基本不等式解题技巧
不等式解题方法与技巧
不等式解题方法与技巧不等式:表示两个数、变量或表达式间的大小关系的算术式,以“>”、“≥”、“=”、“≤”、“<”为符号,又称不等式。
二、基本运算(一)加法1、两边相加法a>b,则a+c>b+c,即a>b时,同时加上同一个数c,等式的不等性不变。
2、绝对值加法|a|>|b|,则|a+c|>|b+c|,即|a|>|b|时,同时加上同一个数c,等式的不等性不变。
(二)减法1、两边相减法a>b,则a-c>b-c,即a>b时,同时减去同一个数c,等式的不等性不变。
2、绝对值减法|a|>|b|,则|a-c|>|b-c|,即|a|>|b|时,同时减去同一个数c,等式的不等性不变。
(三)乘法1、两边相乘法(1)a>b, c>0,则ac>bc,即a>b且c>0时,同时乘以同一个数c,等式的不等性不变。
(2)a>b, c<0,则ac<bc,即a>b且c<0时,同时乘以同一个数c,等式的不等性不变。
2、绝对值乘法同理,不等式形式可以变成 |a|>|b|, c>0,则|ac|>|bc|; |a|>|b|, c<0,则|ac|<|bc|。
(四)除法1、两边相除法(1)a>b, c>0,则a/c>b/c,即a>b且c>0时,同时除以同一个数c,等式的不等性不变。
(2)a>b, c<0,则a/c<b/c,即a>b且c<0时,同时除以同一个数c,等式的不等性不变。
2、绝对值除法同理,不等式形式可以变成 |a|>|b|, c>0,则|a/c|>|b/c|;|a|>|b|, c<0,则|a/c|<|b/c|。
三、解题方法及技巧(一)解题步骤1、明确问题要求,看问题分支,把不等式内容转换为分支状2、根据不等式求出区间,再细分区间3、对每个区间中试探值,再回归至原不等式(二)解题技巧1、分类讨论法根据不等式中含有的数、变量和表达式等的不同(正负、奇偶、偶数等),结合不等式的形式,做出不同的判断,获得最终的结论。
高中数学不等式求解技巧
高中数学不等式求解技巧在高中数学中,不等式是一个非常重要的概念和考点。
不等式的求解是解决数学问题的基础,也是学生们在数学学习中常常遇到的难题之一。
本文将介绍一些高中数学不等式求解的技巧,帮助学生们更好地理解和应用不等式。
一、基本不等式基本不等式是不等式求解的基础。
在解不等式问题时,我们首先要掌握一些基本不等式,例如:1. 平方不等式:对于任意实数 a,有a² ≥ 0。
这个基本不等式告诉我们,任何实数的平方都大于等于零。
2. 两个正数的乘积不等式:对于任意正数 a 和 b,有 ab > 0。
这个基本不等式告诉我们,两个正数的乘积一定大于零。
3. 两个负数的乘积不等式:对于任意负数 a 和 b,有 ab > 0。
这个基本不等式告诉我们,两个负数的乘积也是大于零的。
了解了这些基本不等式,我们就可以在解不等式问题时灵活运用。
二、一元一次不等式一元一次不等式是最简单的不等式形式,一般可以通过移项和化简来求解。
例如,考虑以下一元一次不等式:2x + 3 > 7我们可以通过移项将不等式转化为等价的形式:2x > 7 - 32x > 4然后再将不等式两边都除以 2,得到:x > 2这样,我们就求解出了这个一元一次不等式的解集为 x > 2。
三、一元二次不等式一元二次不等式是高中数学中常见的不等式形式。
对于一元二次不等式的求解,我们可以利用图像法、因式分解法和配方法等多种方法。
下面以一个具体的例子来说明。
考虑以下一元二次不等式:x² - 3x - 4 > 0首先,我们可以通过因式分解法将不等式化简为:(x - 4)(x + 1) > 0然后,我们可以绘制出一元二次函数 y = x² - 3x - 4 的图像,找到使得函数大于零的区间。
根据图像,我们可以发现函数在 x < -1 和 x > 4 的区间内大于零。
因此,原不等式的解集为 x < -1 或 x > 4。
不等式基本解题技巧梳理
不等式基本解题技巧梳理技巧一: 配凑法对加法型,两个因式的未知数部分凑成倒数关系,配凑成符合基本不等式成立的三个条件“一正二定三相等”。
技巧二: 分离常数法1.已知函数的表达式的特征,如分子(或分母)是二次形式且分母(或分子)是一次形式;2. 把分母或分子的一次形式当成一个整体,并将分子或分母的二次形式配凑成一次形式的二次函数形式;3. 将其化简即可得到基本不等式的形式,并运用基本不等式对其进行求解即可得出所求的结果. 技巧三: 对勾函数法:用基本不等式求解时,若遇等号取不到的情况1.运用凑项或换元法将所给的函数化简为满足基本不等式的形式;2.结合函数()a f x x x =+的单调性,并运用其图像与性质求出其函数的最值即可; 技巧1 配凑法【例1】(2021·广西河池市)函数19()(1)41f x x x x =+>-的最小值为( ) A .134 B .3C .72D .94 【举一反三】1.已知2244x y +=,则2211x y +的最小值为( ) A .52 B .9 C .1 D .942.若实数a ,b 满足22221a b +=,则22141a b ++的最小值为___________. 3.若正实数a ,b 满足111122a b +=++,则ab a b ++的最小值为_______. 技巧2 分类常数法 【例2】已知52x ≥,则2332x x y x -+=-有( ) A .最大值1B .最小值1C .最大值3D .最小值3【举一反三】 1.函数233(1)1x x y x x ++=<-+的最大值为( )A .3B .2C .1D .-12.若函数()()22422x x f x x x -+=>-在x a =处取最小值,则a =( )A .1+B .2C .4D .63.若72x ,则2610()3x x f x x -+=-有( )A .最大值52 B .最小值52 C .最大值2 D .最小值24.已知函数()2sin sin 2xf x x =+,则()f x 的最大值为( )A .2-B .1-C .0D .1技巧3 对勾函数【例3】函数()2436x x f x x ++=-的值域为__________.【举一反三】1.函数2y =的最小值为( )A .2B .52 C .1 D .不存在2.函数()ln 22ln xf x x =+,(]1,e x ∈的最小值为________.3.设(0,)x π∈,则函数sin 22sin =+xy x 的最小值是___________.巩固练习一、单选题1.已知正实数x 、y 、z 满足2221x y z ++=,则58xyz -的最小值是( )A .6B .5C .4D .32.已知x y R +∈,,若不等式110232mx y x y x y ++≥+++恒成立,则实数m 的最值情况为() A .有最小值4- B .有最大值4- C .有最小值4 D .有最大值43.已知0a >,0b >,若不等式122ma b a b +≥+恒成立,则实数m 的最大值为( )A .10B .9C .8D .74.已知不等式()19a x y x y ⎛⎫++⎪⎝⎭≥对任意正实数x ,y 恒成立,则正实数a 的最小值为( ) A .2 B .4C .6D .8 5.若对任意满足8a b +=的正数a ,b 都有14111x a b x ++≥+-成立,则实数x 的取值范围是( ) A .[)0,1 B .()1,+∞ C .(](),01,-∞+∞ D .()(),01,-∞⋃+∞6.已知0x >,0y >,若2288yx ym m x y ++>-恒成立,则实数m 的取值范围是() A .19m -<< B .91m -<< C .9m ≥或1m ≤- D .m 1≥或9m ≤- 7.当104x <<时,不等式11014m x x +-≥-恒成立,则实数m 的最大值为( )A .7B .8C .9D .108.已知0,0x y >>且111211x y +=++,则x y +的最小值为________.9.已知正实数a 、b 满足21a b +=,则11aba b +--的最小值为____________.10.函数2221()0sin cos 2f x x x x π⎛⎫=+<< ⎪⎝⎭的最小值是________.11.当0x >时,函数231x x y x ++=+的最小值为_________.12.函数2(2)2x y x x =>-的最小值为_______________13.若实数,x y 满足22321x xy y --=,则2252x yx xy y +++的最大值为___________.14.求()271011x x y x x ++=>-+的最小值______.15.()21147x x x x ->-+的最大值为______.16.已知()()23601x x f x x x ++=>+,则()f x 的最小值是________.。
不等式的应用解题方法与技巧
不等式的应用解题方法与技巧解不等式的问题需要掌握一些基本的数学知识,以下是一些解决不等式问题的方法和技巧:
1. 熟悉基本概念:理解不等式的基本定义,知道什么是大于、小于、等于以及他们的符号表示。
此外,还要了解绝对值、平方根等基本数学概念。
2. 掌握求解步骤:一般情况下,求解一个不等式需要先移项,再化简,最后确定解集。
在移项时要注意变号,在化简时要灵活运用乘法分配律等基础知识。
3. 注意系数正负:在移项过程中,如果某个项的系数为负,那么这个项就需要改变符号。
因此,注意每个项的系数是正还是负是非常重要的。
4. 能够识别图形:有时不等式的问题会转化为几何问题,这时能够识别直角坐标系中的直线、圆、抛物线等各种图形是非常有用的。
5. 利用特殊值检验:当无法直接求出解集时,可以尝试使用特殊值来检验答案是否正确。
比如,对于形如ax + b > 0的不等式,可以尝试取x = -b/a看看是否满足不等式。
6. 不断练习:解决不等式问题需要一定的技巧和经验,多做题目可以帮助你更好地理解和熟练这些技巧。
基本不等式解题“三步走”
课程篇基本不等式主要包含下列四种形式:①a+b ≥2ab √;②a 2+b 2≥2ab ;③ab ≤(a+b 2)2;④2(a 2+b 2)≥(a+b )2。
其应用因灵活多变,不易为学生掌握,本文从解题角度入手来帮助学生解决这个问题。
第一步:应用特征基本不等式的应用特征:题目中会出现和(a+b ),积(ab ),倒数和(1a +1b ),平方和(a 2+b 2)四个中的两个,且一个是定值,一个是最值。
举例如下:例1.已知a 2+b 2=1(a ,b>0),求a+b 的最大值。
分析:条件中有平方和为定值、结论中有和为最值,满足基本不等式的应用特征,故可以直接使用基本不等式求解。
而包含和与平方和的基本不等式是公式④。
解:∵(a+b )2≤2(a 2+b 2)=2×1=2∴a+b ≤2√(当且仅当a=b =2√2时等号成立)∴a+b 的最大值为2√。
例2.α为锐角,求sin αcos α的最大值。
分析:题目中只有一个字母α,但可以发现结论中是sin α与cos α积的最值,而sin α与cos α的平方和是定值1为隐藏条件,满足基本不等式的应用特征。
包含和与积的基本不等式是公式②。
解:∵2sin αcos α≤sin 2α+cos 2α=1∴sin αcos α≤12(当且仅当sin α=cos α=2√2,即α=π4时等号成立)∴sin αcos α的最大值为12。
点评:在使用基本不等式时可能会出现在和、积、倒数、平方和这四个中,题目上只有一个最值。
那就需要你寻找隐藏的定值,而隐藏的定值就必然在剩下三个中(例1)。
同时在使用中不一定是两个字母,它可能是只有一个字母(例2)。
第二步:应用技巧在题目满足基本不等式的应用特征时,经常会出现不能直接得出定值或直接应用公式的情况。
这时就需要有一定的技巧进行转化,技巧规律为:加减常数(或定值)与乘除常数(或定值)。
举例如下:例3.求x +4x+1(x >0)的最小值。
不等式的解题方法与技巧
不等式的解题方法与技巧不等式是数学中的一个重要概念,解不等式不仅是中学阶段数学学习的一部分,也是高中阶段进一步学习函数与分析的基础。
下面将介绍一些解不等式的常用方法和技巧。
1.基本不等式性质对于两个不等式a<b和c<d,可以根据其性质进行合并或分拆:-合并:a+b<c+d-分拆:a-b>c-d2.不等式化简对于复杂的不等式,可以通过一系列的等价变形将其化简为简单的形式。
常用的等价变形方法有:- 同乘或同除以一个正数:如果a<b,则对于正数x,有ax<bx;如果a<b且x>0,则有ax<bx;如果a<b且x<0,则有ax>bx。
-同加或同减一个具体数:如果a<b,则对于任意实数x,有a+x<b+x,即a+c<b+c;同理,a-c<b-c。
-综合运用:通过多次变换,将不等式化为更简洁的形式。
3.不等式乘法法则不等式乘法法则用于解决乘法不等式的问题。
对于两个正数a和b,以及一个不等式c<d,有以下结论:- 如果a<b且c<d,则ac<bd。
- 如果a<b且c>d,则ac>bd。
- 如果a<b且c=d,则ac=bd。
注意:当a和b中至少一个为负数时,上述法则不适用。
4.不等式绝对值性质当不等式中含有绝对值时,可以利用绝对值的性质进行求解。
对于实数a和b,可以根据绝对值性质得到以下结果:-如果,a,<,b,则a^2<b^2-如果,a,>,b,则a^2>b^2-如果,a,=,b,则a^2=b^25.不等式取正负号问题当不等式的系数为负数时,可以通过取正负号的方式,将其转化为求解不等式的问题。
具体方法如下:-如果a<0,则对不等式两边同时取负号,得到-a>-b。
-如果a>0,则对不等式两边同时取正号,得到a<b。
6.解多项式不等式对于多项式不等式,可以通过求解其零点,确定其正负性。
基本不等式的解题技巧
基本不等式的解题技巧
解基本不等式的关键是要确定不等号的方向,并对变量进行适当的操作以便得到解。
以下是解基本不等式的一些常用技巧:
1. 如果不等式的形式是 "ax + b > 0" 或 "ax + b < 0",则可以通
过将方程两边同时减去 b,再除以 a 来得到 x 的解。
例如:对于不等式 3x + 4 > 0,可以将其转化为 3x > -4,然后
将两边都除以 3,得到 x > -4/3。
2. 如果不等式的形式是"ax + b ≥ 0" 或"ax + b ≤ 0",则需要考
虑等号的情况。
当不等号加上一个等号时,解的范围会发生改变。
例如:对于不等式 2x - 5 ≥ 3,可以通过将其转化为2x ≥ 8,然后将两边都除以 2,得到x ≥ 4。
3. 如果不等式中包含绝对值表达式 |ax + b|,则需要分别讨论 x + b ≥ 0 和 x + b < 0 两种情况。
例如:对于不等式 |2x - 3| < 5,可以将其分解为两个不等式 2x - 3 < 5 和 2x - 3 > -5,然后求解这两个不等式得到的解的交集。
4. 如果不等式中有多个变量,则可以尝试通过移项和因式分解的方法来化简不等式。
例如:对于不等式 x^2 + 4x - 12 > 0,可以将其转化为 (x + 6)(x - 2) > 0,然后使用符号代表法来求解。
这些是解基本不等式常用的技巧,具体问题需要根据具体情况进行分析和求解。
基本不等式最值解题技巧
基本不等式最值解题技巧
1、分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
2、
基本不等式解题技巧得深入拓展——拼凑定和,拼凑定积,拼凑常数降幂,拼凑常数升幂,约分配凑,引入参数拼凑,引入对偶式拼凑,确立主元拼凑。
基本不等式是主要应用于求某些函数的最值及证明的不等式。
其表述为:两个正实数
的算术平均数大于或等于它们的几何平均数。
在采用基本不等式时,必须牢记“一正”“二定”“三成正比”的七字真言。
“一正”就是指两个式子都为正数,“二定”就是指应用领域基本不等式谋最值时,和或四维定值,“三成正比”就是指因且仅当两个式子成正比时,就可以挑等号。
两大技巧
“1”的妙用。
题目中如果发生了两个式子之和为常数,建议这两个式子的倒数之和
的最小值,通常用所求这个式子除以1,然后把1用前面的常数则表示出,并将两个式子
进行即可排序。
如果题目未知两个式子倒数之和为常数,谋两个式子之和的最小值,方法
同上。
调整系数。
有时候求解两个式子之积的最大值时,需要这两个式子之和为常数,但是
很多时候并不是常数,这时候需要对其中某些系数进行调整,以便使其和为常数。
81. 不等式的常见解题方法有哪些?
81. 不等式的常见解题方法有哪些?81、不等式的常见解题方法有哪些?不等式是数学中一个重要的概念,在解决各种数学问题和实际应用中都有着广泛的应用。
掌握不等式的解题方法对于提高数学思维和解决问题的能力至关重要。
下面我们就来探讨一下不等式常见的解题方法。
一、比较法比较法是不等式解题中最基本的方法之一。
它分为作差比较法和作商比较法。
作差比较法:若要比较两个数或式子 a 和 b 的大小,计算 a b 的值。
若 a b > 0,则 a > b;若 a b = 0,则 a = b;若 a b < 0,则 a < b。
例如,比较 2x + 3 和 x 1 的大小,计算(2x + 3) (x 1) = x +4。
当 x >-4 时,2x + 3 > x 1;当 x =-4 时,2x + 3 = x 1;当x <-4 时,2x + 3 < x 1。
作商比较法:当要比较两个正数 a 和 b 的大小,计算 a / b 的值。
若 a / b > 1,则 a > b;若 a / b = 1,则 a = b;若 a / b < 1,则a < b。
比如,比较 3x 和 2x(x > 0)的大小,计算 3x / 2x = 3 / 2 > 1,所以 3x > 2x(x > 0)。
二、综合法综合法是从已知条件出发,利用不等式的性质和已有的定理、公式等,经过逐步推导得出不等式的结论。
例如,已知 a > 0,b > 0,且 a + b = 1,要证明ab ≤ 1 / 4 。
因为 a +b ≥ 2√ab,所以1 ≥ 2√ab,即√ab ≤ 1 / 2 ,所以ab ≤ 1 / 4 。
三、分析法分析法是从要证明的不等式出发,逐步寻求使它成立的充分条件,直至最后把要证明的不等式归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止。
比如,要证明√a +√b <√(a + b)(a > 0,b > 0),可以先将不等式两边平方,得到 a +2√ab + b < a + b,即2√ab < 0,这显然不成立。
不等式解题技巧
不等式解题技巧引言不等式是数学中重要的一个概念,它描述了数的大小关系。
不等式解题是数学学习中的基础内容,它在数学应用中有着广泛的应用。
本文将介绍一些不等式解题的常用技巧,帮助读者更好地理解和应用不等式。
一、一元一次不等式1.1 简单不等式的解法对于形如ax+b>0或ax+b<0的一元一次不等式,我们可以通过变形和一些基本的性质来求解。
示例:解不等式2x+5>7。
解法:首先,我们可以将不等式变形为2x>7-5,即2x>2。
接下来,我们将不等式两边除以2,得到x>1。
所以,解集为所有大于1的实数。
1.2 不等式的加减法性质当不等式中的两项都加上(或减去)同一个数时,不等号的方向不发生改变。
示例:解不等式3x-4<7。
解法:我们可以将不等式中的所有项都加上4,得到3x<11。
因为加上4不改变不等号的方向,所以不等式解为x<11/3。
1.3 不等式的乘除法性质当不等式中的两项都乘以(或除以)同一个正数时,不等号的方向不发生改变;当不等式中的两项都乘以(或除以)同一个负数时,不等号的方向发生改变。
示例:解不等式-2x/3>4。
解法:我们可以将不等式中的所有项都乘以-3,注意这里负数的情况,得到2x<-12。
因为乘以负数改变了不等号的方向,所以不等式解为x>-6。
二、一元二次不等式2.1 一元二次不等式的解法对于形如ax^2+bx+c>0或ax^2+bx+c<0的一元二次不等式,我们可以通过求解其对应的二次方程的解集来确定其解集。
示例:解不等式x^2-3x+2>0。
解法:首先,我们可以将不等式对应的二次方程进行因式分解,得到(x-1)(x-2)>0。
然后,我们绘制出二次方程对应的抛物线,找出使得函数大于0的区间。
最后,我们得到不等式的解集为(1, 2)。
2.2 一元二次不等式的图像法对于一元二次不等式,我们还可以借助图像来确定其解集。
不等式的解题方法
不等式的解题方法不等式是数学中常见的问题,它涉及到比较两个或多个数值的大小。
解决不等式问题需要掌握一些基本的方法和技巧。
1.比较法:这是最直接的方法,用于比较两个数或表达式的大小。
通过直接计算或化简,可以得出它们之间的大小关系。
2.作差法:如果两个数或表达式A 和B,我们想知道A 是否大于B。
一个常用的方法是计算A 和B 的差,即A - B。
如果差是正的,则A 大于B;如果差是负的,则A 小于B;如果差是零,则A 等于B。
3.作商法:对于两个正数或表达式A 和B,我们想知道A 是否大于B。
另一种方法是计算A 和B 的商,即A / B。
如果商大于1,则A 大于B;如果商小于1,则A 小于B;如果商等于1,则A 等于B。
4.不等式的性质:对于不等式的基本性质,例如传递性、可加性、可乘性和同号得正等,需要熟练掌握。
这些性质可以帮助我们在解决不等式问题时进行简化。
5.不等式的解法:对于一元一次不等式和一元二次不等式,需要掌握基本的解法技巧。
例如,对于一元一次不等式ax + b > c,可以通过移项、合并同类项和化简来求解。
对于一元二次不等式ax^2 + bx + c > 0,可以通过求解对应的等式来确定不等式的解集。
6.数形结合:在解决不等式问题时,结合图形可以帮助我们直观地理解问题。
例如,对于线性不等式组,可以通过在坐标系中画出直线和区域来直观地找出解集。
7.特殊值法:对于一些难以直接解决的问题,可以通过代入一些特殊的数值来检验或验证不等式的正确性。
综上所述,解决不等式问题需要掌握多种方法和技巧,根据具体问题选择合适的方法进行求解。
基本不等式应用题解题技巧
基本不等式应用题解题技巧
1. 嘿,你知道不,遇到基本不等式应用题,咱得先看清题目呀!就像走路得先知道往哪儿走。
好比说,给你个例子,要建个篱笆围个矩形场地,一边靠墙,其他三边用篱笆,篱笆长度一定,问怎么围面积最大。
这时候是不是就得用基本不等式解题技巧啦?
2. 哎呀,一定要抓住关键信息呀!就像抓小偷得知道从哪儿下手。
比如说一个制作盒子的问题,给定材料面积,问怎么制作盒子容积最大。
这里面可藏着好多解题技巧要用起来呢!
3. 嘿呀,注意等量关系呀!这可太重要啦,就像开锁找对钥匙一样。
比如一道买东西算最值的题,总价不能超,问怎么买最合适。
不注意这些咋解题呢!
4. 哇塞,要合理设未知数啊!这可不能马虎,好比给自己选一件合适的衣服。
像那种两个数和一定求积最大的题目,设好未知数不就好解决多啦!
5. 哈哈,分类讨论也很关键呐!这就像走不同的路去目的地。
例如不同条件下用基本不等式求最值,那可得认真探讨呀!
6. 嘿,别忘了检查结果合不合理呀!可不能像没头苍蝇乱撞。
比如说算出来的边长不可能是负数之类的,一定得留意呀!
7. 哎哟喂,多做几道题练练手呀!不然技巧怎么能熟练运用呢。
像是那种生产产品数量和利润的问题,多做几遍不就熟了嘛!
8. 哇哦,和同学讨论讨论也很棒呀!三个臭皮匠还顶个诸葛亮呢!比如那道关于资源分配求最优的题,大家一起讨论肯定思路更广呀!
9. 总之,学会这些基本不等式应用题解题技巧,那解题就像囊中取物一样简单!咱可得好好掌握呀!。
数学复习:基本不等式的十大解题技巧
运用凑项或换元法将所给的函数化简为满足基本不等式的形式,运用基本不等式并检验其
等号成立的条件,若等号取不到则,结合函数 y = x + a (a 0) 单调性,并运用其图像与性 x
质求出其函数的最值即可。
【例5】(★★★)函数 y = x2 + 5 的值域为
.
x2 + 4
【答案】
5 2
,
+
【解析】令 x2 + 4 = t(t 2) , 则 y = x2 + 3 = x2 + 4 + 1 = t + 1 (t 2) .
数学复习:基本不等式的十大解题技巧
1. 基本不等式原始形式
(1)若 a,b R ,则 a2 + b2 2ab .
(2)若 a,b R ,则 ab a2 + b2 . 2
2.基本不等式一般形式(均值不等式)
若 a 0,b 0 ,则 a + b 2 ab .
3. 基本不等式的两个重要变形
(1)若 a 0,b 0 则 a + b ab (当且仅当 a = b 时取“ = ”). 2
【答案】 2 3 3
【解析】由 x2 + y2 + xy = 1,得1 = (x + y)2 − xy, (x + y)2 = 1+ xy 1+ (x + y)2 ,解得 4
− 2 3 x + y 2 3 ,又 x 0, y 0 ,所以 0 x + y 2 3 ,因此 x + y 的最大值为 2 3
【例2】(★★)已知 0 x 4 时,则 y = x(8 − 2x) 的最大值为
【答案】8
解答不等式问题的几个技巧
解题宝典不等式问题侧重于考查同学们的分析与逻辑推理能力.常见的不等式问题有:(1)比较两个代数式的大小;(2)证明某个不等式成立;(3)由含参不等式恒成立求参数的取值范围.下面结合几道例题,谈一谈解答不等式问题的几个技巧.一、作差运用作差法解答不等式问题,需将要比较的两个代数式相减,并将所得到的差与0进行比较.有时所得的差式较为复杂,此时需采用移项、分解因式、通分、约分、平方等方式,将差式简化,以快速比较出其与零的大小.例1.设a,b为实数,比较a2+b2与ab+a+b-1的大小.解:将a2+b2与ab+a+b-1相减得,a2+b2-(ab+a+b-1)=12(2a2+2b2-2ab-2a-2b+2)=12[](a-b)2+(a-1)2+(b-1)2,因为(a-b)2≥0,(a-1)2≥0,(b-1)2≥0,所以a2+b2-(ab+a+b-1)≥0,所以a2+b2≥ab+a+b-1,当且仅当a=b=1时取等号.将要比较的两式作差,并运用完全平方公式进行配方,即可运用作差法快速比较出两个代数式的大小.在解题时,要注意取等号的情形,确保取等号时的条件成立且满足题意.二、作商运用作商法解答不等式问题,需将要比较的两个代数式相除,并将所得到的商与1进行比较.在作商之前,要对两个代数式的正负进行讨论,只有在两式同号时,才能将其作商,运用作商法来比较二者的大小.若分母有可能为零,则要注意对此特殊情况进行单独讨论.例2.已知a=1816,b=1618,试比较a与b的大小关系.解:∵a=1816>0,b=1618>0,∴a b=18161618=(1816)16×1162=(98)1616=16<1,∴a<b.作商法适合于比较两个单项式的大小.在化简商式时,要选择合适的公式、运算法则,如指数幂运算法则、换底公式等进行运算,以将商式化为便于和1比较的形式.三、放缩放缩法是解答不等式问题的一种重要方法.若已知关系式与目标式之间的差异较大,则需将其中一个式子进行适当的放缩,如扩大分子、缩小分母、去掉部分项、增加常数项等,使其与另一个式子靠拢,从而解答问题.有时需找到一个合适的中间量,以利用不等式的传递性建立已知关系式和目标式之间的联系.例3.若a>b>0,c<d<0,|b|>|c|,证明:b+c(a-c)2<a+d(b-d)2.证明:因为b+c>0,0<1(a-c)2<1(b-d)2,所以b+c(a-c)2<b+c(b-d)2,因为0<b+c<a+d,1(b-d)2>0,所以b+c(b-d)2<a+d(b-d)2,所以b+c(a-c)2<b+c(b-d)2<a+d(a-c)2,即b+c(a-c)2<a+d(b-d)2.不等号前后的两个式子之间的差异较大,但是结构一致,于是分别根据已知条件和不等式的性质将不等式左右两边的式子b+c(a-c)2、a+d(b-d)2放缩,使得b+c(a-c)2<b+c(b-d)2、b+c(b-d)2<a+d(b-d)2,再根据不等式的传递性证明结论.四、利用几何法运用几何法解答不等式问题,往往要挖掘代数式的几何意义,如将代数式x2看作抛物线,将ax2+by2看作圆,将ax+by看作同一条直线.画出几何图形,通过分析图形中点、直线、曲线的位置及其关系,找到使不等式成立的点的集合,即可解题.例4.证明:x12+y12+x22+y22≥(x1-x2)2+(y1-y2)2证明:设点A(x1,y1),B(x2,y2),则AO=x12+y12,BO=x22+y22,AB=(x1-x2)2+(y1-y2)2,因为三角形中两边之和大于第三边,即|AO|+|BO| >|AB|,周元祥38解题宝典所以x 12+y 12+x 22+y 22>(x 1-x 2)2+(y 1-y 2)2,当A ,B ,O 三点共线时,x 12+y 12+x 22+y 22=(x 1-x 2)2+(y 1-y 2)2,所以x 12+y 12+x 22+y 22≥(x 1-x 2)2+(y 1-y 2)2.我们由该根式可联想到两点间的距离公式,于是设出A 、B 两点的坐标,即可将问题转化为证明|AO |+|BO |>|AB |,根据三角形两边之和大于第三边的性质来解题.运用几何法解题,需进行数形互化,结合几何图形来分析问题.五、运用基本不等式若a ,b >0a 、b >0,则a +b ≥2ab ,当且仅当a =b 时等号成立,该式叫做基本不等式.在解答不等式问题时,可以根据不等式的结构特征进行适当的变形,如凑系数、常数代换、添项、去项等,以配凑出两式的和或积,以便能利用基本不等式证明不等式.运用基本不等式时,要确保“一正”“二定”“三相等”的条件成立.例5.已知正实数x ,y 满足2x +5y =20,若不等式10x +1y≥m 2+4m恒成立,求实数m 的取值范围.解:在2x +5y =20的左右同除以20,得x 10+y4=1,则10x +1y =æèçöø÷10x +1y æèçöø÷x 10+y 4=54+5y2x +x 10y ≥94,当且仅当x =203,y =43取等号.则m 2+4m ≤94,解得-92≤m ≤12.由于10x +1y 为分式,所以将已知关系式变形为x 10+1y=1,即可通过常数代换,将10x +1y 化为和式54+5y 2x +x10y .而5y 2x 、x 10y的积为定值,这样便可运用基本不等式求得10x +1y 的最小值,从而求得m 的取值范围.解答不等式问题的方法很多,我们需根据不等式的结构特征进行变形、代换,联系相关的公式、性质、定理等将问题转化为几何问题、最值问题、运算问题等,并选用合适的方法进行求解.(作者单位:安徽省宣城中学)二面角问题的常见命题形式有:(1)求二面角的大小或范围;(2)证明两个平面互相垂直;(3)根据二面角的大小求参数的取值范围.这类问题主要考查同学们的空间想象能力和运算能力.那么,解答这类问题有哪些方法呢?下面结合实例进行归纳总结.一、直接法直接法是指直接从题目的条件出发,通过合理的运算和严密的推理,得出正确的结果.我们知道,二面角的大小可用其平面角表示,因此求二面角的大小,关键是求其平面角的大小.在求二面角时,需先仔细审题,明确题目中点、线、面的位置关系,灵活运用三垂线定理、勾股定理、正余弦定理、夹角公式,根据二面角以及平面角的定义,作出并求出平面角,即可运用直接法快速求得问题的答案.例1.如图1,在三棱锥S -ABC 中,SA ⊥底面ABC ,AB ⊥BC ,DE 垂直且平分SC ,分别交AC ,SC 于点D ,E ,且SA =AB ,SB =BC ,求二面角E -BD -C的大小.解:∵SB =BC ,E 是SC 的中点,∴SC ⊥BE ,∵SC ⊥DE ,BE ⊂平面BDE ,DE ⊂平面BDE ,∴SC ⊥平面BDE ,∵BD ⊂平面BDE ,∴SC ⊥BD ,∵SA ⊥底面ABC ,BD ⊂平面ABC ,∴SA ⊥BD ,又∵SC ⋂SA =S ,SC ⊂平面SAC ,SA ⊂平面SAC ,∴BD ⊥平面SAC ,又∵DC ⊂平面SAC ,DE ⊂平面SAC ,∴DC ⊥BD ,DE ⊥BD ,∴∠DEC 是所求二面角的平面角.∵SA ⊥底面ABC ,AB ⊂平面ABC ,AC ⊂平面ABC ,∴SA ⊥AB ,SA ⊥AC ,设SA =2,得AB =2,BC =SB =22,∵AB⊥BC ,∴AC =23,∴∠ACS =30°,又∵DE ⊥SC ,∴∠EDC =60°,林菊芳图139。
高中不等式的解题方法与技巧
高中不等式的解题方法与技巧高中不等式是数学中的一个重要部分,它在数学竞赛和日常生活中都有广泛应用。
解决不等式问题需要掌握一些方法和技巧,下面将介绍一些常用的解题方法。
1. 移项法移项法是解决不等式问题最基本的方法之一。
当我们遇到一个不等式时,可以将其看做一个方程,然后通过移项使不等式符号变为相反的符号。
例如:2x + 5 > 7移项后得到:2x > 2x > 12. 合并同类项法合并同类项法是指将含有相同未知数的项合并在一起。
例如:3x + 5 > 4x - 1合并同类项后得到:x > -63. 因式分解法因式分解法是指将不等式中的多项式因式分解,并根据因子的正负性来确定未知数的取值范围。
例如:2x^2 - x - 3 > 0将其因式分解得到:(2x + 3)(x - 1) > 0由于两个因子都为二次函数,所以可以画出函数图像来确定未知数的取值范围。
4. 借助图像法借助图像法是指通过画出函数图像来确定未知数的取值范围。
例如:x^2 - 4x + 3 > 0将其转化为函数图像的形式,得到:从图像中可以看出,不等式的解为x < 1或x > 3。
5. 取绝对值法取绝对值法是指将不等式中的绝对值转化为两个不等式,并根据两个不等式的解来确定原不等式的解。
例如:|2x - 3| > 5将其转化为两个不等式,得到:2x - 3 > 5 或者 2x - 3 < -5解得:x > 4 或者 x < -1综合起来,原不等式的解为x < -1或者 x > 4。
以上是一些常用的高中不等式解题方法和技巧。
需要注意的是,在解决问题时要注意符号的变化和特殊情况。
同时,还需要多做题、多思考、多总结,才能够掌握这些方法和技巧,并在实际应用中灵活运用。
求解不等式的方法与技巧
求解不等式的方法与技巧不等式是数学中常见的一种关系式,与等式不同,不等式表示两个数之间的大小关系,可以是大于、小于、大于等于、小于等于等不同的形式。
解不等式意味着找到满足特定条件的数值范围,这在数学问题和实际应用中都有广泛的应用。
本文将介绍一些求解不等式的常用方法和技巧。
一、基本不等式的性质在求解不等式之前,首先需要了解一些基本的不等式性质。
这些性质是求解不等式的基础,对理解和应用不等式非常重要。
1. 加减性质:对于不等式$a < b$和$c > 0$,有$a + c < b + c$和$a - c < b - c$。
2. 乘除性质:对于不等式$a < b$和$c > 0$,有$c \cdot a < c \cdotb$和$\frac{a}{c} < \frac{b}{c}$。
而对于不等式$a > b$和$c < 0$,乘除性质则需要翻转,即$c \cdot a > c \cdot b$和$\frac{a}{c} > \frac{b}{c}$。
3. 倒置性质:不等式中的关系符号若取等号,则改变不等式两边的大小关系不变。
例如,如果$a < b$,则$-a > -b$。
若$a = b$,则$-a = -b$。
4. 合并性质:对于不等式$a < b$和$c < d$,有$a + c < b + d$和$a -d < b - c$。
而对于不等式$a > b$和$c > d$,合并性质则需要翻转,即$a + c > b + d$和$a - d > b - c$。
一元一次不等式是指只含有一个未知数的一次方程。
求解一元一次不等式的方法和求解方程类似,也是通过移项和化简来得到不等式的解集。
下面以一元一次线性不等式举例,介绍一些常见的求解方法。
1. 移项法:假设有不等式$ax + b > 0$,其中$a$和$b$为已知常数。
基本不等式十大解题技巧
基本不等式十大解题技巧
基本不等式是数学中的一个重要概念,也是高中数学中的重点和难点之一。
以下是基本不等式解题的十大技巧:
1. 均值不等式法:利用算术平均值与几何平均值的关系,将不等式中的变量转化为平均值的形式,然后利用均值不等式进行证明。
2. 柯西不等式法:利用柯西不等式,将不等式中的变量转化为乘积形式,然后利用柯西不等式进行证明。
3. 均值不等式的逆推法:利用均值不等式的逆命题,将不等式中的变量转化为和的形式,然后利用均值不等式进行证明。
4. 几何平均值不等于算术平均值法:利用几何平均值与算术平均值的关系,将不等式中的变量转化为几何平均值的形式,然后利用不等式进行证明。
5. 利用三角不等式法:利用三角不等式,将不等式中的变量转化为三角形的三边长度,然后利用三角不等式进行证明。
6. 利用柯西不等式的逆推法:利用柯西不等式的逆命题,将不等式中的变量转化为乘积形式,然后利用柯西不等式进行证明。
7. 利用平均不等式法:利用平均不等式,将不等式中的
变量转化为平均值的形式,然后利用不等式进行证明。
8. 利用柯西不等式法的逆推法:利用柯西不等式的逆命题,将不等式中的变量转化为乘积形式,然后利用柯西不等式进行证明。
9. 利用均值不等式的逆推法:利用均值不等式的逆命题,将不等式中的变量转化为和的形式,然后利用均值不等式进行证明。
10. 利用几何平均值不等于算术平均值法的逆推法:利用几何平均值与算术平均值的关系,将不等式中的变量转化为几何平均值的形式,然后利用不等式进行证明。
以上是基本不等式解题的十大技巧,掌握这些技巧可以帮助学生更好地理解和应用基本不等式。
基本不等式的八种应用技巧
基本不等式的八种应用技巧1. 代入数值验证基本不等式可以通过代入具体数值进行验证。
选择适当的数值,将其代入不等式中,计算结果来判断不等式是否成立。
通过验证可以确认不等式是否正确,确定不等式的适用范围。
2. 不等式的加减运算规则基本不等式在加减运算中有一些特殊规则,可以简化计算过程。
例如,不等式两边同时加上或减去一个相同的数值,不等式的关系不变。
对于复杂的不等式,通过使用加减运算规则可以简化计算。
3. 不等式的乘除运算规则基本不等式在乘除运算中也有一些特殊规则,可以简化计算。
例如,不等式两边同时乘以或除以一个正数,不等式的关系不变;但是如果乘以或除以一个负数,则不等式的关系会发生改变。
熟练运用乘除运算规则可以有效处理复杂的不等式。
4. 不等式的倒数规则当基本不等式中的数值取倒数时,不等式的关系会发生改变。
原来大于的不等式变为小于,原来小于的不等式变为大于。
这一规则在处理负数或分数时尤为重要,需要注意倒数规则的运用。
5. 不等式的平方规则基本不等式的平方规则指的是取平方后不等式的关系会发生改变。
当不等式中的数值为正数时,取平方后不等式的关系保持不变;但是当不等式中的数值为负数时,取平方后不等式的关系会发生反转。
在处理含有平方的不等式时需要注意平方规则的运用。
6. 不等式的绝对值规则当基本不等式中出现绝对值时,需要根据绝对值的定义来处理。
根据绝对值的性质,可以将不等式分解为两个不等式来求解。
绝对值规则在处理含有绝对值的不等式时非常有用。
7. 不等式的开方规则当不等式中的数值开方后,不等式的关系可能会发生改变。
对于正数,开方不改变不等式的关系;但是对于负数,则需要特殊处理。
通过熟练掌握开方规则,可以更好地处理带有开方的不等式。
8. 不等式的数轴表示将不等式用数轴表示可以更直观地理解不等式的解集。
通过在数轴上绘制有向线段表示不等式的解集,可以更清晰地描述不等式的范围和解的情况。
数轴表示在不等式的可视化方面起到重要作用。
七下不等式的解题方法与技巧
七下不等式的解题方法与技巧不等式是数学中常见的形式之一,与等式不同的是,不等式中存在着大小关系。
在初中数学中,不等式解题是一个重要的环节,也是一个让学生感到困难的环节。
所以,我们需要学习一些解决不等式问题的方法和技巧。
1. 移项法移项法是不等式解题的基本方法之一,它的基本思路是将不等式中的项移动到一个方向,使得不等式变得更容易处理。
具体来说,我们可以将不等式中的项移动到一边,将另一边的项移到另一边。
例如,对于不等式3x + 5 > 17,我们可以将5移到左边,得到3x > 12,然后再将3移到右边,得到 x > 4。
2. 同乘同除法同乘同除法也是不等式解题的基本方法之一。
我们可以通过乘以或除以一个数来改变不等式中各项的大小关系,但是需要注意,当乘以或除以一个负数时,需要改变不等式的符号。
例如,对于不等式2x < 8,我们可以将不等式两边同时乘以2,得到4x < 16,然后再将不等式两边同时除以4,得到x < 4。
3. 平方两边有些不等式中存在平方项,此时我们可以通过平方两边来改变不等式的大小关系。
例如,对于不等式x^2 - 4x + 3 > 0,我们可以将不等式两边同时减去3,得到x^2 - 4x > -3,然后将不等式两边同时平方,得到x^4 - 8x^2 + 16x > 9,最后将不等式因式分解,得到(x-1)(x-3)(x-5) > 0,解为x < 1 或 3 < x < 5。
4. 分段讨论法有些不等式中存在多个不等式,此时我们可以通过分段讨论法来解决问题。
具体来说,我们可以将多个不等式分成几个部分,分别讨论符号的不同情况,最后合并结果。
例如,对于不等式|x - 2| < 3,我们可以将其分成两个部分:x - 2 < 3 和 x - 2 > -3,分别解得x < 5 和 x > -1,最后得到-1 < x < 5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A. 8
C. 1
1 D. 4
3 x y 6 0, 2.(2009山东理12T)设 x , y 满足约束条件 x y 2 0, 若目标函数 x 0, y 0,
z ax by(
A.
a>0, b
B.
2 3 >0)的最大值为12,则 a b 的最小值为 ( A )
-2
(4,6)
x y20
z ax by
2 0
2
3x y 6 0
x
(1) 一正:各项均为正数。
(2) 二定:两个正数积为定值,和有最小值。 两个正数和为定值,积有最大值。 (3) 三相等:求最值时一定要考虑不等式是 否能取“=”,否则会出现错误。
b >0,若 3是 1.设 a >0,
得最小值为(
3a 与 3b
1 1 的等比中项,则 a b
B)
B. 4
(2009年天津理6)
•
2 y 5.已知x,y为正实数,且x 2 1,求 2
2 y 求 x 1 的最大值; 2
技巧二:常值代换或乘常值
1 9 • 例4:已知 x 0, y 0 ,且 1,求 x y
x y 的最大值。
练习二
• 1.若 x, y R 且 2 x 的最小值; 1 4 • 2.(2014,六校联考)已知 x, y R ,且 3 , x y 求 x y 的最小值; • 3.(2011重庆,理,7)已知 a 0, b 0, a b 2 ,求 1 4 函数 y a b 的最小值; • 4.(2011天津,文,9)已知 x, y R, a 1, b 1,若 1 1 x y ,求 a b 3, a b 2 3 x y 的最小值.
技巧四:取平方
3x 2 y 10,求函 • 例6:已知 x, y为正实数, 数 w 3x 2 y 的最大值。
练习四
5 1 1.求函数 y 2 x 1 5 2 x x 的最大值. 2 2
小结:利用 a b 2 ab(a 0, b 0) 求最值时,要注意下面三条:
2
练习一3 16 2 • 2.求函数 y 3 x 2 的最小值; 2 x
3 • 3.设 0 x ,求函数 y 4 x3 2 x 的最大值. 2
• 4.求函数
x2 x 1 x 1 的最小值; y x 1
注意:1.适用的范围:a, b 为正数. 2.语言表述:两个正数的算术平均
数不小于它们的几何平均数。
ab 3.我们把不等式 ab (a>0,b>0) 2
称为基本不等式
ab 把 2 看做两个正数a,b 的等差中项,
ab 看做正数a,b的等比中项,
那么上面不等式可以叙述为: 两个正数的等差中项不小于它们的等比 中项。
技巧一:配凑法,有凑项、凑系数、配方、 分离常数及换元等 • 例1:已知 0 x 4,求函数 y x8 2 x 的最大值。
1 5 • 例2: 已知 x ,求 y 4 x 2 的最 4x 5 4 大值。
x 7 x 10 • 例3:求函数 y x 1 的最小值。 x 1
1 1 y 1,求 x y
技巧三:整体代换 • 例5:已知 a , b 为正实数, 2b ab a 30 ,
1 求函数 y 的最小值。 ab
练习三 • 1.(2010浙江,文,15)若正实数 x, y满足 2 x y 6 xy,求xy的最小值. • 2.(2010重庆,理,7)已知 x 0, y 0, x 2 y 2xy 8, 求x 2 y的最小值. 3 3 • 3.设x, y均为正实数,且 x 2 y 2 1 ,求 xy的最小值.
25 6
8 3
C.
11 3
y
D. 4
略解:
把点(4, 6)代入z ax by得4a 6b 12, 2 3 2 3 2a 3b 即2a 3b 6, 而 a b a b 6 13 b a 13 25 ( ) 2 , 故选A 6 a b 6 6
基本不等式解题技巧
重要不等式: 如果a,b∈R, 那么a2+b2≥2ab
(当且仅当a=b 时取“=”) 1.指出适用范围:a, b R
ab 2.强调取“=”的条件:
基本不等式: 如果a, b∈R+,那么
ab ab 2
(当且仅当a=b 时,式中等号成立)
ab 为a,b 的算术平均数, 称 2 称 ab 为a,b 的几何平均数。