数学六年级下册-《数学广角—鸽巢问题》优质教案
2023最新-小学六年级下册数学《数学广角鸽巢问题》教案(最新4篇)
小学六年级下册数学《数学广角鸽巢问题》教案(最新4篇)身为一名到岗不久的老师,我们要有很强的课堂教学能力,通过教学反思可以很好地改正讲课缺点,怎样写教学反思才更能起到其作用呢?下面是小编精心为大家整理的4篇小学六年级下册数学《数学广角鸽巢问题》教案,可以帮助到您,就是牛牛范文小编最大的乐趣哦。
小学六年级下册数学《数学广角──鸽巢问题》教案篇一【教学内容】教材第110页第3题,练习二十五第8~13题。
【教学目标】1.进一步掌握三角形的特性及其三边、三角之间的关系,并能解决三角形相关问题。
2.进一步掌握轴对称和平移,能画一个图形的轴对称图形,能画平移后的图形,并能运用平移解决问题。
3.进一步掌握从不同的角度观察物体,能辨认、并画出从不同的角度观察到的物体的形状。
【重点难点】重、难点:解决三角形相关问题,画一个图形的轴对称图形。
【教学过程】一、复习三角形1.复习三角形的特性。
指名说一说三角形有什么特性,并举例说明三角形特性在现实生活中的应用。
2.复习三角形三边之间的关系。
指名说一说三角形三边有什么关系。
强调:三角形任意两边的和都大于第三边。
3.复习三角形的分类。
三角形可以分为哪几类?你是怎么分的?4.完成教材第110页的第3题。
二、复习轴对称、平移1.举例说明生活中常见的轴对称图形。
2.说说轴对称图形的特点。
3.平移。
三、复习观察物体在同一角度观察物体,最多能看到物体的几个面?四、课堂练习完成教材练习二十五第8~13题。
五、课堂小结我们这节课复习了什么内容?你有什么收获?六、同步训练教学至此,敬请选用《新领程》相关习题。
六年级数学下册《数学广角》教学反思篇二设计本节课时,我在准备上还是挺足的,特别在信息的收集上,花费了一定的心思。
用一节课来完成有关编码的内容,这样把重点就放在认识与编码两块内容上,一般老师就教学身份证号码,而对邮政编码少有涉及,往往是一笔带过,这样设计非常有道理。
但教材是怎样的呢?我也查阅了人教版教材,《数字与编码》是人教版教材五年级上册数学广角里内容,教材说明把这部分的内容分三节课教学,我个人认为,第一节课教学例1例2,主要是对一些编码如邮政编码和身份证号码的认识,第二课时教学如何进行编码,第三课时进行综合练习。
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】一、教材分析“鸽巢问题”是六年级下册教学内容,“鸽巢原理”又称“抽屉原理”,是组合教学中最基本最简单的原理之一,灵活多变,应用广泛。
教学“鸽巢问题”,教材安排了两个例题。
这节课教学内容是例1。
例1把4支铅笔放进3个笔筒中的操作情景,介绍“鸽巢原理”的最基本形式。
初步接触“鸽巢问题”对于学生来说,有一定的难度。
教学时,应放手让学生自主探索。
教师要引导学生对教材上提供的两种方法进行比较,思考枚举的方法有什么优越性和局限性,假设的方法有什么独特的优点,使学生逐步学会运用一般性的数学方法来思考问题。
二、教学内容教材第68页例1及“做一做”第1、2题。
三、教学目标1.让学生经历“鸽巢问题”的探究过程,通过数学活动理解“鸽巢原理”,学会简单的“鸽巢问题”分析方法,并解决一些简单问题。
2.结合具体的实际问题,通过实验、观察、分析、归纳等数学活动使学生经历“鸽巢原理”的形成过程,体会和掌握逻辑推理思想和模型思想,提高解决实际问题的能力。
3.在主动参与数学活动的过程中,让学生感受到数学的魅力,提高学习数学的兴趣。
四、教学重难点教学重点:能用“鸽巢原理”解决最基本的相关实际问题。
教学难点:初步理解“鸽巢原理”,能口头表达推理过程。
五、教学准备一副扑克牌、课件等。
六、教学过程(一)引入新知1.抢凳子游戏。
2.抽扑克牌游戏。
教师:这类问题在数学上称为鸽巢问题(板书)。
因为52张扑克牌数量较大,为了方便研究,我们先来玩数量较小的抢凳子游戏。
【设计意图】从学生喜欢的“抢凳子”“魔术”入手,设置悬念,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。
(二)探究新知1.教学例1。
(1)把3枝铅笔放进2个笔筒中。
想一想:可以怎样放?有几种不同的放法?(不考虑笔筒摆放顺序,学生可用笔盒当笔筒)摆一摆:先用来学具摆一摆,然后用自己喜欢的方法表示出来,如画一画,写一写。
六年级下册数学教案-《数学广角—鸽巢问题》(人教版)
在今天的教学中,我引导学生们探索了《数学广角—鸽巢问题》。通过这节课的教学,我有一些深刻的体会和反思。
首先,我发现学生们对于鸽巢问题的理解存在一定难度。他们刚开始接触这个概念时,很难理解为什么一定会出现至少一个集合中有超过一个物品的情况。为此,我采用了生活中的实例和图示来进行讲解,帮助学生逐步建立起对鸽巢原理的认识。在今后的教学中,我还需要继续关注学生的理解程度,及时调整教学方法,以便让他们更好地掌握这个概念。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“鸽巢问题在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-举例:如给定10个学生和9个座位,证明至少有一个座位上会有两个学生。
2.教学难点
-抽象概念的理解:难点在于帮助学生理解抽象的鸽巢原理,并将其与具体问题联系起来。
-逻辑推理的运用:难点在于指导学生如何运用逻辑推理来证明鸽巢原理的正确性,这对于逻辑思维能力的培养至关重要。
-实际问题的转换:难点在于将实际问题转化为鸽巢问题,需要学生具备较强的观察力和问题转化能力。
3.学习通过画图、列举和逻辑推理等方法,解决涉及鸽巢原理的相关问题。
4.完成本册教材中《数学广角》模块的相关练习题,巩固鸽巢问题的解答技巧。
二、核心素养目标
《数学广角—鸽巢问题》核心素养目标:
1.培养学生逻辑推理与数学思维能力,通过鸽巢问题的学习,使学生能够运用逻辑推理解决实际问题,提高数学抽象和推理能力。
六年级数学《数学广角——鸽巢问题》教案
六年级数学《数学广角——鸽巢问题》教案1. 教学目标知识目标:-学生能够理解鸽巢问题的基本概念和原理。
-学生能够掌握应用鸽巢问题解决实际问题的基本方法。
能力目标:-培养学生分析问题和解决问题的能力。
-提高学生的逻辑思维能力和推理能力。
情感态度价值观目标:-激发学生对数学的兴趣,培养主动学习、探究的精神。
-培养学生严谨、细致的学习态度。
2. 教学内容具体内容:-鸽巢问题的定义和基本原理。
-典型鸽巢问题的解法和应用。
-实际生活中鸽巢问题的案例。
重点:-鸽巢问题的基本原理。
-应用鸽巢问题解决实际问题的基本方法。
难点:-理解鸽巢问题的抽象概念。
-灵活运用鸽巢原理解决实际问题。
3. 教学方法-讲授法:用于解释鸽巢问题的基本概念和原理。
-讨论法:引导学生分组讨论实际案例,培养合作精神。
-案例分析法:通过具体案例分析,加深理解。
-多媒体教学:利用PPT、视频等多媒体资源,丰富教学手段。
4. 教学资源-教材:《小学六年级数学》(人教版)。
-教具:黑板、粉笔、投影仪。
-多媒体资源:PPT课件、相关视频。
5. 教学过程6. 课堂管理-组织小组讨论时,明确分工,确保每个学生都参与讨论。
-维持课堂纪律,鼓励学生积极发言,及时表扬。
-激励学生提出问题和解题思路,培养主动学习的习惯。
7. 评价与反馈-课堂小测验:用于检测学生对基本概念和原理的理解。
-课后作业:布置相关练习题,巩固所学知识。
-期末考试:考察学生对鸽巢问题的综合应用能力。
-反馈:及时批改作业和测验,给予学生具体反馈和指导。
8. 教学反思-课后反思教学过程中的优点和不足,记录学生反馈。
-总结教学经验,调整教学策略,优化教学内容和方法。
-针对学生的不同需求和学习情况,进行个性化辅导,提高教学效果。
通过以上的教案设计,希望能有效引导学生理解和掌握鸽巢问题,提升他们的数学素养和实际应用能力。
《数学广角—鸽巢问题》(教案)人教版六年级下册数学
《数学广角—鸽巢问题》(教案)教学内容:本节课的教学内容为人教版六年级下册数学中的“鸽巢问题”。
鸽巢问题,又称狄利克雷抽屉原理,是组合数学中的一个重要原理。
通过本节课的学习,学生将理解鸽巢原理的基本概念,学会运用鸽巢原理解决实际问题,并培养逻辑推理能力和抽象思维能力。
教学目标:1. 理解并掌握鸽巢原理的基本概念。
2. 能够运用鸽巢原理解决实际问题。
3. 培养学生的逻辑推理能力和抽象思维能力。
4. 培养学生合作交流的能力。
教学难点:1. 鸽巢原理的理解和运用。
2. 如何将实际问题转化为鸽巢问题。
教具学具准备:1. 教具:PPT,教学视频。
2. 学具:练习本,笔。
教学过程:1. 导入:通过一个简单的实例,引出鸽巢原理的概念。
2. 新课导入:讲解鸽巢原理的定义,并通过PPT展示相关例题。
3. 例题讲解:通过讲解例题,让学生理解鸽巢原理的应用。
4. 课堂练习:让学生独立完成练习题,巩固所学知识。
5. 小组讨论:分组讨论,让学生在合作中解决问题,培养学生的合作交流能力。
7. 课后作业布置:布置相关的练习题,让学生在课后继续巩固所学知识。
板书设计:1. 《数学广角—鸽巢问题》2. 目录:教学内容、教学目标、教学难点、教具学具准备、教学过程、板书设计、作业设计、课后反思。
作业设计:1. 基础题:让学生熟练掌握鸽巢原理的基本概念。
2. 提高题:让学生运用鸽巢原理解决实际问题。
3. 拓展题:培养学生的逻辑推理能力和抽象思维能力。
课后反思:本节课通过讲解鸽巢原理的定义,例题讲解,课堂练习,小组讨论等方式,让学生掌握了鸽巢原理的基本概念,并能够运用鸽巢原理解决实际问题。
在教学过程中,注重培养学生的逻辑推理能力和抽象思维能力,以及合作交流的能力。
在课后作业的布置上,设计了基础题,提高题和拓展题,让学生在课后能够继续巩固所学知识,提高自己的能力。
总的来说,本节课的教学效果良好,学生掌握了鸽巢原理的基本概念,并能够运用鸽巢原理解决实际问题。
2024年人教版数学六年级下册鸽巢问题教学设计推荐3篇
人教版数学六年级下册鸽巢问题教学设计推荐3篇〖人教版数学六年级下册鸽巢问题教学设计第【1】篇〗第五单元数学广角——鸽巢问题第一课时课题:鸽巢问题教学内容:教材第68-70页例1、例22,及“做一做”的第1题,及第71页练习十三的1-2题。
教学目标:1、知识与技能:理解“鸽巢问题”的特点,理解“鸽巢原理”的含义。
使学生学会用此原理解决简单的实际问题。
2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜想、实验、推理等活动的学习方法,渗透数形结合的思想。
3、情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。
教学重难点:重点:引导学生把具体问题转化成“鸽巢问题”。
难点:找出“鸽巢问题”解决的窍门实行反复推理。
教学准备:课件。
教学过程:一.情境导入二、探究新知1.教学例1.(课件出例如题1情境图)思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。
为什么呢?“总有”和“至少”是什么意思?学生通过操作发现规律→理解关键词的含义→探究证明→理解“鸽巢问题”的学习过程来解决问题。
(1)操作发现规律:通过吧4支铅笔放进3个笔筒中,能够发现:不管怎么放,总有1鸽笔筒里至少有2支铅笔。
(2)理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。
(3)探究证明。
方法一:用“枚举法”证明。
方法二:用“分解法”证明。
把4分解成3个数。
由图可知,把4分解3个数,与枚举法相似,也有4中情况,每一种情况分得的3个数中,至少有1个数是不小于2的数。
方法三:用“假设法”证明。
通过以上几种方法证明都能够发现:把4只铅笔放进3个笔筒中,无论怎么放,总有1个笔筒里至少放进2只铅笔。
(4)理解“鸽巢问题”像上面的问题就是“鸽巢问题”,也叫“抽屉问题”。
在这里,4支铅笔是要分放的物体,就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”或“抽屉”,把此问题用“鸽巢问题”的语言描绘就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。
六年级下册数学教案-5.1 数学广角——鸽巢问题|人教版 (14)
六年级下册数学教案-5.1 数学广角——鸽巢问题|人教版一、教学目标1. 让学生理解鸽巢原理,并能运用鸽巢原理解决实际问题。
2. 培养学生的逻辑思维能力和推理能力。
3. 培养学生运用数学语言进行表达和交流的能力。
二、教学内容本节课主要学习鸽巢原理,即如果有n个鸽巢和n 1只鸽子,那么至少有一个鸽巢里有两只或两只以上的鸽子。
通过生活中的实例,让学生感受鸽巢原理的应用。
三、教学重点与难点1. 教学重点:理解鸽巢原理,并能运用鸽巢原理解决实际问题。
2. 教学难点:如何引导学生从实际问题中发现鸽巢原理,并运用鸽巢原理解决实际问题。
四、教学过程1. 导入新课通过一个生活中的实例,引导学生思考:如果有10个鸽巢和11只鸽子,会发生什么现象?2. 探究新知(1)让学生观察、思考,尝试找出其中的规律。
(2)引导学生总结出鸽巢原理。
(3)让学生用自己的语言表述鸽巢原理。
3. 实践应用(1)让学生运用鸽巢原理解决实际问题。
(2)组织学生进行小组讨论,分享解题思路和答案。
4. 总结与拓展(1)引导学生回顾本节课所学内容,总结鸽巢原理。
(2)提出具有挑战性的问题,激发学生继续探索的兴趣。
五、作业布置1. 完成课后练习题。
2. 收集生活中的鸽巢问题实例,与同学分享。
六、板书设计1. 板书鸽巢原理的定义。
2. 示例题目及解答过程。
七、课后反思本节课通过生活中的实例,让学生感受鸽巢原理的应用,培养学生的逻辑思维能力和推理能力。
在教学过程中,要注意引导学生从实际问题中发现鸽巢原理,并运用鸽巢原理解决实际问题。
同时,要关注学生的课堂参与度,鼓励学生积极发言,培养学生的数学表达能力。
八、教学评价1. 课后练习题的正确率。
2. 学生在课堂上的发言情况。
3. 学生对鸽巢原理的理解程度。
在以上提供的教案中,有一个细节需要重点关注,那就是“实践应用”环节。
这个环节是学生将理论知识转化为实际解决问题能力的关键步骤,也是检验学生是否真正理解和掌握鸽巢原理的重要时刻。
小学六年级下册数学《数学广角──鸽巢问题》教案
小学六年级下册数学《数学广角──鸽巢问题》教案教学目标:(一)知识与技能通过鸽巢问题的学习,使学生会用“几个几”来说明生活中的简单问题,培养学生的分析、观察、判断和推理能力。
(二)过程与方法经历鸽巢问题探究的过程,初步获得解决问题的经验,并能对结果进行判断。
(三)情感态度和价值观使学生体验到生活中处处有数学,逐步学会用数学的眼光观察世界的方法。
教学重点:使学生理解鸽巢原理,并能运用鸽巢原理解决一些简单的问题。
教学难点:体会解决问题的方法,获得解决问题的经验。
教学用具:课件、鸽巢若干、数字卡片教学过程:一、创设情境,初步感知鸽巢原理。
1. 出示:有5个同学,每人做了8朵花,最少有几朵花?2. 怎样很快地回答出来?揭示课题:这就是我们今天这节课要学习的内容——数学广角──鸽巢问题。
3. 介绍鸽巢原理。
4. 试一试:把3只小熊分别关在3个鸽巢里,任意取出2只小熊,一定在同一鸽巢里吗?为什么?二、合作探究,解决鸽巢问题。
1. 小组交流探究方法。
(1)小组内交流想法。
(2)指名汇报交流情况。
2. 反馈:你是怎样想的?其他同学同意他的想法吗?为什么?3. 引导质疑,解决难点。
(1)提问:为什么一定要用“几个几”来解决问题呢?(引导学生从鸽巢原理出发,逐步推导得出必须用“几个几”才能解决问题)理解“$1$+$x$=$x$+$x$”的道理。
(2)小结:只要$x$不变,几只鸽巢里飞进几只鸽子,一定在某一个鸽巢里。
所以只要用“几个几”就可以解决这类问题。
4. 完成教材做一做第1题。
学生先独立做题,再交流想法。
三、应用鸽巢原理,解决生活中的问题。
1. 独立完成第2题。
说说你的想法和答案与同学是否一样。
如果有不一样的想法,你是怎么想的?2. 生活中的一些问题也可以用鸽巢原理来解决,例如:三年级三个班进行篮球比赛,每班选出2名男生和2名女生参加比赛,一共选出6名运动员,平均分在三个队中,问每个队中有几个运动员?说说你的想法。
六年级下册数学教案《5《数学广角—鸽巢问题》人教版
六年级下册数学教案《5《数学广角—鸽巢问题》人教版一. 教材分析《数学广角—鸽巢问题》是人教版六年级下册数学教材中的一章,主要介绍了鸽巢问题的相关知识。
本节课的内容主要包括理解鸽巢问题的含义、掌握鸽巢问题的解题方法以及运用鸽巢问题解决实际问题。
通过本节课的学习,学生能够培养逻辑思维能力,提高解决实际问题的能力。
二. 学情分析六年级的学生已经具备了一定的数学基础,对于图形的认识和简单的逻辑推理已经有了一定的掌握。
但是,对于鸽巢问题的理解和应用还需要进一步的引导和培养。
因此,在教学过程中,需要注重学生的参与和实践,激发学生的学习兴趣,提高学生的解决问题的能力。
三. 教学目标1.理解鸽巢问题的含义,掌握鸽巢问题的解题方法。
2.培养学生的逻辑思维能力,提高学生解决实际问题的能力。
3.激发学生的学习兴趣,培养学生的合作意识。
四. 教学重难点1.鸽巢问题的理解和应用。
2.学生对于实际问题的解决能力的培养。
五. 教学方法1.情境教学法:通过生活实例的引入,激发学生的学习兴趣,引导学生主动参与。
2.合作学习法:通过小组合作,培养学生之间的沟通和合作能力。
3.实践操作法:通过学生的实际操作,培养学生的动手能力和解决问题的能力。
六. 教学准备1.教学课件:制作相关的教学课件,帮助学生直观地理解鸽巢问题。
2.教学素材:准备一些实际的例子,用于引导学生理解和应用鸽巢问题。
3.学具:准备一些鸽巢模型或者图片,方便学生进行实际操作。
七. 教学过程1. 导入(5分钟)教师通过一个实际的生活实例引入鸽巢问题,例如:“假如有一个鸽巢,里面可以放10只鸽子,现在有12只鸽子,我们要想办法让这12只鸽子都有地方放。
”让学生思考并讨论如何解决这个问题。
2. 呈现(10分钟)教师通过课件或者黑板,呈现鸽巢问题的定义和相关的解题方法。
引导学生理解鸽巢问题的本质,并掌握解题的基本思路。
3. 操练(10分钟)教师给出一些具体的鸽巢问题的例子,让学生分组进行讨论和解决。
六年级数学下册教案《5 数学广角—鸽巢问题》-人教版(4)
六年级数学下册教案《5 数学广角—鸽巢问题》-人教版(4)一、教学目标1.知识与能力:–学生能够理解“鸽巢问题”的概念;–学生能够运用排除法解决“鸽巢问题”相关问题;–学生能够在实际生活中应用“鸽巢问题”解决问题。
2.过程与方法:–引导学生积极思考,提高解决问题的能力;–利用小组合作,培养学生的合作意识和团队精神;–结合情境讨论,激发学生学习兴趣。
3.情感态度与价值观:–培养学生细心观察问题、逻辑思维和创新能力;–培养学生团队合作精神,培养学生积极探究、创造的态度。
二、教学重难点1.教学重点:–学习掌握“鸽巢问题”的概念;–学生能够灵活应用排除法解决问题。
2.教学难点:–学生能够在实际问题中应用“鸽巢问题”解决问题。
三、教学准备1.教师准备:–教案、多媒体课件、草稿纸等。
2.学生准备:–铅笔、橡皮、教科书等。
四、教学过程1.导入(5分钟)–引导学生回顾上一堂课的内容,为本节课的学习做铺垫。
2.新课呈现(15分钟)–通过多媒体课件或教科书引入“鸽巢问题”的概念,呈现问题情境,激发学生兴趣。
3.讲解与示范(20分钟)–针对“鸽巢问题”展开讲解,解释相关概念,通过示范进行解题演示,引导学生理解解题思路。
4.练习与讨论(30分钟)–分组进行练习,让学生通过小组合作解决问题,在讨论中发现解题方法的不同之处,运用排除法思维解决问题。
5.拓展应用(15分钟)–老师引导学生思考真实生活中可能遇到的“鸽巢问题”,激发学生对数学的实际应用兴趣,提高解决问题的能力。
6.总结与作业布置(5分钟)–总结本节课的重点内容,布置相关作业,巩固学生对“鸽巢问题”的理解和应用能力。
五、教学板书•鸽巢问题–概念:一个有限的集合如果要被划分成许多个部分,但是部分的总数比集合的总数还要多,那么必然存在至少一个部分包含了2个以上的元素;–解题方法:排除法。
六、教学反思通过本节课的教学,学生对“鸽巢问题”有了更深入的理解。
但在教学过程中,发现部分学生在排除法应用上存在困难,需要在后续课程中加强相关训练。
5数学广角——鸽巢问题(教案)-六年级下册数学人教版
5 数学广角——鸽巢问题(教案)六年级下册数学人教版作为一名经验丰富的教师,我深知教学的重要性,下面我将根据您给的“数学广角——鸽巢问题(教案)六年级下册数学人教版”,以第一人称,详细描述我的教学内容、教学目标、教学难点与重点、教具与学具准备、教学过程、板书设计、作业设计以及课后反思和拓展延伸。
一、教学内容本节课的教学内容来自于人教版六年级下册数学教材的第107页,主要包括了“鸽巢问题”的相关知识。
在这个问题中,学生会了解到,在一定条件下,鸽子放置在鸽巢中的方式,以及如何利用鸽巢问题解决实际问题。
二、教学目标通过本节课的学习,我希望学生能够掌握鸽巢问题的基本概念和解决方法,能够将所学的知识应用到实际问题中,提高解决问题的能力。
三、教学难点与重点本节课的重点是让学生理解并掌握鸽巢问题的解决方法,难点则是如何让学生将所学的知识应用到实际问题中。
四、教具与学具准备为了更好地进行教学,我准备了多媒体教具和一些实际的例子,以便更好地解释和展示鸽巢问题。
五、教学过程1. 实践情景引入:我给学生展示了一个实际的例子,例如:“一个班级有30名学生,有20个座位,如何安排这些学生坐下来?”让学生思考并讨论。
2. 讲解概念:然后我引入了“鸽巢问题”的概念,讲解了鸽巢问题的定义和解决方法。
3. 例题讲解:我给学生讲解了一些典型的鸽巢问题题目,让学生了解并掌握解题方法。
4. 随堂练习:我给出了一些随堂练习题,让学生即时巩固所学知识。
5. 应用拓展:我让学生分组讨论,如何将鸽巢问题应用到实际问题中,并给出了一些实际问题的案例。
六、板书设计我在黑板上设计了简洁明了的板书,列出了鸽巢问题的定义、解决方法和实际应用。
七、作业设计我布置了一道实际的鸽巢问题题目,让学生课后思考并解答。
题目如下:假设一个房间里有5个鸽巢,现在有6只鸽子,如何将这些鸽子放入鸽巢中,使得每个鸽巢至少有1只鸽子?八、课后反思及拓展延伸课后,我进行了反思,认为学生们在课堂上掌握了鸽巢问题的基本知识,但在将知识应用到实际问题中,仍需加强。
5 数学广角——鸽巢问题(一等奖创新教案)-六年级下册数学人教版 1
5 数学广角——鸽巢问题(一等奖创新教案)-六年级下册数学人教版1《鸽巢问题》教学设计教学目标:1、通过猜测、验证、观察、分析等数学活动,经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢原理”解决简单的实际问题。
渗透“建模”思想。
2.经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。
3.通过“鸽巢原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。
教学重点:经历“鸽巢问题”的探究过程,初步了解“鸽巢原理”。
教学难点:理解“鸽巢问题”,并对一些简单实际问题加以“模型化”。
教具准备:课件扑克练习篇教学过程:(一)游戏引入谈话导入:教师:看到课题你想知道什么?板书课题。
咱们的学习先从一个有趣的“魔术”开始。
出示一副扑克牌,取出大王和小王,还剩下52张牌,下面请5位同学上来,每人随意抽一张,让我来猜一猜,至少有2张牌是同一花色的,我猜的对吗?拿到同一花色的同学站到一起。
教师:这个魔术里蕴含鸽巢原理。
扑克牌的数量较多,研究起来有点麻烦,怎么办呢?数学家陈省身说过,数学的本质在于化复杂为简单。
板书:化繁为简。
我们就来研究数量较少的同类问题。
(二)探索新知.一、教学例1。
师:把4支铅笔放到3个笔筒里,不管怎么放,总有一个笔筒里至少有2支铅笔?大家觉得这个结论对吗?1、小组合作:(课件)请4人为一组怎么证明这个结论?2、教师:收集不同的表示情况。
展示画图表示四种结果。
师:还有其它的放法吗?生:没有了。
师:看来,不管怎么放,总有一个笔筒里铅笔的支数是最多的,同学们能找出来吗?在这几种不同的放法中,装得最多的那个笔筒里要么装有4支铅笔,要么装有3支,要么装有2支,还有装得更少的情况吗?生:没有。
师:这几种放法如果用一句话概括可以怎样说?生:装得最多的笔筒里至少装2支。
师:装得最多的那个笔筒一定是第一个吗?生:不一定,哪个笔筒都有可能。
生:不管哪个笔筒,总有一个笔筒里至少装2支。
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】教学内容审定人教版六年级下册数学《 数学广角《鸽巢问题》,也就是原实验教材 抽屉原理》。
设计理念鸽巢问题》既鸽巢原理又称抽屉原理,它是组合数学的一个基本原理,最先是由德国数学家狄利克雷明确提出来的,因此,也称为狄利克雷原理。
首先,用具体的操作,将抽象变为直观。
“总有一个筒至少放进2支笔”这句话对于学生而言,不仅说起来生涩拗口,而且抽象难以理解。
怎样让学生理解这句话呢?我觉得要让学生充分的操作,一在具体操作中理解“总有”和“至少”;二在操作中理解“平均分”是保证“至少”的最好方法。
通过操作,最直观地呈现“总有一个筒至少放进2支笔”这种现象,让学生理解这句话。
其次,充分发挥学生主动性,让学生在证明结论的过程中探究方法,总结规律。
学生是学习的主动者,特别是这种原理的初步认识,不应该是教师牵着学生去认识,而是创造条件,让学生自己去探索,发现。
所以我认为应该提出问题,让学生在具体的操作中来证明他们的结论是否正确,让学生初步经历“数学证明”的过程,逐步提高学生的逻辑思维能力。
再者,适当把握教学要求。
我们的教学不同奥数,因此在教学中不需要求学生说理的严密性,也不需要学生确定过于抽象的“鸽巢”和“物体”。
教材分析鸽巢问题》这是一类与“存在性”有关的问题,如任意13名学生,一定存在两名学生,他们在同一个月过生日。
在这类问题中,只需要确定某个物体《 或某个人)的存在就可以了,并不需要指出是哪个物体 或哪个人),也不需要说明通过什么方式把这个存在的物体 或人)找出来。
这类问题依据的理论,我们称之为“鸽巢问题”。
通过第一个例题教学,介绍了较简单的“鸽巢问题”:只要物体数比鸽巢数多,总有一个鸽巢至少放进2个物体。
它意图让学生发现这样的一种存在现象:不管怎样放,总有一个筒至少放进2支笔。
呈现两种思维方法:一是枚举法,罗列了摆放的所有情况。
小学六年级下册数学《数学广角鸽巢问题》教案优秀4篇
小学六年级下册数学《数学广角鸽巢问题》教案优秀4篇小学六年级下册数学《数学广角──鸽巢问题》教案篇一教学目标:通过复习练习,进一步掌握分数、百分数、小数的互化的方法。
进一步掌握分数、小数等有关性质。
教学重点、难点:分数、百分数、小数的互化的方法。
分数、小数等有关性质。
教学设计:一、复习小数、分数、百分数、成数、折扣等互化表格出示:给出其中一种,要求转化成另外几种数。
学生独立完成后,指名交流,说明转化方法。
0.35 1/4 140% 六成五八折二、分数、小数有关性质及其关系出示:12÷( )=3/4=( ):36=( )/12=( )%学生独立填写。
交流:你是怎样填写的?填写时从哪开始思考?运用了哪些知识?三、巩固练习1、第86页第12题独立完成,说明填写方法。
引导学生发现:第1小题:后面的数总比前面大,越来越接近1.第2小题:后面的数总比前面小,越来越接近02、第86页第一叁、14题读题理解要求。
再按要求完成。
四、补充练习填空题1. 有一个小数,由8个自然数单位,5个十分之一和22个千分之一组成,这个数写作( ),读作( ),它的计数单位是( )。
2. 六亿零六十万零六十写作( ),改写成用“万”作单位是( ),省略万后面的尾数是( ),精确到亿位是( )。
3. 两个相邻的自然数,它们的差是( )。
一个自然数既不是质数又不是合数,与它相邻的两个自然数是( )和( )。
4.如果a+1=b,那么它们的最小公倍数是( ),最大公因数是( )。
5. 把0.625的小数点向左移动两位是( ),它缩小了( )倍。
6、如果一个小数的小数点向右移动一位后比原来大了32.4,那么原来这个小数是( )7. 五个连续自然数的和是200,这五个自然数分别是( )、( )、( )、( )、( )。
8.最大的一位纯小数比最大的两位纯小数小( );最小的两位纯小数比最小的三位纯小数大( )。
9.两个数的积是70,一个因数扩大100倍,另一个因数缩小10倍,积是( )。
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】一、教学三维目标1.知识与技能目标:初步理解鸽巢原理;2.过程与方法目标:经历鸽巢原理的的探究过程,培养学生的模型思想;3.情感态度与价值观目标:感受数学的魅力,提高学习数学的兴趣。
二、教学重点经历探究过程,初步了解鸽巢原理;三、教学难点理解鸽巢原理;四、教学过程1.游戏引入教师提问:你们玩过“抢椅子”的游戏吗?谁能说说游戏规则呢?学生回答后,组织学生进行几次“抢椅子”的游戏。
请学生注意观察,提问:一个简单的游戏里,蕴含着什么数学知识呢?顺势引入课题。
2.讲授新知活动一:初步认识鸽巢原理出示例1:把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。
提问:你得到了什么数学信息?至少和总有是什么意思?总结:总有就是一定存在的意思,至少表示最低限度,有最少的意思。
再提问:这句话对吗?组织小组活动,进行验证。
总结:学生探究出两种方法,方法一是枚举法,将可能的情况都列出进行观察;方法二是假设法。
两种方法都能验证这句话是正确的。
在此基础上,教师把铅笔换成鸽子,笔筒换成鸽笼,介绍鸽巢问题。
活动二:探究一般形式出示例2:把7本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进3本书。
提问:这句话对吗?为什么?组织小组活动,进行探究。
总结:用枚举法和假设法都能证明这句话是对的,教师利用除法算式7÷3=21,引导理解用“平均分”的思维来理解假设法。
追问:如果有8本书会怎样?10本呢?组织同桌交流,指名学生回答。
学生回答时继续用除法表示,最后提问:观察算式,你发现了什么?师生总结:观察3个算式,发现至少放的本数是商+1,而不是商+余数。
引出鸽巢问题又叫抽屉问题。
3.巩固练习完成做一做4.课堂小结教师提问:你有什么收获?学生回答后教师总结完善。
5.布置作业课后习题1、2题,将今天学到的整理成数学日记人教版数学六年级下册鸽巢问题优秀教案【第2篇】《鸽巢问题》就是以前奥数的教学内容《抽屉原理》,兴趣是学习最好的老师。
数学广角《鸽巢问题》(教案)六年级下册数学人教版
数学广角《鸽巢问题》(教案)一、教学内容《鸽巢问题》选自人教版小学数学六年级下册。
本课主要围绕鸽巢问题展开,通过引导学生理解鸽巢原理,培养学生解决实际问题的能力。
二、教学目标1. 知识与技能:理解并掌握鸽巢原理,能运用鸽巢原理解决生活中的实际问题。
2. 过程与方法:通过观察、实验、推理等数学活动,培养学生分析问题和解决问题的能力。
3. 情感态度与价值观:激发学生数学学习的兴趣,培养学生合作交流、积极参与的意识和态度。
三、教学难点1. 理解并掌握鸽巢原理的含义和应用。
2. 能够运用鸽巢原理解决实际问题。
四、教具学具准备1. 教具:PPT课件、实物投影仪、教学黑板。
2. 学具:学习材料、练习本、文具。
五、教学过程1. 导入新课通过一个简单的实际生活中的例子,引出鸽巢问题的概念,激发学生的学习兴趣。
2. 探究新知利用PPT课件,展示一系列的实例,引导学生观察、思考、讨论,逐步理解鸽巢原理。
3. 实践应用分组讨论,每组选择一个实际问题,运用鸽巢原理进行解决,并分享解决过程和结果。
六、板书设计1. 鸽巢问题2. 重点内容:鸽巢原理的定义、应用实例、解决方法。
七、作业设计1. 必做题:完成课后练习题,巩固鸽巢原理的应用。
八、课后反思本节课通过实例导入、探究新知、实践应用等环节,使学生掌握了鸽巢原理,并能够解决实际问题。
在教学过程中,注意引导学生积极参与、合作交流,培养学生的数学思维和解决问题的能力。
在今后的教学中,要继续关注学生的个体差异,提高教学效果。
总计:约2000字重点关注的细节:教学过程1. 导入新课导入环节是激发学生学习兴趣、引发思考的重要环节。
教师可以通过一个简单的实际生活中的例子,如将10个苹果放入9个篮子中,引导学生思考:是否每个篮子都会放一个苹果?为什么?从而引出鸽巢问题的概念,激发学生的学习兴趣。
2. 探究新知(1)为什么每个盒子至少有一个乒乓球?(2)如何证明鸽巢原理的正确性?(3)鸽巢原理在实际生活中有哪些应用?通过这些问题,引导学生深入理解鸽巢原理的含义和应用。
小学六年级下册数学《数学广角鸽巢问题》教案
小学六年级下册数学《数学广角鸽巢问题》教案小学六年级下册数学《数学广角──鸽巢问题》教案篇一教学目标:1、知识与技能:通过操作、观察、比较、推理等活动,初步了解鸽巢原理,学会简单的鸽巢原理分析方法,运用鸽巢原理的知识解决简单的实际问题。
2、过程与方法:在鸽巢原理的探究过程中,使学生逐步理解和掌握鸽巢原理,经历将具体问题数学化的过程,培养学生的模型思想。
3、情感态度:通过对鸽巢原理的灵活运用,感受数学的魅力,体会数学的价值,提高学生解决相关问题的能力和兴趣。
教学重点:经历鸽巢原理的探究过程,初步了解鸽巢原理。
教学难点:理解“总有”“至少”的意义,理解鸽巢原理,并对一些简单的实际问题加以模型化。
教学准备:多媒体课件、扑克牌、3个笔筒。
教学过程:一、魔术游戏激趣导入:1、老师这个魔术需要请1名同学来配合,谁愿意?向学生介绍这是一幅扑克牌,取出大小王、还剩52张,(请学生随意抽出5张牌)好,见证奇迹的时刻到了,你手里有5张牌至少有两张牌的花色是一样的。
(学生打开牌让大家看)课件出示:至少有2张是同一花色。
“至少”表示什么意思?引导:老师为什么能作出准确的判断呢?因为这个有趣的魔术中蕴含着一个数学原理,这节课我们就一起来研究这个问题。
板演:鸽巢问题二、合作探究(一)列举法:课件出示:同学们,如果把3支笔放进2个笔筒中,会有哪几种摆放的结果?找一组学生上前实物模拟操作摆放情况。
师问:同学们,你们谁能把摆放的情况用“总有……至少……”这个句式来概括出来吗?“总有”、“至少”分别又是什么意思呢?概括得出:总有1个笔筒至少放2支笔。
(及时肯定学生们的回答:你的。
逻辑思维能力真强)课件出示:如果把4支笔放进3个笔筒中呢?快和你的小伙伴们交流探索一下:1、分组探究,教师巡视指导。
预设学生会出现以下几种情况:(1)实物模拟;(2)图示;(3)数的分解。
2、学生汇报,讲台展示。
3、学生概括得出:总有1个笔筒至少放2支笔。
六年级下册数学教案《5《数学广角—鸽巢问题》人教版
六年级下册数学教案《5《数学广角—鸽巢问题》人教版一、教案背景本节课将围绕数学广角中的鸽巢问题展开教学。
鸽巢问题是数学中一个经典的组合数学问题,通过这个问题的讲解,可以帮助学生理解组合数学的基本概念。
二、教学目标1.理解鸽巢问题的基本概念。
2.能够运用组合数学的知识解决实际问题。
3.培养学生的逻辑思维和数学建模能力。
三、教学重点1.理解鸽巢问题的描述。
2.运用组合数学的方法求解相关问题。
四、教学内容1. 什么是鸽巢问题鸽巢问题是指有n个鸽子和m个巢,如果n个鸽子全部进入m个巢,必然有至少一个巢内有超过一个鸽子。
这个问题可以通过组合数学的方法进行求解。
2. 解决鸽巢问题具体解决鸽巢问题的方法是采用反证法。
假设所有的m个巢中都只有一个鸽子,那么至少需要m个巢。
但是鸽子的数量大于m,所以必然存在至少一个巢内有超过一个鸽子。
五、教学过程1.引入问题:老师给出一个生活中的例子,引出鸽巢问题。
2.学生思考:让学生思考如果有5只鸽子和3个巢,是否存在至少一个巢有两只鸽子。
3.学生讨论:学生们在小组内讨论并给出自己的答案。
4.知识梳理:老师讲解鸽巢问题的解决方法,引导学生理解反证法的应用。
5.练习:布置一些练习题让学生巩固所学知识。
6.总结:对本节课的内容进行总结,强调鸽巢问题的重要性和实际应用。
六、教学反馈1.在课堂中观察学生对鸽巢问题的理解情况。
2.收集学生的练习作业并进行评价,及时纠正学生的错误。
七、拓展延伸1.鸽巢问题的变形:让学生尝试解决更复杂的鸽巢问题,如n个鸽子和m个巢的情况。
2.探究组合数学的其他应用:带领学生探索组合数学在其他领域的应用,如排列组合问题等。
通过本节课的学习,相信学生们能够更好地理解鸽巢问题的精髓,并将组合数学的方法运用到实际问题中去,为他们的数学学习打下坚实的基础。
数学广角-鸽巢问题(教案)-六年级下册数学人教版
数学广角鸽巢问题(教案)六年级下册数学人教版教学内容:本节课主要讲解六年级下册数学人教版中数学广角鸽巢问题。
鸽巢问题是一种典型的数学问题,主要研究在将一些鸽子放入一些巢中时,鸽子的数量与巢的数量之间的关系。
通过这个问题,让学生了解和掌握鸽巢原理,培养学生的逻辑思维能力和解决问题的能力。
教学目标:1. 让学生了解鸽巢问题的背景和意义,理解鸽巢原理的基本概念。
2. 培养学生运用鸽巢原理解决实际问题的能力,提高学生的逻辑思维能力。
3. 培养学生合作交流的能力,通过小组讨论和合作,共同解决鸽巢问题。
教学难点:1. 理解鸽巢原理的概念和意义。
2. 运用鸽巢原理解决实际问题,特别是当鸽子的数量和巢的数量之间存在余数时的情况。
教具学具准备:1. 教师准备一些小纸片,每个纸片上写上一个数字,代表鸽子。
2. 准备一些小盒子或小篮子,代表巢。
3. 准备一块白板和笔,用于板书设计。
教学过程:1. 引入:教师可以通过一个简单的例子来引入鸽巢问题,例如将5个苹果放入4个篮子中,让学生思考每个篮子中最多有多少个苹果,从而引出鸽巢问题的概念。
2. 讲解鸽巢原理:教师通过讲解鸽巢原理的定义和基本概念,让学生理解鸽巢问题的本质。
可以通过一些具体的例子来说明鸽巢原理的应用,例如将10个鸽子放入9个巢中,让学生计算每个巢中最多有多少只鸽子。
3. 小组讨论:将学生分成小组,每组学生合作解决一些鸽巢问题。
教师可以提供一些具体的题目,让学生通过讨论和合作找到解决问题的方法。
例如,将15个鸽子放入8个巢中,让学生计算每个巢中最多有多少只鸽子,并讨论当鸽子的数量和巢的数量之间存在余数时的情况。
4. 板书设计:在白板上,教师可以写出一些鸽巢问题的题目,并将学生的解答过程和结果展示出来。
同时,教师可以通过图表或图示来展示鸽巢原理的应用,帮助学生更好地理解和掌握。
5. 作业设计:教师可以布置一些鸽巢问题的作业,让学生在课后进行练习和巩固。
作业可以包括一些基本的鸽巢问题,以及一些拓展性的问题,让学生运用鸽巢原理解决实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学广角—鸽巢问题
教材分析
例1:本例描述“抽屉原理”的最简单的情况。
着重探讨为什么这样的结论是成立的。
教材呈现了两种思考方法:第一种方法是用操作的方法,罗列所有的方法,通过完全归纳的方法看到在这四种情况都是满足结论的;还可以是说理的方式,先放3支,在每个笔筒里放1支,这时剩下1支。
剩下的1支不管放入哪一个笔筒中,这时都会有一个笔筒里有2支铅笔。
这种方法比第一种方法更为抽象,更具有一般性。
通过本例的教学,使学生感知这类问题的基本结构,掌握两种思考的方法──枚举和假设,理解问题中关键词语“总有”和“至少”的含义,形成对“抽屉原理”的初步认识。
例2:本例描述“抽屉原理”更为一般的形式,即“把多于(是正整数)个物体任意分放进个空抽屉里,那么一定有一个抽屉中放进了至少(+1)个物体”。
教材首先探究把7本书放进3个抽屉里,总有一个抽屉里至少放进3本书的情形。
当数据变得越来越大时,如果还用完全归纳的方法把所有的情形罗列出来的话,对于学生来说是有困难的。
这时需要学生用到“反证法”这样一种思想,即如果所有的抽屉最多放2本,那么3个抽屉里最多放6本书,可是题目中是7本书,还剩1本书,怎么办?这就使学生明白只要放到任意一个抽屉里即可,总有一个抽屉里至少放进3本书。
通过这样的方式,实际上学生是在经历“反证法”的这样一个过程。
在具体编排这道例题的时候,在数据上进行了一个很细微的调整。
在过去,由于数据的问题,学生会得到不太正确的推论,比如说如果是两个抽屉的话,最后得到的余数总是1,那么学生很容易得到一个错误的结论:总有一个抽屉里放进“商+余数”本书(因为余数正好是1)。
而实际上,这里的结论应该是“商+1”本书,所以教材在这里呈现了8除以3余2的情况,这时候余数是2,可是最后的结论还是“把8本书放进3个抽屉里,总有一个抽屉至少放进了3本书”。
通过这样的数据方面的调整,可以让学生得到一个更加正确的推论。
例3:跟之前教材的编排是一样的,是抽屉原理的一个逆向的应用。
要解决这个问题,可以把两种“颜色”看成两个“抽屉”,“同色”就意味着“同一个抽屉”。
这样,就可以把“摸球问题”转化为“抽屉问题”。
教材通过学生的对话,指出了可以通过先猜测再验证的方法来解决问题,也反映了学生在解决这个问题时可能会遇到的困难。
很多学生误以为要摸5次才可以摸出球,这可以让学生通过实验来验证。
教学目标
1、知识与技能
知道什么是“鸽巢问题”并掌握解决“鸽巢问题”的方法。
2、过程与方法
通过探究“鸽巢问题”的解决过程,掌握数形结合的学习思想。
3、情感态度和价值观通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,培养学生独立思考问题的能力。
教学重难点
把具体问题转化成“鸽巢问题”并总结“鸽巢问题”解决的方法。
教学准备
多媒体课件
教学过程
一、情景引入(课件展示)
我给大家变一个“魔术”:一副扑克牌,抽掉大小王之后还有52张牌,现在你们5个人每人随意抽一张,我知道至少有两张牌是同花色的,你相信我吗?
二、导入新课
例1、把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。
为什么呢?“总有”和“至少”是什么意思?
学生动手操作:
方法一:把各种情况都摆出来。
(列举法)
方法二:把4分解成3个数。
(分解法)
例1提出的问题就是“鸽巢问题”,4支铅笔就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”,把此问题用“鸽巢问题”的语言描述就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。
这里的“总有”指的是“一定有”或“肯定有”的意思;而“至少”指的是最少,即在所有方法中,放的鸽子最多的那个“笼子”里鸽子“最少”的个数。
例2、把7本书放进3个抽屉,不管怎么放,总有1个抽屉里至少有3本书。
为什么呢?如果有8本书会怎样呢?10本书呢?
方法一:把7本书放进3个抽屉里,共有8种情况,每种情况分得的3个数中,至少有1个数不小于3,也就是每种分法中最多那个数最小是3,即总有1个抽屉至少放进3本书。
方法二:如果每个抽屉最多放2本,那么3个抽屉最多放6本,可是题目要求放7本,那么剩下的那本书要放在3个抽屉中的其中一个中。
所以7本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。
8÷3=2余2本,分别放进其中2个抽屉中,使其中2个抽屉都变成3本;放进其中一个抽屉里,这个抽屉就变成4本。
因此把8本书放进3个抽屉中,不管怎么放,总有1个抽
屉里至少放进3本书。
10÷3=3余1本,把10本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进4本书。
问题:你是这样想的吗?你有什么发现?
例3、盒子里有同样大小的红球和篮球各4个,要想摸出的球一定有2个同色的,至少要摸出几个球?
思考:只摸2个球就能保证这2个球同色吗?当摸出的这两个球正好是一红一蓝时就不能同色。
解:把红、蓝两种颜色看作两个“鸽巢”,因为3÷2=2余下1,所以摸出3个球时,至少有2个是同色的。
结论:只要摸出的球数比它们的颜色种数多1,就能保证有两个球同色。
三、即时练习
1、5只鸽子飞进了3只笼子,总有一只鸽笼至少飞进了2只鸽子,为什么?
解:3只鸽子分别飞入3只笼子中,剩下的2只分别放入其中2只鸽笼中,那么这两只鸽笼中都有2只鸽子;剩下的2只放入其中一只鸽笼里,那么这只鸽笼就有3只鸽子。
所以5只鸽子飞进了3只笼子,总有一只鸽笼至少飞进了2只鸽子。
2、你理解上面扑克魔术的道理了吗?
解:扑克牌有4种花色,看做4个“鸽巢”,5个人每人抽一张,抽了5张,看做5只“鸽子”;问题就转化为“5只鸽子飞入4个鸽巢,总有一个鸽巢飞入了2只鸽子”。
4只鸽子分别飞入4个鸽巢中,剩下的1只飞入其中一个鸽巢,那么总有一个鸽巢飞入了2只鸽子。
3、11只鸽子飞进了4只鸽笼,总有一只鸽笼至少飞入了3只鸽子,为什么?
解:11÷4=2余3只,分别放进其中3只鸽笼中,使其中3只鸽笼都变成3只;放进其中2只鸽笼里,这两只鸽笼中一只鸽笼变成4只鸽子,另一只鸽笼里变成了3只鸽子;放进其中一个鸽笼里,这个鸽笼利就变成了5只鸽子。
所以11只鸽子飞进了4只鸽笼,总有一只鸽笼至少飞入了3只鸽子。
4、5人坐4把椅子,总有一把椅子上至少坐2人,为什么?
解:5÷4=1余下1人,这个人坐在其中一个椅子上,那么这把椅子上坐了2个人。
所以5人坐4把椅子,总有一把椅子上至少坐2人。
5、向东小学六年级共有367名学生,其中六(2)班有49名学生。
(1)六年级里至少有2个人的生日是同一天。
(2)六(2)班中至少有5人是同一个月出生的。
他们说的对吗?
为什么?
解:(1)一年最多366天。
假设367个学生中366个学生的生日在不同的一天:367÷366=1余1个学生,可以看做鸽巢问题,所以六年级里至少有2个人的生日在同一天。
(2)一年有12个月。
假设49个学生的生日分别在不同的月份:49÷12=4余1人,看做鸽巢问题,所以六(2)班中至少有5人是同一个月出生的。
所以他们的说法正确。
6、把红、黄、蓝、白四种颜色的球各10个放到一个袋子里。
至少取多少个球,可以保证取到两个颜色相同的球?
解:看作鸽巢问题,5÷4=1余1,至少取5个球,就能保证取到两个颜色相同的球。
拓展思考
把红、蓝、黄3种颜色的筷子各3根混在一起,如果让你闭上眼睛,每次最少拿出几根才能保证一定有2根同色的筷子?如果要保证有2双筷子呢?
解:把红、黄、蓝看作3个鸽巢:4÷3=1余1,每次至少拿出4根能保证一定有2根同色的筷子。
保证有2双筷子:一次拿出5根时,因为每种颜色各有3根,当一种颜色的筷子拿了3根,其余2种颜色的筷子各拿1根,这时不能保证有2双筷子;一次拿出6根时,有以下情况:
这时能保证至少有2双筷子。
所以至少拿出6根能保证有2双筷子。
习题巩固
1、随意找13位老师,他们中至少有2个人的属相相同,为什么?
解:一共有12个属相。
13÷12=1余1,所以他们中至少有2个人属相相同。
2、张叔叔参加飞镖比赛,投了5镖,成绩是41环。
张叔叔至少有一镖不低于9环。
为什么?
解:当5镖全部低于9环时,成绩最多是5×8=40环,而张叔叔得了41环,那么其中一环必定要大于8环,即至少有一镖不低于9环。
3、给一个正方体木块的6个面分别涂上蓝、黄两种颜色。
不论怎么涂至少有3个面涂
的颜色相同,为什么?
解:蓝(黄)色涂1个面时,黄(蓝)色涂5个面;蓝(黄)色涂2个面时,黄(蓝)色涂4个面;蓝(黄)色涂3个面时,黄(蓝)色涂3个面。
所以不论怎么涂至少有3个面涂的颜色相同。
4、任意给出3个不同的自然数,其中一定有2个数的和是偶数,为什么?
解:已知:偶数与偶数的和是偶数,奇数与奇数的和是偶数,自然数分为偶数、奇数。
那么找出3个自然数只有两种情况:两个偶数,一个奇数;一个偶数,两个奇数。
这两种情况都满足有2个数的和是偶数。
本课小结
1、把具体问题转化成“鸽巢问题”。
2、总结“鸽巢问题”解决的方法。