西南交大《信号与系统》期末测验考试A卷
《信号与系统》期末试卷与答案
《信号与系统》期末试卷与答案第 2 页 共 14 页《信号与系统》期末试卷A 卷班级: 学号:__________ 姓名:________ _ 成绩:_____________一. 选择题(共10题,20分) 1、n j n j een x )34()32(][ππ+=,该序列是 。
A.非周期序列B.周期3=NC.周期8/3=N D. 周期24=N2、一连续时间系统y(t)= x(sint),该系统是 。
A.因果时不变B.因果时变C.非因果时不变D. 非因果时变3、一连续时间LTI 系统的单位冲激响应)2()(4-=-t u e t h t ,该系统是 。
A.因果稳定B.因果不稳定C.非因果稳定D. 非因果不稳定第 3 页 共 14 页4、若周期信号x[n]是实信号和奇信号,则其傅立叶级数系数a k 是 。
A.实且偶 B.实且为奇 C.纯虚且偶 D. 纯虚且奇5、一信号x(t)的傅立叶变换⎩⎨⎧><=2||02||1)(ωωω,,j X ,则x(t)为 。
A.tt 22sin B.tt π2sin C.tt 44sin D.ttπ4sin6、一周期信号∑∞-∞=-=n n t t x )5()(δ,其傅立叶变换)(ωj X 为 。
A.∑∞-∞=-k k )52(52πωδπB.∑∞-∞=-k k)52(25πωδπC. ∑∞-∞=-k k )10(10πωδπ D.∑∞-∞=-k k)10(101πωδπ7、一实信号x[n]的傅立叶变换为)(ωj e X ,则x[n]奇部的傅立叶变换为 。
第 4 页 共 14 页A. )}(Re{ωj e X jB.)}(Re{ωj e X C.)}(Im{ωj e X jD.)}(Im{ωj e X8、一信号x(t)的最高频率为500Hz ,则利用冲激串采样得到的采样信号x(nT)能唯一表示出原信号的最大采样周期为 。
A. 500B. 1000C. 0.05D. 0.0019、一信号x(t)的有理拉普拉斯共有两个极点s=-3和s=-5,若)()(4t x et g t=,其傅立叶变换)(ωj G 收敛,则x(t)是 。
《信号与系统》期末试卷A卷与答案.pptx
0
y(t)
1 t2 2
Tt
1 T2
1
2 t Tt
2
3T2
2
2
0
t 0 0t T
T t 2T 2T t 3T 3T t
3、(3×4 分=12 分)
j dX ( j / 2)
(1)
tx(2t) 2
d
(1t)x(1t) x(1t) tx(1t)
(2) X ( j)e j j d [X ( j)e j] jX ' ( j)e j d
(3)
t
dx(t) dt
X ( j)
dX ( j) d
第 页 4共 6 页
学海无 涯
4、(5 分)解 :
s2
1 2s 2
s2 2s 2
s2 2s 2
F (s) es 2(s 1) es (s 1)2 1
f (t) (t 1) 2e(t 1) cos(t 1)u(t 1)
学海无涯
《信号与系统》期末试卷 A 卷
班级:
学号:
姓名:
_ 成绩:
一. 选择题(共 10 题,20 分)
j( 2 )n
j( 4 )n
1、 x[n] e 3 e 3 ,该序列是
A.非周期序列 B.周期 N 3
D。
C.周期 N 3/ 8
CDCC
D. 周期 N 24
2、一连续时间系统y(t)= x(sint),该系统是
3
3
(b)若系统因果,则Re{s} 2,h(t) 1 e2tu(t)-1 et u(t) 4分
3
3
(c)若系统非稳定非因果,则Re{s} -1,h(t) 1 e2t u(t) 1 et u(t) 4分
信号与系统a答案
《信号与系统》期末试题A 参考答案及评分细则电子信息工程和通信工程专业 一、填空题(每空2分,部分正确得1分,共26分)1.2;2.01t j ej ωαω-+; 3.)()(32t u eett---; 4.22(2)(2)1s s s ++++-;5.)2()2(2---t u et ; 6.32(3)n u n --; 7. (3)(1)n u n ----; 8.单位圆内;9.1K >; 10.40 80; 11.0、2;二、解:425.0===TT s πωπ(1))(t f s 的频谱图和输出)(t r 的频谱图如图所示:(6分)(2)由图可知)(2)(ωπωF R =,故有)(2)(t f t r π=(2分)三、解:(本题10分)(1)2(2)()[(1)9](2)s s H s H s s -=+++( 2分)0(0)lim ()2s h sH s H +→∞=== (2 分)22(2)()[(1)9](2)s s H s s s -∴=+++ ( 1分)(2)幅频特性曲线如图所示:(3 分) 通频特性为带通。
( 2分)四、解:3212()()(2)zH z z z -=-- (1)收敛域的三种情况:2z >12z <122z << (2分)(2) 12()2z zH z z z =--- (2分)2z >时 12()[()2]()nnh n u n =- 系统因果不稳定 (2分) 12z <时 12()[()2](1)nn h n u n =-+-- 系统非因果不稳定 (2分)122z <<时12()()()2(1)nnh n u n u n =+-- 系统非因果稳定 (2分)五、求解各题1.(1)电路的S 域模型为:525)(2++=s s s H (3分)极、零点图如图所示: (2分)极点位于左半平面系统是稳定系统。
信号与系统期末考试试题(有答案的)
信号与系统期末考试试题一、选择题(共10题,每题3分 ,共30分,每题给出四个答案,其中只有一个正确的)1、 卷积f 1(k+5)*f 2(k-3) 等于 。
(A )f 1(k)*f 2(k) (B )f 1(k)*f 2(k-8)(C )f 1(k)*f 2(k+8)(D )f 1(k+3)*f 2(k-3)2、 积分dt t t ⎰∞∞--+)21()2(δ等于 。
(A )1.25(B )2.5(C )3(D )5 3、 序列f(k)=-u(-k)的z 变换等于 。
(A )1-z z (B )-1-z z(C )11-z (D )11--z4、 若y(t)=f(t)*h(t),则f(2t)*h(2t)等于 。
(A ))2(41t y (B ))2(21t y (C ))4(41t y (D ))4(21t y 5、 已知一个线性时不变系统的阶跃相应g(t)=2e -2tu(t)+)(t δ,当输入f(t)=3e —tu(t)时,系统的零状态响应y f (t)等于(A )(-9e -t +12e -2t )u(t) (B )(3-9e -t +12e -2t )u(t)(C ))(t δ+(-6e -t +8e -2t )u(t) (D )3)(t δ +(-9e -t +12e -2t )u(t)6、 连续周期信号的频谱具有(A ) 连续性、周期性 (B )连续性、收敛性 (C )离散性、周期性 (D )离散性、收敛性7、 周期序列2)455.1(0+k COS π的 周期N 等于(A )1(B )2(C )3(D )4 8、序列和()∑∞-∞=-k k 1δ等于(A )1 (B) ∞ (C) ()1-k u (D) ()1-k ku9、单边拉普拉斯变换()se s s s F 2212-+=的愿函数等于 ()()t tu A ()()2-t tu B ()()()t u t C 2- ()()()22--t u t D 10、信号()()23-=-t u tet f t的单边拉氏变换()s F 等于()A ()()()232372+++-s e s s ()()223+-s e B s()()()2323++-s se C s ()()332++-s s e D s二、填空题(共9小题,每空3分,共30分)1、卷积和[(0.5)k+1u(k+1)]*)1(k -δ=________________________2、单边z 变换F(z)=12-z z的原序列f(k)=______________________ 3、已知函数f(t)的单边拉普拉斯变换F(s)=1+s s,则函数y(t)=3e -2t ·f(3t)的单边拉普拉斯变换Y(s)=_________________________4、频谱函数F(j ω)=2u(1-ω)的傅里叶逆变换f(t)=__________________5、单边拉普拉斯变换ss s s s F +++=2213)(的原函数f(t)=__________________________ 6、已知某离散系统的差分方程为)1(2)()2()1()(2-+=----k f k f k y k y k y ,则系统的单位序列响应h(k)=_______________________7、已知信号f(t)的单边拉氏变换是F(s),则信号⎰-=2)()(t dx x f t y 的单边拉氏变换Y(s)=______________________________8、描述某连续系统方程为()()()()()t f t f t y t y t y +=++''''52该系统的冲激响应h(t)=9、写出拉氏变换的结果()=t u 66 ,=k t 22三、(8分)四、(10分)如图所示信号()t f ,其傅里叶变换()()[]t f jw F F =,求(1) ()0F (2)()⎰∞∞-dw jw F六、(10分)某LTI 系统的系统函数()1222++=s s s s H ,已知初始状态()(),20,00=='=--y y 激励()(),t u t f =求该系统的完全响应。
信号与系统期末考试A试卷及答案
《信号与系统》考核试卷
专业班级:电子、通信工程考核方式:闭卷考试时量:120 分钟试卷类型: A
第2页共 8 页第1页共 8 页
图:
域模型图:
)的表达式:
第3页共 8 页第4页共 8 页
(a)
(b) (c) (d)
A 、
B 、
C 、
D 、
Y(w):
5、已知离散系统的差分方程为)(2)2(2)1(3)(n f n y n y n y =-+-+,求该
系统的系统函数)(z H 、单位响应)(n h 以及当激励信号)(2)(n n f n ε=时,
系统的零状态响应)(n y 。
(13分)
利用z 变换的移位特性,将差分方程变换为零状态下的z 域方程:
)(2)(2)(3)(21z F z Y z z Y z z Y =++--
2
322312)()()
(2221++=
++==--z z z z z z F z Y z H
2
412232)(22+++-=++=z z
z z z z z z H )(])2(4)1(2{)(n n h n n ε+--=∴
当激励信号)(2)(n n f n ε=时,2
)(-=
z z
z F 22)()()(3
2==z z z z H z F z Y 2
2
-
z
z 第5页 共 8 页
④由于该系统函数的所有极点均在
所以该系统是稳定系统。
第7页共页第8页共页第9页共页第10页共页
第7页共 8 页第8页共 8 页。
《信号与系统》考试试题及参考答案
《信号与系统》期末考试姓名 学号 班级 成绩一、选择及填空(20分 每题2分):1. 以下系统,哪个可进行无失真传输_B _ωωϕωωωδωωωωωωωω-6)( )1()(H )( )()(H )( 3)(H )( )1()1()(H )( 33=-===--=-且;;;D ej C e j B e j A j j j U答:(B)2. 下列哪一项是理想低通滤波器的系统函数_C _⎩⎨⎧<>=⎩⎨⎧><==--=-20 020 )(H )( 20 020 )(H )( 3)(H )( )1()1()(H )(3 33ωωωωωωωωωωωωωωj j j j e j D e j C e j B e j A ;;;U答:(C )3. 对于一个LTI ,如果激励f 1(t)对应响应是)(3t U e t -, 激励f 2(t)对应响应是t 3sin ,则激励f 1(t)+5f 2(t)对应响应是_t t U e t 3sin 5)(3+-__;则激励3f 1(t+1)+5f 2(t-3)对应响应是_)3 (3sin 5)1(33-++--t t U e t __。
4. 已知},2,2,2,2{01)( --=n f ,}32,8,4,2,1{)(2↑=n f ,则=+)2()1(21f f _10_,用)(n δ表示)3(32)2(8)1(4)(2)1()(2-+-+-+++=n n n n n n f δδδδδ________________________。
5. }2,8,4{}3,1,2,3{11----*=_{12,32,14,-8,-26,-6}-2__,}2,1,0{}5,3,6{00*=_{0,6,15,11,10}0__ 6. (课本P152 例4-17)已知)(t f 的象函数ss s s s F 5323)(23+++=,则)0(+f =__0_;)(∞f =_2/5__。
2012-2013(2)信号与系统A期末考试试卷B答案
班 级 学 号 姓 名8.下列各式中正确的是 ( C )(A ))()2(t t δδ= (B ))(2)2(t t δδ=;(C ))(21)2(t t δδ= (D ))2(21)(2t t δδ=9.若离散时间系统是稳定因果的,则它的系统函数的极点( C ) (A ) 全部落于单位圆外 (B )全部落于单位圆上 (C ) 全部落于单位圆内 (D ) 上述三种情况都不对 10. 已知)()()(t h t x t y *=,则(3)(4)x t h t -*-=( C )。
(A) )3(-t y (B) )4(-t y (C) )7(-t y (D) )1(-t y 二、(5分)已知)5(t f -的波形如图所示,试画出)42(+t f 的波形。
解:三、(10分)试求下图所描述离散线性时不变系统的单位取样响应()h n 。
其中线性时不变子系统的单位取样响应分别为:()()1(1)(2)h n n n n δδδ=+-+-,()()()()2212h n n n n δδδ=+---。
解法1:在时域中求解或写成解法2:在Z 域中求解,或写成四、(20分)下图(a )所示是抑制载波振幅调制的接收系统∞<<∞-=t ttt e πsin )(, ∞<<∞-=t tt s 1000cos )(。
理想的低通滤波器的传输函数如图(b )所示,0)(=ωϕ。
(1) 画出A 、B 、C 点的频谱图。
(2) 求输出信号)(t r 。
解:∞<<∞-=t ttt e πsin )( ,)]1()1([)(--+=ωωωu u E∞<<∞-=t t t s 1000cos )(,))1000()1000(()(++-=ωσωσπωS (1))()()(t s t e t r A =,)]1001()999()999()1001([21)()(21)(---++-+=*=ωωωωπu u u u w S w E w R A)()()(t s t r t r A B =,图 (b )图(a ))]2001()1999([41)]1999()2001([41)]1()1([21)()(21)(---++-++--+=*=ωωωωωωπu u u u u u w S w R w R A B(2) )(21)]1()1([21)(ωωωE u u w R C =--+==∞<<∞-=t tt t r π2sin )(五、(15分)设()f t 是频带有限的信号,其频谱如图所示,频带宽度10/m rad s ω=。
西南交大2012-2013(2)信号与系统A期末考试试卷B答案
西南交通大学2012-2013学年第(2)学期考试试卷课程代码 3122400 课程名称 信号与系统A 考试时间 120分钟阅卷教师签字: 一、选择题:(20分)本题共10个小题,每题回答正确得2分,否则得零分。
每小题所给答案中只有一个是正确的。
1. 信号(63)f t -表示( D )(A )(3)f t 左移6 (B )(3)f t 左移2 (C )(3)f t 右移6 (D )(3)f t -右移2 2.连续周期信号的频谱具有(A )连续性、周期性 (B )连续性、非周期性 (C )离散性、周期性 (D )离散性、非周期性3.描述离散时间系统的数学模型是( A )(A ) 差分方程 (B ) 代数方程 (C ) 微分方程 (D ) 状态方程4. 已知)(1n f 是1N 点的时限序列,)(2n f 是2N 点的时限序列,且12N N >,则)()()(21n f n f n y *= 是( A )点时限序列。
(A )121-+N N (B )2N (C )1N (D )21N N +5. 连续信号f(t)的 占有频带为0~20KHz,经均匀采样后,构成一离散时间信号。
为了保证能够从离散时间信号恢复原信号f(t), 则采样周期的值最大不得超过( B )。
(A ) 10-4s (B ) 0.25⨯10-4s (C ) 5×10-5s (D ) 0.5⨯10-3s6.已知()()f t t δ'=,则其频谱()F j ω=( C ) (A )ωj 1 (B ))(1ωπδω+j (C )ωj (D ))(21ωπδω+j 7. 已知某连续时间系统的系统函数11)(+=s s H ,该系统属于什么类型 ( B ) (A)高通滤波器 (B)低通滤波器 (C)带通滤波器 (D)带阻滤波器班 级 学 号 姓 名密封装订线 密封装订线 密封装订线8.下列各式中正确的是 ( C )(A ))()2(t t δδ= (B ))(2)2(t t δδ=;(C ))(21)2(t t δδ= (D ))2(21)(2t t δδ=9.若离散时间系统是稳定因果的,则它的系统函数的极点( C ) (A ) 全部落于单位圆外 (B )全部落于单位圆上 (C ) 全部落于单位圆内 (D ) 上述三种情况都不对 10. 已知)()()(t h t x t y *=,则(3)(4)x t h t -*-=( C )。
(完整word)西南交大信号与系统本科卷及答案1 (2)
西南交通大学2006-2007学年第( 1 )学期考试试卷课程代码 课程名称 信号与系统A 考试时间 120分钟阅卷教师签字:一.(15分)试求下图所描述离散线性时不变系统的单位取样响应()h n 。
(x其中线性时不变子系统的单位取样响应分别为:()()14h n R n =,()()()()2212h n nn n δδδ=+---,()()()()33212h n n n n δδδ=+-+-。
二.(10分)已知信号)25(t f -波形如图所示,试给出)(t f 的波形。
三.(15分)一线性时不变连续时间系统,初始状态不详。
当激励为)(t f 时其全响应为[])(2sin 23t u t et+-;当激励为)(2t f 时其全响应为[])(2sin 23t u t e t +-;求:(1) 初始状态不变,当激励为)1(-t f 时系统的全响应,并指出零输入响应、零状态响应。
(2) 初始状态是原来的两倍,激励为)(2t f 时系统的全响应.四、(10分)如图所示系统中,有两个时间函数)(1t x 和)(2t x 相乘,其乘积)(t w 由一冲激串采样,)(1t x 的频谱为)(1ωj X ,带限于1ω;)(2t x 的频谱为)(2ωj X ,带限于2ω。
试求最大的采样间隔T ,以使得)(t w 通过利用某一理想低通滤波器能从)(t w p 中恢复出来.五、(30分)已知一线性时不变因果系统框图如下,试确定: (1)系统函数()H s ;(2)画出零极点分布图,并判断系统的稳定性; (3)系统的单位冲激响应()h t ;(4)写出描述系统输入输出关系的微分方程;(5)当输入)()(t u e t f t-=,求系统的零状态响应)(t y 。
六、(10 分)已知某线性时不变系统的零极点分布图如下,且100)(=∞H ,试画出该系统的波特图(只要求画出对数幅值曲线)。
ωω∑∞-=nT t t p )()(δ1x 2x)tωj七、(10分)离散时间线性时不变系统的框图如图所示,求: (1)系统函数()H z ; (2)系统的单位函数响应()h n .)n答案: 一、()()()()()()()()645114193142101113-+-+-+-+-+-+=n n n n n n n n h δδδδδδδ 二、三、(1)()()()()[]()112sin 31133---+=----t u e t t u e t r t t z ;()()t u e t r t zi 331-=-;()()()[]()112sin 113---=---t u e t t r t zs ;(2) ()()()t u et t r tz 342sin 2-+=四、21w w T +=π五、(1)()()()()2843+++=s s s s H(2)t稳定系统(3)()()()t ueeth tt282--+=(4) ()()()()()t xtxtytyty12'316'10"+=++(5)()()t ueeet y ttt⎪⎭⎫⎝⎛--=---827279六、七、(1)()112-+=zzzH(2) ()()()132-+=nunnhδ。
《信号与系统》期末试题1(含答案)
4
6
2
低抽样频率为
(A)
A、 6Hz B、 8Hz
C、10Hz
D、 12Hz
(6) 单边拉普拉斯变换 F (s) se s 的原函数是 s2 4
(D )
A、 cos(2t) (t 1)
B、 cos[2(t 1)] (t)
C、 cos(2t 1) (t 1)
D、 cos[2(t 1)] (t 1)
(7) 离散序列 f1(k) {1,0,2,1}( k 0,1,2,3)、 f2 (k) {3,7,2}( k 1,0,1, )设离散卷
积和 y(k) f1(k) f2 (k) ,则 y(2)
(B )
A、8
B、17
C、11
D、2
(8) 某离散信号的 z 变换为 F (z) z2 2z ,已知该序列为右边序列,则该序列的收 z2 2z 3
作出
f2 (t)
的导数
df2 (t) dt
的波形;
(3) 利用卷积积分的性质,作出 f1 (t) f2 (t) 的波形。
(D )
1 f1(t)
1 0
1
t
f2 (t) 1
解
t
1 f1(t)dt
1 0 1
t
1 0 1 t
f
2
(t
)
1
1 0 1 t
2
f1(t) f2 (t) 1
0
2t
期末考试试题
第 1-3 页
s
2
3
进行 laplace 反变换可得:
yzs (t)
(3 2
e t
2e 2t
1 e3t ) (t) 2
3. 全响应:
全响应为
《信号与系统》A试卷答案
西南交通大学2011-2012学年第(1)学期考试试卷课程代码 3122400 课程名称 信号与系统A 考试时间 120分钟阅卷教师签字: 一、选择题:(20分)本题共10个小题,每题回答正确得2分,否则得零分。
每小题所给答案中只有一个是正确的。
1. 已知f (t )的傅里叶变换为)(ωj F ,则f (1-t )的傅里叶变换为( C ) (A )ωωj e j F )(-- (B )ωωj ej F -)((C )ωωj e j F --)((D )ωωj ej F )(-2.连续周期信号的频谱具有( D )(A )连续性、周期性 (B )连续性、非周期性 (C )离散性、周期性 (D )离散性、非周期性3.某系统的系统函数为H (s ),若同时存在频响函数H (j ω),则该系统必须满足条件(C ) (A )时不变系统 (B )因果系统 (C )稳定系统 (D )线性系统4. 已知)(1n f 是1N 点的时限序列,)(2n f 是2N 点的时限序列,且12N N >,则)()()(21n f n f n y *= 是( A )点时限序列。
(A )121-+N N (B )2N (C )1N (D )21N N +5. 若对f (t )进行理想取样,其奈奎斯特取样频率为f s ,则对)231(-t f 进行取样,其奈奎斯特取样频率为( B )。
(A )3f s (B )s f 31 (C )3(f s -2) (D ))2(31-s f 班 级 学 号 姓 名密封装订线 密封装订线 密封装订线6. 周期信号f(t)如题图所示,其直流分量等于( B )(A )0 (B )4 (C )2(D )67. 理想不失真传输系统的传输函数H (jω)是 ( B )。
(A )0j tKe ω- (B )0t j Ke ω-(C )0t j Ke ω-[]()()c c u u ωωωω+--(D )00j t Keω- (00,,,c t k ωω为常数)8.已知)()(ωj F t f ↔,则信号)5()()(-=t t f t y δ的频谱函数 )(ωj Y 为( A )。
西南交通大学期末真题及答案信号与系统2009-2010A
西南交通大学2009-2010学年第(2)学期考试试卷课程代码 3122400 课程名称 信号与系统A 考试时间 120分钟阅卷教师签字: 一、选择题:(20分)本题共10个小题,每题回答正确得2分,否则得零分。
每小题所给答案中只有一个是正确的。
1. 若 ()f t 是已录制声音的磁带,则下列表述错误的是( ) (A )()f t -表示将磁带倒转播放产生的信号 (B )(2)f t 表示将磁带以二倍速度加快播放(C )()2tf 表示原磁带放音速度降低一半播放(D )(2)f t 将磁带的音量放大一倍播放2.连续周期信号的频谱具有(A )连续性、周期性 (B )连续性、非周期性 (C )离散性、周期性 (D )离散性、非周期性3.周期矩形脉冲的谱线间隔与( ) (A )脉冲幅度有关 (B )脉冲宽度有关 (C )脉冲周期有关(D )周期和脉冲宽度有关4. 已知)(1n f 是1N 点的时限序列,)(2n f 是2N 点的时限序列,且12N N >,则)()()(21n f n f n y *= 是( )点时限序列。
(A )121-+N N (B )2N (C )1N (D )21N N +5. 若对f (t )进行理想取样,其奈奎斯特取样频率为f s ,则对)231(-t f 进行取样,其奈奎斯特取样频率为( )。
班 级 学 号 姓 名密封装订线 密封装订线 密封装订线(A )3f s (B )s f 31 (C )3(f s -2) (D ))2(31-s f 6. 周期信号f(t)如题图所示,其直流分量等于( )(A )0 (B )4 (C )2(D )67. 理想不失真传输系统的传输函数H (jω)是 ( )。
(A )0j tKe ω-(B )0t j Ke ω-(C )0t j Ke ω-[]()()c c u u ωωωω+--(D )00j t Keω- (00,,,c t k ωω为常数)8.已知)()(ωj F t f ↔,则信号)5()()(-=t t f t y δ的频谱函数 )(ωj Y 为( )。
2022年信号与系统A期末考试试卷答案
2022年信号与系统A期末考试试卷答案一、选择题(每题5分,共25分)1. 信号与系统的基本特征是()A. 线性时不变性B. 非线性时变性C. 非线性时不变性D. 线性时变性答案:A2. 下列哪个信号是周期信号?()A. 正弦信号B. 斜坡信号C. 阶跃信号D. 冲激信号答案:A3. 在离散时间信号中,以下哪个性质不是线性系统的特征?()A. 齐次性B. 叠加性C. 时间平移性D. 时间缩放性答案:D4. 在信号的傅里叶变换中,以下哪个说法是正确的?()A. 能量信号没有傅里叶变换B. 功率信号没有傅里叶变换C. 非周期信号没有傅里叶变换D. 周期信号没有傅里叶变换答案:B5. 以下哪个滤波器不属于模拟滤波器?()A. 低通滤波器B. 高通滤波器C. 带通滤波器D. 数字滤波器答案:D二、填空题(每题5分,共25分)1. 线性时不变系统的响应可以表示为输入信号的_________和系统的_________。
答案:卷积,冲激响应2. 在离散时间信号中,单位冲激信号的傅里叶变换是_________。
答案:13. 在信号的傅里叶变换中,信号的时间域扩展会导致频域的_________。
答案:压缩4. 线性时不变系统的频率响应函数是_________。
答案:系统的冲激响应的傅里叶变换5. 数字滤波器的分类有_________、_________和_________。
答案:FIR滤波器,IIR滤波器,自适应滤波器三、判断题(每题5分,共25分)1. 线性时不变系统的响应只与输入信号的形状有关,与输入信号的大小无关。
()答案:错误2. 傅里叶变换可以应用于连续信号和离散信号。
()答案:正确3. 系统的频率响应函数是系统的冲激响应的傅里叶变换。
()答案:正确4. 模拟滤波器和数字滤波器在实现原理上没有本质区别。
()答案:错误5. 数字滤波器的设计比模拟滤波器的设计更为复杂。
()答案:正确四、简答题(每题10分,共30分)1. 简述信号与系统的基本概念。
信号与系统期末A卷答案及评分标准-12自动化
)补考( )重修( )
S 域的右半平面映射到 Z 域的单位圆内。 ( × ) 离散信号的频谱一定是连续的。 ( × ) 当系统是线性时不变时,其零状态响应是输入和冲激响应的卷积。 ( √ ) 卷积只适用于线性系统。 ( √ ) 当信号在������ < 0时,������(������) = 0,则该信号为因果信号。 ( √ )
时频变换
������(������) = ∫ ������(������)������
−∞
−�����������������
������������ ; ������(������) = ∫ ������(������)������
0−
解: ������(s) =
2 ������ −4������ ⟷ ������(������) = 2������ −3(������−4) ������(������ − 4) ������ + 3
∞
时延 频谱搬移 微分特性 卷积微积分特 性
������(������ ± ������0 ) ⟷ ������(������)������ ±������������������0 ; ������(������ ± ������0 ) ⟷ ������(������)������ ±������������0 ; ������(������ − ������) ⟷ ������ −������ ������(������) ������(������)������ ±������������0 ������ ⟷ ������(������ ∓ ������0 ); ������(������)������ ±������0 ������ ⟷ ������(������ ∓ ������0 ); 1 ������(������)������������������(������������ ������) ⟷ [������(������ + ������������ ) + ������(������ − ������������ )] 2 (������) (������) ������ ������ ⟷ (������������) ������(������); ������ (������) (������) ⟷ ������ ������ ������(������) ������ ′ (������) = ������1′ (������) ∗ ������2 (������) = ������1 (������) ∗ ������2′ (������) ������ (−1) (������) = ������ 1
(完整版)《信号与系统》期末测验试题及答案(13P)
《信号与系统》测验一、单项选择题 ................................................. 1 二、简答题 ..................................................... 4 三、计算题 .. (8)一、单项选择题1.设系统的初始状态为()0t x ,输入为()t f ,完全响应为()t y ,以下系统为线性系统的是 D 。
(A) ()()()[]t f t x t y lg 02•= (B) ()()()t f t x t y 20+=(C) ()()()ττd f t x t y tt ⎰+=00 (D) ()()()()ττd f dtt df t x e t y tt t ⎰++=-00 2.一个矩形脉冲信号,当脉冲幅度提高一倍,脉冲宽度扩大一倍,则其频带宽度较原来频带宽度 A 。
(A )缩小一倍 (B ) 扩大一倍 (C ) 不变 (D )不能确定 3. 某系统的系统函数为)2)(5.0()(--=z z zz H ,若该系统是因果系统,则其收敛区为B 。
(A )|z|<0.5 (B )|z|>2 (C )0.5<|z|<2 (D )以上答案都不对 4. 下面关于离散信号的描述正确的是 B 。
(A) 有限个点上有非零值,其他点为零值的信号。
(B) 仅在离散时刻上有定义的信号。
(C) 在时间t 为整数的点上有非零值的信号。
(D) 信号的取值为规定的若干离散值的信号。
5.下列信号中为周期信号的是 D 。
t t t f 5sin 3sin )(1+= t t t f πcos 2cos )(2+=k k k f 2sin 6sin )(3ππ+= )(21)(4k k f kε⎪⎭⎫⎝⎛=()A )(1t f 和)(2t f ())(),(21t f t f c 和)(3k f())(2t f B 和)(3k f ())(1t f D 和)(3k f6. 连续周期信号的频谱具有 D 。
2020年西南交通大学期末真题及答案信号与系统
《信号与系统》2005 年期末试题A 卷班级姓名学号成绩一一 30 分二二 30 分三三 26 分分四四 14 分分1 2 3 4 5 1 2 3 1 2 3一、共 5 5 小题,总分为 0 30 分1 、试判断下列式子代表的系统是否为线性系统,并说明理由(其中 y t为系统响应, 0 y 为初始条件, f t为系统输入)(8 分)201 0 2ty t y f d2 0 cos5 0 y t y t y f t2 33 3 0 y t y t f t3 2 2245 2d y t d y t d f ty t f tdt dt dt2、、试确定信号 1 cos 1000 sin 2000 x t t t 的奈奎斯特频率。
(3 分)3 、已知描述系统的方程为4 4 2y t y t y t f t ,初始条件为 0 0 2 y y 。
求(1 )系统传递算子 H p;;(2 )系统零输入响应 xy t。
(7 分)4 、已知系统的单位冲击响应 2h t t ,当系统输入为142f t t t t 时,用时域分析法求系统零状态响应 fy t。
(6 分)5 、已知 f t的波形如下图,求 F j 。
(6 分)二、共 3 3 小题,总分为 0 30 分1 、系统的微分方程为 5 62 8y t y t y t f t f t ,,激励 tf t e t ,利用复频域分析法求系统的零状态响应。
(7 分)2 、系统传递函数为 N sH sD s ,试分析下列系统是否渐近稳定。
(9 分)21 1 2D s s s s 5 3 22 4 3 2 9 D s s s s s 5 4 3 23 2 3 4 11 8 D s s s s s s 3 、作出下列系统直接实现形式的模拟框图和信号流图。
(注假定系统为零状态)(14 分)113sH ss 2423 2sH ss s 三、共 3 3 小题,总分为 6 26 分1 、系统信号流图如下图所示,求系统的传递函数 H s。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西南交通大学2008-2009学年第(2)学期考试试卷
课程代码 3122400 课程名称 信号与系统A 考试时间 120分钟
阅卷教师签字: 一、选择题:(20分)
本题共10个小题,每题回答正确得2分,否则得零分。
每小题所给答案中只有一个是正确的。
1. 信号(63)f t -表示( )
(A )(3)f t 左移6 (B )(3)f t 左移2 (C )(3)f t 右移6 (D )(3)f t -右移2 2.连续周期信号的频谱具有
(A )连续性、周期性 (B )连续性、非周期性 (C )离散性、周期性 (D )离散性、非周期性
3.周期矩形脉冲的谱线间隔与( ) (A )脉冲幅度有关 (B )脉冲宽度有关 (C )脉冲周期有关
(D )周期和脉冲宽度有关
4. 已知)(1n f 是1N 点的时限序列,)(2n f 是2N 点的时限序列,且12N N >,则)()()(21n f n f n y *= 是( )点时限序列。
(A )121-+N N (B )2N (C )1N (D )21N N +
5. 连续信号f(t)的 占有频带为0~20KHz,经均匀采样后,构成一离散时间信号。
为了保证能够从离散时间信号恢复原信号f(t), 则采样周期的值最大不得超过( )。
(A ) 10-4s (B ) 0.25⨯10-4s (C ) 5×10-5s (D ) 0.5⨯10-3s
6.已知()()f t t δ'=,则其频谱()F j ω=( ) (A )ωj 1 (B )
)(1ωπδω+j (C )ωj (D ))(21
ωπδω
+j
7.差分方程y(k)-4y(k-1)+3y(k-4)=2f(k-1)所描述的系统是( )的线性时不变系统。
班 级 学 号 姓 名
密封装订线 密封装订线 密封装订线
8.因果系统的系统函数为22
()
32
H s S S =
++,则该系统是( )
(A)稳定的 (B )不稳定的 (C )临界稳定的 (D )不确定
9.某系统的系统函数为H (s ),若同时存在频响函数H (j ω),则该系统必须满足条件( ) (A )时不变系统 (B )因果系统 (C )稳定系统 (D )线性系统 10. 有一信号y(n)的Z 变换的表达式为)
51(2)
31(1)(11---+
-=
z z z Y ,如果其Z 变换的收敛域
为53<<z ,则Y(z)的反变换y(n)等于( )。
(A ))()5(2)()3(n u n u n n + (B ) )1()5(2)()3(--+n u n u n
n (C ))1()5(2)()3(---n u n u n
n (D ) )1()5(2)1()3(------n u n u n
n
二、(10分)试求下图所描述离散线性时不变系统的单位取样响应()h n 。
其中线性时不变子系统的单位取样响应分别为:()()1(1)(2)h n n n n δδδ=+-+-,
()()()()2212h n n n n δδδ=+---。
三、(10分)求如图所示梯形信号()
f t的频谱函数F(jω)。
四、(20分)设()f t 是频带有限的信号,其频谱如图所示,频带宽度10/m rad s ω=。
(1) 求()f t 的奈奎斯特采样频率s ω,s f ,奈奎斯特采样间隔s T 。
(2) 若用奈奎斯特采样间隔s T 对信号进行采样,得到采样信号()s f t ,画出采样信号()s f t 的频谱
()s F j ω的频谱示意图。
(3) 若用同样的采样间隔对(2)f t 进行采样,得到采样信号(2)s f t 。
试画出(2)s f t 的频谱示意图。
ω
五、(25分)已知某因果连续时间LTI 系统,当输入为()()x t u t =时,系统产生的输出为
()23()132()t t y t e e u t --=-+
(1) 试求该系统的系统函数()H s ;
(2) 画出零极点图,标注收敛域,并判断系统的稳定性; (3) 试求该系统的单位冲激响应()h t ;
(4) 写出描述系统输入与输出关系的微分方程;
六、(15分)有一因果LTI系统如图所示,(1)求关联()
y n的差分方程;
x n和()
(2)写出该系统的系统函数()
H z;
(3)该系统是稳定系统吗?。