MR波谱分析 ppt课件

合集下载

磁共振波谱成像 ppt课件 ppt课件

磁共振波谱成像  ppt课件  ppt课件

– 磁共振波谱分析(MRS)
脑功能成像
• 测量脑内化合物
• 测量脑局部代谢和血氧变化技术 • 测量脑内神经元活动的技术
测量脑代谢和血氧变化
• 当脑活动增加时,局部血流,氧代谢和糖代谢 增加,可以功能定位,对脑局部反应特征研究
– PET – 光学成像技术
– 功能磁共振成像(fMRI)
• 灌注成像:外源性灌注成像(PWI) 内源性,血氧水平依赖法(BOLD)
• 选用SV或 MV • 选择成像参数 • 兴趣区的选择定位 • 自动预扫描:匀场、水抑制 • 数据采集后处理和分析
序列及扫描参数
• SV, press
• TR 1500 ms • TE 144/35 ms
• 自动预扫描后获得的参数:
– 线宽(Ln)小于10Hz – 水抑制大于95%
• FOV 24 cm
提高分辨力和敏感度: MRS反映局部磁场的瞬 间变化,对任何原因引起磁场均一性的微小波 动均较敏感,导致波峰增宽和重迭,从而降低 MRS技术的分辨力和敏感度 定量分析困难:尤其是绝对定量
MRS临床应用
• 脑部
• 体部:前列腺、肝脏、乳腺等
MRS在脑部临床应用技术
• 点分辨波谱法 PRESS
• 可以同时获取病变侧和未被病变累及的区域, 评价病灶的范围大 。
• 匀场比较困难,由于多个区域同时获得相同的 磁场均匀性。对临近颅骨、鼻窦或后颅窝的病 灶,由于磁敏感伪影常常一次匀常不能成功
• 采集时间比较长 。
单体素与多体素的比较
单体素
容易实现
多体素
覆盖范围大,一次采集可获得较 多信息
百倍,甚至几千倍,如不抑制,代谢物将被掩盖
• 匀场和水抑制后: 线宽,头颅小于10Hz,肝脏小

核磁共振波谱分析ppt课件

核磁共振波谱分析ppt课件

DE=hν ——②
则:处于低能级态的1H就会吸收电磁波的能量,跃迁到 高能级态,发生核磁共振。
11
核磁共振波谱分析
1.2.4 核磁共振的条件
发生核磁共振时,必须满足下式:
n=
g 2p
Ho
3
③式称为核磁共振基本关系式。
❖ 可见,固定H0,改变ν射或固定ν射,改变H0都可满足③ 式,发生核磁共振。
但为了便于操作,通常采用后一种方法。
• 乙酸乙酯的核磁共振氢谱
1H NMR ( 300 MHz, CDCl3 ),δ( ppm) 1.867 ( t, J= 7.2 Hz, 3H ), 2.626 ( s, 3H ), 4.716 ( q, J= 7.2 Hz, 2H )
• s—单峰;d—双峰(二重峰);t—三峰 (三重峰);q—四峰(四重峰);m—多 峰(多重峰)
C6H5CH2CH3 C6H5
CH3
CH2
17
17
核磁共振波谱分析
核磁共振氢谱信号 结构信息
信号的位置 (化学位移)
信号的数目
信号的强度 (积分面积)
信号的裂分 (自旋偶合)
质子的化学环境 化学等价质子的组数 引起该信号的氢原子数目
邻近质子的数目,J(偶
合常数)单位:Hz
18
核磁共振波谱分析
(2)核磁共振数据
19
核磁共振波谱分析
§3 化学位移 (Chemical shift)
化学环境不同 的1H 核在不 同位置(ν) 产生共振吸 收
化学环境不同的1H 核在外磁场中 以不同的Larmor频率进动;1H 核在分子中所处的化学环境不同 导致Larmor频率位移
20
核磁共振波谱分析

《核磁共振波谱法》PPT课件

《核磁共振波谱法》PPT课件

采样间隔
扫描次数
选择适当的采样间隔,以确保谱图的准确 性和分辨率。
增加扫描次数可以提高谱图的信噪比,但 也会增加实验时间。因此,需要权衡信噪 比和实验时间,选择适当的扫描次数。
定性分析与定量分析
定性分析
通过比较已知样品和未知样品的NMR谱图,确定未知样品的组成和结构。
定量分析
通过测量样品中不同组分的峰面积或峰高,计算各组分的含量。需要建立标准 曲线或使用内标法进行定量分析。
样品稳定性
确保样品在NMR实验过程中保 持稳定,避免由于化学变化导 致谱图失真。
样品溶剂
选择适当的溶剂,以保证样品 的溶解和稳定性,同时避免对
NMR谱图产生干扰。
实验参数的选择与优化
磁场强度
脉冲宽度
根据实验需求选择适当的磁场强度,以提 高检测灵敏度和分辨率。
选择合适的脉冲宽度,以获得最佳的信号 强度和分辨率。
《核磁共振波谱法》ppt课件
汇报人:可编辑 2024-01-11
目录
• 核磁共振波谱法概述 • 核磁共振波谱法的基本原理 • 核磁共振波谱仪 • 核磁共振波谱法的实验技术 • 核磁共振波谱法的应用实例
01
核磁共振波谱法概述
定义与原理
定义
核磁共振波谱法是一种利用核磁共振现象进行物质结构和动力学研究的分析方法 。
化学位移是由于不同化学环境中的原子核受到不 同程度的磁场扰动,导致其能级分裂的差异。
通过测量化学位移,可以推断出原子核所处的化 学环境,进而确定分子的结构。
耦合与裂分
当两个或多个相邻的原子核相互作用 时,它们之间的能级会发生耦合,导 致谱线裂分。
通过分析裂分的谱线,可以进一步解 析分子内部的相互作用和结构信息。

核磁共振波谱分析方法 ppt课件

核磁共振波谱分析方法  ppt课件
(1) 饱和烃 -CH3: CH3=0.791.10ppm
-CH:
-CH2: CH2 =0.981.54ppm
CH= CH3 +(0.5 0.6)ppm
O CH3 N CH3 C C CH3 O C CH3 CH3
36
H=3.2~4.0ppm H=2.2~3.2ppm H=1.8ppm H=2.1ppm H=2~3ppm
CH3
Si
CH3
CH3
(3)容易回收(b.p低),与样品不反应、不缔合。
16
试样的共振频率
标准物质TMS的共振频率
试样 TMS 6 10 0
化学位移
仪器频率
感生磁场 H'非常小,只有 外加磁场的百万分之几, 6 10 为方便起见,故×
17
(3).影响化学位移(电子云密度)的因素: a.电负性:
数)
E = hν
H0
低能态
h E H0 2
9
3.核磁共振的产生 : 外界提供的能量等于不同取向原子核的能级差.即:
h h E H0 2
H0 2
I≠0
核——原子核自旋 磁——外加磁场H0 共振—— H 0 2
10
诱导产生自旋能级分裂
能级跃迁
二、核磁共振仪器:
ii) 某组环境相同的氢核,分别与n个和m个环境 不同的氢核(或I=1/2的核)偶合, 则裂分为 (n+1)(m+1)个峰
28
Hb
Hb Ha Hc C C C Br Hb Ha Hc
4
c
a
b
3
2
1
0
Jba Jca
Jca Jba Ha裂分峰:(3+1)(2+1) = 12 实际裂分峰: 6

磁共振波谱ppt课件

磁共振波谱ppt课件

射频线圈
基本结构
乳腺线圈
射频线圈
基本结构
体部线圈
基本结构
射频线圈
肩关节线圈
基本结构
射频线圈
膝关节线圈
射频线圈
基本结构
头部线圈
基本结构
4.计算机系统 (1)模-数(A-D转换器) (2)阵列处理机 (3)用户计算机 ①患者管理; ②测量系统的组织和控制: ③测量数据的采集和处理; ④显示原始数据,图像数据及结果; ⑤图像后处理; ⑥图像存取等。
(一)磁体
2.超导型磁体 超导型磁体的导线由超导材料制成, 产生静磁场线圈的导线是用特制超导材料—多股 铌钛合金制成。要求这种合金导线的粗细均匀、 绕制整齐、中间无接头。这种导线在温度低于某 一温度值时,导线电阻极小,呈现出“超导”, 可允许通过非常高的电流而耗散功率极小。该型 机可以做得磁场强度很大,磁场均匀稳定。可以 进行磁共振成像,也可进行磁共振波谱分析等。 图像、谱图质量较高。但该类型机的磁体结构最 复杂,且为了保持超导状态,导线必须浸泡在液 氦中,因此需要昂贵的冷却剂,尤其是液氦,使 日常维护费用增高。
(三)射频系统
射频系统主要由射频发生器(发射部分) 和探测器(接收部分)两部分构成。射频 发生器是用来向样品传送激发自旋核所必 须的射频场,它包括射频振荡器、放大器 和发射线圈。样品管垂直地放置在磁场中 心,发射线圈的轴线与磁场方向垂直。发 射线圈和接牧线圈的轴线互相垂直,在实 际谱仪中是安置在一个称之为探头的十分 紧凑的部件中,这些线圈紧贴地缠绕在插 入的样品管的周围。
(四)射频接收器
射频接收器线圈在试样管的周围,并于 振荡器线圈和扫描线圈相垂直,当射频振
无论何种磁体,在制造过程中都不可能使磁体 的磁场完全均匀,同时,在磁共振波谱分析仪的 周围环境中,铁磁性物体及其他大型的电子、电 磁设备等,都会使磁体磁场的均匀性受到影响。 为了使磁体的磁场强度趋于均匀,可采用被动地 贴补金属小片和主动地调整匀场线圈的方法。匀 场线圈是带电的线圈,产生小的磁场以部分调节 磁体磁场的不均匀性。匀场线圈可以是常导型的, 也可以是超导型的,在常导型匀场线圈中,由匀 场电源供给电流。

波谱分析核磁共振PPT讲稿

波谱分析核磁共振PPT讲稿

• 在分子体系中,同种核所处的化学环境不同,核外电子云
密度不同,产生的屏蔽作用就不同,处于不同化学环境的 同种核的共振频率不同。
• 由于核周围分子环境不同而使其共振频率发生位移的现象
叫做化学位移。
H0 (1 ) 2
σ为原子核的屏蔽常数(数值为10-5数量级)
例:乙醇的分子式中有三种不同化学环境的氢核,甲基(-
3.影响化学位移的因素
•核外电子云密度的影响-电负性的作用
与质子相连元素的电负性越强,吸电子作用越强,价电 子偏离质子,屏蔽作用减弱,化学位移较大,信号峰在 低场出现。
磁的各向异性效应
质子在分子中所处的空间位置不同,屏蔽 作用的不同的现象称为磁各向异性效应。 在外磁场作用下,环电子流所产生的感应 磁力线是闭合的,与外磁场反向的磁力线 部位起屏蔽作用,而同向的磁力线部位起 去屏蔽作用。
三、化学位移
在有机化合物中,各种氢核 周围的电子云 密度不同(结构中不同位置)共振频率有 差异,即引起共振吸收峰的位移,这种现 象称为化学位移。
但V0与H0有关,不同的仪器测得的数据难 以比较,故需引入化学位移的概念。
1.屏蔽效应产生化学位移
核外电子云在外磁场的作用下,倾向于在垂直磁场的 平面里作环流运动,从而产生一个与外磁场反向的感 应磁场,因而核实际所受到的磁场强度减弱。
波谱分析核磁共振课件
概述
• 核磁共振谱(NMR)与红外、紫外一样,都属于吸收光谱。
• 红外光谱是由分子的振动和转动能级的跃
迁产生的吸收光谱
• 紫外-可见吸收光谱来源于分子的电子能级
间的跃迁
• 核磁共振是分子中原子核自旋能级的跃迁
产生的吸收光谱。
• 在NMR中电磁辐射的频率为兆赫数量级,

磁共振波谱ppt课件

磁共振波谱ppt课件
3
核磁共振发现 诺贝尔物理学奖 磁共振谱分析(MRS) 头部MRI投入临床 全身MRI研制成功 诺贝尔物理学奖
1946年 1952年 1946~1972年 1978年 1980年 2003年
4
1952年诺贝尔物理学奖
2003年诺贝尔物理学奖
பைடு நூலகம்
布洛赫 USA 斯坦福大学
珀塞尔 USA 坎伯利基哈佛大学
24
射频发射系统是用来向样品传送激发自旋核所 必须的射频场,它包括射频振荡器、放大器和发 射线圈。样品管垂直地放置在磁场中心,发射线 圈的轴线与磁场方向垂直。高分辨核磁共振仪对 射频源的稳定性和均匀性同样也有很高的要求, 一般是由称为“主钟”的石英晶体振荡器来产生 谱仪所需要的各种频率,各种频率都是以“主钟” 频率为基准。频率的稳定性和磁场稳定性是互相 关联的,因此核磁共振仪器都包括场一频稳定系 统,它是通过一个反馈系统将一个参考信号(通常 用2H的共振信号)保持在共振位置上来实现联锁的。
40
磁共振信号的频率主要取决于两个方面:一 个是旋磁比,这是原子核的固有属性;另 一个是共振原子核所处位置的磁场强度,影 响磁场强度的因素有外加磁场的磁场强度 和该原子核周围的电子和邻近原子核周围 电子的作用,这些电子与外磁场相互作用, 改变原子核周围的局部磁场强度,这种现 象称为化学位移。
41
因此,某一样本中每一种化学组分的不同原子 核都将以略有差异的频率发生共振,从而产生不 同的磁共振信号。化学位移所产生的磁共振频率 差异非常小,所以磁共振波谱分析仪要求外磁场 必须很强且十分均匀,外磁场在均匀性上有一点 微小改变,都将使化学位移引起的微小信号无法 辨认。
28
1.电源柜 电源包括带屏蔽的电源变压器、 产生主磁体磁场的大功率稳压稳流直流电 源,射频脉冲电源、供给辅助磁场的电源 和供给计算机、图像处理系统、存储器、 多幅照相机的电源等。

MRS分析 ppt课件

MRS分析 ppt课件

H
H
OH
H
frequency
looks more like real spectroscopy
– different nuclei give different peaks
a real spectrum ?
2021/3/26
MRS分析 ppt课件
6
excite
Recording a
spetrum
Involving the left temporal lob and basal ganglia region.
6、Glx(谷氨酸盐/谷氨酰胺/氨基丁酸)脑内活 性物质,2.2-2.4ppm和3.6-3.8ppm,Glx高于NAA 的1/3,提示升高,Glx明显升高提示为非肿瘤 性病变,脑缺氧、肝昏迷、癫痫精神分裂等;
7、Lip脂质波,1.4ppm,提示组织坏死,髓鞘发 育前可以发现Lip波。
2021/3/26
MRS的技术和影响因素
1、扫描技术: H1+、P31 、13C、19F等;较常见 的是1H和31P;
2、 H1+ MRS:Single voxel,Multi-voxel,3-D等;
3、TE时间影响显示的波峰,如短TE显示的波 较多(10、25ms),长TE(144、135ms等);
4、脑的不同部位和年龄影响组织内分子的含 量,附近组织的影响。
弓形虫感染和淋巴瘤:淋巴瘤的NAA/Cr、 NAA、Cr和MI降低,Cho升高,Lip和 Lac升高,前者的Cho下降;
2021/3/26
MRS分析 ppt课件
27
左额叶病灶, 长T1长T2信号
2021/3/26
MRS分析 ppt课件
28

核磁共振波谱学习课件(共88张PPT)可修改文字

核磁共振波谱学习课件(共88张PPT)可修改文字
大,屏蔽弱,共振需要 的磁场强度小,在低场出现, 图左侧。
= [(样 - TMS)/ TMS ] ×106
二、影响化学位移的因素
1.电负性--去屏蔽效应
与质子相连元素的电负性越 强,吸电子作用越强,价电子偏 离质子,屏蔽作用减弱,信号峰 在低场出现。
电负性对化学位移的影响
H 3 C B H 3 r C 2 C B H C 3 r (C 2 H ) 2 B H C r 3 (C 2 H ) 3 B H
备的超导线圈;在低温4K,处于超导状 态;磁场强度>100 T
开始时,大电流一次性励磁后,闭合 线圈,产生稳定的磁场,长年保持不变; 温度升高,“失超”;重新励磁。 超导核磁共振波谱仪:
200~400MHz;600~800MHz。
(2)试样中加入几滴D2O,摇荡片刻,试样中的–OH或 –NH2基中的1H被重氢D交换。 由于屏蔽作用的存在,氢核产生共振需要更大的外磁场强度(相对于裸露的氢核),来抵消屏蔽影响。 (2)与外磁场相反,能量高,磁量子数 m =-1/2。 谱图解析与结构确定步骤 (1)偶合常数( J 值)相等 通常两组相互偶合的峰都是相应“内侧”峰偏高,而“外侧”峰偏低,在偶合信号的强峰上画一对相应的斜线,形成屋顶形状。 两种进动取向不同的氢核之间的能级差: 恒定磁场,施加全频脉冲,产生共振,采集产生的感应电流信号,经过傅里叶变换获得一般核磁共振谱图。 没有直接与吸电子基团(或元素)相连,在高场出现。 磁各向异性是指质子在分子中所处的空间位置不同,屏蔽作用不同的现象。 为什么1H比6H的化学位移大? (2)试样中加入几滴D2O,摇荡片刻,试样中的–OH或 –NH2基中的1H被重氢D交换。 超导磁体:铌钛或铌锡合金等超导材料制备的超导线圈; 方向相同,核所感受到的实际磁场 B有效 大于外磁场。 傅里叶变换核磁共振波谱仪需要纯试样品 1 mg 。

基础医学课件-核磁共振波谱分析PPT课件

基础医学课件-核磁共振波谱分析PPT课件
外加磁场强度下发生核跃迁时,氢核需要的能量将高 于氟核
2020年10月2日
11
5.2.3 核的回旋
当原子核的核磁矩处于外加磁场B0 中,由于核自
身的旋转,而外加磁场又力求它取向于磁场方向,在 这两种力的作用下,核会在自旋的同时绕外磁场的方 向进行回旋,这种运动称为Larmor进动。
2020年10月2日
2020年10月2日
22
样品处理
对液体样品,可以直接进行测定。对难以溶解的 物质,如高分子化合物、矿物等,可用固体核磁共振 仪测定。但在大多数情况下,固体样品和粘稠样品都 是配成溶液(通常用内径4mm的样品管,内装0.4mL 质量分数约为10%的样品溶液)进行测定。
溶剂应该不含质子,对样品的溶解性好,不与样 品发生缔合作用。常用的溶剂有四氯化碳、二硫化碳 和氘代试剂等。四氯化碳是较好的溶剂,但对许多化 合物溶解度都不好。氘代试剂有氘代氯仿、氘代甲醇、 氘代丙酮、重水等,可根据样品的极性选择使用。氘 代氯仿是氘代试剂中最廉价的,应用也最广泛。
在上图中,当自旋取向与外加磁场一致时(m =+1/2), 氢核处于一种低能级状态(E=-μB0);相反时(m=- 1/2),氢核处于一种高能级状态(E=+μB0)两种取向间 的能级差,可用ΔE来表示:
ΔE = E2-E1 =+μB0-(-μB0) = 2μB0 式中:μ为氢核磁矩;B0为外加磁场强度
然而,核磁共振信号的强弱是与被测磁性核的天然丰 度和旋磁比的立方成正比的,如1H的天然丰度为99.985%, 19F和31P的丰度均为100%,因此,它们的共振信号较强, 容易测定,而13C的天然丰度只有1.1%,很有用的15N和17O 核的丰度也在1%以下,它们的共振信号都很弱,必须在傅 里叶变换核磁共振波谱仪上经过多次扫描才能得到有用的 信息。

现代仪器分析——核磁共振波谱法ppt课件

现代仪器分析——核磁共振波谱法ppt课件
• 相当于光谱仪器中的检测器。
探头
• 样品管座 发射线圈 接收线圈 预放大器 变温元 件
可编辑课件PPT
11
扫描单元
• 用于控制扫描速度、扫描范围等参数; • 一般为扫场模式。在一定范围内,通过扫描线圈
在外磁场上附加一个连续作微小变化的小磁场, 依次使不同共振位置的自旋核共振。射频接收器 会检测到信号的损失并放大记录下来。 • 连续波共振仪为单通道式共振仪,为得到较好的 谱图,许多次扫描累加,费时。
可编辑课件PPT
8
主要部件
磁铁:提供稳定均匀的外磁场
• 永久磁铁:<25kG,100MHz • 电磁铁:<25kG,100Mhz • 超导磁铁:可达100kG以上,>200MHz
– 铌-钛超导材料线圈,置于双层液氦杜瓦瓶 (外层装液氮),逐步加上电流,达到要求后 撤去电源。
可编辑课件PPT
9
射频发射器
• 偶合是短程的
– 相互裂分的氢核间只 能间隔两到三个化学 键;
• 峰裂分的n + 1规律
可编辑课件PPT
17
五、应用
未知化合物1H NMR谱图的解析
解析步骤: ① 根据分子式计算不饱和度; ② 测量积分曲线每一个台阶的高度,折算成整数比,然后 折算成每组峰所对应的氢原子数; ③ 根据化学位移值、质子数目及峰裂分情况推测结构单元 ; ④ 计算剩余的结构单元的不饱和度; ⑤ 组合结构单元成为可能的结构式; ⑥ 对所有可能结构进行指认,排除比可能的结构; ⑦ 借助其它仪器分析法进行进一步确认。
CH3CH2I
CH2I
-CH3
TMS
8.0
7.0
6.0
5.0
4.0
3.0

核磁共振波谱诊断脑瘤技术ppt课件

核磁共振波谱诊断脑瘤技术ppt课件
核磁共振波谱诊断脑瘤技术(化学指纹)
-
1
磁共振波谱(MRS)
MRS:是一种新兴的无创性体内观察组织代谢的方
法,在脑肿瘤的基础和临床研究中具有重要价值。在提 高脑肿瘤诊断准确率、鉴别肿瘤复发与放射治疗后坏 死、了解肿瘤的代谢特性及预测肿瘤临床进程等方面 具有重要意义,且能为临床制订合理的治疗方案提供帮 助。
-
9
三、正常图象分析
1、常见化合物的化学位移及其作用 NAA
Cr
Cho
Cr
Glx
Lac
3.9
3.2 3.0
2.4
2.0
-
1.3
ppm
10
(1)NAA——氮-乙酰天门冬氨 酸
位于2.0ppm 主要位于神经元上,是公认的神经元标志物, NAA降低往往提示神经元的脱失或功能障碍。
-
11
(2)Choline——胆碱复合物(甘油磷酸胆碱、磷 酸胆碱和胆碱)
-
20
脑肿瘤的波谱
实质内NAA消失或降低,Cho显著升高,Cr轻度 下降,可有Lac/Lip出现。
坏死囊变区内NAA、 Cho、 Cr均明显降低,伴 Lac 峰。
-
21
Cho Cr
NAA
T
Lip
Necrosis
E
normal
-
22
1.1、星形细胞瘤与急/亚急性脑梗塞的鉴别
星形细胞瘤、脑梗塞的1H MRS代谢物比值分析表
Cho/NAA
Cho/Cr
NAA/Cr
(Lac+Lip)/Cr
星 形 2.12±0.31* 2.26±0.76* 0.91±0.18
0.45±0.19
梗 塞 0.81±0.62
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MR波谱分析
4
➢ 20例恶性骨肿瘤 Cho Lip1 ,19例(95%)Lac ,13 例(65%)出现Lip2峰(位于0.9ppm峰命名为Lip2),5例 (25%)肌酸Cr未测出,表现为Ⅱ型波形
➢ 18例良性骨病变Cho ,Lip1 ,Lip2均未能测出,仅有2例 (11.1%)Lac ,表现为Ⅰ型波形
➢ 恶性肿瘤生长迅速,组织相对缺氧,无氧酵解增多,常常 导致Lac升高 。
MR波谱分析
3
➢ 但是,乏氧代谢不是恶性肿瘤的特有表现,良性肿瘤 也会出现Lac波或Lac峰升高,可能由于良性肿瘤的代 谢活动增强,特别是以无氧酵解为主要途径提供能量 时,葡萄糖吸收增多。
➢ 我们的研究有95%恶性骨病出现Lac高峰,2例良性骨 病变Lac含量升高
MR波谱分析
5
Ⅱ型波形 一例12岁尤文肉 瘤的1H MRS波 形
Ⅰ型波形 一例13岁股骨颈嗜酸性 肉芽肿的1H MRS波形
MR波谱分析
ห้องสมุดไป่ตู้
6
Ⅱ型波形 一例63岁转移瘤
Ⅰ型波形 一例8岁跨骨骺的骨脓肿
MR波谱分析
7
➢ 我们的研究中,所有恶性骨病变Cho含量均升高,所有良 性骨病Cho含量均降低,与文献提到的脑及脑外恶性肿瘤 改变类似。
MR波谱分析
2
乳酸 Lac 峰
➢ 由于双自旋(自旋偶联-J Coupling)作用,表现为双尖 “M”型峰,是无氧酵解的终产物,其含量增加说明病变 组织含氧量降低,无氧代谢增加 。
1H MRS的几个主要波峰物质的意义
Lip峰
➢ 提到的脂质峰一般指 Lip2(0.9ppm),Lip2峰 往往难以 测出,恶性肿瘤中却常可以测出。这可能是由细胞坏死膜 降解引起。随着肿瘤恶性度增高,细胞坏死及与之相伴随 的细胞膜降解增多,脂质信号亦相应增高。
MR波谱分析
1
Cho峰
➢ 为胆碱复合物 ,主要参与细胞生物膜的构成及细胞生物 膜的转运, Cho浓度反映细胞密度及生长增殖情况,恶 性肿瘤常因细胞分裂增殖活跃而致Cho含量升高。
相关文档
最新文档