半导体PN结的物理特性

合集下载

PN结及其特性详细介绍

PN结及其特性详细介绍

PN结及其特性详细介绍1. PN结的形成在一块本征半导体在两侧通过扩散不同的杂质,分别形成N型半导体和P型半导体。

此时将在N型半导体和P型半导体的结合面上形成如下物理过程:扩散到对方的载流子在P区和N区的交界处附近被相互中和掉,使P区一侧因失去空穴而留下不能移动的负离子,N区一侧因失去电子而留下不能移动的正离子。

这样在两种半导体交界处逐渐形成由正、负离子组成的空间电荷区〔耗尽层〕。

由于P区一侧带负电,N区一侧带正电,所以出现了方向由N区指向P 区的内电场PN结的形成当扩散和漂移运动到达平衡后,空间电荷区的宽度和内电场电位就相对稳定下来。

此时,有多少个多子扩散到对方,就有多少个少子从对方飘移过来,二者产生的电流大小相等,方向相反。

因此,在相对平衡时,流过PN结的电流为0。

对于P型半导体和N型半导体结合面,离子薄层形成的空间电荷区称为PN结。

在空间电荷区,由于缺少多子,所以也称耗尽层。

由于耗尽层的存在,PN结的电阻很大。

PN结的形成过程中的两种运动:多数载流子扩散少数载流子飘移PN结的形成过程〔动画〕2. PN结的单向导电性PN结具有单向导电性,假设外加电压使电流从P区流到N区,PN结呈低阻性,所以电流大;反之是高阻性,电流小。

如果外加电压使PN结中:P区的电位高于N区的电位,称为加正向电压,简称正偏;P区的电位低于N区的电位,称为加反向电压,简称反偏。

(1) PN结加正向电压时的导电情况PN结加正向电压时的导电情况如下图。

外加的正向电压有一局部降落在PN结区,方向与PN结内电场方向相反,削弱了内电场。

于是,内电场对多子扩散运动的阻碍减弱,扩散电流加大。

扩散电流远大于漂移电流,可忽略漂移电流的影响,PN结呈现低阻性。

PN结加正向电压时的导电情况(2) PN结加反向电压时的导电情况外加的反向电压有一局部降落在PN结区,方向与PN结内电场方向一样,加强了内电场。

内电场对多子扩散运动的阻碍增强,扩散电流大大减小。

半导体pn结的物理特性及弱电流测量实验

半导体pn结的物理特性及弱电流测量实验

半导体pn结的物理特性及弱电流测量实验半导体pn结是常见的半导体器件之一,由p型半导体和n型半导体构成。

与其它半导体器件相比,它有很多特殊的物理特性。

首先,当p型半导体和n型半导体结合时,两种材料的掺杂离子会互相扩散,导致接触面区域形成一个空间电荷区。

这个区域中没有载流子,因此是不导电的。

在pn结正侧和负侧形成了电位差,负侧形成了减小电位相对于正侧,就形成了内建电场。

这个电场会阻止载流子(即电荷)通过pn结。

当向pn结外加电压时,如果外加电压与内建电场方向相反,则内部电场减弱,载流子的移动就更容易了,流动性能增强;反之外部电场增强内部电场,丝毫不利指导电流的流动,参极熑阻挡作用,这就是pn结的整流特性,即所谓的势垒效应。

由于pn结的势垒效应,它可以将电流的方向限制在一个方向上,使其变成单向导电,即只有在正向电压下才能导通,反向电压下是不导通的。

这个特性非常有用,例如在电子电路中可以用它来作为整流器、稳压器、放大器等器件。

此外,由于pn结的导通特性,其本身也可以被用来制造发光二极管、太阳能电池等器件。

在弱电流测量实验中,pn结也被广泛应用。

由于pn结在反向偏置时具有可靠的硬特性,可以被用来作为电流表的电压比较器,在电流表中起到非常重要的作用。

这种电压比较器又称为伏安电路,可以将电流转换成电压,测量微弱电流。

具体而言,电流I进入测量电路,经过一个电阻R后进入远端的伏安电路(即pn结),由于其反向偏置,只有微小的正向漏电流I流经伏安电路,并引起一个微小的电压降U,这个电压降就是I通过伏安电路时所产生的电势差,按照欧姆定律,U/R=I,即可转化为电流的大小。

通过这种方法,研究者可以测量非常微小的电流,比如常常需要测量光电器件、二极管、甚至可以用来研究生物体内的电流等。

总之,半导体pn结的物理特性和其在弱电流测量实验中的应用对于电子学研究和工程实践具有非常重要的意义。

实验46 PN 结的物理特性及玻尔兹曼常数测定

实验46 PN 结的物理特性及玻尔兹曼常数测定

5/5
也是常数;U0 为绝对零度时 PN 结材料的导带底和价带顶间的电势差;I 为二 极管的正向电流。 将 (4)式代入 (3)式,由于 e qU / kT 1 ,两边取对数可得
U U0 (
kT c kT ln ) ln T r q I q
( 5)
其中非线性项
kT ln T r 相对甚小,可以忽略。 q
实验 46
PN 结的物理特性及玻尔兹曼常数测定
温度是一个历史很长的物理量,为了测量它,人们发明了许多方法。温度传 感器通过测温元件将温度转化为电学量进行测量,具有反应时间快、可连续测量 等优点。其中热电偶1、热敏电阻和 PN 结是常用的温度传感器,广泛应用于自动 控制、温度测量等现代技术中。 【实验目的】 了解半导体热敏电阻、 PN 结的电输运的微观机制及其与温度的关系; 了解利用半导体热敏电阻的电压 -温度曲线拟合计算热敏电阻的温度系数 (热敏指数)的原理; 了解利用半导体 PN 结的电压 -温度曲线计算 PN 结绝对零度下的禁带宽 度( Eg0)和玻尔兹曼常数 k 的原理; 测量半导体热敏电阻的电压 -温度曲线; 测量半导体 PN 结的电压 -温度曲线; 【实验仪器】 PN 结的物理特性及玻尔兹曼常数测定仪, 热敏电阻和 PN 结温度传感器, 导线,数据线,电源。 【实验原理】 1.半导体热敏电阻物理特性: 半导体材料的热电特性最为显著,因此,也最常用作温度传感器。一般 而言,在较大的温度范围内,半导体都具有负的电阻温度系数。半导体的导 电机制比较复杂,起电输运作用的载流子为电子或空穴。载流子的浓度受温 度的影响很大,因此半导体的电阻率受温度影响也很大。随着温度的升高, 热激发的载流子数量增加,导致电阻率减小,因此半导体呈现负的电阻温度 系数关系。 但在半导体中存在晶格散射、 电离杂质散射等多种散射机制存在, 使得半导体具有非常复杂的电阻温度关系。在实际应用中,半导体的导电性 质往往通过搀杂工艺来调控,掺杂杂质原子的激发对半导体的电输运性能产 生很大的影响。虽然半导体具有非常复杂的电阻温度关系,不能用一些简单 的函数概括,但在特定温度区间,其电阻温度关系可以用经验公式来概括, 如本实验中用的半导体热敏电阻,它的阻值与温度关系近似满足下式:

半导体物理学中的pn结

半导体物理学中的pn结

半导体物理学中的pn结半导体物理学是研究半导体材料和器件的特性及其应用的科学领域。

而其中一个核心概念便是pn结,它是一种半导体器件中常见的结构。

本文将介绍pn结的基本原理、特性和应用。

一、pn结的构成pn结由p型半导体和n型半导体直接接触形成。

p型半导体是掺入了三价杂质的半导体,如掺入硼或铝,带有多余的电子空穴。

n型半导体则是掺入了五价杂质的半导体,如掺入砷或磷,带有过剩的自由电子。

当这两种半导体相结合时,空穴和自由电子会通过碰撞重组,形成一个带电的区域,即结区。

二、pn结的工作原理在pn结中,有两个关键区域:n端和p端。

n端富含自由电子,而p端则富含电子空穴。

由于电荷差异,电子和空穴会相互扩散到对方的区域,形成漂移电流。

同时,当电子和空穴通过重组而消失时,会形成一个正电荷层和一个负电荷层。

这就是常说的耗尽区。

在平衡状态下,耗尽区的正电荷层和负电荷层正好平衡,称为开路状态。

而当外加电压施加在pn结上时,会改变耗尽区的电荷分布。

当施加的电压为正向偏置时,p端连接的电源的正极与n端连接的电源的负极,会加大耗尽区的宽度,减小耗尽区正负电荷层的高度,这就形成了导通状态。

反过来,当施加的电压为反向偏置时,p端连接的电源的负极与n端连接的电源的正极,会增大耗尽区的宽度和正负电荷层的高度,这就形成了截止状态。

三、pn结的特性1. 双向导电性:pn结在正向偏置下会导电,形成导通状态。

而在反向偏置下则会截止,不导电。

这种特性使得pn结成为一种可控制的电子器件。

2. 整流性:由于pn结的双向导电性,它可以用于整流电路。

在正向偏置下,电流可以流过pn结,而在反向偏置下则会被截止。

3. 光电效应:当光照射到pn结上时,通过光电效应,光子能量会被转化为电能。

这使得pn结广泛应用于光电器件,如太阳能电池。

四、pn结的应用1. 整流器件:如二极管和整流电路,用于将交流电转换为直流电。

2. 放大器件:如晶体管,能够放大信号,实现电子设备的放大功能。

PN结的物理特性—实验报告

PN结的物理特性—实验报告

半导体PN 结的物理特性实验报告姓名:陈晨 学号:12307110123 专业:物理学系 日期:2013年12月16日 一、引言半导体PN 结是电子技术中许多元件的物质基础具有广泛应用,因此半导体PN 结的伏安特性是半导体物理学的重要内容。

本实验利用运算放大器组成电流-电压变换器的方法精确测量弱电流,研究PN 结的正向电流I ,正向电压U ,温度T 之间的关系。

本实验桶过处理实验数据得到经验公式,验证了正向电流与正向电压的指数关系,正向电流与温度的指数关系以及正向电压与温度的线性关系,并由此与计算玻尔兹曼常数k 与0K 时材料的禁带宽度E ,加深了对半导体PN 节的理解。

二、实验原理 1、 PN 结的物理特性(1)PN 结的定义:若将一块半导体晶体一侧掺杂成P 型半导体,即有多余电子的半导体,另一侧掺杂成N 型半导体,即有多余空穴的半导体,则中间二者相连的接触面就称为PN 结。

(2)PN 结的正向伏安特性:根据半导体物理学的理论,一个理想PN 结的正向电流I 与正向电压U 之间存在关系 ①,其中I S 为反向饱和电流,k 为玻尔兹曼常数,T 为热力学温度,e 为电子电量。

在常温(T=300K )下和实验所取电压U的范围内, 故①可化为 ②,两边取对数可得 。

(3)当温度T 不变时作lnI-U 图像并对其进行线性拟合,得到线性拟合方程的斜率为e/kT ,带入已知常数e 和T ,便得玻尔兹曼常数k 。

2、反向饱和电流I s(1)禁带宽度E :在固体物理学中泛指半导体或是绝缘体的价带顶端至传导带底端的能量差距。

对一个本征半导体而言,其导电性与禁带宽度的大小有关,只有获得足够能量的电子才能从价带被激发,跨过禁带宽度跃迁至导带。

(2)根据半导体物理学的理论,理想PN 结的反向饱和电流Is 可以表示为③,代入②得 ,其中I 0为与结面积和掺杂浓度等有关的常数,γ取决于少数载流子迁移率对温度的关系,通常取γ=3.4,k 为玻尔兹曼常数,T 为热力学温度.E 为0K时材料的禁带宽度。

半导体PN结的物理特性测量 终定稿

半导体PN结的物理特性测量 终定稿

半导体PN 结的物理特性测量实验目的(1) 了解用运算放大器测量弱电流的原理和方法。

(2) 测量PN 结结电压与电流关系,证明此关系符合指数分布规律,用作图法求玻尔兹曼常数。

实验仪器PN 结物理特性实验仪实验原理1.PN 结介于导体与绝缘体之间的物质叫半导体,在半导体中只有一种载流子导电,只有电子(负电荷)导电的半导体叫N 型半导体,只有空穴(正电荷)导电的半导体叫P 型半导体。

以一定的工艺制成的P 型半导体和N 型半导体相邻的交接处,由于自由扩散形成的结叫PN 结。

三极管制造工艺的特点:发射极高掺杂浓度;基极很薄几微米到十几微米,减小复合电流;集电极低掺杂浓度,面积较大,有利于接收电子。

发射结正向偏置,集电结反向偏置。

2.PN 结伏安特性及玻尔兹曼常数的测量半导体在常温下PN 结电压与电流有如下指数关系:0qUkTS I I e= (1)公式(1)中0I 为反向饱和电流,k 为玻尔兹曼常数,T 为热力学温度,q 为电子电量,U 为电压。

本实验用常规方法测量时,当PN 结电压较小时,PN 结没导通,通过的电流很弱,普通电流表很难准确测量,无法验证真实的电压电流关系和测量玻尔兹曼常数,而采用集成运放对弱电流放大可解决这些问题。

3. 弱电流测量实验装置如图1所示,所用PN 结由三极管提供,加在三极管B 、E 间的电压1U 则通过的电流为e I ,三极管电流分布满足eb c I I I =+,又因为b I 很小,所以e c I I ≈;LF356是一个高输入阻抗集成运算放大器,用它组成电流-电压变换器,把c I 放大成2U ,且它们之间满足线性关系,因此可以说1U 与2U 之间满足指数函数关系,那么1U 与流过PN 结的电流e I 也满足指数关系。

其工作原理如图2所示,S I 为被测弱电流,r Z 为电路的等效输入阻抗,f R 为负反馈电阻,运放的开环放大倍数为0K ,运算放大器的输出电压为:00i U K U =- (2) 由于运放输入阻抗i r 为无限大,反馈电阻f R 流过的电流近似为S I ,00001()(1)i S f ffU U U I U R R R K -==-+≈-(3)只要测得输出电压0U 和已知f R 值,即可求得S I ,将上式代入0qU kTS I I e=可得:102qU kTU U Ae== (4)图2 电流-电压变换器实验内容(1)按图联接线路,调节电压1U ,取值在0.3V -0.5V 范围内,依次记下电压1U 和2U 的数值。

半导体pn结的物理特性及弱电流测量

半导体pn结的物理特性及弱电流测量

半导体pn结的物理特性及弱电流测量半导体 PN 结的物理特性:1. 堆积区与耗尽区:在 PN 结中,PN 结两侧有一个堆积区和一个耗尽区。

堆积区是在 PN 接触处的一侧,其中 N 区的自由电子会向 P 区扩散,而 P 区的空穴会向 N 区扩散。

耗尽区是在堆积区的另一侧,其中电子和空穴被扩散后形成的正负离子互相吸引,形成一个没有可自由移动电荷的区域。

2. 正向偏置:当在 PN 结上施加正向电压时,电子从 N 区向 P 区移动,空穴从 P 区向 N 区移动,导致堆积区的宽度变窄。

此时电流从 P 区流向 N 区,称为正向电流。

3. 反向偏置:当在 PN 结上施加反向电压时,电子被吸引进 N 区,空穴被吸引进 P 区,导致堆积区的宽度增加。

这时几乎没有电流通过 PN 结,称为反向电流。

当反向电压过大时,会发生击穿现象,此时电流急剧增加。

4. PN 结的导电特性:在正向偏置下,PN 结导电特性近似于理想二极管,正向电流随着正向电压的增加呈指数型增长。

在反向偏置下,PN 结导电特性近似于理想断路器,基本没有电流通过。

弱电流测量:弱电流测量是指对非常小的电流进行测量。

由于电流非常微弱,存在一些测量上的困难和限制。

常见的弱电流测量方法有以下几种:1. 电流放大:由于弱电流不能直接测量,通常需要将其放大到可以测量的范围。

放大器可以选择放大电流,提高信号的幅度。

2. 高阻抗电路:在测量弱电流时,需要使用高阻抗电路,以最大程度地减小电流的流失。

高阻抗电路可以降低电流流过测量电路时的电压降,从而减小电流的误差。

3. 屏蔽环境干扰:由于弱电流非常微弱,容易受到环境中的电磁干扰影响。

屏蔽环境干扰可以采取一些措施,例如使用屏蔽罩、信号隔离等,减小干扰对弱电流测量结果的影响。

4. 温度控制:温度的变化也会对弱电流测量产生影响。

通常需要对测量环境进行温度控制,确保测量的稳定性和准确性。

需要注意的是,弱电流测量需要仪器设备的高灵敏度和高精度,同时也需要严密的实验条件和精确的操作技巧。

半导体PN结的物理特性及弱电流测量实验报告

半导体PN结的物理特性及弱电流测量实验报告
半导体 PN 结的物理特性及弱电流测量实验报告
引言: 导电性介于绝缘体和导体之间的物质称为半导体,半导体分为 P 型半导体和 N 型半导
体。当 P 型半导体和 N 型半导体相互接触时,形成 PN 结。半导体 PN 结电流—电压关系特 性是半导体器件的基础。
本实验通过一个简单电路测量通过 PN 结的扩散电流与 PN 结电压之间的关系,并证实 PN 结的电流与电压遵循指数关系。同时通过实验数据求得波尔兹曼常数。 实验原理 1、 弱电流的测量。
������0
������������
与1的拟合曲线:
������

5
������0������������~
1图
������
拟合公式:y = A������−������������ + ������0
式中:A = (1.5 ± 0.6) × 1014,t = (7.0 ± 0.1) × 10−5 ,������0 = ( − 5.2 ± 0.4) × 10−7 R-Square=0.99931 , R-Square 接近于 1, 数据点线性关系很好。
拟合结果:������0������������ = 1.5 × 1014 × ������−7.0×110−5������ − 5.2 × 10−7
拟合结果和(6)对比可得−
������������ ������������
=

1 t������
,
所以
0k
时的禁带宽度
E0
=
������ ������
实验结果 1、 PN 结正向电流与电压的关系。
表 1 PN 结正向电压 U1 与正向电流对应电压 U2 的关系
实验序号

半导体PN结的物理特性测量

半导体PN结的物理特性测量

半导体PN结的物理特性及弱电流的测量[摘要]本文利用PN 结正向压降温度特性测试仪,测量了PN 结电压电流特性。

验证了PN 结电压与电流的指数关系,并利用Excel 进行曲线拟合,再计算出玻尔兹曼常数,用运算放大器组成电流-电压变换器测量弱电流[关键词]PN结玻尔兹曼常数指数拟合弱电流测量1.引言基本物理常数如电子电量e、电子荷质比e/m、普朗克常数物理h、光速c 等的测量,在实验物理发展过程中具有重要地位。

利用PN 结正向压降温度特性测试仪测试出PN 结正向压降与电流,再进行数据拟合并计算出玻尔兹曼常数K,用运算放大器组成电流-电压变换器测量弱电流2.实验仪器FD-PN-4型PN结物理特性测定仪3.实验原理1. 在一块单晶半导体中,一部分掺有受主杂质是P型半导体,另一部分掺有施主杂质是N型半导体时,P型半导体和N型半导体的交界面附近的过渡区称为PN结。

PN结有同质结和异质结两种。

用同一种半导体材料制成的PN结叫同质结,由禁带宽度不同的两种半导体材料制成的PN结叫异质结制造PN结的方法有合金法、扩散法、离子注入法和外延生长法等。

制造异质结通常采用外延生长法。

基本特性在P型半导体中有许多带正电荷的空穴和带负电荷的电离杂质。

在电场的作用下,空穴是可以移动的,而电离杂质(离子)是固定不动的。

N型半导体中有许多可动的负电子和固定的正离子。

当P型和N型半导体接触时,在界面附近空穴从P 型半导体向N型半导体扩散,电子从N型半导体向P型半导体扩散。

空穴和电子相遇而复合,载流子消失。

因此在界面附近的结区中有一段距离缺少载流子,却有分布在空间的带电的固定离子,称为空间电荷区(图1)。

P型半导体一边的空间电荷是负离子,N 型半导体一边的空间电荷是正离子。

正负离子在界面附近产生电场,这电场阻止载流子进一步扩散,达到平衡。

PN结在PN结上外加一电压,如果P型一边接正极,N型一边接负极,电流便从P型一边流向N型一边,空穴和电子都向界面运动,使空间电荷区变窄,甚至消失,电流可以顺利通过。

复旦大学 物理实验(上) 半导体PN结的物理特性实验报告

复旦大学 物理实验(上)    半导体PN结的物理特性实验报告

半导体PN结的物理特性实验目的与要求1、学会用运算放大器组成电流-电压变换器的方法测量弱电流。

2、研究PN结的正向电流与电压之间的关系。

3、学习通过实验数据处理求得经验公式的方法。

实验原理PN 结的物理特性测量由半导体物理学中有关PN 结的研究,可以得出PN 结的正向电流一电压关系满足(1)式中I是通过PN 结的正向电流,I0是不随电压变化的常数,T 是热力学温度,e 是电子的电荷量,U 为PN 结正向压降. 由于在常温(300 K)下,KT/e =0,026 V,而PN 结正向压降约为十分之几伏,则e eU/kT>>l,(1)式括号内-1 项完全可以忽略,于是有(2)即PN 结正向电流随正向电压按指数规律变化. 若测得PN 结I-U关系值,则利用(2)式可以求出e/kT. 在测得温度T 后,就可以得到e/k 常数,然后将电子电量作为已知值代入,即可求得玻尔兹曼常数k。

在实际测量中,为了提高测量玻尔兹曼常数的正确性,利用集成运算放大器组成的电流-电压变换器输人阻抗极小的特点,常用半导体三极管的集电极c与基极b短接(共基极)来代替PN结进行测量. 具体线路如图下实验仪器PN结实验仪、TIP31型三极管、恒温装置1 、直流电源和数字电压表,包括—15 V——0——+ 15V直流电源、1.5 V直流电源、0——2 V三位半数字电压表、四位半数字电压表.2、LF356 集成运算放大器,它的各引线脚如2脚、3 脚、4 脚、6 脚、7 脚由学生用棒针引线连接;待测样品TIP31型三极管的e、b、c 三电极可以从机壳右面接线柱接入3、不诱钢保温杯組合,它包括保温杯、内盛少量油的玻璃试管、搅拌器水银温度计等. (实验时,开始保温杯内为适量室温水,然后根据实验需要加一些热水,以改变槽内水的温度; 测量时应搅拌水,待槽内水温恒定时,进行测量)实验内容一、必做部分:1、在室温(保温杯加入适量的自来水,为什么?)下,测量PN结正向电流与电压的关系。

半导体物理中的PN结和二极管的特性

半导体物理中的PN结和二极管的特性

半导体物理中的PN结和二极管的特性半导体器件是现代电子技术中不可或缺的基础组成部分。

其中,PN 结和二极管是最为基础和重要的两个概念,对于理解半导体的物理特性和应用具有重要意义。

本文旨在深入探讨PN结和二极管的特性,并分析其在电子器件中的应用。

一、PN结的形成PN结是由P型半导体和N型半导体通过扩散形成的结构。

P型半导体的主要成分是掺杂了三价元素(如硼)的硅(Si)材料,而N型半导体则是掺杂了五价元素(如磷)的硅材料。

当这两种半导体材料接触在一起时,两侧材料发生扩散作用,其中P型半导体的空穴扩散到N型半导体中,而N型半导体的电子扩散到P型半导体中,形成了PN结。

二、PN结的特性1. 能带结构PN结的形成导致了能带结构的改变。

在PN结的形成过程中,P型材料中的导带与N型材料中的导带发生连接,形成了一个共用的导带。

在PN结的结区(即P型和N型材料接触处),形成了势垒,阻止电子和空穴自由通过。

2. 势垒PN结中的势垒是由于P型材料与N型材料之间的电荷分布不平衡引起的。

在PN结形成后,P型材料中的电子向N型材料中的空穴扩散,形成了势垒。

势垒的存在导致了PN结两侧的电荷分布差异,形成了电场。

3. 正向偏置和反向偏置当外加电压(正向偏置)施加在PN结上时,势垒会减小,电子可以克服势垒而通过PN结,形成导电通路。

这时,PN结呈现出低电阻状态,使电流通过。

当外加电压的方向相反(反向偏置)时,势垒会增大,阻碍电流通过。

这时,PN结呈现出高电阻状态,几乎没有电流通过。

三、二极管的特性和应用二极管是由PN结构成的半导体器件,具有正向导通和反向截止的特性。

1. 正向特性当二极管处于正向偏置时,电流可以从P端注入到N端,形成导电通路。

此时,二极管呈现出低电阻状态,称为正向导通。

正向导通时的电压和电流关系遵循二极管正向特性方程。

2. 反向特性当二极管处于反向偏置时,电流几乎无法通过PN结。

由于势垒的存在,只有当外加电压超过正向导通时的阈值电压,才会发生击穿现象,电流急剧增大。

【精品】半导体PN结的物理特性及弱电流测量实验报告

【精品】半导体PN结的物理特性及弱电流测量实验报告

【精品】半导体PN结的物理特性及弱电流测量实验报告
一、实验目的
本实验的目的是要了解半导体PN结的物理特征,并通过相关实验来考察和测量PN结
的特性。

二、实验原理
PN结是半导体电子器件的最基本结构,由掺杂的德勒普及层组成,它们具有非常重要的物理和化学特性,被广泛用在微电子器件中。

它由半导体表面凹凸不平、绝缘体或金属
覆盖层、P型和N型掺杂层组成,当它处于正向偏置时,在P掺杂表面之间就会形成可以
用于传输电子的“及P全”,可以传输能量的“及N层”,成功实现一定电压后形成电流
流动,因而功能实现。

因此,熟悉和理解N插头所具有的物理特性,对于设计和制作微电
子器件有着重要的意义。

三、实验结果与分析
实验表明,本次实验通过测量PN结的电压-电流特性和功耗特性,获得了精确的数据。

发现当电压由零改变时,当电压较低时,流过PN结的电流较小,对结的功耗也较低,但
随着电压的增加,电流和功耗也随之增大,这说明具有较强的正序特性,而电压超过一定
限值后,电流和功耗就不再增加,这说明其具有稳定的拐点,可以有效的控制PN结的特性。

四、结论
本次实验通过测量PN结的电压-电流特性和功耗特性,获得了精确的数据,得出了相
应的结论:PN结具有较强的正序特性,具有稳定的拐点,可以有效控制其特性。

通过本次实验,我们不仅能够深入理解半导体PN结的物理特性,还可以更好地应用于微电子器件中。

简要推导pn结理想二极管方程式

简要推导pn结理想二极管方程式

一、概述PN结二极管是一种常见的半导体器件,其理想特性在电子学中有着重要的应用。

在实际工程应用中,我们经常需要根据PN结的物理特性来推导出其理想二极管方程式,以便更好地理解其工作原理和性能。

二、PN结的物理特性1. PN结的结构PN结二极管由P型半导体和N型半导体通过扩散、扩散后隧穿等形成的结构而成。

P型半导体富含正电荷载流子,N型半导体富含负电荷载流子。

2. PN结的正向偏置当PN结二极管处于正向偏置状态时,P型半导体端的正电荷将被推向N型半导体端,而N型半导体端的负电荷将被推向P型半导体端。

在这种情况下,电子和空穴会向PN结的交界处移动,并在该区域发生复合,导致PN结二极管处于导通状态。

3. PN结的反向偏置当PN结二极管处于反向偏置状态时,P型半导体端的正电荷将被推向N型半导体端,而N型半导体端的负电荷将被推向P型半导体端。

在这种情况下,电子和空穴会被PN结的内建电场阻碍,导致PN 结二极管处于截止状态。

三、理想二极管方程式的推导1. PN结的电流方程根据PN结的电流方程,可以得到以下公式:$$I=I_{s}\left ( e^{\frac{V}{nV_{T}}} -1 \right )$$其中,$I$为二极管的正向电流,$I_{s}$为饱和电流,$V$为二极管的正向电压,$n$为取决于材料和温度的常数,$V_{T}$为热电压。

2. PN结的导通电流当PN结处于正向偏置状态时,利用以上公式可以推导出PN结的导通电流。

根据公式,当$V$较小时,$e^{\frac{V}{nV_{T}}}$可以近似为$1$。

导通电流可以近似表示为:$$I=I_{s}\left ( e^{\frac{V}{nV_{T}}} -1 \right )\approxI_{s}e^{\frac{V}{nV_{T}}}$$3. PN结的截止电流当PN结处于反向偏置状态时,利用以上公式可以推导出PN结的截止电流。

根据公式,当$V$较小时,$e^{\frac{V}{nV_{T}}}$可以近似为$0$。

半导体物理与PN结的特性

半导体物理与PN结的特性

半导体物理与PN结的特性半导体物理是关于半导体材料的电子结构、电输运特性以及与宏观器件性能之间关系的研究领域。

在半导体器件中,PN结是一种最为基础和常见的结构,具有重要的特性和应用。

本文将从基本概念、物理原理以及特性表达几个方面阐述半导体物理与PN结的特性。

1. 基本概念和原理半导体物理是研究半导体材料中的电子和空穴行为的学科。

半导体是具有介于导体和绝缘体之间导电特性的材料。

半导体材料中,电子和空穴是主要的载流子,其运动和组合形成了半导体器件的特性。

PN结是由P型(正电荷载流子为空穴)和N型(负电荷载流子为电子)两种半导体材料的结合而成,形成了一种特殊的电子结构。

2. PN结特性PN结具有以下几个重要特性:2.1. 半导体材料的特性PN结中的半导体材料需要具备良好的电子迁移率和载流子浓度,以保证有效的电子传导和空穴传输。

不同的半导体材料会影响PN结的电子特性和性能,常见的半导体材料包括硅(Si)和锗(Ge)等。

2.2. 势垒形成与耗尽区当P型半导体与N型半导体结合时,P区和N区之间形成一个势垒。

势垒形成需要考虑材料的能带结构以及载流子浓度差异等因素。

在PN结的势垒区域,电子和空穴重新组合,形成了一个耗尽区,无载流子传导。

2.3. 正向偏置和反向偏置在PN结中,当正向电压施加在P区(阳极)上,而负向电压施加在N区(阴极)上时,称为正向偏置。

正向偏置会减小势垒高度,增加电子和空穴的扩散,使得载流子能够通过PN结。

而反向偏置则会增加势垒高度,阻止载流子的传播。

3. PN结的应用PN结作为半导体物理中最基础的结构之一,具有广泛的应用。

3.1. 二极管PN结可以用于制造二极管,二极管是一种最简单的半导体器件,具有只允许单向电流传导的特性。

正向偏置时,二极管导通;反向偏置时,二极管截止。

3.2. 光伏效应当光照射到PN结上时,能量被半导体吸收,导致电子和空穴的产生和分离。

这种光电能量转化的现象被称为光伏效应,是太阳能电池的基础原理之一。

PN结物理特性

PN结物理特性

电压U1和相应电压U2。在常温下U1的值约从0.3V至 0.42V范围每隔0.01V测一点数据,约测10多数据点, 至U2值达到饱和时(U2值变化较小或基本不变),
结束测量。在记数据开始和记数据结束都要同时记 录变压器油的温度,取温度平均值。
(3).改变干井恒温器温度,待PN结与油温湿度
一致时,重复测量U1和U2的关系数据,并与室温
Rf
-
Is
Ko
+
Is
Zr
Ui
U0
(3).PN结的结电压U与热力R2
RT R4
V2
3V
3.实验步骤
(1)U1为三位半数字电压表,U2为四位半数字电压
表,TIP31型为带散热板的功率三极管,调节电压的 分压器为多圈电位器,为保持PN结与周围环境一致, 把TIP31型三极管浸没在盛有变压器油干井槽中。变 压器油温度用铂电阻进行测量。 (2)在室温情况下,测量三极管发射极与基极之间
在分析数据的时候,起初我没有把对扩散电流太小 (起始状态)及扩散电流接近或达到饱和时的数据 删去,所以总是得不出较好的结果。后来才发现, 之后删除那些数据拟合出来的图线较为完美了,得 到这些图像后我才真正了解了半导体的物理特性, 真正动手做一个实验和理论上研究实验原理是由本 质区别的。
谢谢观看!
二、关系测定,求PN结温度传感器灵敏度S,计算
硅材料0K时近似禁带宽度值。
1.通过调节电路中电源电压,使上电阻两端电压
保持不变,即电流I=100μA。同时用电桥测量铂
电阻的电阻值,通过查铂电阻值与温度关系表, 可得恒温器的实际湿度。从室温开始每隔5℃-
10℃测一定值(即V1)与温度(℃)关系,求得
关系。(至少测6点以上数据)

pn结物理特性实验报告

pn结物理特性实验报告

pn结物理特性实验报告PN结物理特性实验报告引言:PN结是半导体器件中最基本的结构之一,它由P型和N型半导体材料的结合而成。

PN结具有许多重要的物理特性,如整流、放大、开关等,对于电子学领域的发展具有重要意义。

本实验旨在通过实际操作和数据测量,深入了解PN 结的物理特性。

实验目的:1. 理解PN结的基本原理和结构特点;2. 掌握PN结的正向和反向特性;3. 通过实验测量,探究PN结的电压-电流关系;4. 分析PN结的整流特性以及其在电路中的应用。

实验仪器和材料:1. PN结二极管2. 直流电源3. 电压表4. 电流表5. 电阻箱6. 连接线实验步骤:1. 将PN结二极管连接到直流电源的正负极,并将电压表和电流表连接到二极管的正向和反向端口;2. 通过调节电源的电压,测量PN结在不同电压下的正向电流和反向电流;3. 记录实验数据,并绘制出PN结的电压-电流特性曲线;4. 利用电阻箱连接到PN结电路中,观察PN结的整流特性,并记录实验现象。

实验结果与分析:在实验过程中,我们测量了PN结在不同电压下的正向电流和反向电流,并绘制了电压-电流特性曲线。

实验结果显示,当电压为正向时,PN结的电流呈指数增长的趋势,而当电压为反向时,PN结的电流几乎为零。

通过分析实验数据,我们可以得出以下结论:1. PN结的正向电流与电压成指数关系,符合热激发理论;2. PN结的反向电流非常小,可以近似看作是零;3. PN结具有较高的整流特性,可以用作电路中的整流器件。

结论:通过本次实验,我们深入了解了PN结的物理特性。

PN结作为半导体器件中最基本的结构之一,具有重要的应用价值。

通过测量和分析,我们发现PN结的正向电流与电压呈指数关系,反向电流非常小。

此外,PN结还具有较高的整流特性,可以在电路中充当整流器件。

通过实验,我们不仅加深了对PN结物理特性的理解,还掌握了实验测量的方法和技巧。

这对于今后深入研究半导体器件和电子学领域具有重要意义。

半导体PN结的物理特性

半导体PN结的物理特性
由此说明,用集成运算放大器组成电流-电压变换器测量弱电流,具有输入阻抗小、灵敏度高的优点。 2. PN 结伏安特性及玻尔兹曼常数测量由半导体物理学可知,PN 结的正向电流-电压关系满足:
= I I 0 [exp (eU / kT ) − 1]
(1)
式(1)中 I 是通过 PN 结的正向电流, I 0 是反向饱和电流,在温度恒定时为常数,T 是热力学温度, e 是 电子的电荷量,U 为 PN 结正向压降。由于在常温(300K)时, kT / e ≈ 0.026V ,而 PN 结正向压降约为十分 (1)式括号内 -1 项完全可以忽略,于是有: 之几伏,则 exp (eU / kT )
(4)
已有实验证明,大多数半导体的禁带宽度与温度近似有线性关系 dEg / dT = −α ,即:
0 Eg (T = ) Eg − αT
( 5) (6)
将(5)式代入(4)式,并且两边取自然对数,可得:
ln = I0
0 g
[ln( BC ) + α / k ] − Eg0 / kT + (3 + r / 2) ln T
I = I 0 exp (eU / kT )
(2)
也即 PN 结正向电流随正向电压按指数规律变化。 若测得 PN 结 I-U 关系值, 则利用 (1) 式, 代入各个已知值, 即可求得玻尔兹曼常数 。 在实际测量中,二极管的正向 I-U 关系虽然能较好满足指数关系,但求得的常数 k 往往偏小。这是因为通 过二极管电流不只是扩散电流,还有其它电流。一般它包括三个部分:[1]扩散电流,它严格遵循(2)式;[2] 耗尽层复合电流,它正比于 exp (eU / 2kT ) ;[3]表面电流,它是由 Si 和 SiO2 界面中杂质引起的,其值正比于

半导体物理pn结

半导体物理pn结

半导体物理pn结半导体物理PN结是半导体电子学中的重要概念,它由P型半导体和N型半导体组成。

PN结的研究对于理解半导体材料的特性和开发电子器件具有重要意义。

本文将介绍PN结的形成、特性以及应用。

一、PN结的形成PN结是由P型半导体和N型半导体相接形成的结构。

在P型半导体中,电子浓度较低,空穴浓度较高。

而在N型半导体中,电子浓度较高,空穴浓度较低。

当将这两种半导体材料相接时,由于电子和空穴之间的扩散运动,形成了一个空乏区域,称为耗尽层。

二、PN结的特性1. 效应PN结具有整流效应,即在正向偏置的情况下,电流可以通过PN结;而在反向偏置时,电流非常小,几乎可以忽略不计。

这种整流效应使得PN结广泛应用于电子器件中,例如二极管。

2. 正向偏置当PN结的P区施加正电压,N区施加负电压时,电子从N区向P区扩散,空穴从P区向N区扩散。

此时,PN结的空乏层变窄,载流子扩散通过结,形成正向电流。

3. 反向偏置当PN结的P区施加负电压,N区施加正电压时,电子从P区向N区扩散,空穴从N区向P区扩散。

此时,PN结的空乏层变宽,载流子难以通过结,形成反向电流。

三、PN结的应用1. 二极管PN结作为二极管的基本元件,广泛应用于电子器件中。

在正向偏置时,二极管具有低电阻态;在反向偏置时,二极管具有高电阻态。

基于这种特性,二极管用于整流电路、调制电路和开关电路等方面。

2. 光电二极管光电二极管是一种特殊的二极管,它能够将光能转化为电能。

当光照射在光电二极管上时,光子激发了PN结中的载流子,从而产生电流。

光电二极管广泛应用于光通信、太阳能电池等领域。

3. 功能改变PN结通过控制正向偏置和反向偏置的电压,可以改变PN结的导电特性。

例如,在特定电压下,PN结可以实现放大、开关、振荡等功能。

这种特性被广泛应用于放大器、开关电路和振荡电路等器件中。

结论PN结作为半导体物理中的重要概念,具有整流效应和调控电流的特性。

通过控制正向偏置和反向偏置的电压,PN结能够实现不同的功能。

平衡 PN 结 结构和物理特性

平衡 PN 结 结构和物理特性

平衡 PN 结结构和物理特性在P型半导体与N型半导体的紧密接触交界处,会形成一个具有特殊电学性能过渡区域;平衡PN结——就是指没有外加电压、光照和辐射等的PN结。

1、 PN结的杂质分布状态○均匀分布:p型和n型区杂质浓度分布均匀—突变结○缓变分布:杂质浓度从界面向二侧逐渐提高—缓变结常用概念○ pn结结深-- pn结材料表面到pn结界面的距离,用x j表示。

○线性缓变结--结深附近杂质浓度分布梯度可用线性近似-线性缓变结,即dN(x)/dx|x=xj = C突变结近似--dN(x)/dx|x=xj =|C|○单边突变结—对于突变结,若p区掺杂浓度远高于n区掺杂浓度,或反之。

即:NA>>ND,用p+n表示;ND>>NA,用pn+表示。

★理论上通常将pn结按突变结或线性缓变结近似处理。

2、pn结基本物理特性基本特征及要点:空间电荷区(耗尽层),自建电场,接触电势差,能带结构,载流子分布。

当半导体形成P-N结时,由于结两边存在着载流子浓度梯度,导致了空穴从P区到N区,电子从N区到P区的扩散运动。

对于P区空穴离开后,留下了不可移动的带负电荷的电离受主,这些电离受主没有正电荷与之保持电中性,因此,在P-N结附近P区一侧出现了一个负电荷区;同理,在P-N结附近N区一侧出现了由电离施主构成的一个正电荷区,通常把在P-N结附近的这些电离施主和电离受主所带电荷称为空间电荷,它们所存在的区域称为空间电荷区(也称之为势垒区)空间电荷区中的这些电荷产生了从N区指向P区,即从正电荷指向负电荷的电场,称之为内建电场(自建电场)。

在内建电场作用下,载流子作漂移运动。

电子和空穴的漂移运动方向与它们各自扩散运动的方向相反。

因此,内建电场起到阻碍电子和空穴继续扩散的作用。

室温附近,对于绝大部分空间电荷区,其中杂质虽然都已电离,但载流子浓度比起N区和P区的多数载流子浓度小得多,好像已经耗尽了,所以通常也称势垒区为耗尽层,即认为其中载流子浓度很小,可以忽略,空间电荷密度就等于电离杂质浓度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

半导体PN结的物理特性
简介:半导体PN结的物理特性是物理学和电子学的重要基础内容之一,它在实践中有着广泛的应用,如各种晶体管、太阳能电池、半导体制冷、半导体激光器、发光二极管都是由半导体PN结组成。

本实验主要研究的两个问题是:
(1)测量PN结扩散电流与电压的关系;
(2)研究PN结电压与热力学温度的关系。

一、实验目的
(1)了解用运算放大器测量弱电流的原理和方法;
(2)测量PN结结电压与电流关系,证明此关系符合指数分布规律,用作图法求玻尔兹曼常数;
(3)测量PN结结电压与温度的关系,求出PN结温度传感器的灵敏度;
(4)计算在绝对零度时,半导体材料的禁带宽度。

二、实验仪器:FD-PN-4 PN结物理特性实验仪
三、 实验原理
1.PN 结伏安特性及玻尔兹曼常数的测量
半导体在常温下PN 结电压与电流有如下指数关系:
0qU kT
S I I e
= (1)
公式(1)中0I 为反向饱和电流,k 为玻尔兹曼常数,T 为热力学温度,q 为电子电量,U 为电压。

本实验用常规方法测量时,当PN 结电压较小时,PN 结没导通,通过的电流很弱,普通电流表很难准确测量,无法验证真实的电压电流关系和测量玻尔兹曼常数,而采用集成运放对弱电流放大可解决这些问题。

2.弱电流测量
实验装置如图1所示,所用PN 结由三极管提供,LF356是一个高输入阻抗集成运算放大器,用它组成电流-电压变换器,它可对弱电流放大并转换成电压形式。

其工作原理如图2所示,S I 为被测弱电流,r Z 为电路的等效输入阻抗,
f R 为负反馈电阻,运放的开环放大倍数为0K ,运算放大器的输出电压为:
00i U K U =- (2)
由于运放输入阻抗i r 为无限大,反馈电阻f R 流过的电流近似为S I ,
00
00
1
()
(1)i S f f
f
U U U I U R R R K -=
=-+
≈-
(3)
只要测得输出电压0U 和已知f R 值,即可求得S I ,将上式代入0qU kT
S I I e =可
得: 102qU kT
U U Ae
== (4)
图1 PN 结扩散电源与结电压关系测量线路图
图2 电流-电压变换器
3.PN 结结电压be U 与热力学温度T 的关系
图3
当通过PN 结电流为恒定的100u A 时,be U 与T 有如下线性关系:
be go U ST U =+,S 为PN 结温度传感器的灵敏度,go go E qU =为半导体在绝对零
度时的禁带宽度。

四、 实验内容与要求
1.PN 结伏安特性与玻尔兹曼常数
(1)按图联接线路,调节电压1U ,取值在0.3V -0.5V 范围内,依次记下电压1U 和2U 的数值。

(2)对12qU kT
U Ae =两边同取对数变换成线性关系:1
2ln ln qU U A kT
=+
, 令
1q
k kT
=,则211ln ln U k U A =+,根据2ln U 与1U 关系绘出曲线,由曲线求出斜
率1k ,算出1
q k Tk =。

2.PN 结结电压be U 与热力学温度T 的关系
(1) 按图联接好线路,将被测二极管放入加热孔内,设置好加热的最终温度,
按确定后开始加热。

(2) 加热过程中,分别记录1U 与温度t 的数值,为保持通过二极管的电流为恒
定的100uA 。

实验中不断地调节电压输出使2U 的指示始终为1V 。

(3) 由表中数据作be U T -曲线,通过曲线确定S 和go U ,再根据公式go go
E qU =算出半导体的近似禁带宽度。

五、 注意事项
1. 数据处理时,对于扩散电流太小(起始状态)及扩散电流接近或达到饱和时的数据,在处理数据时应删去,因为这些数据可能偏离公式(1)。

2. 必须观测恒温装置上温度计读数,待TIP31C 三极管温度处于恒定时(即处于热平衡时),才能记录1U 和2U 数据。

3. 用本实验仪器完成实验,TIP31C 型三极管温度可采用的范围为室温-50℃。

若要在-120℃-0℃温度范围内做实验,必须有低温恒温装置。

4. 由于各公司的运算放大器(LF356)性能有些差异,在换用LF356时,有可能同一台仪器达到饱和电压2U 值不相同,但不影响实验结果。

5. 本一起电源具有短路自动保护,运算放大器若15V 接反或地线漏接,本实验也有保护装置,一般情况集成电路不易损坏。

请勿将二极管保护装置拆除。

6.。

相关文档
最新文档