工程管理外文文献
工程项目管理英文文献
Abstract:Engineering projects are complex and multifaceted endeavors that require meticulous planning, coordination, and execution. Effective project management is essential for the successful completion of these projects. This paper aims to discuss the role of project management in engineering projects, highlighting its importance, key components, and challenges faced by project managers. The paper also suggests strategies to overcome these challenges and enhance project performance.1. IntroductionEngineering projects encompass a wide range of activities, such as construction, infrastructure development, and manufacturing. These projects are typically characterized by their size, complexity, and high stakes. As a result, they require a systematic approach to ensure successful completion within the specified time, budget, and quality constraints. Project management plays a pivotal role in achieving these objectives by providing a structured framework for planning, executing, and controlling the project activities.2. The Role of Project Management in Engineering Projects2.1 PlanningEffective planning is the cornerstone of project management. It involves defining the project scope, objectives, and deliverables, as well as identifying the necessary resources, activities, and timelines. In engineering projects, planning helps to:- Establish a clear understanding of the project objectives and requirements- Allocate resources efficiently- Identify potential risks and develop mitigation strategies- Develop a realistic project schedule- Ensure compliance with regulatory and industry standards2.2 ExecutionOnce the planning phase is complete, the project moves into the execution phase. During this phase, project managers are responsible for:- Coordinating the activities of various stakeholders, including contractors, suppliers, and consultants- Ensuring that the project is progressing according to the plan- Managing the project budget- Overseeing the quality of work performed by the project team- Addressing any issues or challenges that arise during the project lifecycle2.3 ControlProject control is a critical component of project management, as it involves monitoring the project’s performance against the planned objectives and taking corrective actions when necessary. In engineering projects, control helps to:- Identify deviations from the plan and analyze their causes- Implement corrective actions to bring the project back on track- Maintain project quality and compliance with standards- Manage project risks effectively- Ensure timely completion of the project3. Key Components of Project Management in Engineering Projects3.1 Project ScopeThe project scope defines the boundaries of the project, including the deliverables, objectives, and constraints. In engineering projects, it is crucial to clearly define the scope to avoid scope creep, which can lead to cost overruns, delays, and quality issues.3.2 Project ScheduleThe project schedule outlines the sequence of activities, milestones, and timelines required for the successful completion of the project. In engineering projects, the schedule must be realistic, consideringfactors such as resource availability, dependencies, and potential risks.3.3 Project BudgetThe project budget is the financial plan that allocates resources to various project activities. In engineering projects, budget management is critical to ensure that the project is completed within the allocated financial resources.3.4 Project QualityQuality management is a fundamental aspect of project management in engineering projects. It involves establishing quality standards, conducting inspections and audits, and ensuring that the project deliverables meet these standards.3.5 Project Risk ManagementRisk management is essential in engineering projects, as they are prone to various risks, such as design errors, construction delays, and environmental factors. Effective risk management helps to identify, assess, and mitigate these risks to minimize their impact on the project.4. Challenges in Project Management of Engineering Projects4.1 CommunicationEffective communication is essential for the successful management of engineering projects. However, communication challenges, such as language barriers, cultural differences, and conflicting interests, can hinder project progress.4.2 Resource ConstraintsEngineering projects often face resource constraints, such as limited funding, skilled personnel, and equipment. These constraints can impact the project’s timeline, quality, and budget.4.3 Scope CreepScope creep refers to the uncontrolled expansion of the project scope, leading to cost overruns and delays. In engineering projects, managing scope creep is crucial to maintain project control.5. Strategies to Overcome Challenges5.1 Effective CommunicationTo overcome communication challenges, project managers should:- Foster an environment of open communication- Use appropriate communication tools and platforms- Ensure that all stakeholders are well-informed about the project progress5.2 Resource OptimizationTo address resource constraints, project managers should:- Prioritize project activities based on their criticality- Develop contingency plans for resource shortages- Leverage technology and automation to optimize resource utilization5.3 Scope ManagementTo manage scope creep, project managers should:- Clearly define the project scope at the outset- Conduct regular scope reviews and updates- Communicate any changes to the project scope to all stakeholders6. ConclusionEffective project management is crucial for the successful completion of engineering projects. By understanding the role of project management, its key components, and the challenges faced by project managers, stakeholders can develop strategies to enhance project performance. This paper has discussed the importance of project management in engineering projects, highlighting the various aspects that contribute to its success. By addressing the challenges and adopting appropriate strategies, project managers can ensure that engineering projects are completed within the specified time, budget, and quality constraints.。
工程管理专业外文文献以及汉文翻译
外文文献:The project management office as an organisational innovationBrian Hobbs *, Monique Aubry,Denis ThuillierUniversity of Quebec at Montreal, Department of Management and Technology,PO Box 8888,Downtown Station,Montreal,Que,Canada H3C 3P8Received 15 May 2008; accepted 20 May 2008AbstractThe paper presents an investigation of the creation and the reconfiguration of project management offices (PMOs) as an organizational innovation。
The analysis of 11 organisational transformations centred on the implementation or reconfiguration of PMOs is presented. The objective of the paper is to contribute to a better understanding of PMOs and of the dynamic relationship between project management and the organisational context。
The aim is also to integrate the examination of PMOs as an organisational innovation into the mainstream of research on the place of project management in organisations and more widely to the ‘‘rethinking of project management.”1。
工程管理外文文献
工程管理外文文献编者按:很多朋友寻找工程管理类的外文文献,以下是本人收集的一部分外文文献,希望能对朋友们有所帮助。
工程管理外文文献:[1](美)杰克.吉多詹姆斯P.克莱门斯著张金成等译成功的项目管理Successful Project Mamagement . 北京:机械工业出版社,2003:p171-186.[2]Demeulemeester, E. L. and Herroelen.A Branch and Bound Procedure for theMultiple Resource-Constrained Projects Scheduling Problem. ManagementScience, 1992, 38: 1803~1881.[3]Joel P.Stinson, Edward W.Davis and Bsheer M. Khumawala. MultipleResource-Constrained Scheduling Using Branch and Bound.ALLE Transaction,1 987, 10:252~259.[4]Demeulemeester, E.L. and Willy Herroelen.New Benchmark Results for theResource-Constrained Project Scheduling Problem.Management Science,1997,43:1485~1492.[5]Fayez F.Boctor.Some efficient multi heuristic procedures forResource-Constrained Project Scheduling. European Journal of OperationalResearch, 1990, 49:3~13.[6]Rainer Kolisch.Serial and Parallel Resource-Constrained Project Schedulingmethods revisited: Theroy and computation.European Journal of OperationalResearch, 1996,90:320~333.[7]K.Bouleimen, H.Lecocq.A new efficient simulated annealing algorithm for theresource-constrained scheduling problem.Technical Report, service deRobotique et Automatisation, University de Liege, 1998.[8]S.Hartmann.A Competitive Genetic Algorithm for Resource-Constrained ProjectScheduling.Naval Research Logistics, 1998, 45:733~750.[9]S.Hartmann and R.Kolisch,Experimental evaluation of state-of-the-art heuristicsfor the resource-constrained project scheduling problem, European Journal of Operational Research, 2000,127:394~408.[10]Fendley, L.G.Towards the Development of a Complete Multi-project SchedulingSystem. Journal of Industrial Engineering, 1968, 12:505~515.[11]Kurtulus.I, E.W.Davis. Multi-Project Scheduling: Categorization of HeuristicRules Performance.Management Science, 1982, 2:25~31.[12]Shigeru Tsubakitani, Richard F.Deckro. A heuristic for multi-project schedulingwith limited resources in the housing industry.European Journal of Operational Research, 1990, 49:80~91.[13]Soo-Young Kim, Robert C. Leachman.Multi-Project Scheduling with ExplicitLateness Costs. IIE Transactions, 1993, 25:34~43.[14]Paul C .Dinsmore,Winning in Business With Enterprise Project Management,PMI,1999.[15]Leach L P. Critical chain project management [M]. London: Artech House Inc,2000, 236~257[16]鲍伯,弗斯特.IS09001: 2000质量管理体系.中国标准出版社.2001:P.22-P.283.[17](美)杰克.吉多詹姆斯P.克莱门斯著张金成等译成功的项目管理Successful Project Mamagement . 北京:机械工业出版社,2003:p171-186.[18]项目管理知识体系(PMBOK, Project Management Body ofKnowledge) 是美国项目管理学会(PMI, Project ManagementInstitute)开发的一个关于项目管理的标准。
有关工程管理的英语文献
有关工程管理的英语文献Engineering management is the application of thepractice of management to the practice of engineering. It involves the planning, organizing, staffing, directing, coordinating, reporting, and budgeting of engineering activities. It is a discipline that focuses on the application of engineering principles and techniques to the planning, organization, and control of engineering projects and activities.Engineering management involves the integration of engineering, business, and management principles to develop and implement effective engineering solutions. It requires a deep understanding of both technical and managerial aspects of engineering projects.One of the key responsibilities of engineering management is to ensure that engineering projects are completed on time and within budget. This requireseffective planning and coordination of resources, as well as the ability to identify and mitigate risks.In addition, engineering management involves the development and implementation of strategies to improve the efficiency and effectiveness of engineering processes. This may involve the adoption of new technologies, the development of new processes, or the implementation of new management practices.Overall, engineering management plays a critical role in the success of engineering projects. It requires a unique blend of technical and managerial skills, as well as the ability to effectively communicate and collaborate with a wide range of stakeholders.工程管理是将管理实践应用于工程实践的一种学科,它涉及工程活动的规划、组织、人员配备、指导、协调、报告和预算。
建筑工程管理论文参考文献
建筑工程管理论文参考文献在建筑工程管理领域的研究中,参考文献是非常重要的资源,它们为论文提供了可靠的支持和背景信息。
以下是一些建筑工程管理领域的参考文献,这些文献涵盖了不同领域的主题和研究方向。
1. Hopkin, Paul. Fundamentals of Construction Management. London: Routledge, 2018.这本书提供了建筑工程管理的基本原理和方法。
它介绍了施工过程中的各个阶段,讨论了项目管理、质量控制和安全管理等关键问题。
这是一本很好的入门参考书。
2. Smith, John. Construction Project Management: A Practical Guide. New York: Wiley, 2017.该书提供了一种实践导向的方法,以帮助建筑工程管理人员有效地组织和管理项目。
它包含了项目计划、成本管理、质量管理和风险管理等方面的内容。
这本书对于需要实际指导的读者非常有价值。
3. Liu, Xiaoyun. Sustainable Construction: Green Building Design and Delivery. New York: CRC Press, 2016.这本书关注可持续建筑和绿色建筑设计和交付方面的问题。
它讨论了建筑材料的选择、能源效率和环境影响等主题。
可持续建筑是建筑工程管理中一个重要的研究领域,这本书为读者提供了相关的案例和实践经验。
4. Zhang, Lei. Construction Safety and Risk Management. Beijing: China Architecture & Building Press, 2019.这本书主要关注建筑施工过程中的安全管理和风险控制。
它包括建筑施工中的安全隐患识别和预防、职业健康和安全管理等内容。
对于建筑工程管理中关注安全问题的专业人士来说,这是一本不可缺少的参考书。
工程管理外文文献
外文文献:Project portfolio management –There’s more to it thanwhat management enactsAbstractAlthough companies manage project portfolios concordantly with project portfolio theory, they may experience problems in the form of delayed projects, resource struggles, stress, and a lack of overview. Based on a research project compromised of 128 in-depth interviews in 30 companies, we propose that a key reason why companies do not do well in relation to project portfolio management (PPM) is that PPM often only covers a subset of on-going projects, while projects that are not subject to PPM tie up resources that initially were dedicated to PPM projects. We address and discuss the dilemma of wanting to include all projects in PPM, and aiming at keeping the resource and cognitive burden of doing PPM at a reasonable level.Keywords:Managing programmes,Managing projects,Organisation resources,Strategy1.IntroductionAt any given point in time, most companies engage in many projects. Some of these projects may relate to product development and marketing, others relate to changes in work processes and production flows, while yet others relate to competency development, strategic turns, the implementation of new IT systems, environmental issues etc.A key managerial task is to dedicate resources across all of these projects (as well as do daily work) and consequently,management across projects (project portfolio management (PPM)) is critical to company performance.This paper is based on a large-scale qualitative study,which shows that many project-oriented companies do not perform well when it comes to PPM. This relates to the inability to accomplish projects that are initiated. In particular, we identify the following problems:(1) Projects are not completed according to plan (or they even peter out during their project life cycle);(2) Management and employees feel they lack a broad overview of on-going projects (especially when the number of on-going projects increases as more and more projects are not completedaccording to plan);(3)People experience stress as resources are continuously reallocated across projects in order to make ends meet.These observations are especially interesting because the companies were included in the research project because they were supposed to be especially,experienced in PPM, and because they actually engage in PPM according to the extant body of literature on PPM. For example, part of the companies’ PPM included an effort to pick the best projects on the basis of explicit or implicit criteria, and an effort to allocate sufficient resources to these projects.However, despite efforts,to practice ‘good’ PPM, these companies experience severe problems in relation to PPM – especially in letting enough resources go into the ‘right’ pr ojects. The purpose of this paper is to confront PPM as advocated by normative theories with actual PPM practices. Hence, the purpose is to confront PPM theories with PPM as perceived by managers and other employees for whom PPM is part of, or affects, their work conditions.However, in this paper, we are more interested in PPM as enacted by companies than in universally true perceptions. Hence, we adhere to Weick’s [1–3] notion of enactment as the preconceptions that are used to set aside a portion of the field of experience for further attention. In regard to PPM, enacted projects are thus the ones management sets aside for further attention (i.e. PPM). As such, we focus especially on ways actors define or enact projects [4] and make sense of how to manage the sum of the projects. Drawing on this perspective, we account for findings that suggest why companies that do engage in PPM still experience problems.2. Project portfolio theoryThis paper draws on Archer and Ghasemzadeh’s [5, p.208] definition of p roject portfolios as ‘‘a group of projects that are carried out under the sponsorship and/or management of a particular organization’’. Henceforth, we define PPM as the managerial activities that relate to(1) the initial screening, selection and prioritisation of project proposals,(2) the concurrent reprioritisation of projects in the portfolio,(3) the allocation and reallocation of resources to projects according to priority.For quite some time researchers have suggested that low completion rates for new product development (NPD) projects and new product failure relate to resource deficiencies in key areas [6,7]. Furthermore, while a host of researchers [8–10] have focused on the dimension of PPM that concernsprocesses relating to selection of projects to be included in the portfolio, research e.g. [11] also increasingly focuses on the day-today management of the project portfolio.3. MethodologyOver a period of two years, we did empirical research on how companies manage their entire range of projects, e.g. renewal projects, strategic projects, IT projects, departmentally specific projects, and production based projects. In relation to the selection of companies to be included in the empirical study, a key criterion was that the study should cover a wide variety of industries. As a result, the empirical study covers 30 companies from industries as diverse as, e.g. mobile telephone communications, finances, energy, pharmaceuticals, toys, software, and foods.However, due to the fact that we were looking for companies, where the amount of on-going projects suggested they were engaged in PPM, the study is biased towards larger companies as well as companies that define at least a substantial part of their activities as projects. The degree to which the companies participated in the study varies. Hence, half of the companies are labelled ‘inner circle’ companies due to the fact that we drew extensively on these 15 companies. For example, in these companies more interviews were conducted at various points in time and at various organizational levels. Hence, a longitudinal perspective characterizes the involvement of these companies.The remaining half of the companies are labelled ‘outer circle’ companies because their participation in the study has included fewer top-management interviews, the purpose of which was to gain insight into ways in which (top) management defines the content of their project portfolios and manages them.4. Managerial implicationsA key finding is that the gap between required and available resources is very much attributable to the existence of a host of smaller projects that never become part of enacted project portfolios. Thus, at an aggregated level, the empirical study suggests smaller, un-enacted projects qualify as resources crunchers in so far they are not considered to be a part of enacted project portfolios. In order to overcome this crunch in resources, two solutions seem obvious:(1) Enacting more, i.e. having PPM embrace all projects.(2) Allocating more resources to a pool of loosely-controlled resources for the un-enacted projects to draw on.5. Research implicationsThe empirical study elaborates on the ‘‘significant shortage of resources devoted to NPD’’ that Cooper and Edgett argue is the fundamental problem ‘‘that p lagues most firms’ product development efforts’’.Our work especially suggests that the shortage of resources devoted to enacted projects is not a problem that primarily arises in relation to top management’s PPM. On the contrary, in-good-faith top management dedicates resources to enacted projects on the basis of sound PPM. However, what top managers do not do is take into account the host of smaller projects that individuals initiate and – more importantly – top managers ignore (or at least heavily under-estimate) the amount of resources that these smaller projects tie up. Hence, we argue that especially the crunch in resources may be attributable to the un-enacted competition for resources that smaller projects subject enacted projects to.Consequently, the key contribution of our empirical work to research is that it emphasises that if we wish to study PPM (and especially if we wish to relate PPM to project performance), we might be better off taking into account the entire range of projects that actual (not enacted) portfolios are comprised of. Thus, if we as researchers only enact the projects that are neatly listed by top management, then our research will neglect the host of projects that are not subject to PPM, projects that nonetheless take up valuable, and scarce, resources.The fact that the empirical study includes interviews with managers, i.e. those who do PPM, and interviews with personnel at lower organisational levels, i.e. those whose work is subject to PPM, is the reason why we were able to identify un-enacted projects. Thus, researchers interested in PPM should be careful not to rely too heavily on a management perspective.6. Conclusion and limitationsThe main conclusion is that as long as some projects are un-enacted, companies may experience a drain on resources that reduces the time and resources actually devoted to projects subject to PPM. Hence, each individual company should decide whether or not all projects should be part of PPM and if the end result of such a decision is not to make comprehensive project lists (i.e. lists that include all minor projects), then management should decide how many resources should be set aside for the plethora of small projects that do not appear on the project list.One way in which the crunch in resources can be reduced is by ensuring that smaller projects do not take up a critical portion of the resources that are – officially – set aside for the completion ofprojects subject to PPM. However, due to the exploratory nature of the study accounted for in this paper, our findings relate far more to what companies actually do (positive theory in Hunt’s terms), rather than to what they ought to do (normative theory in Hunt’s terms). Although generating positive theory is indeed a crucial first step – especially in relation to the future of PPM theory –positive theory cannot, and should not, stand alone. Hence, the key challenges for PPM theory in the future are to produce normative theory that offers sound suggestions as to how companies can improve their PPM.Another limitation of our study is that the empirical part was carried out in a Danish context as the 30 companies involved are located in Denmark, which may not be sufficiently representative for companies worldwide because Denmark has, to a larger extent, a bottom-up culture. Therefore, the portion of smaller un-enacted projects may be bigger here than in companies in other countries. We hope that our study will inspire other researchers to carry our similar studies in other countries.References[1] Aboloafia MY, Killduff D. Enacting market crisis: the social construction of a speculative bubble.Admin Sci Quart 1988;33(1): 177–93.[2] Archer NP, Ghasemzadeh F. An integrated framework for project portfolio selection.Int J Project Manage 1999;17(4):207–16.[3] Cooper RG. Benchmarking new product performance: results of the best practices study.Eur Manage J 1998;16(1):1–7.[4] Cooper RG, Edgett SJ. Overcoming the crunch in resources for new product development.Res Technol Manage 2003;46:48–58.[5] Cooper RG, Edgett SJ, Kleinschmidt EJ. Best practices for managingR&D portfolios. Res Technol Manage 1998;41:20–33.[6] Cooper RG, Edgett SJ, Kleinschmidt EJ. New product portfolio management: practices and performance.J Prod Innovat Manage[7] Cooper RG, Edgett SJ, Kleinschmidt EJ. New problems, new solutions: making portfolio management more effective. Res Technol Manage 2000;43:18–33. 1999;16(3):333–51.[8] Cooper RG, Edgett SJ, Kleinschmidt EJ. Portfolio management for new products.Cambridge MA: Perseus Publishing; 2001.[9] Cooper RG, Edgett SJ, Kleinschmidt EJ. Portfolio management in new product development: lessons from the leaders – I. Res Technol Manage 1997;40:16–28.[10] Cooper RG, Edgett SJ, Kleinschmidt EJ. Portfolio management in new product development: lessons from the leaders – II. Res Technol Manage 1997;40:43–52.[11] Cooper RG, Edgett SJ, Kleinschmidt EJ. Portfolio management for new product development: results of an industry practices study. R&D Manage 2001;31(4):361–80.中文译文:项目组合管理——远非现今管理所制定的方案摘要尽管公司一向致力于处理项目股份单与项目股份单理论,他们也许会经历在工程延迟,资源短缺,压力,缺乏整体概要的形式上遇到问题。
工程管理专业外文文献翻译(中英文)
工程管理专业外文文献翻译(中英文)xxxxxx 大学本科毕业设计外文翻译Project Cost Control: the Way it Works项目成本控制:它的工作方式学院(系): xxxxxxxxxxxx专业: xxxxxxxx学生姓名: xxxxx学号: xxxxxxxxxx指导教师: xxxxxx评阅教师:完成日期:xxxx大学项目成本控制:它的工作方式在最近的一次咨询任务中,我们意识到对于整个项目成本控制体系是如何设置和应用的,仍有一些缺乏理解。
所以我们决定描述它是如何工作的。
理论上,项目成本控制不是很难跟随。
首先,建立一组参考基线。
然后,随着工作的深入,监控工作,分析研究结果,预测最终结果并比较参考基准。
如果最终的结果不令人满意,那么你要对正在进行的工作进行必要的调整,并在合适的时间间隔重复。
如果最终的结果确实不符合基线计划,你可能不得不改变计划。
更有可能的是,会 (或已经) 有范围变更来改变参考基线,这意味着每次出现这种情况你必须改变基线计划。
但在实践中,项目成本控制要困难得多,通过项目数量无法控制成本也证明了这一点。
正如我们将看到的,它还需要大量的工作,我们不妨从一开始启用它。
所以,要跟随项目成本控制在整个项目的生命周期。
同时,我们会利用这一机会来指出几个重要文件的适当的地方。
其中包括商业案例,请求(资本)拨款(执行),工作包和工作分解结构,项目章程(或摘要),项目预算或成本计划、挣值和成本基线。
所有这些有助于提高这个组织的有效地控制项目成本的能力。
业务用例和应用程序(执行)的资金重要的是要注意,当负责的管理者对于项目应如何通过项目生命周期展开有很好的理解时,项目成本控制才是最有效的。
这意味着他们在主要阶段的关键决策点之间行使职责。
他们还必须识别项目风险管理的重要性,至少可以确定并计划阻止最明显的潜在风险事件。
在项目的概念阶段•每个项目始于确定的机会或需要的人。
通常是有着重要性和影响力的人,如果项目继续,这个人往往成为项目的赞助。
工程管理英文文献1500词范文
工程管理英文文献1500词范文Project Management in the Construction Industry: A Comprehensive Overview.Introduction.Project management plays a pivotal role in the construction industry, ensuring the successful execution and delivery of construction projects. It encompasses a wide range of activities, from project planning and coordination to resource allocation and risk management. This article provides a comprehensive overview of project management in construction, exploring its key principles, processes, and best practices.Principles of Project Management.The fundamental principles of project management guide the way construction projects are planned, executed, and controlled. These principles include:Project Planning: Establishing a clear and detailed plan that outlines project objectives, scope, deliverables, and timelines.Communication: Maintaining effective communication among project stakeholders, including owners, contractors, suppliers, and consultants.Risk Management: Identifying and mitigating potential risks that may impact project outcomes.Collaboration: Fostering teamwork and collaboration among project members to achieve common goals.Control: Regularly monitoring and evaluating project progress to ensure adherence to plans and objectives.Project Management Processes.Project management in construction involves several key processes that are typically executed sequentially:1. Project Initiation: Defining the project scope, objectives, and feasibility.2. Project Planning: Developing a detailed project plan that outlines tasks, resources, and timelines.3. Project Execution: Implementing the project plan and managing resources to achieve project deliverables.4. Project Monitoring and Control: Tracking progress, identifying deviations, and taking corrective actions to ensure successful project completion.5. Project Closure: Finalizing deliverables, completing documentation, and evaluating project performance.Best Practices in Project Management.To optimize project outcomes, construction industry professionals follow established best practices, such as:Use of Project Management Software: Utilizing project management software can streamline planning, scheduling, and collaboration.Stakeholder Engagement: Actively engaging project stakeholders throughout the project lifecycle to ensure alignment and buy-in.Risk Management Framework: Implementing a structured risk management framework to identify, assess, and manage project risks effectively.Change Management Process: Establishing a clear and proactive process for managing project changes to minimize disruptions and ensure project success.Continuous Improvement: Regularly reviewing project performance and seeking opportunities for improvement to enhance future project outcomes.Benefits of Effective Project Management.Effective project management in construction brings numerous benefits, including:On-Time Delivery: Adherence to project schedules and timelines, meeting stakeholder expectations.Cost Control: Managing project costs effectively, minimizing overruns and staying within budget.Quality Assurance: Ensuring high-quality construction outcomes that meet project specifications and industry standards.Risk Mitigation: Identifying and managing risks proactively, safeguarding projects from potential threats and ensuring smooth execution.Improved Stakeholder Satisfaction: Maintaining strong relationships with project stakeholders by delivering successful projects that align with their needs and objectives.Conclusion.Project management is essential for the successful execution of construction projects. By understanding its key principles, following established processes, and implementing best practices, construction industry professionals can optimize project outcomes, ensure on-time delivery, control costs, manage risks, and enhance stakeholder satisfaction. As the construction industry continues to evolve, leveraging advanced technologies and innovative approaches to project management will become increasingly critical for project success.。
工程管理英文文献#精选
Engineering supervision system in China's Engineering constructionin the positionWith the dominance of China's socialist market economy, the determination of the project supervision system in China's highway construction is gradually becoming more mature. Talking about the project in the country, people always focus on project quality side, it seems that the focus of the task of supervision is to protect the quality of projects, in fact, it is very comprehensive, according to FIDIC provisions in the project construction, project quality, of course, crucial, but only to protect the project supervision of the three objectives (quality, duration, cost), one of these three goals are interrelated and influence, from different angles to protect the owners of the project efficiency. Of which cost control is also very important to the management aspect of this work, good or bad, is directly related to whether the quality of the project can achieve the desired goals, and whether the progress can be completed on time.First, the design phase of the design phase of SupervisionThe introduction of engineering supervision, determine a reasonable design, mature technology, reduce the construction phase of major design changes and program changes to occur, the effective cost control will play a certain role. Experts say: If the project supervision involved in the design stage, then, and can be ruled out, to correct 80% of the errors, but to the construction stage to be involved in supervision of works, at best, can only save 20% of the investment. According to the information briefing, a German university laboratory building, the original design is three and a basement, the project management company to meet the commission's space requirements and functional conditions, proposed to increase the layer to shorten the two-axis then the abolition of the basement. But also reduces the flow of people to evacuate distance (to the required standards), so modified after the design is not only reduced costs, has also been improved functionality, access to credit and praise of the municipal government. At present, China for engineering supervision at the design stage to introduce the practice is still rare, we should learn from foreign countries mature and developed system, the development of relevant systems, and standardize the market. Advocates strengthening the design phase of the supervision, control and management from a cost sense, ex ante control, prevention, which is scientific and reasonable. Therefore, to enhance the design stage to control the cost ofsupervision is necessary.Second, the construction phase of the SupervisionAs we all know, domestic and international construction markets are the dominant owners of a buyer's market, the construction of competition among enterprises is very cruel. In order to bid, bidders tend to almost zero profits or even below cost bids, but the owners often use low-cost way of winning. While the bidders promised to abide by the provisions of contract documents, but once the contract, they refused to the end there is no profit or losing money, so, often with inferior materials, do not follow standard construction, bribery, or layers of subcontracting means to profit. This time, the absence of an effective supervision mechanism, the victims can only be the owners.From the process, process control the cost of supervision of supervision engineer should not only be concerned with whether the works to meet the required quality goals, he should be the focus all the objectives of the project design, in the actual operation, the contractor engaged in construction prior to permanent per days must be carried out by a variety of inspection, testing, content or face a new job, workload, construction methods, measures, materials testing and sub-contracting part of the work or works submitted to the approval of supervisory engineer. The contractor can only work within the approved, without approval or beyond the approved engineer's work can not be recognized. At the same time is also an engineer approved the contractor to obtain a basis for progress payments. Engineers, contractors, any non-approved inputs (manpower, materials, equipment) will not receive compensation, meaning that there is no engineer's approval, the contractor shall not proceed to the next one process or face, shall not be put into construction materials, use, shall not subcontract part of the project or work.Supervision and Control of project cost from the cost of the engineering supervision of the project cost management goal is to project to be completed within the contract price can not be there far exceed estimates. Supervision of the strict monitoring of the project, due to the contractor causes the possibility of super-budget is almost zero. This is because: Engineering Super-budget, no more than two kinds of reasons, the first rise in unit labor and materials, first, during the construction works increased volume, while the contractor's bid is a commitment to its binding, and the contractor not entitled to their own works to increase the amount of the project, even if there are engineers, required the contractor to increase the input of resources toprotect the project design goals, the contractor has no right to be compensated, therefore, because in the tender document, the contractor can protect a large number of frequently cited the successful completion of the project personnel and mechanical equipment. From equipment costs, materials costs and equipment costs control supervision, materials costs in the capital projects account for about 70% of the entire cost. It is the project a major component of direct costs. Materials, equipment, high and low prices will directly affect the size of the construction costs.Thus, in the supervision process, can not be ignored that part. To introduce competition, and create competitive conditions. Owners can delegate the direct supervision through public tender selecting the suppliers, so that contractors can avoid unauthorized lower prices, delays in provider payments and thus lead to shoddy supplier, delivery is not timely, thereby affecting the progress of projects happening. The contractor in the preparation of tender prices, mainly the prices of materials and equipment owners and suppliers signed price quotation, by the suppliers of materials and equipment will be mainly transported to the scene by the supervising engineers and contractors to co-sign, the by the owner will focus on the procurement of materials and equipment shall be paid directly to suppliers.From the above procedures is easy to see the contractor in addition to supervising engineers no choice but to obey. This is because the supervising engineer contractor performance has a strong economic constraints means, economic means of payment by the project system and the deposit system, composition, they are the heads of the two contractors, "inhibition".The project payment system: in fact, the project payment system is to project the economic risk of being transferred to the contractor. Contractor must obtain economic benefits (the bid price and the difference between the actual cost of the project) prior advance money or other resources, that is: He had to buy the materials, equipment, payment of wages and other expenses, under the supervision of the supervising engineer contract documents all requests to create a project. Can only be the work of the contractor to complete the written approval of the supervisory engineer and the quality of bond, after deducting there from the owner to obtain compensation (for projects). If the contractor's work should not be so satisfied with supervision, he not only no hope of profit, and even the cost of inputs can not be recovered.Project Margin System: As a rule, signed contract before the contractor must pay the contract price equal to 10% of the performance bond or letter of guarantee. Thecontractor prior to commencement of course, can be obtained from the owners of 10% of the total contract price of the advance payment, but he must also be matched to the owners to submit a bond or letter of guarantee. Even if the contractor has received final acceptance certificates from the project, he will be leaving 5% of total contract price of the retention money. Here the performance bond and retention payments totaling 15% of the project contract price, far greater than the contractor's profit margin. The contractor's default can cause bond be forfeited, and whether the breach of contract only to evaluate the supervisory engineer.Third, completion of the project closing of SupervisionThe first job done in several stages, based on the completion of settlement on a lot easier. Labor Exchange acceptance of the project handled immediately after completion of billing processing. Completion of the contract price settlement value is value of claims already liquidated damages.According to FIDIC terms or model of China's construction contract terms and the actual text of the provisions of the terms of the contract is signed: involving construction claims and breach of contract issues, supervision engineers must clearly define the responsibilities to minimize the claims, to reduce the claim should note the following: strengthening contract management, improve the terms of the contract; before projects should be fully prepared to work; enhance the design of the review, the timely detection of problems in the design to avoid the construction.Engineering design changes due to claims arising; to strengthen quality management, and strengthen the quality of tracking, to avoid or reduce the contract sample tests or works outside the review of claims arising; to improve the quality of supervision engineers found that claims in a timely manner.In short, the supervision engineer in Cost Control of the importance of the role and status is beyond question, supervision is entrusted by the owners on the implementation of the project to conduct supervision and management, reform and opening up of China's foreign towards WTO needs. Project Management is a need for a variety of professional and technical, economic, legal and other integrated management of multi-disciplinary knowledge and skills in intellectual-intensive service work, which requires supervisors controlling costs, management contracts and information, the ability to mediate economic disputes, continually improve their own quality, and enhance awareness of contract management, improve the legal system. To this end, the state unit of the Ministry of Construction Supervision of social hierarchyand the corresponding conditions and qualification standards, supervision of qualified engineers to make separate provision accordingly. Project Management in China has generally been carried out, as a mature project management experience in the management of cost control will certainly play a key role.最新文件仅供参考已改成word文本。
工程项目管理论文外文
Abstract: Engineering projects play a crucial role in the development of modern society. Effective project management is essential for the successful completion of engineering projects. This paper aims to explore the significance of project management in engineering projects and highlight the key elements that contribute to successful project execution.Introduction:Engineering projects are complex endeavors that involve a combination of technical, financial, and human resources. The successful completion of these projects relies heavily on effective project management. This paper will discuss the importance of project management in engineering projects and the key elements that contribute to successful project execution.1. Planning:The first step in project management is planning. This involves defining the project objectives, scope, and deliverables. A well-defined plan ensures that all stakeholders have a clear understanding of theproject's goals and expectations. Proper planning helps in identifying potential risks and developing strategies to mitigate them.2. Organization:Effective organization is crucial for the successful execution of engineering projects. This includes assigning roles and responsibilities to team members, establishing clear communication channels, and creating a structured workflow. Proper organization ensures that resources are allocated efficiently and that tasks are completed on time.3. Coordination:Coordination is a key element of project management. It involves ensuring that all team members are working together towards the common goal. Effective coordination helps in minimizing conflicts, resolving issues, and maintaining a smooth workflow. This includes regular meetings, progress updates, and conflict resolution mechanisms.4. Control:Controlling the project involves monitoring the progress, identifying deviations from the plan, and taking corrective actions. This helps in ensuring that the project is on track and that any issues are addressed promptly. Key performance indicators (KPIs) and project management software can be used to track progress and identify potential risks.5. Quality Management:Quality management is critical in engineering projects to ensure that the final deliverable meets the required standards. This involves implementing quality control processes, conducting regular inspections, and ensuring compliance with relevant regulations and standards. Quality management also includes addressing any issues that arise during the project lifecycle.6. Risk Management:Risk management is an essential aspect of project management. It involves identifying potential risks, assessing their impact, and developing strategies to mitigate them. Effective risk management helps in minimizing the likelihood of project delays, cost overruns, and quality issues.Conclusion:In conclusion, effective project management is essential for the successful completion of engineering projects. Proper planning, organization, coordination, control, quality management, and risk management are key elements that contribute to successful project execution. By focusing on these aspects, project managers can ensurethat engineering projects are completed on time, within budget, and meet the required quality standards.。
工程管理英文文献
Engineering supervision system in China's Engineering constructionin the positionWith the dominance of China's socialist market economy, the determination of the project supervision system in China's highway construction is gradually becoming more mature. Talking about the project in the country, people always focus on project quality side, it seems that the focus of the task of supervision is to protect the quality of projects, in fact, it is very comprehensive, according to FIDIC provisions in the project construction, project quality, of course, crucial, but only to protect the project supervision of the three objectives (quality, duration, cost), one of these three goals are interrelated and influence, from different angles to protect the owners of the project efficiency. Of which cost control is also very important to the management aspect of this work, good or bad, is directly related to whether the quality of the project can achieve the desired goals, and whether the progress can be completed on time.First, the design phase of the design phase of SupervisionThe introduction of engineering supervision, determine a reasonable design, mature technology, reduce the construction phase of major design changes and program changes to occur, the effective cost control will play a certain role. Experts say: If the project supervision involved in the design stage, then, and can be ruled out, to correct 80% of the errors, but to the construction stage to be involved in supervision of works, at best, can only save 20% of the investment. According to the information briefing, a German university laboratory building, the original design is three and a basement, the project management company to meet the commission's space requirements and functional conditions, proposed to increase the layer to shorten the two-axis then the abolition of the basement. But also reduces the flow of people to evacuate distance (to the required standards), so modified after the design is not only reduced costs, has also been improved functionality, access to credit and praise of the municipal government. At present, China for engineering supervision at the design stage to introduce the practice is still rare, we should learn from foreign countries mature and developed system, the development of relevant systems, and standardize the market. Advocates strengthening the design phase of the supervision, control and management from a cost sense, ex ante control, prevention, which is scientific and reasonable. Therefore, to enhance the design stage to control the cost ofsupervision is necessary.Second, the construction phase of the SupervisionAs we all know, domestic and international construction markets are the dominant owners of a buyer's market, the construction of competition among enterprises is very cruel. In order to bid, bidders tend to almost zero profits or even below cost bids, but the owners often use low-cost way of winning. While the bidders promised to abide by the provisions of contract documents, but once the contract, they refused to the end there is no profit or losing money, so, often with inferior materials, do not follow standard construction, bribery, or layers of subcontracting means to profit. This time, the absence of an effective supervision mechanism, the victims can only be the owners.From the process, process control the cost of supervision of supervision engineer should not only be concerned with whether the works to meet the required quality goals, he should be the focus all the objectives of the project design, in the actual operation, the contractor engaged in construction prior to permanent per days must be carried out by a variety of inspection, testing, content or face a new job, workload, construction methods, measures, materials testing and sub-contracting part of the work or works submitted to the approval of supervisory engineer. The contractor can only work within the approved, without approval or beyond the approved engineer's work can not be recognized. At the same time is also an engineer approved the contractor to obtain a basis for progress payments. Engineers, contractors, any non-approved inputs (manpower, materials, equipment) will not receive compensation, meaning that there is no engineer's approval, the contractor shall not proceed to the next one process or face, shall not be put into construction materials, use, shall not subcontract part of the project or work.Supervision and Control of project cost from the cost of the engineering supervision of the project cost management goal is to project to be completed within the contract price can not be there far exceed estimates. Supervision of the strict monitoring of the project, due to the contractor causes the possibility of super-budget is almost zero. This is because: Engineering Super-budget, no more than two kinds of reasons, the first rise in unit labor and materials, first, during the construction works increased volume, while the contractor's bid is a commitment to its binding, and the contractor not entitled to their own works to increase the amount of the project, even if there are engineers, required the contractor to increase the input of resources toprotect the project design goals, the contractor has no right to be compensated, therefore, because in the tender document, the contractor can protect a large number of frequently cited the successful completion of the project personnel and mechanical equipment. From equipment costs, materials costs and equipment costs control supervision, materials costs in the capital projects account for about 70% of the entire cost. It is the project a major component of direct costs. Materials, equipment, high and low prices will directly affect the size of the construction costs.Thus, in the supervision process, can not be ignored that part. To introduce competition, and create competitive conditions. Owners can delegate the direct supervision through public tender selecting the suppliers, so that contractors can avoid unauthorized lower prices, delays in provider payments and thus lead to shoddy supplier, delivery is not timely, thereby affecting the progress of projects happening. The contractor in the preparation of tender prices, mainly the prices of materials and equipment owners and suppliers signed price quotation, by the suppliers of materials and equipment will be mainly transported to the scene by the supervising engineers and contractors to co-sign, the by the owner will focus on the procurement of materials and equipment shall be paid directly to suppliers.From the above procedures is easy to see the contractor in addition to supervising engineers no choice but to obey. This is because the supervising engineer contractor performance has a strong economic constraints means, economic means of payment by the project system and the deposit system, composition, they are the heads of the two contractors, "inhibition".The project payment system: in fact, the project payment system is to project the economic risk of being transferred to the contractor. Contractor must obtain economic benefits (the bid price and the difference between the actual cost of the project) prior advance money or other resources, that is: He had to buy the materials, equipment, payment of wages and other expenses, under the supervision of the supervising engineer contract documents all requests to create a project. Can only be the work of the contractor to complete the written approval of the supervisory engineer and the quality of bond, after deducting there from the owner to obtain compensation (for projects). If the contractor's work should not be so satisfied with supervision, he not only no hope of profit, and even the cost of inputs can not be recovered.Project Margin System: As a rule, signed contract before the contractor must pay the contract price equal to 10% of the performance bond or letter of guarantee. Thecontractor prior to commencement of course, can be obtained from the owners of 10% of the total contract price of the advance payment, but he must also be matched to the owners to submit a bond or letter of guarantee. Even if the contractor has received final acceptance certificates from the project, he will be leaving 5% of total contract price of the retention money. Here the performance bond and retention payments totaling 15% of the project contract price, far greater than the contractor's profit margin. The contractor's default can cause bond be forfeited, and whether the breach of contract only to evaluate the supervisory engineer.Third, completion of the project closing of SupervisionThe first job done in several stages, based on the completion of settlement on a lot easier. Labor Exchange acceptance of the project handled immediately after completion of billing processing. Completion of the contract price settlement value is value of claims already liquidated damages.According to FIDIC terms or model of China's construction contract terms and the actual text of the provisions of the terms of the contract is signed: involving construction claims and breach of contract issues, supervision engineers must clearly define the responsibilities to minimize the claims, to reduce the claim should note the following: strengthening contract management, improve the terms of the contract; before projects should be fully prepared to work; enhance the design of the review, the timely detection of problems in the design to avoid the construction.Engineering design changes due to claims arising; to strengthen quality management, and strengthen the quality of tracking, to avoid or reduce the contract sample tests or works outside the review of claims arising; to improve the quality of supervision engineers found that claims in a timely manner.In short, the supervision engineer in Cost Control of the importance of the role and status is beyond question, supervision is entrusted by the owners on the implementation of the project to conduct supervision and management, reform and opening up of China's foreign towards WTO needs. Project Management is a need for a variety of professional and technical, economic, legal and other integrated management of multi-disciplinary knowledge and skills in intellectual-intensive service work, which requires supervisors controlling costs, management contracts and information, the ability to mediate economic disputes, continually improve their own quality, and enhance awareness of contract management, improve the legal system. To this end, the state unit of the Ministry of Construction Supervision of social hierarchyand the corresponding conditions and qualification standards, supervision of qualified engineers to make separate provision accordingly. Project Management in China has generally been carried out, as a mature project management experience in the management of cost control will certainly play a key role.。
工程管理专业外文文献3000字范文
工程管理专业外文文献1. 研究背景工程管理作为一门涵盖工程技术、商业管理和项目管理等多个领域的学科,其在现代社会中扮演着日益重要的角色。
随着全球化和跨国企业的兴起,工程管理的研究和实践也逐渐受到重视。
对于工程管理专业的学生和从业人员来说,了解国外的研究进展和理论成果是至关重要的。
2. 国外工程管理专业外文文献在国外,工程管理专业的研究和学术交流非常活跃,许多优秀的论文和研究成果被发表在国际知名的学术期刊上。
以下是一些关于工程管理的优秀外文文献,它们涵盖了工程项目管理、风险管理、质量管理、成本管理、进度管理等各个方面的内容。
3. 《Project management in small to medium-sized enterprises: matching processes to the nature of the firm》这篇文献研究了项目管理在中小企业中的应用。
作者通过案例分析和实证研究,探讨了中小企业与大型企业在项目管理实践中的区别,提出了与企业规模相适应的项目管理流程,为中小企业的项目管理提供了宝贵的经验和启示。
4. 《Evaluating risk oversight in public sector mega-projects》这篇文献关注公共部门超大型项目中的风险监管问题。
作者通过对多个公共部门项目的案例分析,评估了目前风险监管的情况,并提出了改进措施和建议。
该文献对于公共部门项目的风险管理研究具有重要的参考价值。
5. 《Quality management in construction projects: A literature review》这篇文献综述了建筑项目中的质量管理理论和实践。
作者对国际上大量的质量管理研究和案例进行了梳理和总结,系统地阐述了建筑项目中质量管理的重要性、管理方法和工具。
对于从事建筑项目管理和质量控制的专业人士来说,这篇文献具有很高的参考价值。
工程项目管理的英文文献
Abstract:Construction project management is a complex and challenging field that requires effective planning, coordination, and control to ensure the successful completion of projects. This paper aims to discuss the common challenges faced in construction project management and propose corresponding solutions to enhance project performance. By analyzing the existing literature and real-world case studies, this paper provides insights into the key factors affecting project success and the strategies employed by project managers to overcome obstacles.Introduction:Construction projects are often characterized by their complexity, high costs, and tight schedules. Effective project management is essential to ensure the timely delivery of quality projects within budget. However, construction projects face numerous challenges that can impact their success. This paper discusses the main challenges in constructionproject management and suggests strategies to address them.1. Budget Control:One of the most significant challenges in construction project management is budget control. Fluctuations in material prices, labor costs, and unforeseen events can lead to cost overruns. To address this challenge, project managers should:- Conduct thorough cost estimation and budgeting before the project begins.- Monitor the project's financial performance regularly and make adjustments as needed.- Develop contingency plans to mitigate the impact of cost overruns.2. Scheduling and Time Management:Construction projects often face delays due to various factors, such as poor planning, resource constraints, and weather conditions. To manage time effectively, project managers should:- Develop a realistic project schedule with milestones and deadlines.- Allocate resources efficiently to ensure the timely completion of tasks.- Implement risk management strategies to minimize the impact of potential delays.3. Quality Control:Ensuring the quality of construction work is critical to the success of a project. To address quality control challenges, project managers should:- Establish clear quality standards and specifications.- Conduct regular inspections and audits to ensure compliance with standards.- Implement continuous improvement processes to identify and address quality issues promptly.4. Communication and Coordination:Effective communication and coordination are crucial for the successful execution of construction projects. Project managers should:- Foster a collaborative environment among project stakeholders.- Use appropriate communication tools and techniques to facilitate information exchange.- Regularly update stakeholders on project progress and address any concerns or issues promptly.5. Risk Management:Construction projects are inherently risky, with various potential risks such as financial, environmental, and health and safety concerns. To manage risks effectively, project managers should:- Identify potential risks early in the project lifecycle.- Assess and prioritize risks based on their potential impact and likelihood.- Develop risk mitigation strategies and contingency plans to minimize the impact of risks.Conclusion:Construction project management is a challenging field that requires project managers to address various challenges to ensure project success. By implementing effective strategies for budget control, scheduling and time management, quality control, communication and coordination, andrisk management, project managers can enhance project performance and deliver successful projects within budget and on schedule. Further research is needed to explore the interdependencies among these factors and develop comprehensive frameworks for construction project management.。
工程项目管理的英文文献(3篇)
第1篇Abstract:Project management plays a crucial role in the successful execution of engineering projects. This paper aims to provide a comprehensive review of the key aspects of engineering project management, including project planning, execution, monitoring, and control. The paper also discusses the challenges faced by project managers and suggests strategies to overcome them. Furthermore, the paper explores the importance of stakeholder management, risk management, and quality management in engineering projects. Finally, the paper highlights the significance of continuous improvement and innovation in project management practices.1. IntroductionEngineering projects are complex and multifaceted endeavors that require careful planning, coordination, and execution. Effective project management is essential to ensure the successful completion of these projects within the defined scope, schedule, and budget. This paper aims to provide a comprehensive overview of the key aspects of engineering project management, emphasizing the importance of various management practices and techniques.2. Project PlanningProject planning is the foundation of effective project management. It involves defining the project objectives, scope, and deliverables, as well as identifying the necessary resources, tasks, and activities. Key components of project planning include:2.1 Project ObjectivesClear and well-defined project objectives are essential for guiding the project team towards success. Objectives should be specific, measurable, achievable, relevant, and time-bound (SMART).2.2 Project ScopeThe project scope defines the boundaries and deliverables of the project. It is crucial to clearly define the scope to avoid scope creep andensure that the project remains on track.2.3 Work Breakdown Structure (WBS)A work breakdown structure (WBS) is a hierarchical decomposition of the project scope into smaller, manageable components. It helps inorganizing and planning the project activities.2.4 Resource PlanningEffective resource planning ensures that the necessary resources, suchas personnel, equipment, and materials, are available at the right time and in the right quantity.2.5 Schedule PlanningA project schedule outlines the sequence of activities and their durations. Critical path method (CPM) and program evaluation and review technique (PERT) are commonly used techniques for schedule planning.3. Project ExecutionProject execution is the phase where the planned activities are implemented. This phase involves coordinating the efforts of the project team, managing resources, and ensuring that the project progresses as planned. Key aspects of project execution include:3.1 CommunicationEffective communication is crucial for the successful execution of engineering projects. Regular meetings, progress reports, and collaboration tools are essential for maintaining open lines of communication among project stakeholders.3.2 Risk ManagementRisk management involves identifying, assessing, and mitigatingpotential risks that may impact the project. Techniques such as riskidentification, risk analysis, and risk response planning are used to manage risks effectively.3.3 Quality ManagementQuality management ensures that the project deliverables meet the required standards and specifications. Techniques such as quality planning, quality control, and quality assurance are employed to maintain high-quality standards.4. Project Monitoring and ControlProject monitoring and control involve tracking the project's progress, comparing it with the baseline plan, and taking corrective actions when necessary. Key activities in this phase include:4.1 Progress TrackingProgress tracking involves monitoring the completion of project activities and comparing them with the baseline schedule. Techniques such as earned value management (EVM) are used for progress tracking.4.2 Performance MeasurementPerformance measurement involves assessing the project's performance against the planned objectives, schedule, and budget. This helps in identifying deviations and taking corrective actions.4.3 Change ManagementChange management involves managing changes to the project scope, schedule, and resources. Effective change management ensures that changes are controlled and documented.5. Stakeholder ManagementStakeholder management is crucial for the successful execution of engineering projects. It involves identifying, analyzing, and managing the interests, expectations, and influence of stakeholders. Key aspects of stakeholder management include:5.1 Stakeholder IdentificationIdentifying all stakeholders involved in the project is essential for understanding their needs and expectations.5.2 Stakeholder AnalysisStakeholder analysis helps in assessing the power, interest, and influence of stakeholders to determine their level of engagement in the project.5.3 Stakeholder EngagementEngaging stakeholders throughout the project lifecycle ensures their satisfaction and support for the project objectives.6. Risk ManagementRisk management is a critical aspect of engineering project management.It involves identifying, assessing, and mitigating potential risks that may impact the project. Key risk management techniques include:6.1 Risk IdentificationRisk identification involves identifying potential risks that may affect the project's success.6.2 Risk AnalysisRisk analysis involves assessing the probability and impact ofidentified risks to prioritize them.6.3 Risk Response PlanningRisk response planning involves developing strategies to mitigate, avoid, transfer, or accept risks.7. Quality ManagementQuality management is essential for ensuring that the projectdeliverables meet the required standards and specifications. Key quality management techniques include:7.1 Quality PlanningQuality planning involves defining the quality objectives and requirements for the project.7.2 Quality ControlQuality control involves monitoring the project activities to ensurethat they comply with the defined quality standards.7.3 Quality AssuranceQuality assurance involves establishing and maintaining processes to ensure that the project deliverables meet the required quality standards.8. Continuous Improvement and InnovationContinuous improvement and innovation are crucial for the long-term success of engineering projects. This involves:8.1 Lessons LearnedDocumenting lessons learned from completed projects helps in identifying best practices and areas for improvement.8.2 Continuous Improvement InitiativesImplementing continuous improvement initiatives, such as Lean and Six Sigma, helps in enhancing project performance and reducing waste.9. ConclusionEffective project management is essential for the successful execution of engineering projects. This paper has provided a comprehensive review of the key aspects of engineering project management, including project planning, execution, monitoring, and control. Additionally, the paper has highlighted the importance of stakeholder management, risk management, and quality management in engineering projects. Finally, the paper has emphasized the significance of continuous improvement and innovation in project management practices. By adopting these management practices and techniques, project managers can increase the likelihood of project success and deliver value to stakeholders.第2篇Abstract:Engineering projects are complex endeavors that require careful planning, coordination, and execution. Effective project management is crucial for the successful completion of these projects. This paper discusses the challenges faced in engineering project management and proposessolutions to address these challenges. The paper also highlights the importance of project management in ensuring the quality, time, and budget constraints of engineering projects are met. Furthermore, it provides insights into the key aspects of project management, such as planning, execution, monitoring, and control.1. IntroductionEngineering projects are vital for the development of infrastructure, industries, and technologies. They require a combination of expertise, skills, and resources to be successfully completed. Effective project management is essential in ensuring that these projects are completed on time, within budget, and to the desired quality standards. This paper aims to explore the challenges and solutions in engineering project management, with a focus on the key aspects of project management.2. Challenges in Engineering Project Management2.1 Resource AllocationOne of the primary challenges in engineering project management is resource allocation. This involves determining the optimal distribution of resources such as labor, materials, and equipment to various tasks. Inadequate resource allocation can lead to delays, increased costs, and compromised quality.2.2 Risk ManagementEngineering projects are prone to various risks, such as technical, financial, and environmental risks. Identifying, analyzing, andmitigating these risks is a critical aspect of project management.Failing to manage risks effectively can result in project failure or significant financial losses.Effective communication is essential for the successful execution of engineering projects. Poor communication can lead to misunderstandings, delays, and conflicts among team members, stakeholders, and clients.2.4 Stakeholder ManagementEngineering projects involve various stakeholders, including clients, contractors, consultants, and regulatory authorities. Managing the expectations and interests of these stakeholders is a challenging task. Inadequate stakeholder management can lead to disputes, delays, and project failure.3. Solutions to Challenges in Engineering Project Management3.1 Resource AllocationTo address resource allocation challenges, project managers should adopt the following strategies:- Develop a comprehensive project plan that includes detailed resource requirements for each task.- Utilize project management software to track resource utilization and identify bottlenecks.- Implement a resource leveling process to optimize resource allocation and minimize idle time.3.2 Risk ManagementTo manage risks effectively, project managers should:- Conduct a thorough risk assessment to identify potential risks and their impact on the project.- Develop a risk management plan that includes risk mitigationstrategies and contingency plans.- Regularly monitor and update the risk management plan as new risks emerge or existing risks evolve.To improve communication, project managers should:- Establish clear communication channels and protocols for the project team.- Conduct regular meetings and progress updates to ensure all stakeholders are informed.- Utilize project management software to facilitate communication and collaboration among team members.3.4 Stakeholder ManagementTo manage stakeholders effectively, project managers should:- Develop a stakeholder engagement plan that outlines the roles, responsibilities, and communication channels for each stakeholder.- Regularly engage with stakeholders to gather feedback, manage expectations, and resolve conflicts.- Foster a collaborative environment that encourages open communication and constructive dialogue among stakeholders.4. Key Aspects of Effective Project Management4.1 PlanningEffective project planning involves defining project objectives, scope, and deliverables. It also includes identifying project milestones, developing a work breakdown structure, and estimating project resources and timelines.4.2 ExecutionProject execution involves the coordination and implementation of the project plan. This includes assigning tasks to team members, monitoring progress, and ensuring that resources are utilized efficiently.4.3 MonitoringMonitoring involves tracking project performance against the planned objectives and milestones. This helps project managers identify deviations and take corrective actions to bring the project back on track.4.4 ControlProject control involves managing changes, conflicts, and issues that arise during the project lifecycle. It includes updating the project plan, adjusting resources, and revising timelines as necessary.5. ConclusionEffective project management is crucial for the successful completion of engineering projects. This paper has discussed the challenges faced in engineering project management, such as resource allocation, risk management, communication, and stakeholder management. It has also proposed solutions to address these challenges and highlighted the key aspects of project management. By adopting these strategies and focusing on the critical aspects of project management, organizations can improve their chances of delivering successful engineering projects within the desired quality, time, and budget constraints.Keywords: engineering project management, resource allocation, risk management, communication, stakeholder management, project planning, execution, monitoring, control第3篇Abstract:This paper aims to provide a comprehensive study on project managementin engineering projects. It discusses the importance of effectiveproject management, identifies key challenges, and proposes solutions to enhance project success. The paper also examines the role of project managers, project planning, risk management, and communication in achieving project objectives. Furthermore, it explores the use of modern technologies in project management and highlights the importance of continuous improvement in the field.1. Introduction1.1 BackgroundEngineering projects involve complex activities that require coordination, planning, and execution. Effective project management is crucial for ensuring project success, minimizing risks, and delivering projects within time and budget constraints. This paper provides an overview of project management in engineering projects, highlighting its importance, challenges, and solutions.1.2 ObjectivesThe objectives of this paper are:1. To understand the significance of effective project management in engineering projects.2. To identify key challenges faced by project managers in engineering projects.3. To propose solutions to enhance project success.4. To explore the role of project managers, project planning, risk management, and communication in achieving project objectives.5. To examine the use of modern technologies in project management.6. To emphasize the importance of continuous improvement in the field of project management.2. Importance of Effective Project Management2.1 Achieving Project ObjectivesEffective project management ensures that projects are completed on time, within budget, and according to specified quality standards. This helps organizations meet their strategic goals and deliver value to stakeholders.2.2 Risk MitigationProject management helps identify, analyze, and mitigate risks that may affect project success. By proactively managing risks, organizations can minimize potential losses and enhance project performance.2.3 Resource OptimizationEffective project management ensures that resources, such as labor, materials, and equipment, are utilized efficiently. This helps reduce waste, improve productivity, and lower costs.2.4 Stakeholder SatisfactionBy delivering projects successfully, project management helps satisfy stakeholders, including clients, investors, and employees. This leads to increased trust, loyalty, and business opportunities.3. Key Challenges in Engineering Project Management3.1 CommunicationEffective communication is essential for project success. However, challenges such as language barriers, cultural differences, and inadequate communication channels can hinder project progress.3.2 Resource ConstraintsLimited resources, such as budget, time, and labor, can impact project performance. Project managers must find ways to optimize resource allocation and manage constraints effectively.3.3 Stakeholder ManagementEngaging and managing stakeholders with diverse interests and expectations can be challenging. Project managers must balance stakeholder needs and ensure their satisfaction throughout the project lifecycle.3.4 Technological ComplexityEngineering projects often involve complex technologies and systems. Keeping up with technological advancements and managing technical challenges is crucial for project success.4. Solutions to Enhance Project Success4.1 Effective CommunicationImplementing robust communication strategies, such as regular meetings, clear documentation, and the use of project management tools, can improve communication and collaboration among team members and stakeholders.4.2 Resource OptimizationUtilizing project management techniques like earned value management (EVM) and critical path method (CPM) can help optimize resource allocation and manage constraints effectively.4.3 Stakeholder ManagementEngaging stakeholders early in the project lifecycle, identifying their needs and expectations, and establishing effective communication channels can enhance stakeholder satisfaction and reduce conflicts.4.4 Technological IntegrationAdopting modern technologies, such as cloud computing, artificial intelligence, and big data analytics, can streamline project processes, improve decision-making, and enhance project performance.5. Role of Project Managers, Project Planning, Risk Management, and Communication5.1 Project ManagersProject managers play a crucial role in ensuring project success. They are responsible for planning, executing, and closing projects, managing resources, and coordinating activities to achieve project objectives.5.2 Project PlanningEffective project planning involves defining project scope, objectives, and deliverables, identifying activities, estimating resources, and developing a timeline. This helps in setting realistic expectations and managing project risks.5.3 Risk ManagementRisk management involves identifying, analyzing, and mitigating risks that may impact project success. By proactively managing risks, project managers can minimize potential losses and enhance project performance.5.4 CommunicationCommunication is essential for project success. Effective communication ensures that stakeholders are informed, engaged, and aligned with project objectives. It also fosters collaboration and trust among team members.6. Use of Modern Technologies in Project Management6.1 Cloud ComputingCloud computing enables project managers to access project information, collaborate with team members, and manage resources from anywhere, at any time. It also facilitates data sharing and improves project visibility.6.2 Artificial Intelligence and Machine LearningArtificial intelligence and machine learning algorithms can assist project managers in predicting project outcomes, identifying risks, and optimizing resource allocation.6.3 Big Data AnalyticsBig data analytics can help project managers gain insights from vast amounts of project data, enabling them to make informed decisions, identify trends, and improve project performance.7. Continuous Improvement in Project ManagementContinuous improvement is essential for enhancing project management practices. Organizations should adopt a culture of continuous learning and innovation, encouraging project managers to share best practices, adopt new technologies, and implement process improvements.8. ConclusionEffective project management is vital for the success of engineering projects. This paper has discussed the importance of project management, identified key challenges, and proposed solutions to enhance project success. By focusing on effective communication, resource optimization, stakeholder management, and the use of modern technologies, project managers can improve project performance and deliver value to stakeholders. Continuous improvement and a commitment to excellence are crucial for achieving long-term success in the field of project management.。
(完整版)工程管理专业外文文献及翻译
本科毕业设计外文文献及译文文献、资料题目:Changing roles of the clientsArchitects and contractorsThrough BIM文献、资料来源:Engineering, Construction, Archi-tectual Management文献、资料发表(出版)日期:2010.2院(部):专业:班级:姓名:学号:指导教师:翻译日期:外文文献:Changing roles of the clients,architects and contractors through BIMRizal SebastianTNO Built Environment and Geosciences, Delft, The NetherlandsAbstractPurpose– This paper aims to present a general review of the practical implications of building information modelling (BIM) based on literature and case studies. It seeks to address the necessity for applying BIM and re-organising the processes and roles in hospital building projects. This type of project is complex due to complicated functional and technical requirements, decision making involving a large number of stakeholders, and long-term development processes. Design/methodology/approach– Through desk research and referring to the ongoing European research project InPro, the framework for integrated collaboration and the use of BIM are analysed. Through several real cases, the changing roles of clients, architects, and contractors through BIM application are investigated.Findings–One of the main findings is the identification of the main factors for a successful collaboration using BIM, which can be recognised as “POWER”: product information sharing (P),organisational roles synergy (O), work processes coordination (W), environment for teamwork (E), and reference data consolidation (R). Furthermore, it is also found that the implementation of BIM in hospital building projects is still limited due to certain commercial and legal barriers, as well as the fact that integrated collaboration has not yet been embedded in the real estate strategies of healthcare institutions.Originality/value– This paper contributes to the actual discussion in science and practice on the changing roles and processes that are required to develop and operate sustainable buildings with the support of integrated ICT frameworks and tools. It presents the state-of-the-art of European research projects and some of the first real cases of BIM application in hospital building projects. Keywords Europe, Hospitals, The Netherlands, Construction works, Response flexibility, Project planningPaper type General review1. IntroductionHospital building projects, are of key importance, and involve significant investment, and usually take a long-term development period. Hospital building projects are also very complexdue to the complicated requirements regarding hygiene, safety, special equipments, and handling of a large amount of data. The building process is very dynamic and comprises iterative phases and intermediate changes. Many actors with shifting agendas, roles and responsibilities are actively involved, such as: the healthcare institutions, national and local governments, project developers, financial institutions, architects, contractors, advisors, facility managers, and equipment manufacturers and suppliers. Such building projects are very much influenced, by the healthcare policy, which changes rapidly in response to the medical, societal and technological developments, and varies greatly between countries (World Health Organization, 2000). In The Netherlands, for example, the way a building project in the healthcare sector is organised is undergoing a major reform due to a fundamental change in the Dutch health policy that was introduced in 2008.The rapidly changing context posts a need for a building with flexibility over its lifecycle. In order to incorporate life-cycle considerations in the building design, construction technique, and facility management s trategy, a multidisciplinary collaboration is required. Despite the attemptfor establishing integrated collaboration, healthcare building projects still faces serious problemsin practice, such as: budget overrun, delay, and sub-optimal quality in terms of flexibility,end-user’s dissatisfaction, and energy inefficiency. It i s evident that the lack of communicationand coordination between the actors involved in the different phases o f a building project is among the most important reasons behind these problems. The communication between different stakeholders becomes critical, as each stakeholder possesses different set of skills. As a result, the processes for extraction, interpretation, and communication of complex design information from drawings and documents are often time-consuming and difficult. Advanced visualisation technologies, like 4D planning have tremendous potential to increase the communication efficiency and interpretation ability of the project team members. However, their use as an effective communication tool is still limited and not fully explored (Dawood and Sikka, 2008).There are also other barriers in the information transfer and integration, for instance: many existing ICT systems do not support the openness of the data and structure that is prerequisite foran effective collaboration between different building actors or disciplines.Building information modelling (BIM) offers an integrated solution to the previously mentioned problems. Therefore, BIM is increasingly used as an ICT support in complex building projects. An effective multidisciplinary collaboration supported by an optimal use of BIM require changing roles of the clients, architects, and contractors; new contractual relationships; and re-organised collaborative processes. Unfortunately, there are still gaps in the practical knowledge on how to manage the building actors to collaborate effectively in their changing roles, and to develop and utilise BIM as an optimal ICT support of the collaboration.This paper presents a general review of the practical implications of building information modelling (BIM) based on literature review and case studies. In the next sections, based on literature and recent findings from European research project InPro, the framework for integrated collaboration and the use of BIM are analysed. Subsequently, through the observation of two ongoing pilot projects in The Netherlands, the changing roles of clients, architects, and contractors through BIM application are investigated. In conclusion, the critical success factors as well as the main barriers of a successful integrated collaboration using BIM are identified.2. Changing roles through integrated collaboration and life-cycle design approachesA hospital building project involves various actors, roles, and knowledge domains. In The Netherlands, the changing roles of clients, architects, and contractors in hospital building projects are inevitable due the new healthcare policy. Previously under the Healthcare Institutions Act (WTZi), healthcare institutions were required to obtain both a license and a building permit for new construction projects and major renovations. The permit was issued by the Dutch Ministry of Health. The healthcare institutions were then eligible to receive financial support from the government. Since 2008, new legislation on the management o f hospital building projects and real estate has come into force. In this new legislation, a permit for hospital building project under the WTZi is no longer obligatory, nor obtainable (Dutch Ministry of Health, Welfare and Sport, 2008). This change allows more freedom from the state-directed policy, and respectively, allocates more responsibilities to the healthcare organisations to deal with the financing and management of their real estate. The new policy implies that the healthcare institutions are fully responsible to manage and finance their building projects and real estate. The government’s support for the costs of healthcare facilities will no longer be given separately, but will beincluded in the fee for healthcare services. This means that healthcare institutions must earn back their investment on real estate through their services. This new policy intends to stimulate sustainable innovations in the design, procurement and management of healthcare buildings, which will contribute to effective and efficient primary healthcare services.The new strategy for building projects and real estate management endorses an integrated collaboration approach. In order to assure the sustainability during construction, use, and maintenance, the end-users, facility managers, contractors and specialist c ontractors need to be involved in the planning and design processes. The implications of the new strategy are reflected in the changing roles of the building actors and in the new procurement method.In the traditional procurement method, the design, and its details, are developed by the architect, and design engineers. Then, the client (the healthcare institution) sends an application to the Ministry of Health to obtain an approval on the building permit and the financial support from the government. Following this, a contractor is selected through a tender process that emphasises the search for the lowest-price bidder. During the construction period, changes often take place due to constructability problems of the design and new requirements from the client. Because of the high level of technical complexity, and moreover, decision-making complexities, the whole process from initiation until delivery of a hospital building project can take up to ten years time. After the delivery, the healthcare institution is fully in charge of the operation of the facilities. Redesigns and changes also take place in the use phase to cope with new functions and developments in the medical world (van Reedt Dortland, 2009).The integrated procurement pictures a new contractual relationship between the parties involved in a building project. Instead of a relationship between the client and architect for design, and the client and contractor for construction, in an integrated procurement the client only holds a contractual relationship with the main party that is responsible for both design and construction ( Joint Contracts Tribunal, 2007). The traditional borders between tasks and occupational groups become blurred since architects, consulting firms, contractors, subcontractors, and suppliers all stand on the supply side in the building process while the client on the demand side. Such configuration puts the architect, engineer and contractor in a very different position that influences not only their roles, but also their responsibilities, tasks and communication with the client, the users, the team and other stakeholders.The transition from traditional to integrated procurement method requires a shift of mindsetof the parties on both the demand and supply sides. It is essential for the client and contractor tohave a fair and open collaboration in which both can optimally use their competencies. Thed strategy effectiveness of integrated collaboration is also determined by the client’s capacity to organize innovative tendering procedures (Sebastian et al., 2009).A new challenge emerges in case of positioning an architect in a partnership with the contractor instead of with the client. In case of the architect enters a partnership with the contractor, an important issues is how to ensure the realisation of the architectural values as wellas innovative engineering through an efficient construction process. In another case, the architectsory role instead of being the designer. In this case,can stand at the client’s side in a strategic advithe architect’s responsibility is translating client’s requirements and wishes into the ar values to be included in the design specification, and evaluating the contractor’s p this. In any of this new role, the architect holds the responsibilities as stakeholder interest facilitator, custodian of customer value and custodian of design models.The transition from traditional to integrated procurement method also brings consequencesin the payment schemes. In the traditional building process, the honorarium for the architect isusually based on a percentage of the project costs; this may simply mean that the more expensivethe building is, the higher the honorarium will be. The engineer receives the honorarium based onthe complexity of the design and the intensity of the assignment. A highly complex building,which takes a number of redesigns, is usually favourable for the engineers in terms of honorarium.A traditional contractor usually receives the commission based on the tender to construct thebuilding at the lowest price by meeting the minimum specifications given by the client. Extrawork due to modifications is charged separately to the client. After the delivery, the contractor isno longer responsible for the long-term use of the building. In the traditional procurement method,all risks are placed with the client.In integrated procurement method, the payment is based on the achieved building performance; thus, the payment is non-adversarial. Since the architect, engineer and contractorhave a wider responsibility on the quality of the design and the building, the payment is linked toa measurement system of the functional and technical performance of the building over a certainperiod of time. The honorarium becomes an incentive to achieve the optimal quality. If thebuilding actors succeed to deliver a higher added-value that exceed the minimum client’sextra gain. The level of requirements, they will receive a bonus in accordance t o the client’stransparency is also improved. Open book accounting is an excellent instrument provided that the stakeholders agree on the information to be shared and to its level of detail (InPro, 2009).Next to the adoption of integrated procurement method, the new real estate strategy for hospital building projects addresses a n innovative product development and life-cycle design approaches. A sustainable business case for the investment and exploitation of hospital buildings relies on dynamic life-cycle management that includes considerations and analysis of the market development over time next to the building life-cycle costs (investment/initial cost, operational cost, and logistic cost). Compared to the conventional life-cycle costing method, the dynamiclife-cycle management encompasses a shift from focusing only on minimizing the costs to focusing on maximizing the total benefit that can be gained. One of the determining factors for a successful implementation of dynamic life-cycle management is the sustainable design of the building and building components, which means that the design carries sufficient flexibility to accommodate possible changes in the long term (Prins, 1992).Designing based on the principles of life-cycle management affects the role of the architect,as he needs to be well informed about the usage scenarios and related financial arrangements, the changing social and physical environments, and new technologies. Design needs to integrate people activities and business strategies over time. In this context, the architect is required to align the design strategies with the organisational, local and global policies on finance, business operations, health and safety, environment, etc. (Sebastian et al., 2009).The combination of process and product innovation, and the changing roles of the building actors can be accommodated by integrated project delivery or IPD (AIA California Council, 2007). IPD is an approach that integrates people, systems, business structures and practices into a process that collaboratively harnesses the talents and insights of all participants to reduce waste and optimize efficiency through all phases of design, fabrication and construction. IPD principles can be applied to a variety of contractual arrangements. IPD teams will usually include members well beyond the basic triad of client, architect, and contractor. At a minimum, though, an Integrated Project should include a tight collaboration between the client, the architect, and the main contractor ultimately responsible for construction of the project, from the early design untilthe project handover. The key to a successful IPD is assembling a team that is committed to collaborative processes and is capable of working together effectively. IPD is built on collaboration. As a result, it can only be successful if the participants share and apply commonvalues and goals.3. Changing roles through BIM applicationBuilding information model (BIM) comprises ICT frameworks and tools that can support theintegrated collaboration based on life-cycle design approach. BIM is a digital representation ofphysical and functional characteristics of a facility. As such it serves as a shared knowledgeresource for information about a facility forming a reliable basis for decisions during its lifecyclefrom inception onward (National Institute of Building Sciences NIBS, 2007). BIM facilitates timeand place independent collaborative working. A basic premise of BIM is collaboration bydifferent stakeholders at different phases of the life cycle of a facility to insert, extract, update ormodify information in the BIM to support and reflect the roles of that stakeholder. BIM in itsultimate form, as a shared digital representation founded on open standards for interoperability,can become a virtual information model to be handed from the design team to the contractor and subcontractors and then to the client (Sebastian et al., 2009).BIM is not the same as the earlier known computer aided design (CAD). BIM goes furtherthan an application to generate digital (2D or 3D) drawings (Bratton, 2009). BIM is an integratedmodel in which all process and product information is combined, stored, elaborated, and interactively distributed to all relevant building actors. As a central model for all involved actorsthroughout the project lifecycle, BIM develops and evolves as the project progresses. Using BIM,the proposed design and engineering solutions can be measured against the client’s re and expected building performance. The functionalities of BIM to support the design processextend to multidimensional (nD), including: three-dimensional visualisation and detailing, clashdetection, material schedule, planning, cost estimate, production and logistic information, andas-built documents. During the construction process, BIM can support the communicationbetween the building site, the factory and the design office– which is crucial for an effective andefficient prefabrication and assembly processes as well as to prevent or solve problems related to unforeseen errors or modifications. When the building is in use, BIM can be used in combinationwith the intelligent building systems to provide and maintain up-to-date information of thebuilding performance, including the life-cycle cost.To unleash the full potential of more efficient information exchange in the AEC/FM industry in collaborative working using BIM, both high quality open international standards and high quality implementations of these standards must be in place. The IFC open standard is generally agreed to be of high quality and is widely implemented in software. Unfortunately, the certification process allows poor quality implementations to be certified and essentially renders the certified software useless for any practical usage with IFC. IFC compliant BIM is actually used less than manual drafting for architects and contractors, and show about the same usage for engineers. A recent survey shows that CAD (as a closed-system) is still the major form of technique used in design work (over 60 per cent) while BIM is used in around 20 percent of projects for architects and in around 10 per cent of projects for engineers and contractors (Kiviniemi et al., 2008).The application of BIM to support an optimal cross-disciplinary and cross-phase collaboration opens a new dimension in the roles and relationships between the building actors. Several most relevant issues are: the new role of a model manager; the agreement on the access right and Intellectual Property Right (IPR); the liability and payment arrangement according tothe type of contract and in relation to the integrated procurement; and the use of open international standards.Collaborative working using BIM demands a new expert role of a model manager who possesses ICT as well as construction process know-how (InPro, 2009). The model manager deals with the system as well as with the actors. He provides and maintains technological solutions required for BIM functionalities, manages the information flow, and improves the ICT skills of the stakeholders. The model manager does not take decisions on design and engineering solutions, nor the organisational processes, b ut his roles in the chain of decision making are focused on:the development of BIM, the definition of the structure and detail level of the model, and the deployment of relevant BIM tools, such as for models checking, merging, and clash detections;the contribution to collaboration methods, especially decision making and communication protocols, task planning, and risk management;and the management of information, in terms of data flow and storage, identification ofcommunication errors, and decision or process (re-)tracking.way Regarding the legal and organisational issues, one of the actual questions is: “does the intellectual property right (IPR) in collaborative working using BIM differ from the IPRin a traditional teamwork?”. In terms of combined work, the IPR of each element is attached to its creator. Although it seems to be a fully integrated design, BIM actually resulted from a combination of works/elements; for instance: the outline of the building design, is created by the architect, the design for the electrical system, is created by the electrical contractor, etc. Thus, incase of BIM as a combined work, the IPR is similar to traditional teamwork. Working with BIMwith authorship registration functionalities may actually make it easier to keep track of theIPR(Chao-Duivis, 2009).How does collaborative working, using BIM, effect the contractual relationship? On the onehand, collaborative working using BIM does not necessarily change the liability position in thecontract nor does it obligate an alliance contract. The General Principles of BIM Addendum confirms: ‘This does not effectuate or require a restructuring of contractual relationships orshifting of risks between or among the Project Participants other than as specifically required per(ConsensusDOCS, 2008). On the other hand,the Protocol Addendum and its Attachments’ changes in terms of payment schemes can be anticipated. Collaborative processes using BIM willlead to the shifting of activities from to the early design phase. Much, if not all, activities in thedetailed engineering and specification phase will be done in the earlier phases. It means thatsignificant payment for the engineering phase, which may count up to 40 per cent of the designcost, can no longer be expected. As engineering work is done concurrently with the design, a new proportion of the payment in the early design phase is necessary(Chao-Duivis, 2009).4. Review of ongoing hospital building projects using BIMIn The Netherlands, the changing roles in hospital building projects are part of the strategy,which aims at achieving a sustainable real estate in response to the changing healthcare policy.Referring to literature and previous research, the main factors that influence the success of thechanging roles can be concluded as: the implementation of an integrated procurement method anda life-cycle design approach for a sustainable collaborative process; the agreement on the BIMstructure and the intellectual rights; and the integration of the role of a model manager. Thepreceding sections have discussed t he conceptual thinking on how to deal with these factors effectively. This current section observes two actual projects and compares the actual practice with the conceptual view respectively.The main issues, which are observed in the case studies, are:the selected procurement method and the roles of the involved parties within this method;the implementation of the life-cycle design approach;the type, structure, and functionalities of BIM used in the project;the openness in data sharing and transfer of the model, and the intended use of BIM in the future; andthe roles and tasks of the model manager.The pilot experience of hospital building projects using BIM in the Netherlands can be observed at University Medical Centre St Radboud (further referred as UMC) and Maxima Medical Centre (further referred as MMC). At UMC, the new building project for the Faculty of Dentistry in the city of Nijmegen has been dedicated as a BIM pilot project. At MMC, BIM is used in designing new buildings for Medical Simulation and Mother-and-Child Centre in the city of Veldhoven.The first case is a project at the University Medical Centre (UMC) St Radboud. UMC is more than just a hospital. UMC combines medical services, education and research. More than 8500 staff and 3000 students work at UMC. As a part of the innovative real estate strategy, UMC has considered to use BIM for its building projects. The new development of the Faculty of Dentistry and the surrounding buildings on the Kapittelweg in Nijmegen has been chosen as a pilot project to gather practical knowledge and experience on collaborative processes with BIM support.The main ambition to be achieved through the use of BIM in the building projects at UMC can be summarised as follows:using 3D visualisation to enhance the coordination and communication among the building actors, and the user participation in design;facilitating optimal information accessibility and exchange for a highconsistency of the drawings and documents across disciplines and phases;integrating the architectural design with structural analysis, energy analysis, cost estimation,and planning;interactively evaluating the design solutions against the programme of requirements and specifications;reducing redesign/remake costs through clash detection during the design process; andoptimising the management o f the facility through the registration of medical installations and equipments, fixed and flexible furniture, product and output specifications, and operational data.The second case is a project at the Maxima Medical Centre (MMC). MMC is a large hospital resulted from a merger between the Diaconessenhuis in Eindhoven and St Joseph Hospital in Veldhoven. Annually the 3,400 staff of MMC provides medical services to more than 450,000 visitors and patients. A large-scaled extension project of the hospital in Veldhoven is a part of its real estate strategy. A medical simulation centre and a women-and-children medical centre are among the most important new facilities within this extension project. The design has been developed using 3D modelling with several functionalities of BIM.The findings from both cases and the analysis are as follows. Both UMC and MMC optedfor a traditional procurement method in which the client directly contracted an architect, a structural engineer, and a mechanical, electrical and plumbing (MEP) consultant in the design team. Once the design and detailed specifications are finished, a tender procedure will follow to select a contractor. Despite the choice for this traditional method, many attempts have been made for a closer and more effective multidisciplinary collaboration. UMC dedicated a relatively long preparation phase with the architect, structural engineer and MEP consultant before the design commenced. This preparation phase was aimed at creating a common vision on the optimal way for collaboration using BIM as an ICT support. Some results of this preparation phase are: a document that defines the common ambition for the project and the collaborative working process and a semi-formal agreement that states the commitment of the building actors for collaboration. Other than UMC, MMC selected an architecture firm with an in-house engineering department. Thus, the collaboration between the architect and structural engineer can take place within the same firm using the same software application.Regarding the life-cycle design approach, the main attention is given on life-cycle costs, maintenance needs, and facility management. U sing BIM, both hospitals intend to get a much。
工程项目管理英语文献
Abstract:This paper aims to explore the significance of project management in the construction industry. By analyzing various aspects of project management, such as planning, scheduling, cost control, and communication, this study aims to provide insights into how effective project management can contribute to the success of construction projects. The paper is based on a comprehensive review of relevant literature in the field of engineering project management.Introduction:Construction projects are complex and involve multiple stakeholders, including clients, contractors, designers, and suppliers. Effective project management is essential to ensure that these projects are completed on time, within budget, and meet the required quality standards. This paper discusses the role of project management in the construction industry and highlights its impact on project success.1. Planning:The first step in project management is to develop a comprehensive plan that outlines the project scope, objectives, tasks, and timelines. Effective planning helps in identifying potential risks and developing strategies to mitigate them. A well-planned project is more likely to be completed successfully, as it provides a clear roadmap for all stakeholders involved.2. Scheduling:Scheduling involves creating a timeline for the project activities and allocating resources accordingly. This ensures that tasks are completed in a logical sequence and that the project stays on track. Byeffectively managing the schedule, project managers can minimize delays and ensure that the project is completed within the agreed timeframe.3. Cost Control:Cost control is a critical aspect of project management, as it involves managing the project budget and ensuring that expenses are kept withinthe allocated funds. This includes identifying cost-saving opportunities, monitoring the project budget, and taking corrective actions when necessary. Effective cost control is essential for the financial success of construction projects.4. Communication:Communication is the cornerstone of successful project management. It involves ensuring that all stakeholders are informed about the project's progress, challenges, and changes. Effective communication helps in building trust and fostering collaboration among team members, which ultimately leads to project success.5. Risk Management:Risk management is an integral part of project management, as itinvolves identifying, analyzing, and mitigating potential risks that may impact the project's success. By implementing risk management strategies, project managers can minimize the likelihood of project delays, cost overruns, and quality issues.6. Quality Control:Quality control is essential for ensuring that the construction project meets the required standards and specifications. This involvesmonitoring the quality of work throughout the project lifecycle, identifying deviations from the standards, and taking corrective actions when necessary.Conclusion:In conclusion, effective project management plays a crucial role in the success of construction projects. By focusing on planning, scheduling, cost control, communication, risk management, and quality control,project managers can ensure that projects are completed on time, within budget, and meet the required quality standards. This paper highlights the importance of project management in the construction industry and provides insights into its various aspects.Keywords: Project management, construction industry, planning, scheduling, cost control, communication, risk management, quality control。
工程管理外文文献翻译---项目组合管理——远非现今管理所制定的方案
外文文献:Project portfolio management –There’s more to it thanwhat management enactsAbstractAlthough companies manage project portfolios concordantly with project portfolio theory, they may experience problems in the form of delayed projects, resource struggles, stress, and a lack of overview. Based on a research project compromised of 128 in-depth interviews in 30 companies, we propose that a key reason why companies do not do well in relation to project portfolio management (PPM) is that PPM often only covers a subset of on-going projects, while projects that are not subject to PPM tie up resources that initially were dedicated to PPM projects. We address and discuss the dilemma of wanting to include all projects in PPM, and aiming at keeping the resource and cognitive burden of doing PPM at a reasonable level.Keywords:Managing programmes,Managing projects,Organisation resources,Strategy1.IntroductionAt any given point in time, most companies engage in many projects. Some of these projects may relate to product development and marketing, others relate to changes in work processes and production flows, while yet others relate to competency development, strategic turns, the implementation of new IT systems, environmental issues etc.A key managerial task is to dedicate resources across all of these projects (as well as do daily work) and consequently,management across projects (project portfolio management (PPM)) is critical to company performance.This paper is based on a large-scale qualitative study,which shows that many project-oriented companies do not perform well when it comes to PPM. This relates to the inability to accomplish projects that are initiated. In particular, we identify the following problems:(1) Projects are not completed according to plan (or they even peter out during their project life cycle);(2) Management and employees feel they lack a broad overview of on-going projects (especially when the number of on-going projects increases as more and more projects are not completedaccording to plan);(3)People experience stress as resources are continuously reallocated across projects in order to make ends meet.These observations are especially interesting because the companies were included in the research project because they were supposed to be especially,experienced in PPM, and because they actually engage in PPM according to the extant body of literature on PPM. For example, part of the companies‘ PPM included an effort to pick the best projects on the basis of explicit or implicit criteria, and an effort to allocate sufficient resources to these projects.However, despite efforts,to practice ‗good‘ PPM, these companies experience severe problems in relation to PPM – especially in letting enough resources go into the ‗right‘ pr ojects. The purpose of this paper is to confront PPM as advocated by normative theories with actual PPM practices. Hence, the purpose is to confront PPM theories with PPM as perceived by managers and other employees for whom PPM is part of, or affects, their work conditions.However, in this paper, we are more interested in PPM as enacted by companies than in universally true perceptions. Hence, we adhere to Weick‘s [1–3] notion of enactment as the preconceptions that are used to set aside a portion of the field of experience for further attention. In regard to PPM, enacted projects are thus the ones management sets aside for further attention (i.e. PPM). As such, we focus especially on ways actors define or enact projects [4] and make sense of how to manage the sum of the projects. Drawing on this perspective, we account for findings that suggest why companies that do engage in PPM still experience problems.2. Project portfolio theoryThis paper draws on Archer and Ghasemzadeh‘s [5, p.208] definition of p roject portfolios as ‗‗a group of projects that are carried out under the sponsorship and/or management of a particular organization‘‘. Henceforth, we define PPM as the managerial activities that relate to(1) the initial screening, selection and prioritisation of project proposals,(2) the concurrent reprioritisation of projects in the portfolio,(3) the allocation and reallocation of resources to projects according to priority.For quite some time researchers have suggested that low completion rates for new product development (NPD) projects and new product failure relate to resource deficiencies in key areas [6,7]. Furthermore, while a host of researchers [8–10] have focused on the dimension of PPM that concernsprocesses relating to selection of projects to be included in the portfolio, research e.g. [11] also increasingly focuses on the day-today management of the project portfolio.3. MethodologyOver a period of two years, we did empirical research on how companies manage their entire range of projects, e.g. renewal projects, strategic projects, IT projects, departmentally specific projects, and production based projects. In relation to the selection of companies to be included in the empirical study, a key criterion was that the study should cover a wide variety of industries. As a result, the empirical study covers 30 companies from industries as diverse as, e.g. mobile telephone communications, finances, energy, pharmaceuticals, toys, software, and foods.However, due to the fact that we were looking for companies, where the amount of on-going projects suggested they were engaged in PPM, the study is biased towards larger companies as well as companies that define at least a substantial part of their activities as projects. The degree to which the companies participated in the study varies. Hence, half of the companies are labelled ‗inner circle‘ companies due to the fact that we drew extensively on these 15 companies. For example, in these companies more interviews were conducted at various points in time and at various organizational levels. Hence, a longitudinal perspective characterizes the involvement of these companies.The remaining half of the companies are labelled ‗outer circle‘ companies because their participation in the study has included fewer top-management interviews, the purpose of which was to gain insight into ways in which (top) management defines the content of their project portfolios and manages them.4. Managerial implicationsA key finding is that the gap between required and available resources is very much attributable to the existence of a host of smaller projects that never become part of enacted project portfolios. Thus, at an aggregated level, the empirical study suggests smaller, un-enacted projects qualify as resources crunchers in so far they are not considered to be a part of enacted project portfolios. In order to overcome this crunch in resources, two solutions seem obvious:(1) Enacting more, i.e. having PPM embrace all projects.(2) Allocating more resources to a pool of loosely-controlled resources for the un-enacted projects to draw on.5. Research implicationsThe empirical study elaborates on the ‗‗significant shortage of resources devoted to NPD‘‘ that Cooper and Edgett argue is the fundamental problem ‗‗that p lagues most firms‘ product development efforts‘‘.Our work especially suggests that the shortage of resources devoted to enacted projects is not a problem that primarily arises in relation to top management‘s PPM. On the contrary, in-good-faith top management dedicates resources to enacted projects on the basis of sound PPM. However, what top managers do not do is take into account the host of smaller projects that individuals initiate and – more importantly – top managers ignore (or at least heavily under-estimate) the amount of resources that these smaller projects tie up. Hence, we argue that especially the crunch in resources may be attributable to the un-enacted competition for resources that smaller projects subject enacted projects to.Consequently, the key contribution of our empirical work to research is that it emphasises that if we wish to study PPM (and especially if we wish to relate PPM to project performance), we might be better off taking into account the entire range of projects that actual (not enacted) portfolios are comprised of. Thus, if we as researchers only enact the projects that are neatly listed by top management, then our research will neglect the host of projects that are not subject to PPM, projects that nonetheless take up valuable, and scarce, resources.The fact that the empirical study includes interviews with managers, i.e. those who do PPM, and interviews with personnel at lower organisational levels, i.e. those whose work is subject to PPM, is the reason why we were able to identify un-enacted projects. Thus, researchers interested in PPM should be careful not to rely too heavily on a management perspective.6. Conclusion and limitationsThe main conclusion is that as long as some projects are un-enacted, companies may experience a drain on resources that reduces the time and resources actually devoted to projects subject to PPM. Hence, each individual company should decide whether or not all projects should be part of PPM and if the end result of such a decision is not to make comprehensive project lists (i.e. lists that include all minor projects), then management should decide how many resources should be set aside for the plethora of small projects that do not appear on the project list.One way in which the crunch in resources can be reduced is by ensuring that smaller projects do not take up a critical portion of the resources that are – officially – set aside for the completion ofprojects subject to PPM. However, due to the exploratory nature of the study accounted for in this paper, our findings relate far more to what companies actually do (positive theory in Hunt‘s terms), rather than to what they ought to do (normative theory in Hunt‘s terms). Although generating positive theory is indeed a crucial first step – especially in relation to the future of PPM theory –positive theory cannot, and should not, stand alone. Hence, the key challenges for PPM theory in the future are to produce normative theory that offers sound suggestions as to how companies can improve their PPM.Another limitation of our study is that the empirical part was carried out in a Danish context as the 30 companies involved are located in Denmark, which may not be sufficiently representative for companies worldwide because Denmark has, to a larger extent, a bottom-up culture. Therefore, the portion of smaller un-enacted projects may be bigger here than in companies in other countries. We hope that our study will inspire other researchers to carry our similar studies in other countries.References[1] Aboloafia MY, Killduff D. Enacting market crisis: the social construction of a speculative bubble.Admin Sci Quart 1988;33(1): 177–93.[2] Archer NP, Ghasemzadeh F. An integrated framework for project portfolio selection.Int J Project Manage 1999;17(4):207–16.[3] Cooper RG. Benchmarking new product performance: results of the best practices study.Eur Manage J 1998;16(1):1–7.[4] Cooper RG, Edgett SJ. Overcoming the crunch in resources for new product development.Res Technol Manage 2003;46:48–58.[5] Cooper RG, Edgett SJ, Kleinschmidt EJ. Best practices for managingR&D portfolios. Res Technol Manage 1998;41:20–33.[6] Cooper RG, Edgett SJ, Kleinschmidt EJ. New product portfolio management: practices and performance.J Prod Innovat Manage[7] Cooper RG, Edgett SJ, Kleinschmidt EJ. New problems, new solutions: making portfolio management more effective. Res Technol Manage 2000;43:18–33. 1999;16(3):333–51.[8] Cooper RG, Edgett SJ, Kleinschmidt EJ. Portfolio management for new products.Cambridge MA: Perseus Publishing; 2001.[9] Cooper RG, Edgett SJ, Kleinschmidt EJ. Portfolio management in new product development: lessons from the leaders – I. Res Technol Manage 1997;40:16–28.[10] Cooper RG, Edgett SJ, Kleinschmidt EJ. Portfolio management in new product development: lessons from the leaders – II. Res Technol Manage 1997;40:43–52.[11] Cooper RG, Edgett SJ, Kleinschmidt EJ. Portfolio management for new product development: results of an industry practices study. R&D Manage 2001;31(4):361–80.中文译文:项目组合管理——远非现今管理所制定的方案摘要尽管公司一向致力于处理项目股份单与项目股份单理论,他们也许会经历在工程延迟,资源短缺,压力,缺乏整体概要的形式上遇到问题。
工程管理的参考文献
工程管理的参考文献工程管理是一个广泛的领域,涉及到项目规划、资源分配、进度控制、风险管理等诸多方面。
因此,有许多优秀的参考文献可以帮助人们更好地理解和应用工程管理的理论和实践。
以下是一些常见的工程管理参考文献:1. 《工程管理导论》(Introduction to Engineering Management)作者,Stephen A. Devaux.这本书介绍了工程管理的基本概念、原则和实践,涵盖了项目管理、团队管理、质量管理等内容,适合初学者阅读。
2. 《工程项目管理实务》(Project Management in Practice)作者,Mantel, Meredith, Shafer, and Sutton.该书详细介绍了工程项目管理的各个阶段和关键要素,包括项目规划、风险管理、成本控制等内容,适合有一定项目管理基础的读者。
3. 《敏捷项目管理实践指南》(Agile Project Management:A Practical Approach)作者,Chuck Cobb.这本书介绍了敏捷项目管理的理念和方法,适合对敏捷开发感兴趣的工程管理人员阅读。
4. 《工程管理实务与案例分析》(Engineering Management: Challenges in the New Millennium)作者,C.M. Chang.该书通过案例分析的方式,深入探讨了工程管理中的挑战和解决方案,对于理论与实践相结合的学习很有帮助。
5. 《项目风险管理实务指南》(A Guide to the Project Management Body of Knowledge (PMBOK® Guide))作者,Project Management Institute.这本书是项目管理领域的经典之作,详细介绍了项目管理的各个知识领域,包括风险管理,是项目管理人员的必备参考书籍。
除了以上提到的书籍,还有许多期刊、论文和行业报告也是工程管理领域的重要参考文献。
工程管理外文文献
9 Benefits of a Project ScheduleThe Value of a Project Schedule"Failing to plan means planning to fail"In my mind, that sums it up. But this article will focus on providing some more detailed benefits.Contrary to what you might be thinking, this article is NOT some type of promotion for the use of Microsoft Project. As a matter of fact, your schedule could be developed on a napkin, providing you (and your team) develop it, and manage with it!!Forces detailed thinking and planningThis is the biggest benefit! Brainstorming with the team on what needs to be done when and by whom can be a very enlightening exercise. A few months ago I was assisting a project manager and his team as they were developing their plan. As we were loading the tasks into the project schedule (again, could have easily been a napkin), I kept asking about predecessors and successors. This would be followed by a long pause as the team members pondered the concept, then discussion and sometimes, additional tasks would surface. About 3/4 of the way through the exercise the project manager stated "So now I see why we should do it this way!"Improves communicationA completed / current version of the schedule keeps all team members "singing from the same page of the hymn book". When the team knows what is supposed to occur when and by whom, this makes managing the rest of the project a little easier. Communicating with management, the customer, and other stakeholders is also much easier with a schedule.Provides a goalWhether it is the short term goals of tasks for the week, the mid range goals of a deliverable or milestone, or the overall project finish date, this information is all contained within the schedule. And providing you are following the tip of communicating, all team members should be aware of these goals.Lets you know when you are off trackJust like when you take a trip; the schedule is the roadmap that tells you how to get from point A to point Z. There even may be times when you experience potholes or detours, but if you did not have a roadmap, how would you get back on track? Monitoring the baseline or original schedule allows you toknow when you get off track. It will tell you just how far off track your project is, and allow you to experiment with what-if scenario's for getting back on track.Reduces delivery timeThere are a couple of ways a schedule helps here.Once your original schedule is complete, you now have the abilitiy to step back and determine what tasks could be started early or completed in parallel with other tasks (Fast Tracking).Secondly, by tying dates and durations to tasks creates a sense of urgency that might not otherwise be there. Without these dates, a team member may postpone working on an activity that could cause a delay in downstream milestones.Reduces costsYou may think that developing and managing a schedule would increase costs. It is more work right? Here are a few examples of how a schedule reduces cost.Reduces rework - Imagine someone starting to develop the code for a new application without all the requirements.Eliminates duplicate work - Imagine person A and person B heading off to perform the same task when only person A was assigned.Return resources sooner - Whether renting a bulldozer, or contracting a team of people, the longer those resources are on the project, the more costly it becomes. A schedule will enable the project manager to return those resources as soon as possible.Increases productivityBy examining the sequence of tasks and the resources assigned, perhaps periods can be found where resources are under-utilized. Assigning them to additional tasks or changing the logic of when the tasks should be performed will make the team more productive.See problems earlyWhether it is an issue with a milestone date slipping or resources beingover-allocated a month from now, having an up-to-date schedule can help you see these problems before they become true issues impacting your project. You can leverage the schedule for what-if scenarios to find a solution or raise the issue to the proper stakeholders well in advance.Enables project manager to control the project instead of the project having control of themThis one is probably debatable by many project managers who currently have a detailed schedule but still find themselves struggling each day just to stay afloat. But imagine where you would be without that plan!Hopefully this article has proven some of the value in creating and maintaining a project schedule. If you are currently managing your projects without a schedule, you should try building one and managing to it. I'm sure you will find your life will change. If you do use a schedule, whether it is in MS Project, Excel, or a napkin, look at it now and see how many of these tips you can apply.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
外文文献:Project portfolio management –There’s more to it thanwhat management enactsAbstractAlthough companies manage project portfolios concordantly with project portfolio theory, they may experience problems in the form of delayed projects, resource struggles, stress, and a lack of overview. Based on a research project compromised of 128 in-depth interviews in 30 companies, we propose that a key reason why companies do not do well in relation to project portfolio management (PPM) is that PPM often only covers a subset of on-going projects, while projects that are not subject to PPM tie up resources that initially were dedicated to PPM projects. We address and discuss the dilemma of wanting to include all projects in PPM, and aiming at keeping the resource and cognitive burden of doing PPM at a reasonable level.Keywords:Managing programmes,Managing projects,Organisation resources,Strategy1.IntroductionAt any given point in time, most companies engage in many projects. Some of these projects may relate to product development and marketing, others relate to changes in work processes and production flows, while yet others relate to competency development, strategic turns, the implementation of new IT systems, environmental issues etc.A key managerial task is to dedicate resources across all of these projects (as well as do daily work) and consequently,management across projects (project portfolio management (PPM)) is critical to company performance.This paper is based on a large-scale qualitative study,which shows that many project-oriented companies do not perform well when it comes to PPM. This relates to the inability to accomplish projects that are initiated. In particular, we identify the following problems:(1) Projects are not completed according to plan (or they even peter out during their project life cycle);(2) Management and employees feel they lack a broad overview of on-going projects (especially when the number of on-going projects increases as more and more projects are not completedaccording to plan);(3)People experience stress as resources are continuously reallocated across projects in order to make ends meet.These observations are especially interesting because the companies were included in the research project because they were supposed to be especially,experienced in PPM, and because they actually engage in PPM according to the extant body of literature on PPM. For example, part of the companies’ PPM included an effort to pick the best projects on the basis of explicit or implicit criteria, and an effort to allocate sufficient resources to these projects.However, despite efforts,to practice ‘good’ PPM, these companies experience severe problems in relation to PPM – especially in letting enough resources go into the ‘right’ pr ojects. The purpose of this paper is to confront PPM as advocated by normative theories with actual PPM practices. Hence, the purpose is to confront PPM theories with PPM as perceived by managers and other employees for whom PPM is part of, or affects, their work conditions.However, in this paper, we are more interested in PPM as enacted by companies than in universally true perceptions. Hence, we adhere to Weick’s [1–3] notion of enactment as the preconceptions that are used to set aside a portion of the field of experience for further attention. In regard to PPM, enacted projects are thus the ones management sets aside for further attention (i.e. PPM). As such, we focus especially on ways actors define or enact projects [4] and make sense of how to manage the sum of the projects. Drawing on this perspective, we account for findings that suggest why companies that do engage in PPM still experience problems.2. Project portfolio theoryThis paper draws on Archer and Ghasemzadeh’s [5, p.208] definition of p roject portfolios as ‘‘a group of projects that are carried out under the sponsorship and/or management of a particular organization’’. Henceforth, we define PPM as the managerial activities that relate to(1) the initial screening, selection and prioritisation of project proposals,(2) the concurrent reprioritisation of projects in the portfolio,(3) the allocation and reallocation of resources to projects according to priority.For quite some time researchers have suggested that low completion rates for new product development (NPD) projects and new product failure relate to resource deficiencies in key areas [6,7]. Furthermore, while a host of researchers [8–10] have focused on the dimension of PPM that concernsprocesses relating to selection of projects to be included in the portfolio, research e.g. [11] also increasingly focuses on the day-today management of the project portfolio.3. MethodologyOver a period of two years, we did empirical research on how companies manage their entire range of projects, e.g. renewal projects, strategic projects, IT projects, departmentally specific projects, and production based projects. In relation to the selection of companies to be included in the empirical study, a key criterion was that the study should cover a wide variety of industries. As a result, the empirical study covers 30 companies from industries as diverse as, e.g. mobile telephone communications, finances, energy, pharmaceuticals, toys, software, and foods.However, due to the fact that we were looking for companies, where the amount of on-going projects suggested they were engaged in PPM, the study is biased towards larger companies as well as companies that define at least a substantial part of their activities as projects. The degree to which the companies participated in the study varies. Hence, half of the companies are labelled ‘inner circle’ companies due to the fact that we drew extensively on these 15 companies. For example, in these companies more interviews were conducted at various points in time and at various organizational levels. Hence, a longitudinal perspective characterizes the involvement of these companies.The remaining half of the companies are labelled ‘outer circle’ companies because their participation in the study has included fewer top-management interviews, the purpose of which was to gain insight into ways in which (top) management defines the content of their project portfolios and manages them.4. Managerial implicationsA key finding is that the gap between required and available resources is very much attributable to the existence of a host of smaller projects that never become part of enacted project portfolios. Thus, at an aggregated level, the empirical study suggests smaller, un-enacted projects qualify as resources crunchers in so far they are not considered to be a part of enacted project portfolios. In order to overcome this crunch in resources, two solutions seem obvious:(1) Enacting more, i.e. having PPM embrace all projects.(2) Allocating more resources to a pool of loosely-controlled resources for the un-enacted projects to draw on.5. Research implicationsThe empirical study elaborates on the ‘‘significant shortage of resources devoted to NPD’’ that Cooper and Edgett argue is the fundamental problem ‘‘that p lagues most firms’ product development efforts’’.Our work especially suggests that the shortage of resources devoted to enacted projects is not a problem that primarily arises in relation to top management’s PPM. On the contrary, in-good-faith top management dedicates resources to enacted projects on the basis of sound PPM. However, what top managers do not do is take into account the host of smaller projects that individuals initiate and – more importantly – top managers ignore (or at least heavily under-estimate) the amount of resources that these smaller projects tie up. Hence, we argue that especially the crunch in resources may be attributable to the un-enacted competition for resources that smaller projects subject enacted projects to.Consequently, the key contribution of our empirical work to research is that it emphasises that if we wish to study PPM (and especially if we wish to relate PPM to project performance), we might be better off taking into account the entire range of projects that actual (not enacted) portfolios are comprised of. Thus, if we as researchers only enact the projects that are neatly listed by top management, then our research will neglect the host of projects that are not subject to PPM, projects that nonetheless take up valuable, and scarce, resources.The fact that the empirical study includes interviews with managers, i.e. those who do PPM, and interviews with personnel at lower organisational levels, i.e. those whose work is subject to PPM, is the reason why we were able to identify un-enacted projects. Thus, researchers interested in PPM should be careful not to rely too heavily on a management perspective.6. Conclusion and limitationsThe main conclusion is that as long as some projects are un-enacted, companies may experience a drain on resources that reduces the time and resources actually devoted to projects subject to PPM. Hence, each individual company should decide whether or not all projects should be part of PPM and if the end result of such a decision is not to make comprehensive project lists (i.e. lists that include all minor projects), then management should decide how many resources should be set aside for the plethora of small projects that do not appear on the project list.One way in which the crunch in resources can be reduced is by ensuring that smaller projects do not take up a critical portion of the resources that are – officially – set aside for the completion ofprojects subject to PPM. However, due to the exploratory nature of the study accounted for in this paper, our findings relate far more to what companies actually do (positive theory in Hunt’s terms), rather than to what they ought to do (normative theory in Hunt’s terms). Although generating positive theory is indeed a crucial first step – especially in relation to the future of PPM theory –positive theory cannot, and should not, stand alone. Hence, the key challenges for PPM theory in the future are to produce normative theory that offers sound suggestions as to how companies can improve their PPM.Another limitation of our study is that the empirical part was carried out in a Danish context as the 30 companies involved are located in Denmark, which may not be sufficiently representative for companies worldwide because Denmark has, to a larger extent, a bottom-up culture. Therefore, the portion of smaller un-enacted projects may be bigger here than in companies in other countries. We hope that our study will inspire other researchers to carry our similar studies in other countries.References[1] Aboloafia MY, Killduff D. Enacting market crisis: the social construction of a speculative bubble.Admin Sci Quart 1988;33(1): 177–93.[2] Archer NP, Ghasemzadeh F. An integrated framework for project portfolio selection.Int J Project Manage 1999;17(4):207–16.[3] Cooper RG. Benchmarking new product performance: results of the best practices study.Eur Manage J 1998;16(1):1–7.[4] Cooper RG, Edgett SJ. Overcoming the crunch in resources for new product development.Res Technol Manage 2003;46:48–58.[5] Cooper RG, Edgett SJ, Kleinschmidt EJ. Best practices for managingR&D portfolios. Res Technol Manage 1998;41:20–33.[6] Cooper RG, Edgett SJ, Kleinschmidt EJ. New product portfolio management: practices and performance.J Prod Innovat Manage[7] Cooper RG, Edgett SJ, Kleinschmidt EJ. New problems, new solutions: making portfolio management more effective. Res Technol Manage 2000;43:18–33. 1999;16(3):333–51.[8] Cooper RG, Edgett SJ, Kleinschmidt EJ. Portfolio management for new products.Cambridge MA: Perseus Publishing; 2001.[9] Cooper RG, Edgett SJ, Kleinschmidt EJ. Portfolio management in new product development: lessons from the leaders – I. Res Technol Manage 1997;40:16–28.[10] Cooper RG, Edgett SJ, Kleinschmidt EJ. Portfolio management in new product development: lessons from the leaders – II. Res Technol Manage 1997;40:43–52.[11] Cooper RG, Edgett SJ, Kleinschmidt EJ. Portfolio management for new product development: results of an industry practices study. R&D Manage 2001;31(4):361–80.中文译文:项目组合管理——远非现今管理所制定的方案摘要尽管公司一向致力于处理项目股份单与项目股份单理论,他们也许会经历在工程延迟,资源短缺,压力,缺乏整体概要的形式上遇到问题。