为什么变压器铁心常用硅钢片叠装而成? 答:为了减少工作过程中交变磁场在铁心中 产生的涡流及磁滞损耗,避免铁心过热。


目前,有的变压器铁心采用非晶合金材料。 非晶合金材料是20世纪70年代问世的一种新型合 金材料、,该合金具有优异的导磁性、耐蚀性、 耐磨性、高硬度、高强度等独特性能特点。利用 非晶合金制作铁心而成的变压器,比利用硅钢片 制作铁心变压器的空载损耗下降75%左右,空载 电流下降约80%,现在越来越多用于安全和防火 要求较高场合的大、中型变压器中。(但是价格 较贵,脆性难加工,限制了它的推广)
大、中型变压器中采用高导磁、低损耗 的冷轧硅钢,冷轧硅钢片顺碾压方向导磁 性好、损耗小,所以冷轧硅钢片叠装时要 求硅钢片在对接处按45。角剪裁,以保证磁 力线与碾压方向一致。现在铁心加工工艺 一般不打穿心孔,改用新的夹紧工艺,可 以提高铁心装配压器绕组和铁心在运行中,虽然效率可高达 99%,但还是有部分损耗的电能转化成热能,使 变压器的钱心和绕组的温度升高。温度越高,绝 缘老化越快。当绝缘老化到一定程度时,在运行 振动和电动力作用下,绝缘容易破裂,易发生电 气击穿而造成故障。运行温度直接影响到变压器 的输出容量、安全和使用寿命。因此,必须有效 地对运行中的变压器铁心和绕组进行冷却。我国 生产的电力变压器多数采用油浸式冷却,根据容 量不同,可分为下列4种。

3、绝缘套管 绝缘套管穿过油箱盖,将油箱中变压器绕组的输 入、输出线从箱内引到箱外与电网相 接。绝缘套 管由外部的瓷套和中间的导电杆组成,对它的要 求主要是绝缘性能和密封性能要 好,如图1-7所示。 根据运行电压的不同,将其分为充气式和充油式 两种,后者为高电压用(60 kV用充油式)。当用于 更高电压时(110 kV以上)还在充油式绝缘套管中包 有多层绝缘层和铝箔层,使电场均匀分布,增强 绝缘性能。根据运行环境的不同,又可将其分为 户内式和户外式。
课题二变压器的结构与冷却方式
复习提问:
1.电机与变压器在电能利用中所起的作用 2.变压器的分类
讲授新课
一、变压器的结构 根据用途的不同,变压器的结构也有所 不同,大功率变压器的结构比较复杂,而 多数电力变压器是油浸式的。油浸式变压 器由绕组和铁心组成器身,为了解决散热、 绝缘、密封、安全等问题,还需要油箱、 绝缘套管、储油柜、冷却装置、压力释放 阀、安全气道、温 度计和气体继电器等附 件,其结构如图1-1所示。

三、变压器的主要附件 1气体继电器(瓦斯继电器) 气体继电器装在油箱与储油柜之间的管道中,当 变压器发生故障时,器身就会过热使油分解产生 气体。气体进入继电器内,使其中一个水银开关 接通(上浮筒动作),发出报警信号。 此时应立即 将继电器中气体放出检查,若系无色、不可燃的 气体,变压器可继续运行;若系有色、有焦昧、 可燃气体,则应立即停电检查。当事故严重时, 变压器油膨胀,冲击继电器内的挡板,使另一个 水银开关接通跳闸回路(即下浮筒动作) ,

2、变压器铁心 铁心是主磁通的通道,也是安放绕组的骨架。 (1)铁心材料选用。铁心材料的质量,直接影响到 变压的性能。高磁导率、低损耗和价格,是选择 铁心材料的关键。为提高铁心导磁能力,增大变 压器容量、减少体积、提高效率,铁心常用硅钢 片叠装而成,而硅钢片可分热轧和冷轧,其性能 和特点见表1-3。

切断电源,避免故障扩大。为了提高继电 器的可靠性,现在多采用挡板式气体继电 器,当继电器中气体达到一定容积后,开 口杯下沉,上磁铁使上干簧闭合,接通信 号;当油流冲击挡板后,接通信号;当油流 冲击挡板后,下磁铁使下干簧闭合,接通 跳闸回路(通常630 kV· A以上变压器采用)。 气体继电器外形如图1-5a所示。



2、分接开关 变压器的输出电压可能因负载和一次侧电压的变化而变化, 想要控制输出电压在允许范围内变动,可通过分接开关。 分接开关一般装在一次侧(高压边),通过改变一次侧线 圈匝数来调节输出电压,如图1-6a所示。 分接开关又分元励磁调压和有载调压两种,元励磁调压是 去一次侧脱离电源后调压,常用的元励磁调压分接开关调 节范围为额定输出电压的+-5%,如图1-5b所示。有载调压 是指变压器二次侧接着负载时调压,有载调压的分接开关 因为要切换电流,所以较复杂,如图1-5c所示。它有复合 式和组合式两类,组合调节范围可达+-15%。有载调压开 关的动触头由主触头和辅助触头组成。



为了防止因油温变化和空气进入了由箱使油质变 差等,三相油浸式变压器还在油箱顶上设计了一 只储油柜(见图1-1)。 2、三相油浸风冷式(ONAF) 主要有SP系列,其结构如图1-4所示。冷却方式: 是在油浸自冷式的基础上,在油箱壁或散热管上 加装风扇,利用吹风机帮助冷却。而且风力可调, 以适用于短期过载。加装风冷后可使变压器的容 量增加30%~35%。多应用于容量在10 000 kV· A及 以上的变压器。

1三相油浸自冷式(ONAN) 主要有SJ系列和SJL系列(铝线)。冷却方式 为:当变压器运行、油温上升时,根据热油 上升、冷油下降原理形成自然对流,流动 的油将热量传给油箱体和外侧的散热器, 然后依靠空气的对流传导将热量向周围散 发,从而达到冷却效果。起冷却作用的散 热器可分为管式、扁管式、片式和波纹油 箱,其结构如图1-3所示。
相关文档
最新文档