高三复习直线与圆、圆与圆的位置关系知识点总结及基础测试
高考理数复习---直线与圆的位置关系考点归纳与解题技巧
3
(3)圆(x-3)2+(y-3)2=9上到直线3x+4y-11=0的距离等于1的
点的个数为( )
A.1
B.2
C.3
D.4
4
mx-y+1-m=0, (1)A (2)D (3)C [(1)法一:(代数法)由x2+(y-1)2=5, 消去y,整理得(1+m2)x2-2m2x+m2-5=0,
因为Δ=16m2+20>0,所以直线l与圆相交.
(1)[一题多解]直线l:mx-y+1-m=0与圆C:x2+(y-
1)2=5的位置关系是( )
A.相交
B.相切
C.相离
D.不确定
(2)若直线x+my=2+m与圆x2+y2-2x-为( )
A.(-∞,+∞)
B.(-∞,0)
C.(0,+∞)
D.(-∞,0)∪(0,+∞)
6
(3)如图所示,因为圆心到直线的距离为
|9+12-11| 5
=2,又因为圆的半径为3,所以直线与圆
相交,故圆上到直线的距离为1的点有3个.]
7
(1)已知直线与圆的位置关系求参数值或取值范围,就是 利用d=r,d>r或d<r建立关于参数的等式或不等式求解;(2)圆上的 点到直线距离为定值的动点个数问题多借助数形结合,转化为点到 直线的距离求解.
高考理数复习---直线与圆的位置关系考 点归纳与解题技巧
直线与圆的位置关系 判断直线与圆的位置关系的常见方法
(1)几何法:利用 d 与 r 的关系. (2)代数法:联立方程之后利用 Δ 判断. (3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断 直线与圆相交,上述方法中最常用的是几何法,点与圆的位置关系法 适用2 于动直线问题.
法二:(几何法)∵圆心(0,1)到直线l的距离d=
直线与圆、圆与圆的位置关系—知识讲解(基础)
直线与圆、圆与圆的位置关系—知识讲解(基础)【学习目标】1.理解并掌握直线与圆、圆与圆的各种位置关系;2.理解切线的判定定理、性质定理和切线长定理,了解三角形的内切圆和三角形的内心的概念,并熟练掌握以上内容解决一些实际问题;3.了解两个圆相离(外离、内含),两个圆相切(外切、内切),两圆相交,圆心距等概念.理解两圆的位置关系与d、r1、r2数量关系的等价条件并灵活应用它们解题.【要点梳理】要点一、直线和圆的位置关系1.直线和圆的三种位置关系:(1) 相交:直线与圆有两个公共点时,叫做直线和圆相交.这时直线叫做圆的割线.(2) 相切:直线和圆有唯一公共点时,叫做直线和圆相切.这时直线叫做圆的切线,唯一的公共点叫做切点.(3) 相离:直线和圆没有公共点时,叫做直线和圆相离.2.直线与圆的位置关系的判定和性质.直线与圆的位置关系能否像点与圆的位置关系一样通过一些条件来进行分析判断呢?由于圆心确定圆的位置,半径确定圆的大小,因此研究直线和圆的位置关系,就可以转化为直线和点(圆心)的位置关系.下面图(1)中直线与圆心的距离小于半径;图(2)中直线与圆心的距离等于半径;图(3)中直线与圆心的距离大于半径.如果⊙O的半径为r,圆心O到直线的距离为d,那么要点诠释:这三个命题从左边到右边反映了直线与圆的位置关系所具有的性质;从右边到左边则是直线与圆的位置关系的判定.要点二、切线的判定定理、性质定理和切线长定理1.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.要点诠释:切线的判定定理中强调两点:一是直线与圆有一个交点,二是直线与过交点的半径垂直,缺一不可. 2.切线的性质定理:圆的切线垂直于过切点的半径.3.切线长:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.要点诠释:切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段. 4.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 要点诠释:切线长定理包含两个结论:线段相等和角相等.5.三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆.6.三角形的内心:三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 三角形的内心到三边的距离都相等.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).要点三、圆和圆的位置关系1.圆与圆的五种位置关系的定义两圆外离:两个圆没有公共点,且每个圆上的点都在另一个圆的外部时,叫做这两个圆外离.两圆外切:两个圆有唯一公共点,并且除了这个公共点外,每个圆上的点都在另一个圆的外部时,叫做这两个圆外切.这个唯一的公共点叫做切点.两圆相交:两个圆有两个公共点时,叫做这两圆相交.两圆内切:两个圆有唯一公共点,并且除了这个公共点外,一个圆上的点都在另一个圆的内部时,叫做这两个圆内切.这个唯一的公共点叫做切点.两圆内含:两个圆没有公共点,且一个圆上的点都在另一个圆的内部时,叫做这两个圆内含.2.两圆的位置与两圆的半径、圆心距间的数量关系:设⊙O1的半径为r1,⊙O2半径为r2,两圆心O1O2的距离为d,则:两圆外离d>r1+r2两圆外切d=r1+r2两圆相交r1-r2<d<r1+r2 (r1≥r2)两圆内切d=r1-r2 (r1>r2)两圆内含d<r1-r2 (r1>r2)要点诠释:(1) 圆与圆的位置关系,既考虑它们公共点的个数,又注意到位置的不同,若以两圆的公共点个数分类,又可以分为:相离(含外离、内含)、相切(含内切、外切)、相交;(2) 内切、外切统称为相切,唯一的公共点叫作切点;(3) 具有内切或内含关系的两个圆的半径不可能相等,否则两圆重合.【典型例题】类型一、直线与圆的位置关系【高清ID号: 356966 关联的位置名称(播放点名称):经典例题1-2】1.(优质试题•盐城)如图,在△ABC中,∠CAB=90°,∠CBA=50°,以AB为直径作⊙O交BC 于点D,点E在边AC上,且满足ED=EA.(1)求∠DOA的度数;(2)求证:直线ED与⊙O相切.【答案与解析】(1)解;∵∠DBA=50°,∴∠DOA=2∠DBA=100°,(2)证明:连接OE.在△EAO与△EDO中,,∴△EAO≌△EDO,∴∠EDO=∠EAO,∵∠BAC=90°,∴∠EDO=90°,∴DE与⊙O相切.【总结升华】本题考查了切线的判定,连接OE构造全等三角形是解题的关键.举一反三:【高清ID号: 356966 关联的位置名称(播放点名称):经典例题1-2】【变式】如图,P点是∠AOB的平分线OC上一点,PE⊥OA于E,以P为圆心,PE为半径作⊙P .求证:⊙P与OB相切.【答案】作PF⊥OB于F,则可证明△OEP≌△OFP,所以PF=PE,即F在圆P上,故⊙P与OB相切.2.(优质试题•黄石)如图,⊙O的直径AB=4,∠ABC=30°,BC交⊙O于D,D是BC的中点.(1)求BC的长;(2)过点D作DE⊥AC,垂足为E,求证:直线DE是⊙O的切线.【思路点拨】(1)根据圆周角定理求得∠ADB=90°,然后解直角三角形即可求得BD,进而求得BC即可;(2)要证明直线DE是⊙O的切线只要证明∠EDO=90°即可.【答案与解析】证明:(1)解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,又∵∠ABC=30°,AB=4,∴BD=2,∵D是BC的中点,∴BC=2BD=4;(2)证明:连接OD.∵D是BC的中点,O是AB的中点,∴DO是△ABC的中位线,∴OD∥AC,则∠EDO=∠CED又∵DE⊥AC,∴∠CED=90°,∠EDO=∠CED=90°∴DE是⊙O的切线.【总结升华】此题主要考查了切线的判定以及含30°角的直角三角形的性质.解题时要注意连接过切点的半径是圆中的常见辅助线.类型二、圆与圆的位置关系3.(1)已知两圆的半径分别为3cm,5cm,且其圆心距为7cm,则这两圆的位置关系是( )A.外切 B.内切 C.相交 D.相离(2)已知⊙O1与⊙O2相切,⊙O1的半径为3cm,⊙O2的半径为2cm,则O1O2的长是( )A.1cm B.5cm C.1cm或5cm D.0.5cm或2.5cm【答案】(1)C ;(2)C.【解析】(1)由于圆心距d=7cm,R+r=5+3=8(cm),R-r=5-3=2(cm).∴ R-r<d<R+r,故这两圆的位置关系是相交.(2)两圆相切包括外切和内切,当⊙O1与⊙O2外切时,d=O1O2=R+r=3+2=5(cm);当⊙O1与⊙O2内切时,d=O1O2=R-r=3-2=1(cm).【总结升华】由数量确定位置或由位置确定数量的依据是:①两圆外离⇔d>R+r;②两圆外切⇔d=R+r;③两圆相交⇔R-r<d<R+r;④两圆内切⇔d=R-r;⑤两圆内含⇔d<R-r.4.已知:如图,⊙O1与⊙O2外切于A点,直线l与⊙O1、⊙O2分别切于B,C点,若⊙O1的半径r1=2cm,⊙O2的半径r2=3cm.求BC的长.【思路点拨】首先连接O1B,O2C,O1O2,过点O1作O1D⊥O2C于D,由直线l与⊙O1、⊙O2分别切于B,C 点,可得四边形O1BCD是矩形,即可知CD=O1B=r1=2cm,BC=O1D,然后在Rt△O2DO1中,利用勾股定理即可求得O1D的长,即可得BC的长.【答案与解析】【总结升华】此题考查了相切两圆的性质、切线的性质、矩形的判定与性质以及勾股定理.此题难度适中,解题的关键是准确作出辅助线,掌握相切两圆的性质.举一反三:【变式】如图所示,在△ABC中,AB=BC=2,以AB为直径的⊙O与BC相切于点B,则AC等于( )A..【答案】因为以AB为直径的⊙O与BC相切于点B,所以∠ABC=90°,在Rt△ABC中,AC=C.。
圆圆的位置关系知识点总结
圆圆的位置关系知识点总结圆的位置关系是几何学中一个重要的概念,涉及到圆与直线、圆与圆之间的相对位置关系。
下面是关于圆的位置关系的知识点总结。
一、圆与直线的位置关系:1.外切:当直线与圆相切于圆的一点时,我们称这条直线与圆外切。
2.内切:当直线与圆只在圆的内部与圆相切时,我们称这条直线与圆内切。
3.交于两点:当直线与圆相交并有两个交点时,我们称这条直线与圆相交于两点。
4.不相交:当直线与圆没有交点时,我们称这条直线与圆不相交。
二、圆与圆的位置关系:1.相切:当两个圆相切于圆的一点时,我们称这两个圆相切。
2.相交:当两个圆有交点时,我们称这两个圆相交。
3.重合:当两个圆的圆心和半径完全相同时,我们称这两个圆重合。
4.内含:当一个圆完全在另一个圆内部时,我们称这个圆在另一个圆内含。
5.相离:当两个圆没有交点,且一个圆的外部不与另一个圆的内部相交时,我们称这两个圆相离。
三、判别圆与直线的位置关系的方法:1.利用距离:计算直线上一点到圆心的距离,根据距离与圆的半径的大小关系来判断圆与直线的位置关系。
-当直线上一点到圆心的距离等于圆的半径时,这条直线与圆相切。
-当直线上一点到圆心的距离大于圆的半径时,这条直线与圆相交。
-当直线上一点到圆心的距离小于圆的半径时,这条直线与圆不相交。
2.利用方程:通过圆的方程和直线的方程来求解相交的点,根据求解得到的交点的数量来判断圆与直线的位置关系。
四、判别圆与圆的位置关系的方法:1.利用距离:计算两个圆心之间的距离,根据距离与两个圆的半径之和、之差的大小关系来判断圆与圆的位置关系。
-当两个圆心之间的距离等于两个圆的半径之和时,这两个圆相交。
-当两个圆心之间的距离大于两个圆的半径之和时,这两个圆相离。
-当两个圆心之间的距离等于两个圆的半径之差的绝对值时,一个圆完全包含在另一个圆内即一个圆内含于另一个圆。
-当两个圆心之间的距离大于两个圆的半径之差的绝对值,但小于两个圆的半径之和时这两个圆相交于两个交点。
高考数学直线与圆归纳总结
高考数学直线与圆归纳总结直线与圆是高中数学中重要的几何概念。
在高考数学中,直线与圆的相关知识点常常出现,并且在解决几何问题时扮演着重要的角色。
下面将对高考数学中涉及直线与圆的知识进行归纳总结。
一、直线与圆的位置关系1. 直线和圆可能有三种位置关系:相离、相切和相交。
a. 如果直线和圆没有交点,则称直线和圆相离。
b. 如果直线与圆有且仅有一个交点,则称直线与圆相切。
c. 如果直线与圆有两个交点,则称直线与圆相交。
2. 判断直线与圆的位置关系的方法:a. 判断直线与圆相离:计算直线到圆心的距离是否大于圆的半径。
b. 判断直线与圆相切:计算直线到圆心的距离等于圆的半径。
c. 判断直线与圆相交:计算直线到圆心的距离小于圆的半径。
二、直线与圆的方程1. 直线的一般方程:Ax + By + C = 0。
直线的一般方程表示直线上的所有点 (x, y),满足方程左侧等式。
2. 圆的标准方程:(x - a)^2 + (y - b)^2 = r^2。
圆的标准方程表示平面上距离圆心 (a, b) 距离为半径 r 的点 (x, y)。
3. 直线与圆的方程应用:a. 直线与圆的相交问题可以通过联立直线和圆的方程求解。
b. 直线与圆的相切问题可以通过判断直线方程是否与圆方程有且仅有一个交点来确定。
三、直线与圆的性质1. 切线与半径的关系:切线与半径的夹角是直角,即切线垂直于半径。
2. 切线的性质:a. 切点:切线与圆的交点称为切点。
b. 切线长度:切点到圆心的距离等于半径的长度。
c. 外切线:若直线与圆内切于一点,则这条直线称为外切线。
d. 内切线:若直线切圆于两个相交点,则这条直线称为内切线。
3. 弦的性质:弦是圆上的两个点之间的线段。
弦的性质有:a. 弦长:弦长等于圆心到弦的距离的两倍。
b. 直径:直径是通过圆心的弦。
直径等于半径的两倍。
四、圆的位置关系1. 同心圆:具有共同圆心的多个圆称为同心圆。
2. 内切圆与外接圆:如果一个圆与另一个圆有且仅有一个切点,则这两个圆称为内切圆与外接圆。
直线与圆、圆与圆位置关系知识点总结、经典例题及高考题和答案
直线与圆、圆与圆位置关系【考纲说明】1、能根据给定直线、圆的方程判断直线与圆的位置关系,能根据给定两个圆的方程判断两圆的位置关系。
2、能用直线和圆的方程解决一些简单的问题。
【知识梳理】一、直线与圆的位置关系1、 直线与圆的位置关系有三种:相交、相切、相离,判断直线与圆的位置关系常见的有两种方法(1)代数法:把直线方程与圆的方程联立成方程组,消去x 或y 整理成一元二次方程后,计算判别式24b ac ∆=-0∆>⇔直线l 与圆C 相交⇔直线l 与圆C 有两交点0∆=⇔直线l 与圆C 相切⇔直线l 与圆C 有一交点0∆<⇔直线l 与圆C 相离⇔直线l 与圆C 无交点(2)几何法:利用圆心到直线的距离d 和圆的半径r 的大小关系:r d <⇔直线l 与圆C 相交⇔直线l 与圆C 有两交点r d =⇔直线l 与圆C 相切⇔直线l 与圆C 有一交点r d >⇔直线l 与圆C 相离⇔直线l 与圆C 无交点2、圆的切线方程若圆的方程为222x y r +=,点P 00(,)x y 在圆上,则过P 点且与圆222x y r +=相切的切线方程为2o o x x y y r +=.经过圆22()()x a y b r -+-=上一点P 00(,)x y 的切线方程为222()()22o o x x y y a b r ++-+-=. 3、直线与圆相交直线与圆相交时,若l 为弦长,d 为弦心距,r 为半径,则有2224l r d =+,即l =二、圆与圆的位置关系1、圆与圆的位置关系可分为五种:外离、外切、相交、内切、内含。
2、判断圆与圆的位置关系常用方法(1)几何法:设两圆圆心分别为12,O O ,半径为1212,()r r r r ≠,则1212OO r r >+⇔圆1O与圆2O 相离⇔有4条公切线 1212OO r r =+⇔圆1O与圆2O 外切⇔有3条公切线 121212||r r OO r r -<<+⇔圆1O与圆2O 相交⇔有2条公切线 1212||OO r r =-⇔圆1O与圆2O 内切⇔有1条公切线 1212||OO r r <-⇔圆1O与圆2O 内含⇔有0条公切线. (2)代数法:方程组221112222200x y D x E y F x y D x E y F ⎧++++=⎨++++=⎩ 有两组不同的实数解⇔两圆相交;有两组相同的实数解⇔两圆相切;无实数解⇔两圆外离或内含。
直线与圆的位置关系知识点及例题
直线与圆的地点关系一、知识点梳理1、直线与圆的地点关系:r为半径, d 为圆心到直线的距离图形名称相离相切相交判定d>r d=r d<r交点个数无 1 个 2 个例 1、以下判断正确的选项是()①直线上一点到圆心的距离大于半径,则直线与圆相离;②直线上一点到圆心的距离等于半径,则直线与圆相切;③直线上一点到圆心的距离小于半径,? 则直线与圆订交.A.①②③B.①②C.②③D.③例 2、过圆上一点能够作圆的______条切线;过圆外一点能够作圆的_____条切线;?过圆内一点的圆的切线______.例 3、以三角形一边为直径的圆恰巧与另一边相切,则此三角形是_______.例 4、以下直线是圆的切线的是()A.与圆有公共点的直线B.到圆心的距离等于半径的直线C.垂直于圆的半径的直线D.过圆直径外端点的直线例 5.如下图,Rt△ABC中,∠ACB=90°,CA=6,CB=8,以C为圆心,r为半径作⊙C,当r为多少时,⊙C 与 AB相切2、切线的判断:( 1)依据切线的定义判断:即与圆有一个公共点的直线是圆的切线.( 2)依据圆心到直线的距离来判断:即与圆心的距离等于半径的直线是圆的切线.( 3)依据切线的判断定理来判断:即经过半径的外端而且垂直于这条半径的直线是圆的切线.判断切线经常用的协助线作法:( 1)若直线与圆有公共点时,协助线的作法是“连结圆心和公共点”,再证明直线和半径垂直.(2)当直线与圆并无明确有公共点时,协助线的作法是“过圆心向直线作垂线”再证明圆心到直线的距离等于圆的半径 .例 6、判断以下命题能否正确( 1)经过半径的外端的直线是圆的切线( 2)垂直于半径的直线是圆的切线;( 3)过直径的外端而且垂直于这条直径的直线是圆的切线;( 4)和圆有一个公共点的直线是圆的切线;( 5)以等腰三角形的极点为圆心,底边上的高为半径的圆与底边相切.例 7.OA均分∠BOC,P是OA上任一点(O除外),若以P为圆心的⊙P与OC相离,?那么⊙P与OB的地点关系是()A.相离B.相切C.订交D.订交或相切例 8、如下图,在直角坐标系中,⊙M的圆心坐标为(m,0),半径为2,?假如⊙M与y轴所在直线相切,那么m=______,假如⊙ M与 y 轴所在直线订交,那么m? 的取值范围是_______.例 9、如图,AB为⊙O的直径,弦CD⊥AB于点M,过点B作BE∥CD,交AC?的延伸线于点E,连结 BC.( 1)求证: BE为⊙ O的切线;1(2)假如 CD=6, tan ∠ BCD= ,求⊙ O的直径.2例 10、如图,已知:△ABC内接于⊙O,点D在OC的延伸线上,sinB=1,∠D=30°.2( 1)求证: AD是⊙ O的切线;(2)若 AC=6,求 AD的长.例 11、如图,P为⊙O外一点,PO交⊙O于C,过⊙O上一点A作弦AB⊥PO于E,若∠ EAC=∠ CAP,求证: PA是⊙ O的切线.3、切线的性质:1、经过切点的半径垂直于圆的切线,经过切点垂直于切线的直线必经过圆心关于切线的性质可分解为:过圆心、过切点、垂直于切线这三个条件中随意两个作为条件,就能够推出第三个作为结论4、切线长定理:切线长定义:经过圆外一点作圆的切线,这点和切点之间的线段的长叫做这点到圆的切线长切线长定理:从圆外一点能够引圆的两条切线,它们的切线长相等,这点和圆心的连线均分两条切线的夹角.例 12、如图 1, PA、 PB是⊙O 的两条切线、 A、 B 为切点。
专题 直线与圆的位置关系(真题测试)- 2023年高考数学一轮复习知识点讲解(原卷版)
专题9.2 直线与圆的位置关系(真题测试)一、单选题1.(2022·北京·高考真题)若直线210x y +-=是圆22()1x a y -+=的一条对称轴,则=a ( ) A .12 B .12- C .1 D .1-2.(2021·北京·高考真题)已知直线y kx m =+(m 为常数)与圆224x y +=交于点M N ,,当k 变化时,若||MN 的最小值为2,则m =A .±1B .2±C .3±D .2±3.(2020·北京·高考真题)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( ).A .4B .5C .6D .74.(2020·全国·高考真题(文))已知圆2260x y x +-=,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( )A .1B .2C .3D .45.(2023·全国·高三专题练习)过点(7,-2)且与直线2360x y -+=相切的半径最小的圆方程是( )A .()()22515x y -++=B .()()225113x y -+-= C .()()224413x y -++= D .()()221652x y -++= 6.(2018·全国·高考真题(理))直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值范围是( )A .[]26,B .[]48,C .232⎡⎤⎣⎦D .2232⎡⎤⎣⎦7.(2020·全国·高考真题(理))若直线l 与曲线y x 和x 2+y 2=15都相切,则l 的方程为( ) A .y =2x +1 B .y =2x +12 C .y =12x +1 D .y =12x +12 8.(2023·全国·高三专题练习)已知圆C :224210x y x y +--+=,点P 是直线4y =上的动点,过P 作圆的两条切线,切点分别为A ,B ,则AB 的最小值为( )A 25B 45C 25D 5二、多选题9.(2022·山东青岛·二模)已知22:60C x y x +-=,则下述正确的是( )A .圆C 的半径3r =B .点(1,22在圆C 的内部C .直线:330l x +=与圆C 相切D .圆()22:14C x y '++=与圆C 相交10.(2021·全国·高考真题)已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( )A .点P 到直线AB 的距离小于10B .点P 到直线AB 的距离大于2C .当PBA ∠最小时,32PB =D .当PBA ∠最大时,32PB =11.(2022·湖南·邵阳市第二中学模拟预测)已知O 为坐标原点,圆M :()()22cos sin 1x y θθ-+-=,则下列结论正确的是( )A .圆M 与圆224x y +=内切B .直线cos sin 0x y αα+=与圆M 相离C .圆M 上到直线2x y +=1的点最多两个D .过直线32x y +=P 作圆M 的切线,切点为A ,B ,则四边形PAMB 面积的312.(2022·全国·模拟预测)已知点P 在圆224O x y +=:上,点()30A ,,()04B ,,则( ) A .点P 到直线AB 的距离最大值为225 B .满足AP BP ⊥的点P 有3个C .过点B 作圆O 的两切线,切点分别为M 、N ,则直线MN 的方程为1y =D .2PA PB +的最小值是210三、填空题13.(2019·浙江·高考真题)已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆相切于点(2,1)A --,则m =_____,r =______.14.(2021·天津·高考真题)3y 轴交于点A ,与圆()2211x y +-=相切于点B ,则AB =____________.15.(2022·全国·高考真题(文))设点M 在直线210x y +-=上,点(3,0)和(0,1)均在M 上,则M 的方程为______________.16.(2018·江苏·高考真题)在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,()5,0B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为________.四、解答题17.(2023·全国·高三专题练习)已知三点(2,0),(1,3),(2,2)A B C 在圆C 上,直线:360l x y +-=,(1)求圆C 的方程;(2)判断直线l 与圆C 的位置关系;若相交,求直线l 被圆C 截得的弦长.18.(2022·青海·海东市第一中学模拟预测(文))已知动圆E 过定点()2,0P ,且y 轴被圆E 所截得的弦长恒为4.(1)求圆心E 的轨迹方程.(2)过点P 的直线l 与E 的轨迹交于A ,B 两点,()2,0M -,证明:点P 到直线AM ,BM 的距离相等.19.(2022·辽宁·高三期中)已知圆C 的圆心在x 轴上,且经过点1,0,()(,2)1A B -.(1)求线段AB 的垂直平分线方程;(2)求圆C 的标准方程;(3)若过点(0,2)P 的直线l 与圆C 相交于M N 、两点,且23MN =l 的方程. 20.(2023·全国·高三专题练习)已知在平面直角坐标系xOy 中,点()0,3A ,直线:24=-l y x .设圆C 的半径为1,圆心在直线l 上.(1)若圆心C 也在直线1y x =-上,过点A 作圆C 的切线,求切线的方程;(2)若圆C 上存在点M ,使2=MA MO ,求圆心C 的横坐标a 的取值范围.21.(2021·河北·沧县中学高三阶段练习)已知圆M 的方程为22315222x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭. (1)求过点39,22⎛⎫ ⎪⎝⎭N 与圆M 相切的直线l 的方程; (2)过点(1,1)P 作两条相异直线分别与圆M 相交于A ,B 两点,若直线,PA PB 的斜率分别为12,k k ,且120k k +=,试判断直线AB 的斜率是否为定值,并说明理由.22.(2016·江苏·高考真题)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :221214600x y x y +--+=及其上一点A (2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且BC=OA ,求直线l 的方程; (3)设点T (t ,0)满足:存在圆M 上的两点P 和Q ,使得,TA TP TQ +=求实数t 的取值范围.。
高考数学二轮复习考点知识讲解与练习53---直线与圆、圆与圆的位置关系
高考数学二轮复习考点知识讲解与练习 第53讲 直线与圆、圆与圆的位置关系考点知识:1.能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系;2.能用直线和圆的方程解决一些简单的问题;3.初步了解用代数方法处理几何问题的思想.知识梳理1.直线与圆的位置关系设圆C :(x -a )2+(y -b )2=r 2,直线l :Ax +By +C =0,圆心C (a ,b )到直线l 的距离为d ,由⎩⎨⎧(x -a )2+(y -b )2=r 2,Ax +By +C =0消去y (或x ),得到关于x (或y )的一元二次方程,其判别式为Δ.位置关系相离相切相交图形量化方程观点Δ<0 Δ=0 Δ>0 几何观点d >rd =rd <r2.圆与圆的位置关系设两圆的半径分别为R,r(R>r),两圆圆心间的距离为d,则两圆的位置关系可用下表表示:位置关系外离外切相交内切内含图形R-r<d<Rd=R-r d<R-r 量的关系d>R+r d=R+r+r公切线条数432101.圆的切线方程常用结论(1)过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2.(2)过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2.(3)过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x+y0y =r2.2.直线被圆截得的弦长的求法(1)几何法:运用弦心距d、半径r和弦长的一半构成的直角三角形,计算弦长|AB|=2r2-d2.(2)代数法:设直线y=kx+m与圆x2+y2+Dx+Ey+F=0相交于点M,N,将直线方程代入圆的方程中,消去y,得关于x的一元二次方程,求出x M+x N和x M·x N,则|MN|=1+k2·(x M+x N)2-4x M·x N.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)“k =1”是“直线x -y +k =0与圆x 2+y 2=1相交”的必要不充分条件.( ) (2)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.( ) (3)如果两圆的圆心距小于两圆的半径之和,则两圆相交.( )(4)过圆O :x 2+y 2=r 2外一点P (x 0,y 0)作圆的两条切线,切点分别为A ,B ,则O ,P ,A ,B 四点共圆且直线AB 的方程是x 0x +y 0y =r 2.( ) 答案 (1)× (2)× (3)× (4)√解析 (1)“k =1”是“直线x -y +k =0与圆x 2+y 2=1相交”的充分不必要条件;(2)除外切外,还有可能内切;(3)两圆还可能内切或内含.2.直线l :3x -y -6=0与圆x 2+y 2-2x -4y =0相交于A ,B 两点,则|AB |=______. 答案10解析 由x 2+y 2-2x -4y =0得(x -1)2+(y -2)2=5,所以该圆的圆心坐标为(1,2),半径r = 5.又圆心(1,2)到直线3x -y -6=0的距离为d =|3-2-6|9+1=102,由⎝ ⎛⎭⎪⎫|AB |22=r 2-d 2,得|AB |2=10,即|AB |=10.3.圆x 2+y 2-4=0与圆x 2+y 2-4x +4y -12=0的公共弦长为________. 答案 2 2解析 由⎩⎨⎧x 2+y 2-4=0,x 2+y 2-4x +4y -12=0得两圆公共弦所在直线方程x -y +2=0.又圆x 2+y 2=4的圆心到直线x -y +2=0的距离为22= 2.由勾股定理得弦长的一半为4-2=2,所求弦长为2 2.4.(2022·菏泽模拟)若点(1,1)在圆(x -a )2+(y +a )2=4的内部,则实数a 的取值范围是( ) A .(-1,1) B .(0,1) C .(-∞,-1)∪(1,+∞) D .a =±1 答案 A解析 因为点(1,1)在圆的内部, 所以(1-a )2+(1+a )2<4,所以-1<a <1.5.(2021·成都诊断)已知直线ax +by +c =0与圆O :x 2+y 2=1相交于A ,B 两点,且|AB |=3,则OA →·OB→的值是( ) A .-12 B .12 C .-43 D .0 答案 A解析 在△OAB 中,|OA |=|OB |=1,|AB |=3,可得∠AOB =120°,所以OA →·OB →=1×1 ×cos 120°=-12.故选A.6.(2022·浙江卷)已知直线y =kx +b (k >0)与圆x 2+y 2=1和圆(x -4)2+y 2=1均相切,则k =__________,b =__________. 答案 33 -233解析 法一 直线kx -y +b =0(k >0)分别与圆心坐标为(0,0),半径为1,及圆心坐标为(4,0),半径为1的两圆相切,可得⎩⎪⎨⎪⎧|b |k 2+1=1,①|4k +b |k 2+1=1,②由①②且k >0,解得⎩⎪⎨⎪⎧k =33,b =-233.法二 如图,直线分别与两个半径相等的圆相切,由对称性可知,直线与x 轴的交点为A (2,0).由AB =2,BM =1,∠AMB =90°,得∠MAB =30°, 可得直线的斜率k =tan 30°=33,直线方程为y =33(x -2)=33x -233,因此b =-233.考点一 直线与圆的位置关系1.若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是( ) A .[-3,-1] B .[-1,3]C .[-3,1]D .(-∞,-3]∪[1,+∞) 答案 C解析 由题意可得,圆的圆心为(a,0),半径为2,∴|a -0+1|12+(-1)2≤2,即|a +1|≤2, 解得-3≤a ≤1.2.(2021·衡水模拟)直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是( ) A .相交 B .相切 C .相离 D .不确定 答案 A解析 法一 (代数法)由⎩⎨⎧mx -y +1-m =0,x 2+(y -1)2=5,消去y ,整理得(1+m2)x 2-2m 2x +m 2-5=0,因为Δ=16m 2+20>0,所以直线l 与圆相交. 法二 (几何法)由题意知,圆心(0,1)到直线l 的距离d =|-m |m 2+1<1<5,故直线l 与圆相交.法三 易得直线l 过定点(1,1).把点(1,1)代入圆的方程有1+0<5,∴点(1,1)在圆的内部,故直线l 与圆C 相交. 3.“a =3”是“直线y =x +4与圆(x -a )2+(y -3)2=8相切”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 答案 A解析 若直线y =x +4与圆(x -a )2+(y -3)2=8相切,则有|a -3+4|2=22,即|a +1|=4,所以a =3或-5.但当a =3时,直线y =x +4与圆(x -a )2+(y -3)2=8一定相切,故“a =3”是“直线y =x +4与圆(x -a )2+(y -3)2=8相切”的充分不必要条件. 感悟升华 判断直线与圆的位置关系的常见方法(1)几何法:利用d 与r 的关系. (2)代数法:联立方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. 上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题. 考点二 圆的弦长问题【例1】 (1)(2021·济南调研)已知圆C :(x -1)2+(y +1)2=1与直线kx +y +1=0相交于A ,B 两点,若△CAB 为等边三角形,则k 的值为( )A .± 3B .±2C .±32D .±22(2)(2022·河南名校联考)设圆x 2+y 2-2x -2y -2=0的圆心为C ,直线l 过(0,3),且与圆C 交于A ,B 两点,若|AB |=23,则直线l 的方程为( ) A .3x +4y -12=0或4x -3y +9=0 B .3x -4y +12=0或4x +3y +9=0 C .4x -3y +9=0或x =0 D .3x +4y -12=0或x =0 答案 (1)A (2)D解析 (1)圆C :(x -1)2+(y +1)2=1的圆心为C (1,-1),半径为1,故|CB |=|CA |=1,又△CAB 为等边三角形,所以点C 到直线kx +y +1=0的距离为32,即|k |12+k 2=32,解得k =±3,故选A.(2)当直线l 的斜率不存在时,直线l 的方程为x =0,由⎩⎨⎧x =0,x 2+y 2-2x -2y -2=0,得⎩⎨⎧ x =0,y =1-3或⎩⎨⎧x =0,y =1+3, ∴|AB |=23,符合题意.当直线l 的斜率存在时,设直线l 的方程为y =kx +3,由已知可得圆的标准方程为(x -1)2+(y -1)2=4,其圆心为C (1,1),半径r =2,∴圆心C (1,1)到直线kx -y +3=0的距离d =|k -1+3|k 2+1=|k +2|k 2+1,∵d 2=r 2-⎝ ⎛⎭⎪⎫|AB |22,∴(k +2)2k 2+1=4-⎝ ⎛⎭⎪⎫2322,即(k +2)2=k 2+1,解得k =-34,∴直线l 的方程为y =-34x +3,即3x +4y -12=0.综上,满足题意的直线l 的方程为x =0或3x +4y -12=0,故选D. 感悟升华 弦长的两种求法(1)代数方法:将直线和圆的方程联立方程组,消元后得到一个一元二次方程.在判别式Δ>0的前提下,利用根与系数的关系,根据弦长公式求弦长. (2)几何方法:若弦心距为d ,圆的半径长为r ,则弦长l =2r 2-d 2.【训练1】(2022·天津卷)已知直线x -3y +8=0和圆x 2+y 2=r 2(r >0)相交于A ,B 两点.若|AB |=6,则r 的值为__________. 答案 5解析 由题意知圆心为O (0,0),圆心到直线的距离d =|0-3×0+8|1+3=4.取AB 的中点M ,连接OM (图略),则OM ⊥AB .在Rt △OMA 中,r =⎝ ⎛⎭⎪⎫|AB |22+d 2=5. 考点三 圆的切线问题【例2】 (1)(经典母题)过点P (2,4)引圆C :(x -1)2+(y -1)2=1的切线,则切线方程为________.(2)点P 为射线x =2(y ≥0)上一点,过P 作圆x 2+y 2=3的两条切线,若两条切线的夹角为90°,则点P 的坐标为( ) A .(2,1) B .(2,2) C .(2,2) D .(2,0) 答案 (1)x =2或4x -3y +4=0 (2)C解析 (1)当直线的斜率不存在时,直线方程为x =2,此时,圆心到直线的距离等于半径,直线与圆相切,符合题意;当直线的斜率存在时,设直线方程为y -4=k (x -2),即kx -y +4-2k =0,∵直线与圆相切,∴圆心到直线的距离等于半径,即d =|k -1+4-2k |k 2+(-1)2=|3-k |k 2+1=1, 解得k =43,∴所求切线方程为43x -y +4-2×43=0, 即4x -3y +4=0.综上,切线方程为x =2或4x -3y +4=0. (2)如图所示.设切点为A ,B ,则OA ⊥AP ,OB ⊥BP ,OA =OB ,AP =BP ,AP ⊥BP , 故四边形OAPB 为正方形, 则|OP |=6,又x P=2,则P(2,2).【迁移】在例2(1)中,已知条件不变,设两个切点为A,B,求切点弦AB所在的直线方程.解由题意得,点P,A,C,B在以PC为直径的圆上,此圆的方程为(x-2)(x-1)+(y-4)(y-1)=0,整理得x2+y2-3x-5y+6=0,①圆C:(x-1)2+(y-1)2=1展开得x2+y2-2x-2y+1=0,②由②-①得x+3y-5=0,即为直线AB的方程.感悟升华求过某点的圆的切线问题时,应首先确定点与圆的位置关系,再求切线方程.若点在圆上(即为切点),则过该点的切线只有一条;若点在圆外,则过该点的切线有两条,此时注意斜率不存在的切线.【训练2】(2021·兰州模拟)设P为直线3x-4y+4=0上的动点,PA,PB为圆C:(x-2)2+y2=1的两条切线,A,B为切点,则四边形APBC面积的最小值为()A. 3 B.2 3 C. 5 D.2 5答案 A解析圆C:(x-2)2+y2=1的圆心为C(2,0),半径为1,连接PC,∵PA,PB为两条切线,A,B为切点,∴PA⊥AC,PB⊥BC,∴四边形APBC的面积为2S△PAC=|PA||CA|=|PC|2-1,故当|PC|最小时,四边形APBC面积最小,又|PC|的最小值为圆心C到直线3x-4y+4=0的距离d,且d=|6+4|32+42=2,故四边形APBC面积的最小值为 3.故选A.考点四圆与圆的位置关系【例3】已知两圆C1:x2+y2-2x-6y-1=0和C2:x2+y2-10x-12y+45=0.(1)求证:圆C1和圆C2相交;(2)求圆C1和圆C2的公共弦所在直线的方程和公共弦长.(1)证明圆C1的圆心C1(1,3),半径r1=11,圆C2的圆心C2(5,6),半径r2=4,两圆圆心距d=|C1C2|=5,r1+r2=11+4,|r1-r2|=4-11,所以|r1-r2|<d<r1+r2,所以圆C1和C2相交.(2)解圆C1和圆C2的方程左、右分别相减,得4x+3y-23=0,所以两圆的公共弦所在直线的方程为4x+3y-23=0.圆心C2(5,6)到直线4x+3y-23=0的距离d=|20+18-23|16+9=3,故公共弦长为216-9=27.感悟升华 1.判断两圆的位置关系时常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.2.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差消去x2,y2项得到.【训练3】(1)已知圆O1的方程为x2+y2=1,圆O2的方程为(x+a)2+y2=4,若这两个圆有且只有一个公共点,那么a的所有取值构成的集合是()A.{1,-1,3,-3} B.{5,-5,3,-3}C.{1,-1} D.{3,-3}(2)(2021·东北三省三校联考)圆x2-4x+y2=0与圆x2+y2+4x+3=0的公切线共有() A.1条B.2条C.3条D.4条答案(1)A(2)D解析(1)圆心距d=|a|=2+1=3或d=|a|=2-1=1,所以a=1,-1,3,-3.故选A.(2)x2-4x+y2=0⇒(x-2)2+y2=22,圆心坐标为(2,0),半径为2;x2+y2+4x+3=0⇒(x+2)2+y2=12,圆心坐标为(-2,0),半径为1,圆心距为4,两圆半径和为3,因为4>3,所以两圆的位置关系是外离,故两圆的公切线共有4条.故选D.A 级 基础巩固一、选择题1.直线y =34x -52和圆x 2+y 2-4x +2y -20=0( )A .相交且过圆心B .相交但不过圆心C .相离D .相切答案 A解析 将圆的方程配方,得(x -2)2+(y +1)2=25,圆心为(2,-1),半径r =5,将(2,-1)代入y =34x -52中,得34×2-52=-1,故直线过圆心,与圆相交.故选A.2.圆x 2+y 2=4与圆(x -3)2+(y -4)2=49的位置关系为( )A .内切B .相交C .外切D .相离答案 A解析 圆x 2+y 2=4的圆心为(0,0),半径为2,圆(x -3)2+(y -4)2=49的圆心为(3,4),半径为7,圆心距为32+42=5=7-2(等于两圆半径的差),所以圆x 2+y 2=4与圆(x -3)2+(y -4)2=49的位置关系是内切.故选A.3.过点P (1,-2)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则AB 所在直线的方程为( )A .y =-34B .y =-12C .y =-32D .y =-14答案 B解析 由题意知,点P ,A ,C ,B 在以PC 为直径的圆上,易求得这个圆为(x -1)2+(y +1)2=1,此圆的方程与圆C 的方程作差可得AB 所在直线的方程为y =-12.4.已知过原点的直线l 与圆C :x 2+y 2-6x +5=0相交于不同的两点A ,B ,且线段AB 的中点坐标为D (2,2),则弦长为( )A .2B .3C .4D .5答案 A解析 将圆C :x 2+y 2-6x +5=0整理,得其标准方程为(x -3)2+y 2=4,所以圆C 的圆心坐标为(3,0),半径为2.因为线段AB 的中点坐标为D (2,2),所以|CD |=1+2=3,所以|AB |=24-3=2.故选A.5.已知直线l :x -2y +4=0,圆C :(x -1)2+(y +5)2=80,圆C 上到l 的距离为5的点一共有( )A .1个B .2个C .3个D .4个答案 C解析 由圆C :(x -1)2+(y +5)2=80,可得圆心C (1,-5),半径R =4 5.圆心C (1,-5)到直线x -2y +4=0的距离d =|1-2×(-5)+4|12+(-2)2=155=35,R -d =5,所以圆C 上到l 的距离为5的点一共有3个.故选C.6.(2022·全国Ⅲ卷)若直线l 与曲线y =x 和圆x 2+y 2=15都相切,则l 的方程为( )A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +12答案 D解析 易知直线l 的斜率存在,设直线l 的方程y =kx +b ,则|b |k 2+1=55①,设直线l 与曲线y =x 的切点坐标为(x 0,x 0)(x 0≥0),则y ′|x =x 0=12x 0-12=k ②,x 0=kx 0+b ③,由②③可得b =12x 0,将b =12x 0,k =12x 0-12代入①得x 0=1或x 0=-15(舍去),所以k=b =12,故直线l 的方程为y =12x +12.二、填空题7.(2021·郑州质量预测)已知点A (3,2)是圆(x -2)2+(y -1)2=9内一点,则过点A 的最短弦长为________.答案 27解析 记圆(x -2)2+(y -1)2=9的圆心为B ,半径为r ,则B (2,1),r =3.因为A 是圆内一点,所以过点A 的弦与AB 垂直时,弦长最短,又|AB |=(3-2)2+(2-1)2=2,所以最短弦长为2r 2-|AB |2=29-2=27.8.(2022·大庆三模)已知点P (1,2)和圆C :x 2+y 2+kx +2y +k 2=0,过点P 作圆C 的切线有两条,则实数k 的取值范围是________.答案⎝⎛⎭⎪⎫-233,233 解析 因为C :x 2+y 2+kx +2y +k 2=0为圆,所以k 2+4-4k 2>0,解得-233<k <233,又过点P 作圆C 的切线有两条,所以点P 在圆的外部,故1+4+k +4+k 2>0,解得k ∈R ,综上可知-233<k <233.故k 的取值范围是⎝⎛⎭⎪⎫-233,233. 9.(2019·浙江卷)已知圆C 的圆心坐标是(0,m ),半径长是r .若直线2x -y +3=0与圆C 相切于点A (-2,-1),则m =________,r =________.答案-2 5解析根据题意画出图形,可知A(-2,-1),C(0,m),B(0,3),则|AB|=(-2-0)2+(-1-3)2=25,|AC|=(-2-0)2+(-1-m)2=4+(m+1)2,|BC|=|m-3|.∵直线2x-y+3=0与圆C相切于点A,∴∠BAC=90°,∴|AB|2+|AC|2=|BC|2.即20+4+(m+1)2=(m-3)2,解得m=-2.因此r=|AC|=4+(-2+1)2= 5.三、解答题10.已知圆C:(x-1)2+(y+2)2=10,求满足下列条件的圆的切线方程;(1)与直线l1:x+y-4=0平行;(2)与直线l2:x-2y+4=0垂直;(3)过切点A(4,-1).解(1)设切线方程为x+y+b=0(b≠-4),则|1-2+b|2=10,∴b=1±25,∴切线方程为x+y+1±25=0.(2)设切线方程为2x+y+m=0,则|2-2+m|5=10,∴m=±52,∴切线方程为2x+y±52=0.(3)∵k AC=-2+11-4=13,∴过切点A(4,-1)的切线斜率为-3,∴过切点A(4,-1)的切线方程为y+1=-3(x-4),即3x+y-11=0.11.已知过点A(0,1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1交于M,N两点.(1)求k的取值范围;(2)若OM→·ON→=12,其中O为坐标原点,求|MN|.解(1)易知圆心坐标为(2,3),半径r=1,由题设,可知直线l的方程为y=kx+1,因为l与C交于两点,所以|2k-3+1|1+k2<1.解得4-73<k<4+73.所以k 的取值范围为⎝ ⎛⎭⎪⎫4-73,4+73. (2)设M (x 1,y 1),N (x 2,y 2).将y =kx +1代入方程(x -2)2+(y -3)2=1,整理得(1+k 2)x 2-4(1+k )x +7=0. 所以x 1+x 2=4(1+k )1+k 2,x 1x 2=71+k 2. OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k (1+k )1+k 2+8. 由题设可得4k (1+k )1+k 2+8=12, 解得k =1,所以l 的方程为y =x +1.故圆心C 在l 上,所以|MN |=2.B 级 能力提升12.已知a ∈R 且为常数,圆C :x 2+2x +y 2-2ay =0,过圆C 内一点(1,2)的直线l 与圆C 相交于A ,B 两点.当∠ACB 最小时,直线l 的方程为2x -y =0,则a 的值为( )A .2B .3C .4D .5答案 B解析 圆的方程配方,得(x +1)2+(y -a )2=1+a 2,圆心为C (-1,a ),当弦AB 长度最短时,∠ACB 最小,此时圆心C 与定点(1,2)的连线和直线2x -y =0垂直,所以a -2-1-1×2=-1,a =3.故选B.13.(2022·吉林三调)已知两圆相交于两点A (a,3),B (-1,1),若两圆圆心都在直线x +y +b =0上,则a +b 的值是________.答案-1解析由题意可知,直线x+y+b=0是线段AB的垂直平分线,又直线x+y+b=0的斜率为-1,则k AB=1,即3-1a+1=1,解得a=1,∴线段AB的中点为(0,2).又(0,2)在直线x+y+b=0上,∴0+2+b=0,解得b=-2,∴a+b=-1.14.(2021·衡水模拟)已知A(2,0),直线4x+3y+1=0被圆C:(x+3)2+(y-m)2=13(m<3)所截得的弦长为43,且P为圆C上任意一点.(1)求|PA|的最大值与最小值;(2)圆C与坐标轴相交于三点,求以这三个点为顶点的三角形的内切圆的半径.解(1)∵直线4x+3y+1=0被圆C: (x+3)2+(y-m)2=13(m<3)所截得的弦长为43,∴圆心到直线的距离d=|-12+3m+1|5=(13)2-(23)2=1.∵m<3,∴m=2,∴|AC|=(-3-2)2+(2-0)2=29,∴|PA|的最大值与最小值分别为29+13,29-13.(2)由(1)可得圆C的方程为(x+3)2+(y-2)2=13,令x=0,得y=0或4;令y=0,得x=0或-6,∴圆C与坐标轴相交于三点M(0,4),O(0,0),N(-6,0),∴△MON为直角三角形,斜边|MN|=213,∴△MON内切圆的半径为4+6-2132=5-13.。
高考数学复习:直线与圆、圆与圆的位置关系
当直线y=x+b过点(0,3)时,b=3;
当直线y=x+b与y=3- 4x x2相切时,由点到直线的距离 公式,得2= 2 3 b , 所以|b-1|=2 2 .结合图形知
2
b=1-2 2 . 所以1-2 2 ≤b≤3.
【状元笔记】 求直线被圆截得的弦长的常用方法 (1)几何法:用圆的几何性质求解,运用弦心距、半径及 弦的一半表示的线段构成的直角三角形, 计算弦长|AB|=2 r2 d2 .
2.已知点P(2,2),点Q是曲线C:(x2+y2-1)(x2+y2-2)=0上 一动点,则|PQ|的最小值是________.
【解析】曲线C由两部分组成,圆M:x2+y2=1与圆 N:x2+y2=2,如图,
要使|PQ|最小,需点Q在圆N上且在直线OP上, 此时,|PQ|=|OP|- 2 = 2 , 所以|PQ|的最小值是 2 . 答案: 2
【解析】(1)选A.直线l:mx-y+1-m=0过定点(1,1),因为 点(1,1)在圆x2+(y-1)2=5的内部,所以直线l与圆相交.
【一题多解微课】 本例题(1)还可以采用以下方法求解: (几何法)选A.由题意知,圆心(0,1)到直线l的距离 d= m 1 5, 故直线l与圆相交.
m2 1
A.[1-2 2 ,1+2 2 ] C.[-1,1+2 2 ]
B.[1- 2 ,3] D.[1-2 2 ,3]
【解析】选D.因为y=3- 4x x2 ,所以1≤y≤3, 所以(x-2)2+(y-3)2=4(1≤y≤3),即曲线y=3- 4x x2 表示以(2,3)为圆心,2为半径的下半圆.直线y=x+b与 曲线y=3- 4x x2 有公共点,表示两曲线至少有一个公共 点.符合条件的直线应是夹在过点(0,3)和与下半圆相切 的两直线之间.
圆与直线的位置关系知识点总结及练习
圆与直线的位置关系知识点总结及练习例1:设圆C :225x y +=,试判断圆C 和下列直线的相交情形。
(1)1:10L x y -+= (2)2:250L x y --= (3)3:34150L x y +-=。
【练习题】设圆C 和直线L 1、 L 2、 L 3的方程式如下: 试判断它们的相交情形。
C :22(1)8x y ++=,1:3L x y +=-, 2:0L x y +=,3:3L x y +=例2:已知圆C 和直线L 的方程式如下: 22:5C x y +=、:10L x y -+=试问圆C 和直线L 是否相交?若相交, 求出它们的交点。
【练习题】设圆C :22(1)8x y ++=,直线:3L x y +=,试问圆C 和直线L 是否相交?若相交, 求出它们的交点例3:试就实数k 的范围,讨论直线L :y x k =+ 和圆22:2C x y += 的相交情形。
【练习题】就实数m 的范围讨论直线L :2y mx =+和圆22:1C x y +=的相交情形。
例4:求通过圆x 2+y 2=5上一点P (1, 2)的切线方程式。
例5:求通过圆(x -1)2+(y+2)2=25上一点P (4, 2)且与圆相切的直线方程式。
【练习题】(1)求通过P (1, -2)且与圆x 2+y 2=5相切的直线方程式。
(2)求通过P (1, 4)且与圆x 2+y 2-2x +2y -23=0相切的直线方程式。
例6:设圆C :(x -3)2+(y -2)2=8,求通过圆外一点P (-1, 2)且与圆C 相切的直线方程式。
例7:求过点P (5, 15)且与圆C : x 2+y 2=25相切的直线方程式。
【练习题】(1)求过(2,4)-P 且与圆2210x y +=相切的直线方程式。
(2)求过(4,3)P 且与圆22(2)4x y -+=相切的直线方程式.例8:有一半径60公尺的圆形碉堡,甲站在碉堡的正北方与碉堡中心距离100公尺的A处,乙从碉堡中心向东走,要走多少公尺才会看到甲?【练习题】有一圆形碉堡,甲站在碉堡的正北方与碉堡中心距离40公尺的A处,乙从碉堡中心向西走,要走30公尺才刚好看到甲,碉堡的半径为多少公尺?。
直线与圆知识点归纳高三
直线与圆知识点归纳高三直线与圆知识点归纳直线和圆是解析几何中常见的两种几何图形,它们有着丰富的性质和联系。
本文将对直线和圆的相关知识点进行归纳总结,帮助高三学生复习和掌握这一部分内容。
一、直线的定义和性质1. 直线的定义:直线是由无数个点连成的路径,它没有宽度和长度,可以无限延伸。
2. 直线的性质:(1) 直线上的任意两点可以确定一条直线;(2) 任意一条直线可以通过两个点确定;(3) 直线可以延伸到无穷远,也可以延伸到无穷近。
二、圆的定义和性质1. 圆的定义:圆是由平面上距离某一点固定距离的所有点构成的图形。
2. 圆的性质:(1) 圆上任意两点都在圆周上;(2) 圆心到圆周上的任一点的距离都相等,称为半径;(3) 圆的直径是通过圆心,并且两端点都在圆上的线段,长度为半径的两倍;(4) 圆的周长是圆周的长度,记作C,公式为C = 2πr,其中r 为半径;(5) 圆的面积是圆内部的所有点构成的区域,记作S,公式为S = πr²。
三、直线与圆的关系1. 直线与圆的位置关系:(1) 直线可与圆相交,相切或不相交;(2) 如果直线与圆相交,可能有两个交点,一个交点或没有交点;(3) 如果直线与圆相切,有且只有一个切点;(4) 如果直线不与圆相交或切,那么直线与圆之间的距离等于直线到圆心的距离。
2. 判断直线与圆的位置关系的方法:(1) 利用勾股定理:如果直线与圆的距离小于半径,那么直线与圆相交;如果直线与圆的距离等于半径,那么直线与圆相切;如果直线与圆的距离大于半径,那么直线与圆不相交也不相切。
(2) 利用方程求解:已知直线和圆的方程,将直线方程代入圆的方程中,求解得到交点或切点。
四、直线和圆的相关定理1. 直径定理:如果一条直线通过圆的圆心,并且两个端点都在圆上,那么这条直线的长度等于圆的直径。
2. 切线定理:过圆外一点引一条直线与圆相交,那么这条直线与圆的切点到圆心的线段垂直于直线。
3. 弦切角定理:相交弦所夹的圆心角等于它们所对的弧所夹的圆心角的一半。
高考数学一轮复习---直线与圆、圆与圆的位置关系知识点与题型复习
直线与圆、圆与圆的位置关系知识点与题型复习一、基础知识1.直线与圆的位置关系(半径为r ,圆心到直线的距离为d )Δ<0 Δ=0 Δ>02.圆与圆的位置关系(两圆半径为r 1,r 2,d =|O 1O 2|)|r -r |<d <二、常用结论(1)圆的切线方程常用结论①过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.②过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2. ③过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2. (2)直线被圆截得的弦长弦心距d 、弦长l 的一半12l 及圆的半径r 构成一直角三角形,且有r 2=d 2+221⎪⎭⎫⎝⎛l .三、考点解析考点一 直线与圆的位置关系 考法(一) 直线与圆的位置关系的判断例、直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是( ) A .相交 B .相切 C .相离 D .不确定[解题技法]判断直线与圆的位置关系的常见方法: (1)几何法:利用d 与r 的关系.(2)代数法:联立方程组,消元得一元二次方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.考法(二) 直线与圆相切的问题例、(1)过点P (2,4)作圆(x -1)2+(y -1)2=1的切线,则切线方程为( )A .3x +4y -4=0B .4x -3y +4=0C .x =2或4x -3y +4=0D .y =4或3x +4y -4=0 (2)已知圆C :x 2+y 2-2x -4y +1=0上存在两点关于直线l :x +my +1=0对称,经过点M (m ,m )作圆C 的切线,切点为P ,则|MP |=________.考法(三) 弦长问题例、(1)若a 2+b 2=2c 2(c ≠0),则直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为( ) A.12 B .1 C.22D.2 (2)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为( ) A .4π B .2π C .9π D .22π跟踪练习:1.已知圆的方程是x 2+y 2=1,则经过圆上一点M ⎪⎪⎭⎫⎝⎛2222,的切线方程是________. 2.若直线kx -y +2=0与圆x 2+y 2-2x -3=0没有公共点,则实数k 的取值范围是________.3.设直线y =kx +1与圆x 2+y 2+2x -my =0相交于A ,B 两点,若点A ,B 关于直线l :x +y =0对称,则|AB |=________.考点二 圆与圆的位置关系例、已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离变式练习:1.若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =( )A .21B .19C .9D .-112.(变结论)若本例两圆的方程不变,则两圆的公共弦长为________.[解题技法]几何法判断圆与圆的位置关系的3步骤: (1)确定两圆的圆心坐标和半径长;(2)利用平面内两点间的距离公式求出圆心距d ,求r 1+r 2,|r 1-r 2|; (3)比较d ,r 1+r 2,|r 1-r 2|的大小,写出结论.课后作业1.若直线2x +y +a =0与圆x 2+y 2+2x -4y =0相切,则a 的值为( ) A .±5 B .±5 C .3 D .±32.与圆C 1:x 2+y 2-6x +4y +12=0,C 2:x 2+y 2-14x -2y +14=0都相切的直线有( ) A .1条 B .2条 C .3条 D .4条3.直线y =kx +3被圆(x -2)2+(y -3)2=4截得的弦长为23,则直线的倾斜角为( ) A.π6或5π6 B .-π3或π3 C .-π6或π6 D.π64.过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( ) A .2x +y -5=0 B .2x +y -7=0 C .x -2y -5=0 D .x -2y -7=05.若圆x 2+y 2+2x -6y +6=0上有且仅有三个点到直线x +ay +1=0的距离为1,则实数a 的值为( ) A .±1 B .±24 C .± 2 D .±326.过点P (1,-2)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则AB 所在直线的方程为( ) A .y =-34 B .y =-12 C .y =-32 D .y =-147.在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________. 8.若P (2,1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程为________. 9.过点P (-3,1),Q (a,0)的光线经x 轴反射后与圆x 2+y 2=1相切,则a 的值为________.10.点P 在圆C 1:x 2+y 2-8x -4y +11=0上,点Q 在圆C 2:x 2+y 2+4x +2y +1=0上,则|P Q |的最小值是________.11.已知圆C 1:x 2+y 2-2x -6y -1=0和圆C 2:x 2+y 2-10x -12y +45=0. (1)求证:圆C 1和圆C 2相交;(2)求圆C 1和圆C 2的公共弦所在直线的方程和公共弦长.12.已知圆C 经过点A (2,-1),和直线x +y =1相切,且圆心在直线y =-2x 上. (1)求圆C 的方程;(2)已知直线l 经过原点,并且被圆C 截得的弦长为2,求直线l 的方程.提高练习1.过圆x 2+y 2=1上一点作圆的切线,与x 轴、y 轴的正半轴相交于A ,B 两点,则|AB |的最小值为( ) A. 2 B.3 C .2 D .32.在平面直角坐标系xOy 中,A 为直线l :y =2x 上在第一象限内的点,B (5,0),以AB 为直径的圆C 与直线l 交于另一点D .若AB ―→·CD ―→=0,则点A 的横坐标为________. 3.已知圆C :x 2+(y -a )2=4,点A (1,0).(1)当过点A 的圆C 的切线存在时,求实数a 的取值范围; (2)设AM ,AN 为圆C 的两条切线,M ,N 为切点,当|MN |=455时,求MN 所在直线的方程.。
直线与圆、圆与圆的位置关系-高中数学总复习课件
y 0 y = r 2;
(2)过圆( x - a ) 2 +( y - b ) 2 = r 2 上一点 P ( x 0 , y 0 )
的圆的切线方程为( x 0 - a )·( x - a )+( y 0 -
b )·( y - b )= r 2 ;
(3)过圆 x 2+ y 2= r 2外一点 P ( x 0, y 0)作圆的两条切线,则两
法二(几何法) 由题意知,圆心(0,1)到直线 l 的距离 d =
|−|
2 +1
<1< 5 ,故直线 l 与圆相交.
法三(点与圆的位置关系法) 直线 l : mx - y +1- m =0过定
点(1,1),因为点(1,1)在圆 x 2+( y -1)2=5的内部,
所以直线 l 与圆相交.
目录
高中总复习·数学
2
−
2
1+2
,| AB |=2
4||
4||
1
8
2
=
,所以 S △ ABC = × d ×| AB |=
= ,解
2
2
2
1+
5
1+
1
1
得 m =2或 m =-2或 m = 或 m =- .填写任意一个均可.
2
2
目录
高中总复习·数学
解题技法
直线被圆截得的弦长的两种求法
目录
高中总复习·数学
点 P 作圆 O : x 2+ y 2=2的两条切线,切点分别为 A , B ,若直线 PA
与 PB 的夹角为α,当四边形 PAOB 的面积最小时, sin α=
3
2
.
目录
高中总复习·数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五节 直线与圆、圆与圆的位置关系基础测试题 知识梳理
1、直线与圆的位置关系
直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种: 0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d .
2、圆与圆的位置关系
⑴外离:r R d +>; ⑵外切:r R d +=;
⑶相交:r R d r R +<<-; ⑷内切:r R d -=;
⑸内含:r R d -<. 第一部分 基础自测
1、圆2240x y x +-=在点(1,3)P 处的切线方程为() A.320x y +-= B. 340x y +-= C. 340x y -+= D. 320x y -+=
2、圆221:20O x y x +-=和圆222:40O x y y +-=的位置关系是()
A. 相离
B. 相交
C. 外切
D. 内切
3、圆221:2220C x y x y +++-=与圆222:4210C x y x y +--+=的公切线有且仅有()
A. 1条
B. 2条
C. 3条
D. 4条
4、已知两圆221:210240C x y x y +-+-=,222:2280C x y x y +++-=,则两圆公共弦所在的直线方程是_________.
5、若圆221x y +=与直线2y kx =+没有公共点,则实数k 的取值范围为_________. 第二部分 课堂考点讲解
1、已知圆22262(1)102240().x y mx m y m m m R +---+--=∈
(1)求证:不论m 为何值,圆心在同一直线l 上
(2)与l 平行的直线中,哪些与圆分别相交、相切、相离?
2、已知圆22262(1)102240().x y mx m y m m m R +---+--=∈求证:任何一条平
行于l 且与圆相交的直线被各圆截得的弦长相等.
3、已知点(3,1)M ,直线40ax y -+=及圆22(1)(2)4x y -+-=.
(1)求过M 点的圆的切线方程;
(2)若直线40ax y -+=与圆相切,求a 的值;
(3)若直线40ax y -+=与圆相交于,A B 两点,且弦AB 的长为23,求a 的值.
4、已知点(1,)A a ,圆224x y +=.
(1)若过点A 的圆的切线只有一条,求a 的值及切线方程;
(2)若过点A 且在两坐标轴上截距相等的直线被圆截得的弦长为23,求a 的值.
5、试求与圆221:(1)1C x y -+=外切,且与直线30x y +=相切于点(3,3)Q -的圆的方程.
6、判断圆2221:450C x y mx y m +-++-=与圆222:22C x y x my ++-2m +3-= 0的位置关系. 第三部分 考题演练
1、直线3y kx =+与圆22(3)(2)4x y -+-=相交于,M N 两点,若23MN ≥,则k 的取值范围是()
A. 3,04⎡⎤-⎢⎥⎣⎦
B. ()3,0,4⎛⎤-∞-⋃+∞ ⎥⎝
⎦ C. 33,33⎡⎤-⎢⎥⎣⎦
D. 2,03⎡⎤-⎢⎥⎣⎦ 2、若直线y x b =+与曲线234y x x =--有公共点,则b 的取值范围是 A. 1,122⎡⎤-+⎣⎦ B. 122,122⎡⎤-+⎣⎦ C. 122,3⎡⎤-⎣⎦ D. 12,3⎡⎤-⎣⎦
3、已知圆O 的半径为1,,PA PB 为该圆的两条切线,,A B 为两切点,那么PA PB
⋅ 的最小值为()
A. 42-+
B. 32-+
C. 422-+
D. 322-+
4、如果直线4ax by +=与圆224x y +=有两个不同的交点,则点(,)P a b 与圆的位置关系是()
A. P 在圆外
B. P 在圆上
C. P 在圆内
D. 不能确定
5、已知直线0(0)ax by c abc -+=≠与圆221x y +=相切,则三条边长分别是,,a b c 的三角形()
A. 是锐角三角形
B. 是直角三角形
C. 是钝角三角形
D. 不存在
6、过点(0,1)-作直线l 与圆2224200x y x y +---=交于,A B 两点,如果8AB =则直线l 的方程为()
A. 3440x y ++=
B. 3440x y --=
C. 3440x y ++=或10y +=
D. 3440x y --=或10y +=
7、已知直线x y a +=与圆22
4x y +=交于,A B 两点,且OA OB OA OB +=- ,其中O 味坐标原点,则实数a 的值为()
A. 2
B. 2±
C. 2-
D. 2±。