无线电导航技术
无线电导航的发展历程
![无线电导航的发展历程](https://img.taocdn.com/s3/m/20abe12e0b1c59eef8c7b4d6.png)
1.无线电导航的发展历程无线电导航是20世纪一项重大的发明电磁波第一个应用的领域是通信,而第二个应用领域就是导航。
早在1912年就开始研制世界上第一个无线电导航设备,即振幅式测向仪,称无线电罗盘(Radiocompass),工作频率0.1一1.75兆赫兹。
1929年,根据等信号指示航道工作原理,研制了四航道信标,工作频率为0.2一0.4兆赫兹,已停止发展。
1939年便开始研制仪表着陆系统(ILS),1940年则研制脉冲双曲线型的世界第一个无线电定位系统奇异(Gee),工作频率为28一85兆赫兹。
1943年,脉冲双曲线型中程无线电导航系统罗兰A(Loran-A)投入研制,1944年又进行近程高精度台卡(Dessa)无线电导航系统的研制。
1945年至1960年研制了数十种之多,典型的系统如近程的伏尔(VOR)、测向器( D ME)、塔康(Tacan)、雷迪斯特、哈菲克斯(Hi-Fix)等;中程的罗兰B(Loran-B)、低频罗兰(LF-Loran)、康索尔(Consol)等;远程的那伐格罗布((Navaglohe)、法康(Facan)、台克垂亚(Dectra)、那伐霍(Navarho),罗兰C(Loran-C)和无线电网(Radionrsh)等;超远程的台尔拉克(Delrac)和奥米加(Omega)与。
奥米加;空中交通管制的雷康(Rapcon)、伏尔斯康(VOLSCAN)、塔康数据传递系统(Tacandata-link)和萨特柯((Satco)等,另外还有多卜勒导航雷达(Doppler navigation tadar),这期间主要保留下来的系统如表1表1主要地基无线电导航系统运行年代表1.1 无线电导航发展的重大突破1960年以后,义发展了不少新的地基无线电导航系统。
如近程高精度的道朗((TORAN)、赛里迪斯(SYLEDIS)、阿戈(ARGO)、马西兰(MAXIRAN)、微波测距仪(TRISPONDER)以及MRB-201,NA V-CON,RALOG-20,RADIST等等;中程的有罗兰D (Loran-D)和脉冲八(Pulse8)等;远程的恰卡(Chayka);超远程的奥米加((Omega与 );突破在星基的全球导航系统,还有新的飞机着陆系统。
无线电导航的发展历程
![无线电导航的发展历程](https://img.taocdn.com/s3/m/101d82150b4e767f5acfce51.png)
1.无线电导航的发展历程无线电导航是20世纪一项重大的发明电磁波第一个应用的领域是通信,而第二个应用领域就是导航。
早在1912年就开始研制世界上第一个无线电导航设备,即振幅式测向仪,称无线电罗盘(Radiocompass),工作频率0.1一1.75兆赫兹。
1929年,根据等信号指示航道工作原理,研制了四航道信标,工作频率为0.2一0.4兆赫兹,已停止发展。
1939年便开始研制仪表着陆系统(ILS),1940年则研制脉冲双曲线型的世界第一个无线电定位系统奇异(Gee),工作频率为28一85兆赫兹。
1943年,脉冲双曲线型中程无线电导航系统罗兰A(Loran-A)投入研制,1944年又进行近程高精度台卡(Dessa)无线电导航系统的研制。
1945年至1960年研制了数十种之多,典型的系统如近程的伏尔(VOR)、测向器( D ME)、塔康(Tacan)、雷迪斯特、哈菲克斯(Hi-Fix)等;中程的罗兰B(Loran-B)、低频罗兰(LF-Loran)、康索尔(Consol)等;远程的那伐格罗布((Navaglohe)、法康(Facan)、台克垂亚(Dectra)、那伐霍(Navarho),罗兰C(Loran-C)和无线电网(Radionrsh)等;超远程的台尔拉克(Delrac)和奥米加(Omega)与。
奥米加;空中交通管制的雷康(Rapcon)、伏尔斯康(VOLSCAN)、塔康数据传递系统(Tacandata-link)和萨特柯((Satco)等,另外还有多卜勒导航雷达(Doppler navigation tadar),这期间主要保留下来的系统如表1表1主要地基无线电导航系统运行年代表1.1 无线电导航发展的重大突破1960年以后,义发展了不少新的地基无线电导航系统。
如近程高精度的道朗((TORAN)、赛里迪斯(SYLEDIS)、阿戈(ARGO)、马西兰(MAXIRAN)、微波测距仪(TRISPONDER)以及MRB-201,NA V-CON,RALOG-20,RADIST等等;中程的有罗兰D (Loran-D)和脉冲八(Pulse8)等;远程的恰卡(Chayka);超远程的奥米加((Omega与 );突破在星基的全球导航系统,还有新的飞机着陆系统。
什么是无线电导航
![什么是无线电导航](https://img.taocdn.com/s3/m/1c5d2a050740be1e650e9a66.png)
无线电导航是利用无线电保障航空、航海等飞行器以及其他交通工具或运动物体准确完成运动任务,使其能够安全、准确地沿着选定的路线,准时到达目的地的一种手段。
人类最初的导航,只能通过石头、树、山脉等作为参照物,渐渐
发展到天文观测法,即通过天上的太阳、月亮和星星来判断位置。
中
国四大发明之一的指南针就是人类导航领域的一个里程碑。
无线电导
航的发明,使导航系统成为航行中真正可以依赖的工具,因此具有划
时代的意义。
无线电导航主要利用电磁波传播的3个基本特性:
(1)电磁波在自由空间直线传播。
(2)电磁波在自由空间的传播速度是恒定的。
(3)电磁波在传播路线上遇到障碍物时会发生反射。
通过测量
无线电导航台所发射信号(无线电电磁
波)的时间、相位、幅度、
频率参量,可确定运动载体相对于导航台的方位、距离和距离差等几
何参量,从而确定运动载体与导航台之间的相对位置关系,据此实现
对运动载体的定位和导航。
导航系统包括装在运载体上的导航设备以及装在其他地方与导航
设备配合使用的导航台。
从导航台的位置来看,主要有:
(1)陆基导航系统:即导航台位于陆地上,导航台与导航设备之
间用无线电联系。
(2)星基导航系统:导航台设在人造卫星上,可扩大覆盖范围。
导航是人类从事政治、经济和军事活动所必不可少的信息技术。
今
天,随着人类活动的发展,对导航的要求越来越高。
无线电导航在军
事和民用等方面都有着广阔的应用前景。
文章来源:/。
无人机的航空电子技术
![无人机的航空电子技术](https://img.taocdn.com/s3/m/678c96f977a20029bd64783e0912a21614797f69.png)
无人机的航空电子技术
无人机的航空电子技术包括:
1. 无线电导航技术:包括GPS、GLONASS、北斗、Galileo等全球定位系统,以及VOR/DME、ILS等传统无线电导航技术;
2. 无线电通信技术:包括UHF/VHF/HF无线电通信技术,以及无线数据传输技术;
3. 雷达技术:包括毫米波雷达技术、超声波雷达技术、激光雷达技术等;
4. 自动跟踪技术:包括视觉跟踪、红外跟踪、声纳跟踪等;
5. 航空电子技术:包括航空电子设备、航空电子计算机系统、飞行控制系统等;
6. 无人机控制系统:包括无人机的控制系统、传感器系统、航迹规划系统等;
7. 无人机网络技术:包括无人机网络技术、无人机通信技术、无人机数据传输技术等;
8. 无人机安全技术:包括无人机安全认证、无人机安全管理等;
9. 无人机自动驾驶:包括无人机自动飞行控制、无人机自动驾驶系统等。
无线电导航的原理与应用
![无线电导航的原理与应用](https://img.taocdn.com/s3/m/d9aaf9c5b8d528ea81c758f5f61fb7360a4c2b73.png)
无线电导航的原理与应用一、导言无线电导航是一种利用无线电信号进行定位和导航的技术。
它广泛应用于航空、航海、车载导航和无人机系统等领域。
了解无线电导航的原理与应用对于理解现代导航系统的工作方式至关重要。
本文将深入介绍无线电导航的原理和其在不同领域的应用。
二、无线电导航原理无线电导航是基于无线电波传播的定位和导航技术。
其原理基于以下几个关键要素:1. 信号发射器无线电导航的系统中,会有一个或多个信号发射器,常用的是卫星导航系统中的卫星。
信号发射器会发送特定频率的无线电波信号。
2. 接收器接收器负责接收信号发射器发出的无线电波信号,并将其转化为导航系统能够识别和处理的信息。
3. 测距原理无线电导航中常用的测距原理包括时间测距、多普勒效应和信号强度测距等。
这些原理可以通过接收到的信号特征来确定位置和距离。
4. 三角定位法利用多个信号发射器和接收器,可以采用三角定位法来确定准确的位置。
通过测量不同信号到达接收器的时间差和距离,可以计算出接收器的位置。
三、无线电导航的应用1. 航空导航航空领域是无线电导航最常见的应用之一。
航空导航系统利用全球定位系统(GPS)等技术,能够实时、准确地定位飞机的位置。
无线电导航在航空领域中的应用使得飞行变得更加安全和高效。
2. 航海导航航海导航依赖于无线电导航系统来确定船只的位置和航向。
借助GPS和其他卫星导航系统,船只可以在海上定位和导航,避免撞船和迷航等危险情况。
3. 车载导航车载导航系统利用无线电导航原理来为驾驶员提供路线指引和实时导航。
通过全球定位系统和地图数据,驾驶员可以更好地规划行驶路线并避开交通拥堵。
4. 无人机导航无人机的导航是依赖于无线电导航技术实现的。
无人机可以利用GPS等定位系统精确导航,实现自主飞行和遥控飞行。
5. 军事应用无线电导航在军事领域也有广泛的应用。
军事导航系统能够为士兵和战机提供准确的定位和导航信息,提升军事行动的效率。
结论无线电导航作为一种基于无线电信号的定位和导航技术,广泛应用于航空、航海、车载导航和无人机等领域。
我国无线电导航发展的回顾与几点建议
![我国无线电导航发展的回顾与几点建议](https://img.taocdn.com/s3/m/7c20373fa32d7375a417800e.png)
我国无线电导航发展的回顾与几点建议摘要:由于全球卫星无线电导航系统的日益完善和广泛应用,无线电导航系统正在向以全球卫星无线电导航系统为主的方向发展。
虽然无线电导航发展历史中的各个主要无线电导航系统拥有各自的特点,有些是其它系统所不能替代的,但由于种种原因不得已而被关闭或面临被淘汰的危险,本文就我国无线电导航发展的回顾与几点建议进行了相应的探讨。
关键词:我国无线电导航发展的回顾建议无线电导航系统一般由装在运载体上的导航设备和设在地面或卫星上的导航台(站)组成,通过在导航设备和导航台站之间的无线电信号传播和通信获得导航信息,给运载体指示出实时位置或方位,使其顺利完成导航任务。
无线电导航已经广泛应用于航空、航海及航天事业中,并且在陆路交通、工农业生产、大地(海洋)勘探测量、旅游探险、科学研究等诸多方面发挥越来越重要的作用。
一、导航技术的概念所谓导航,就是将航行的载体从一地引导到另一地的控制过程。
现代导航技术的应用,必须选择导航方案,通过选用合适的、具有高可靠性和精度的导航设备来完成引导。
导航设备构成导航系统对各种导航要素进行处理,给出定位信息,以实现正确可靠的引导。
导航可以分为无线电导航、惯性导航、天文导航、多普勒导航和仪表导航等,方法上来看主要就是测角和测距。
二、无线电导航的现状纵观无线电导航的发明和发展史,一般都是通过单独或相互搭配地应用各种导航手段,实现为运载体提供实时方位或定位信息的目的。
到目前为止,无线电导航主要使用的还是陆基无线电导航系统,包括伏尔(vor)、测距器(dme)、塔康(tacan)、罗兰-c(loran-c)、无线电信标(radiobeacon)、仪表着陆系统(ils)、微波着陆系统(mls)、精密进近雷达(par)等。
自第二次世界大战以来陆续出现的这些导航系统相互搭配,构成了较为完备的导航混合体,基本满足了航空和航海等运载体在不同航行阶段对导航的不同要求,最近20年,以gps为主导的卫星导航技术得到了飞速发展,得到了广泛应用。
《航空无线电导航技术》习题
![《航空无线电导航技术》习题](https://img.taocdn.com/s3/m/1c1f3c37b94ae45c3b3567ec102de2bd9605de30.png)
《航空无线电导航技术》习题1. 超短波通信的特点是(C )。
A: 不受地形地物的影响B: 无衰落现象C:通信距离限定在视距D:频段范围宽, 干扰小2.长波、中波的传播是以(B)传播方式为主。
A: 天波B: 地波C: 直射波D: 地面反射波3. 短波传播是以(A )传播方式为主。
A: 天波B: 地波C: 直射波D: 地面反射波4.超短波传播是以(C )传播方式为主。
A: 天波B: 地波C: 直射波D: 地面反射波5. 高频通信采用的调制方式是(B)。
A: 等幅制B: 调幅制C: 调频制D: 调相制6. 关于短波通信使用频率, 下述中正确的是(B )。
A: 距离远的比近的高B: 白天比晚上的高C: 冬季比夏季的高D: 与时间、距离等无关7、天波传输的特点是( A )。
A: 传播距离远B: 信号传输稳定C: 干扰小D: 传播距离为视距8、地波传输的特点是( A )。
A: 信号传输稳定B: 传播距离为视距C: 受天气影响大D: 传播距离远9、直射波传播的特点是( C )。
A: 传播距离远B: 信号传输不稳定C: 传播距离为视距D: 干扰大10、单边带通信的缺点是(D )。
A: 频带宽B: 功率利用率低C: 通信距离近D:收发信机结构复杂, 要求频率稳定度和准确度高11. 飞机与塔台之间的无线电联络使用(B )通信系统。
A: 高频B: 甚高频C: 微波D: 卫星12、飞机与区调或站调之间的无线电联络使用(A)通信系统。
A: 甚高频B: 高频C: 微波D: 卫星13.目前我国民航常用的空管雷达是(A )。
A: 一、二次监视雷达B: 脉冲多普勒雷达C: 着陆雷达D: 气象雷达14.相对于单独使用二次雷达, 使用一次、二次雷达合装的优点是( C )。
A: 发现目标的距离更B: 常规二次雷达条件下提高雷达系统的距离分辨力C: 能够发现无应答机的目标D: 克服顶空盲区的影响15. 二次监视雷达与一次监视雷达相比的主要优点是(A)。
导航技术及其发展
![导航技术及其发展](https://img.taocdn.com/s3/m/842cf79aab00b52acfc789eb172ded630a1c9810.png)
导航技术及其发展导航技术是指通过各种手段确定自身位置、方向和速度的技术,是现代社会中不可或缺的一部分。
它广泛应用于军事、航空、航海、汽车、手机等领域,极大地提高了人们的生活质量和工作效率。
本文将从导航技术的发展历程、主要技术及其应用前景三个方面进行探讨。
一、导航技术的发展历程1. 古代导航技术在古代,人们主要依靠天文导航、地文导航和经验导航进行定位。
天文导航是通过观测天体位置来确定自身位置的方法,如我国古代的航海家郑和就是利用天文导航技术实现了七次下西洋的壮举。
地文导航则是根据地形、地貌等地理特征来确定位置,如古代丝绸之路上的商队就是利用地文导航技术进行贸易往来。
经验导航则是依靠船员的经验和直觉来判断航向和距离。
2. 近代导航技术随着科学技术的发展,近代导航技术逐渐从经验导航向仪器导航转变。
19世纪末,无线电技术的发明为导航技术的发展提供了新的动力。
1906年,德国人布劳恩首次利用无线电波进行航海导航实验,标志着无线电导航技术的诞生。
随后,各种无线电导航系统如罗兰(Loran)、奥米加(Omega)等相继问世,为航海、航空等领域提供了准确的导航服务。
3. 现代导航技术20世纪70年代,美国开始研发全球定位系统(GPS),并于1994年全面建成。
GPS具有全球覆盖、全天候、高精度等特点,迅速成为现代导航技术的主流。
随后,俄罗斯、欧盟等国家和地区也相继研发了自己的全球导航卫星系统(GLONASS、Galileo等),形成了全球导航卫星系统的竞争格局。
我国自主研发的北斗卫星导航系统(BDS)也于2000年发射成功,并于2020年全面建成,成为全球四大卫星导航系统之一。
二、主要导航技术1. 天文导航天文导航是通过观测天体位置来确定自身位置的方法。
古代的天文导航主要依靠肉眼观测,现代天文导航则利用天文望远镜、星敏感器等设备进行观测。
天文导航具有高精度、不受环境限制等优点,但受天气影响较大。
2. 地文导航地文导航是根据地形、地貌等地理特征来确定位置的方法。
民航无线电导航系统以及未来发展趋势
![民航无线电导航系统以及未来发展趋势](https://img.taocdn.com/s3/m/ffdffe14814d2b160b4e767f5acfa1c7ab008212.png)
民航无线电导航系统以及未来发展趋势1. 引言1.1 民航无线电导航系统的概述民航无线电导航系统是指通过无线电信号进行航空导航的系统。
这种系统在航空领域中起着至关重要的作用,可以帮助飞行员确定飞机在空中的位置、方向和高度,从而确保飞行的安全和准确性。
民航无线电导航系统的发展经历了多个阶段。
在传统民航无线电导航系统中,常用的设备包括VOR(全向无线电导航台)、ILS(仪表着陆系统)和ADF(自动方向找向器)等。
这些设备通过发送和接收无线电信号来帮助飞行员进行导航,但存在一定的局限性和准确性不高的问题。
随着科技的发展,现代民航无线电导航系统得到了极大的改进和提升。
现代系统采用了先进的GPS(全球定位系统)技术,能够提供更为精确和可靠的导航信息,同时还可以实现更高效和安全的飞行控制。
民航无线电导航系统在民航领域中具有重要的意义。
它不仅可以帮助飞行员安全地操控飞机,还可以提高飞行效率和准确性。
在飞行中,导航系统可以帮助飞行员避免天气和空中交通的影响,确保航班按时到达目的地。
未来,随着科技的不断进步,民航无线电导航系统也将会迎来更多的发展和创新。
未来发展的趋势可能会包括更智能化和自动化的导航系统,以及更多与其他飞行系统的集成和联动,这将进一步提高飞行的安全性和效率,推动民航行业的发展。
2. 正文2.1 传统民航无线电导航系统传统民航无线电导航系统是民航航空领域的重要组成部分,主要包括VOR(全向无线定向台)、NDB(非方向性无线电台)和ILS(仪表着陆系统)等系统。
这些系统在航空导航中起着至关重要的作用。
VOR系统是最早使用的民航无线电导航系统之一,通过向各个方向发射信号,实现飞机在空中的定向和导航。
NDB系统则是根据无线电信号的指向来确定飞机位置,尽管较为简单,但在一些特定情况下仍然发挥着重要作用。
ILS系统则是一种精密着陆系统,能够为飞机提供水平和垂直的导航指引,使飞机可以安全着陆。
传统民航无线电导航系统的优点在于稳定可靠,已经被广泛应用于民航领域。
无线电导航任务及发展
![无线电导航任务及发展](https://img.taocdn.com/s3/m/de7d706eac02de80d4d8d15abe23482fb4da0227.png)
➢ 冷战时期到上个世纪末是卫星定位时代的开始。60年 代有NNSS/Transit(子午仪)、TSIKADA (前苏联的第 一代卫星定位系统)。70年代有NAVSTAR/GPS原理 验证、方案论证。80年代有NAVSTAR/GPS研制、 GLONASS研制、北斗一号预研。90年代有 NAVSTAR/GPS投入运行GLONASS投入运行、 Galileo预研、北斗一号系统研制、蜂窝无线通信系统 中的定位技术研究。
图 无线电导航的发展过程图
2.2 无线电导航系统的发展趋势
纵观无线电导航的历史,可归结为下述几个方面的发展趋势: (1)应用范围越来越广,其作用和地位随着现代化的进程越来越重要。 (2)系统功能增强,自动化程度、精度和可靠性不断提高。 (3)系统间组合应用,如不同无线电导航系统间的组合,无线电导航和 非无线电导航系统之间的组合,尤其是卫星无线电导航系统GPS、 GLONASS和惯导的组合具有无限的发展潜力,可使不同系统间取 长补短,显著提高性能。 (4)导航与通信的结合,实现通信导航识别(CNI)综合化。导航与电 子地图参照,使导航定位引导自动化、直观化。
2.3当前无线电定位技术方面的研究动向
新思想、新体制、新系统(如QPS),已有系统的改造和现代化。 当前无线电定位技术方面的研究动向有:与系统有关的一些关 键基础技术(卫星、原子钟、测控,大地测量等)。与应用有关的 一些关键技术,高灵敏度(室内定位)、高动态技术,抗多径技术,抗 干扰技术,反欺骗技术,干扰源的识别定位技术;多模式兼容技术, 多系统兼容技术;软件接收机技术,全系统或者分系统的仿真技术 等;高精度测量技术;区域、广域增强技术。GNSS的兼容与互操 作。导航战技术。
Aircraft navigation equipment and maintenance
无线电导航原理与系统无线电脉冲时间导航系统
![无线电导航原理与系统无线电脉冲时间导航系统](https://img.taocdn.com/s3/m/fa6f54af192e45361066f5d3.png)
❖下面介绍几个应答/测距系统工作中涉及到的 几个基本概念:
定时脉冲和定时点
测距系统的信号是脉冲对编码信号,脉冲形状是高 斯形(对于测距器)或者cos—cos2形 (对于精密测 距器)。
2) 由于脉冲极窄,上升前沿很陡,所以测高精度比 较高,不存在普通调频体制高度表所固有的阶梯 误差。
3) 采用脉冲前沿跟踪技术,能够跟踪最近回波的前 沿,因而飞机在复杂地面上空飞行时,所测高度 为最近点目标的距离,能够更好地保证飞行的安 全,克服了调频高度表由于采用天线照射面积上 的平均高度所造成的测量偏差。
间无线电导航系统。
四.时基波束扫描微波着陆系统MLS
时基波 束扫描微 波着陆系 统测角原 理示意图
四.时基波束扫描微波着陆系统MLS
微波着陆系统基本工作原理
➢ 航向台天线辐射的波束以恒定角速度沿规定方向扫描,作短暂固定时 间的停歇后,再沿相反方向,以同样的角速度回扫到起始位置。如此 周而复始地对既定空间进行扫描。
二. 脉冲无线电高度表
无线电脉冲测量高度表组成
➢接收机
➢ 组成:本振、平衡混频器、中放、视放、自 动增益控制(AGC)电路和灵敏度距离控制 (SRC)电路 。
➢ 作用:与由接收天线接收到的回波信号进行 混频。混频后产生的双极性中频脉冲加到中 放级进行放大,再由桥式检波器变为单极性 的视频脉冲,经视频放大后输出。
四.时基波束扫描微波着陆系统MLS
微波着陆系统概念
微波着陆系统是一种全天候精密进场着陆 系统,采用时间基准波束扫描的原理工作。 系统分地面设备与机载设备两大部分
无线电导航教程1 VOR,DME,NDB
![无线电导航教程1 VOR,DME,NDB](https://img.taocdn.com/s3/m/c3175a6fcaaedd3383c4d39a.png)
无线电导航教程1 VOR,NDB,DMEVOR:very high frequency ommi-directional range,甚高频全向无线电信标VOR信号发射机和接收机的工作频率在108.0-117.95 MHz 之间。
VOR 台站发射机发送的信号有两个:一个是相位固定的基准信号;另一个信号的相位是变化的,同时象灯塔的旋转探照灯一样向360度的每一个角度发射,而向各个角度发射的信号的相位都是不同的,它们与基准信号的相位差自然就互不相同。
由于VOR的无线电信号与电视广播、收音机的FM广播一样,是直线传播的,会被山峰等障碍物阻隔,所以即使距离很近,在地面也很少能接收到VOR信号,通常要飞高至离地2000-3000英尺才收到信号,飞得越高,接收的距离就越远。
在18000英尺(5486米)以下,VOR最大接收距离约在40到130海里(1海里=1.852公里)之间,视障碍物等因素而定。
在18000ft以上,最大接收距离约为130海里。
DME:distance measuring equitment,测距装置前面提过,有的VOR台站是带有DME的,DME工作在UHF频段,但空勤人员不必理会它的频率,只要调好VOR的频率,接收到信号,过一会,距离数字就会计算出来显示在仪表板上。
简单工作原理是这样的:机载DME发射信号给地面台站上的DME,并接收地面DME应答回来的信号,测量发射信号与应签信号的时间差,取时间差的一半,就可计算出飞机与地面台站的直线距离。
但应注意,仪表板上显示的距离是飞机与地面台站的斜边距离,单位为海里。
由勾股定理可知,飞机在地面的投影与台站的距离应略小于这个斜边距离的。
同样道理,DME仪表板上显示的速度也是“斜”的,表示飞机与台站的“距离缩短率”,单位是节,它既不等于地速,也不等于表速。
根据DME显示的距离、速度,可大致估算飞机的地速和到达台站所需时间。
NDB:non-directional beacon,无方向性信标NDB是现今仍在使用中,最古老的电子导航设备,在一些没有仪表着陆系统[的小机场附近,常建有廉价的NDB台站,用作导航、着陆指引。
无线电导航系统讲义
![无线电导航系统讲义](https://img.taocdn.com/s3/m/065a1b0e011ca300a6c390cb.png)
无线电导航系统讲义-CAL-FENGHAI.-(YICAI)-Company One1航空无线电导航系统第一章绪论导航与导航系统的基本概念 1.导航导航的基本含义是引导运行体从一地到另一地安全航行的过程。
导航强调的是“身在何处,去向哪里”是对继续运动的指示。
导航之所以定义为一个过程,是因为它贯穿于运动体行动的始终,遍历各个阶段,直至确保运行达成目的。
应当说大部分运行体都是由人来操纵的,而对那些无人驾驶的的运行体来说,控制是由仪器或设备来完成的,这时的导航就成为了制导。
近年来人们将定位于导航并列提出。
事实上定位提供的位置参量是一个标量,只有将其与方向数据联合起来成为矢量,才能服务于运行体的航行。
因此定位与测角、测距一样是导航的技术之一,通过定位可以实现导航。
也可以说定位是静态用户要求的;但对动态用户而言要求的是导航。
2.导航系统导航系统是用于对运行体实施导航的专用设备组合或设备的统称。
导航系统是侧重于实现特定导航功能的设备组合体,组合体内的各部分必须按约定的协调方式工作才能实现系统功能,而导航设备一般是指导航系统中某一相对独立部分或产品,或实现某一导航功能的单机。
导航及无线电导航系统的分类导航是一门基于“声、光、电、磁、力”的综合性的应用科学,实现导航的技术手段很多,按其工作原理或主要应用技术可分为下述类别:(1)天文导航——利用观测自然天体(空中的星体)相对于运行体所在坐标系中的某些参量实现的导航称为天文导航。
(2)惯性导航——利用牛顿力学中的惯性原理及相应技术实现的导航称为惯性导航。
(3)无线电导航——利用无线电技术实现的导航称为无线电导航。
(4)地磁导航——利用地球磁场的特性和磁敏器件实现的导航称为地磁导航。
(5)红外线导航——利用红外线技术实现的导航称为红外线导航。
(6)激光导航——利用激光技术实现的导航称为激光导航。
(7)声纳导航——利用声波或超声波在水中的传播特性和水声技术实现的导航(用于对水下运行体的导航)称为声纳导航。
导航与定位技术课件4无线电导航
![导航与定位技术课件4无线电导航](https://img.taocdn.com/s3/m/5d773d45783e0912a2162a7a.png)
三、卫星导航技术
3.1 无线电导航技术 3.1.1 引言
3.1.2 地基无线电导航分类及技术指标
3.1.3 地基无线电导航基本原理
3.1.4 典型地基无线电导航系统简介
31
(1)塔康系统
(TACAN)
塔康是战术空 中导航系统的简称, 属于相位-时间复
合的近程地基无线
电导航系统,可测 量载体相对导航台
c
间 b a ,T 为有效调频时间,发射信号的最高/最低 0
频率之差 f f f 。 m 02 01
无线电低高度表采用频率调制工作体制,最小测量高 度达0.5m,多用于飞机的低空飞行导引。
19
脉冲测距法
飞机
t
对于无源测距而言,
d c t
但存在时间同步问题, 用于罗兰-C系统。
也采用该工作体制。
27
(4)地基无线电空中测距定位原理
P
测量4个地面站至
ρ
载体的无线电信号传
1
ρ3
播时间延迟,将时间
ρ
ρ4
延迟与光速相乘得相 应伪距,然后由4个伪 距及地面站已知坐标
2
求解载体坐标及钟差。
28
伪距观测方程为
i X p X i c t
其中
i
Xi
:伪距观测值;
X p :载体位置矢量,未知;
课程内容内容
一、概述(1) 二、惯性导航(2) 三、卫星导航(2-3) 四、组合导航(1) 五、其他导航(1-2) 本课程共16学时,8次课
1
三、卫星导航技术
3.1 无线电导航 3.2 卫星定位原理 3.3 GPS卫星导航 3.4 北斗卫星导航 3.5 GLONASS卫星导航 3.6 GALILEO卫星导航
通信电子行业中的无线电导航技术
![通信电子行业中的无线电导航技术](https://img.taocdn.com/s3/m/7a7af97e86c24028915f804d2b160b4e777f8112.png)
通信电子行业中的无线电导航技术无线电导航技术是现代通信电子行业的重要领域之一,其应用范围广泛,涉及到民用和军事领域,如航空、海洋、天文等领域均需要无线电导航技术的支撑。
在数字化时代,无线电导航技术也面临着新的挑战和机遇,要不断创新和发展,以满足不断变化的需求。
一、现代无线电导航技术的发展历程早在有线电传输时代,人们就开始研究无线电信号的传输和应用,其中无线电导航技术就是其中之一。
20世纪50年代至60年代,美国和苏联之间的冷战,促进了无线电导航技术的迅速发展,军事领域成为了技术创新的重要领域。
1960年代以后,GPS卫星导航技术的出现引领了无线电导航技术以数字化为方向的发展。
近年来,随着卫星导航技术不断发展,无线电导航技术也在不断更新升级。
二、现代无线电导航技术的应用领域航空和航海领域在航空和航海领域,无线电导航技术主要用于定位、导航和通信。
在飞机逃生、飞行安全、空域管理等方面,无线电导航技术发挥着至关重要的作用。
同时,卫星导航技术如GPS也被广泛应用于民用航空和航海领域,已成为行业标准。
天文和地质领域在天文和地质领域,无线电导航技术也有很重要的作用。
天文学家可以通过射电望远镜接收来自宇宙的射电波,来了解宇宙的构成和运动。
而地质学家则可以通过地震波的传播方式,进行地形勘测和勘探。
军事领域在军事领域,无线电导航技术担任着高精度定位、导航和通信的任务。
军方将无线电导航技术应用到无人机、导弹等方面,以强化自身军事实力。
三、现代无线电导航技术的发展趋势1. 无线电导航技术向数字化转型现代无线电导航技术已经向数字化转型,无线电导航信号频率的抽样率、转换率和嵌入量都呈指数增长,从而提高了导航的精确性和可靠性。
2. 大数据和机器学习的应用随着物联网和大数据技术的飞速发展,现代无线电导航技术的应用也逐步普及到各种各样的设备和应用当中。
机器学习技术的应用,使得设备能够自动学习,提高其智能化和自动化水平。
3. 无线电导航技术与互联网结合无线电导航技术与互联网的结合,使得导航变得更为简单和直接。
陆基无线电导航原理
![陆基无线电导航原理](https://img.taocdn.com/s3/m/8ec438e3970590c69ec3d5bbfd0a79563d1ed419.png)
陆基无线电导航原理
嘿,朋友们!今天咱来聊聊陆基无线电导航原理,这可真是个有意思的玩意儿!
你想想看,就像我们在陌生的地方走路,要是没有个指引,那不是得晕头转向呀!陆基无线电导航就像是我们的引路人呢。
它呀,其实就是通过地面上的一些无线电设施来给飞机、轮船这些交通工具指引方向。
就好像我们在黑夜里走路,突然看到了一盏明灯,那心里得多踏实呀!这些地面上的无线电设施会发出各种信号,交通工具上的接收设备就像小耳朵一样,能听到这些信号,然后就能知道该往哪儿走啦。
这就好比你要去一个你没去过的朋友家,朋友在电话里告诉你怎么走,左边拐啦,右边直走啦,你不就找到啦!陆基无线电导航也是这个道理呀。
而且哦,这些无线电信号还能告诉我们很多其他信息呢,比如距离呀、速度呀。
这不就跟你走路的时候,知道自己走了多远,速度快不快一个道理嘛!
你说这多神奇呀,靠着这些看不见摸不着的无线电波,就能让我们在茫茫大海或者广阔天空中找到正确的方向。
这要是放在古代,那简直是想都不敢想的事儿呀!
你再想想,如果没有陆基无线电导航,那飞机怎么能准确地降落在机场呢?轮船怎么能安全地到达港口呢?那不就乱套了嘛!所以说呀,这陆基无线电导航可真是太重要啦!
它就像是我们生活中的导航仪,让我们在前进的道路上不迷路。
而且它还不断地发展和进步呢,变得越来越精确,越来越好用。
朋友们,你们说这陆基无线电导航是不是很了不起呀?它真的给我们的生活带来了太多的便利和安全啦!以后我们坐飞机、坐轮船的时候,可别忘了感谢这些默默工作的陆基无线电导航设施呀!这就是陆基无线电导航原理啦,简单易懂又超级实用呢!。
第1章 无线电导航基本理论
![第1章 无线电导航基本理论](https://img.taocdn.com/s3/m/1fad9b01fc4ffe473368abe1.png)
1.2 无线电导航的发展简史和发展趋势
二、第二阶段(从二战至20世纪60年代初)(7)
7.战术空中导航系统-塔康(TACAN) 军用测距测角系统,美国海军1955年研制; TACAN在功能上相当于民航的VOR和DME; TACAN台安装在航母或地面上,可为飞机同时 提供距地面台(航母)的方位和距离信息;
ADF-NDB,VOR,DME,ILS,MLS,GPS。
5.自主式(自备式)导航系统
只包括航行体上的无线电导航系统就能完 成导航任务的导航系统。
LRRA,INS(非无线电导航系统)。
中国民航大学 CAUC
1.4 无线电导航系统的分类
一、常用无线电导航术语(6) 6.导航台 具有确定位置、辐射与导航参数有关的有 规定信号格式的发射/接收处理系统。
1.3 导航的分类 三、天体导航
1.定义:通过观测两个以上星体的位置参数( 如仰角),来确定观察者在地球上的位置,从 而引导运动体航行 。 2.举例:通过观测两颗星的仰角来确定航行体 的位置。
3.特点:为自主式导航,保密性强,定位精度 高,受气候及环境影响,定位时间较长,比较 适合航海导航。
中国民航大学 CAUC
1. 台卡系统(DECCA)
主要用于航海; 英国台卡导航仪公司研制; 1937年提出,1944年研制成功; 1954年开始普及(在欧洲应用最为广泛) ; 随着罗兰-C的建设和发展,台卡用户逐渐 减少。
中国民航大学 CAUC
1.2 无线电导航的发展简史和发展趋势
二、第二阶段(从二战至20世纪60年代初)(2) 2. 罗兰系统(LORAN) 主要用于航海,美国研制; 罗兰-A,罗兰-C;
1.按所测量的电气参量划分
导航知识介绍
![导航知识介绍](https://img.taocdn.com/s3/m/c665f183b9d528ea81c77930.png)
ILS机场安装布局
ILS机场安装布局
航向天线阵
•天线增益:10dBi
•前后场强比>26dB
•水平极化
航向CSB天线方向性特性
如上图中为CSB和SBO的场型。
对于CSB信号左天线阵和右天线阵是同相馈电,其结果在外场的矢量是相同的它的最大辐射是沿跑道中心线的延长线上。
SBO天线的方向性特性
如上图中对于SBO信号,馈电对于左右是反向的,因此矢量不同,在外场空间、在跑道中心线上,它的场强为零。
下滑天线
•下滑天线的作用是辐射射频信号•天线增益:12dBi左右
•前后场强比>20dB
•水平极化
306090120150
180210
240
270
300330
-15d B -12d B-9d B -6d B -3d B 0d B 3d B 6d B 9d B 12d B
Type 713.316
Type 714.747
下滑系统空间调制及方向性图
DVOR台的设置。
无线电导航基础
![无线电导航基础](https://img.taocdn.com/s3/m/ce3c5b970c22590102029d94.png)
第1章绪论1.1导航的发展简史1.1.1导航的基本概念导航是一门研究导航原理和导航技术装置的学科。
导航系统是确定航行体的位置方向,并引导其按预定航线航行的整套设备(包括航行体上的、空间的、地面上的设备)。
一架飞机从一个机场起飞,希望准确的飞到另外一个机场就必须依靠导航、制导技术。
导航,即引导航行的意思,也就是正确的引导航行体沿预定的航线,以要求的精度,在指定的时间内将航行体引导至目的地。
由此可知除了知道起始点和目标位置之外,还要知道航向体的位置、速度、姿态等导航参数。
其中最主要的是知道航行体的位置。
1.1.2导航系统的发展在古代,我们的祖先一直利用天上的星星进行导航,在古石器时代,为了狩猎方便,人们利用简单的恒星导航方法,这就是最早的天文导航方法。
后来,随着技术的不断发展和人们对事物认知的发展,人们利用导航传感器来导航,最早是我们祖先发明的指南针。
现有的导航传感器包括六分仪、磁罗盘、无线电罗盘、空速表、气压高度表、惯性传感器、雷达、星体跟踪器、信号接收机等。
以航空领域为例,从20世纪20年代开始飞机出现了仪表导航系统。
30年代出现了无线电导航系统,即依靠飞机上的信标接收机和无线电罗盘来获得地面导航台的信息已进行导航。
40年代开始研制甚高频导航系统。
1954年,惯性导航系统在飞机上试飞成功,从而开创了惯导时代。
50年代出现了天文导航系统和多普勒导航系统。
1957年世界上第一颗卫星发射成功以后,利用卫星进行导航、定位的研究工作被提上了议事日程,并着手建立海事卫星系统用于导航定位。
随着1967年海事卫星系统经美国政府批准对其广播星历解密并提供民用,由此显示出卫星定位的巨大潜力。
60年代开始使用远程无线电罗兰-C导航系统,同时还有塔康导航系统、远程奥米伽导航系统以及自动天文导航系统。
60年代后,无线电导航得到进一步发展,并与人造卫星导航相结合。
70年代以后,全球定位导航系统得到进一步发展和应用。
在此过程中,为了发挥不同导航系统的优点,互为补充,出现了各种组合导航系统,它们主要以惯性导航系统为基准。