算术平均数与几何平均数
算术平均数与几何平均数
6.2.3 算术平均数与几何平均数●教学目标(一)教学知识点1.两个正数的和为定值时,它们的积有最大值,即若a ,b ∈R +,且a +b =M ,M 为定值,则ab ≤42M ,等号当且仅当a =b 时成立. 2.两个正数的积为定值时,它们的和有最小值,即若a ,b ∈R +,且ab =P ,P 为定值,则a +b ≥2P ,等号当且仅当a =b 时成立.(二)能力训练要求通过两个例题的研究,进一步掌握均值不等式定理,并会用此定理求某些函数的最大、最小值.(三)德育渗透目标掌握两个正数的算术平均数和几何平均数顺序定理及相应的一组不等式,使学生认清定理的结构特点和取“=”条件.要在分析具体问题的特点的过程中寻求运用公式的适当形式和具体方式,自觉提高学生分析问题和解决问题的能力.●教学重点基本不等式a 2+b 2≥2ab 和2b a +≥ab (a >0,b >0)的应用,应注意: (1)这两个数(或三个数)都必须是正数,例如:当xy =4时,如果没有x 、y 都为正数的条件,就不能说x +y 有最小值4,因为若都是负数且满足xy =4,x +y 也是负数,此时x +y 可以取比4小的值.(2)这两个(或三个)数必须满足“和为定值”或“积为定值”,如果找不出“定值”的条件,就不能用这个定理.例如,求当x >0时,y =x 2+x 1的最小值,若写成y =x 2+x 1≥2x xx 212=⋅,就说“最小值为2x ”是错误的,因为x 2·x 1不是定值,而2x 仍为随x 变化而变化的值.正确的解法是:由于x 2·x 21·x 21=41为定值,故x 2+x 1=x 2+x21+x 21≥3·3322232121=⋅⋅x x x ,即y 的最小值为2233. (3)要保证等号确定能成立,如果等号不能成立,那么求出的值仍不是最值. ●教学难点如何凑成两个(或三个)数的和或积是定值.例如“教学重点”(2)中y =x 2+x 1凑成y =x 2+x 21+x21. ●教学方法启发式教学法●教具准备投影片一张●教学过程Ⅰ.课题导入上一节课,我们学习了一个重要定理:两个正数的算术平均数不小于它们的几何平均数(以下简称均值不等式).这个定理有时可以直接运用,有时用它的变形或推广形式,(打出投影片§6.2.2 A ,教师引导学生略作分析),使同学们掌握下面几个重要的不等式:(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取“=”号; (2)ab b a ≥+2(a >0,b >0),当且仅当a =b 时取“=”号; (3) ba ab +≥2(ab >0),当且仅当a =b 时取“=”号; (4) 33abc c b a ≥++(a >0,b >0,c >0),当且仅当a =b =c 时取“=”号; (5)a 3+b 3+c 3≥3abc (a >0,b >0,c >0),当且仅当a =b =c 时取“=”号.在此基础上,上述重要不等式有着广泛的应用,例如:证明不等式,求函数最值,判断变量或数学式子的取值范围等等.它们涉及到的题目活,变形多,必须把握好凑形技巧.今天,我们就来进一步学习均值不等式的应用.Ⅱ.讲授新课[例1]已知x 、y 都是正数,求证:(1)如果积xy 是定值P ,那么当x =y 时,和x +y 有最小值2P ;(2)如果和x +y 是定值S ,那么当x =y 时,积xy 有最大值41S 2. [师]本题显然是均值不等式的应用,在运用均值不等式时应注意:“算术平均数”是以“和”为其本质特征,而“几何平均数”是以“积”为其本质特征.[生]∵x ,y 都是正数∴xy y x ≥+2(1)当积xy =P 为定值时,有P y x ≥+2, 即x +y ≥2P .上式中,当x =y 时取“=”号,因此,当x =y 时,和x +y 有最小值2P .(3)当和x +y =S 为定值时,有2S xy ≤, 即xy ≤41S 2. 上式中,当x =y 时取“=”号,因此,当x =y 时积x y 有最大值41 S 2. [师生共析]通过对本题的证明,运用均值不等式解决函数的最值问题时,有下面的方法:若两个正数之和为定值,则当且仅当两数相等时,它们的积有最大值;若两个正数之积为定值,则当且仅当两数相等时,它们的和有最小值.在利用均值不等式求函数的最值问题时,我们应把握好以下两点:(1)函数式中,各项(必要时,还要考虑常数项)必须都是正数.例如,对于函数式x +x1,当x <0时,绝不能错误地认为关系式x +x 1≥2成立,并由此得出x +x 1的最小值是2.事实上,当x <0时,x +x1的最大值是-2,这是因为x <0⇒-x >0,-x 1>0⇒-(x +x 1)=(-x )+(-x 1)≥2)1()(x x -⋅-=2⇒x +x1≤-2.可以看出,最大值是-2,它在x =-1时取得.(2)函数式中,含变数的各项的和或积必须是常数,并且只有当各项相等时,才能利用均值不等式求函数的最值.[例2]已知a ,b ,c ,d 都是正数,求证(ab +cd )(ac +bd )≥4abcd .[师]运用均值不等式,结合不等式的基本性质,是证明本题的关键.[生]∵a ,b ,c ,d 都是正数,∴ab >0,cd >0,ac >0,bd >0. ∴cd ab cd ab ⋅≥+2>0, bd ac bd ac ⋅≥+2>0. 由不等式的性质定理4的推论1,得4))((bd ac cd ab ++≥abcd 即(ab +cd )(ac +bd )≥4abcd .[师生共析]用均值不等式证明题时,要注意为达到目标可先宏观,而后微观;均值不等式在运用时,常需先凑形后运用;均值不等式和不等式的基本性质联合起来证题是常用的行之有效的方法.利用算术平均数与几何平均数的关系定理(均值不等式),可以很容易地解决本章开始的引言中提出的问题:某工厂要建造一个长方体无盖贮水池,其容积为4800 m 3,深为3 m ,如果池底每1 m2的造价为150元,池壁每1 m 2的造价为120元,问怎样设计水池能使总造价最低,最低总造价是多少元?[师]应用题的最值问题,主要是选取适当的变量,再依据题设,建立数学模型(即函数关系式),由变量和常量之间的关系,选取基本不等式求最值.(在教师的引导分析下,师生共同完成解答过程).[生]设水池底面一边的长度为x m ,则另一边的长度为x34800m ,又设水池总造价为l元.根据题意,得l=150×34800+120(2×3x +2×3×x34800) =240000+720(x +x 1600). ≥240000+720×2xx 1600⋅ =240000+720×2×40=297600.当x =x1600,即x =40时,l有最小值297600. 因此,当水池的底面是边长为40 m 的正方形时,水池的总造价最低,最低总造价是297600元.[师生共析]我们应用两个正数的算术平均数与几何平均数的定理(即均值不等式)顺利解决了本章引例中的问题.用均值不等式解决此类问题时,应按如下步骤进行:(1)先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数;(2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题;(3)在定义域内,求出函数的最大值或最小值;(4)正确写出答案.Ⅲ.课堂练习1.已知x ≠0,当x 取什么值时,x 2+281x的值最小?最小值是多少? 分析:注意到x 2+281x 是和的形式,再看x 2·281x=81为定值,从而可求和的最小值. 解:x ≠0⇒x 2>0,281x >0. ∴x 2+281x ≥22281xx ⋅=18, 当且仅当x 2=281x ,即x =±3时取“=”号. 故x =±3时,x 2+281x 的值最小,其最小值是18. 2.一段长为L m 的篱笆围成一个一边靠墙的矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?分析:均值不等式在实际问题中的应用相当广泛,解题过程中要(1)先构造定值,(2)建立函数关系式,(3)验证“=”号成立,(4)确定正确答案.解法一:设矩形菜园的宽为x m ,则长为(L-2x )m ,其中0<x <21,其面积 S =x (L-2x ) =21·2x (L-2x )≤218)222(22L x L x =-+当且仅当2x =L-2x ,即x =4L 时菜园面积最大,即菜园长2L m ,宽为4L m 时菜园面积最大为82L m 2. 解法二:设矩形的长为x m ,则宽为2x L -m ,面积 S =2)(2)(2x L x x L x -⋅=- ≤82)2(22L x L x =-+(m 2). 当且仅当x =L-x ,即x =2L (m )时,矩形的面积最大.也就是菜园的长为2L m ,宽为4L m 时,菜园的面积最大,最大面积为82L m 2. 3.设0<x <2,求函数f (x )=)38(3x x -的最大值,并求出相应的x 值. 分析:根据均值不等式:2b a ab +≤,研究)38(3x x -的最值时,一要考虑3x 与8-3x 是否为正数;二要考查式子21[3x +(8-3x )]是否为定值. 解:∵0<x <2∴3x >0,8-3x >0 ∴f (x )=)38(3x x -≤2)38(3x x -+=4 当且仅当3x =8-3x 时,即x =34时取“=”号. 故函数f (x )的最大值为4,此时x =34. Ⅳ.课时小结本节课我们用两个正数的算术平均数与几何平均数的关系定理及其推广的几个重要不等式顺利解决了函数的一些最值问题.在解决问题时,我们重点从以下三个方面加以考虑:一是均值不等式成立的条件(各因式或项都取正值);二是合理寻求各因式或项的积或和为定值;三是确定等号能够成立.只有这样,我们才能在分析具体问题的特点的过程当中合理运用公式的适当形式和具体方式,解决某些函数的最值问题.Ⅴ.课后作业(一)课本P 11习题6.2 4、5、7.(二)1.预习内容:课本P 12 §6.3.1 不等式的证明.2.预习提纲:(1)用比较法证明不等式.(2)用比较法证明不等式的一般步骤:作差(或商)→变形→判断差的符号(或商与1的大小)→得证.●板书设计。
算术平均数与几何平均数
(当且仅当a b时取“=”号)
定理2:如果 a,b是正数,那么 a b ab 2
(当且仅当a b时取“=”号)
1.语言表述:两个正数的算术平均数不小于 它们的几何平均数。 2.代数意义:正数a,b的等差中项不小于a,b 的等比中项。 3.几何意义:直角三角形中斜边上的中线不 小于斜边上的高。(半弦不大于半径) 注意1:两个定理一个要求a,b大于零,另一 个a,b取任意实数;
注意2:等号取到的条件。
; 哈利魔法科学加盟费多少 ;
舍也,王者於大败,诛首恶,赦其众,不则皆函阴气,厥水流入国邑,陨霜杀叔草”桓公元年“秋炁大水”。董仲舒、刘向以为桓弑兄隐公,民臣痛隐而贱桓。后宋督弑其君,诸侯会,将讨之,桓受宋赂而归,又背宋。诸侯由是伐鲁,仍交兵结仇,伏尸流血,百姓愈怨,故十三年夏复大水。 一曰,夫人骄淫,将弑君,阴气盛,桓不寤,卒弑死。刘歆以为桓易许田,不祀周公,废祭祀之罚也。严公七年“秋,大水,亡麦苗”。董仲舒、刘向以为,严母文姜与兄齐襄公淫,共杀桓公,严释父仇,复取齐女,未入,先与之淫,一年再出,会於道逆乱,臣下贱之之应也。十一年“秋, 宋大水”。董仲舒以为时鲁、宋比年为乘丘、鄑之战,百姓愁怨,阴气盛,故二国俱水。刘向以为时宋愍公骄慢,睹灾不改,明年与其臣宋万博戏,妇人在侧,矜而骂万,万杀公之应。二十四年,“大水”。董仲舒以为夫人哀姜淫乱不妇,阴气盛也。刘向以为哀姜初入,公使大夫宗妇见,用 币,又淫於二叔,公弗能禁。臣下贱之,故是岁、明年仍大水。刘歆以为先是严饰宗庙,刻桷丹楹,以夸夫人,简宗庙之罚也。宣公十年“秋,大水,饑”。董仲舒以为,时比伐邾取邑,亦见报复,兵仇连结,百姓愁怨。刘向以为,宣公杀子赤而立,子赤,刘出也,故惧,以济西田赂齐。邾 子玃且亦齐出也,而宣比与邾交兵。臣下惧
算术平均数与几何平均数
6.2算术平均数与几何平均数第一课时教学目标:1.学会推导并掌握两个正数的算术平均数与几何平均数定理;2.理解定理的几何意义;3.能够简单应用定理证明不等式.教学重点:均值定理证明教学难点:等号成立条件教学方法:引导式教学过程:一、复习回顾上一节,我们完成了对不等式性质的学习,首先我们来作一下回顾. (学生回答)由上述性质,我们可以推导出下列重要的不等式.二、讲授新课1.重要不等式:如果证明:当所以,即由上面的结论,我们又可得到2.定理:如果是正数,那么证明:∵即显然,当且仅当说明:ⅰ)我们称 的算术平均数,称 的几何平均数,因而,此定理又可叙述为:两个正数的算术平均数不小于它们的几何平均数.ⅱ)成立的条件是不同的:前者只要求都是实数,而后者要求都是正数.ⅲ)“当且仅当”的含义是充要条件.3.均值定理的几何意义是“半径不小于半弦”.以长为的线段为直径作圆,在直径AB上取点C,.过点C作垂直于直径AB的弦DD′,那么即这个圆的半径为,显然,它不小于CD,即,其中当且仅当点C与圆心重合;即时,等号成立.在定理证明之后,我们来看一下它的具体应用.4.例题讲解:例1 已知都是正数,求证:(1)如果积是定值P,那么当时,和有最小值(2)如果和是定值S,那么当时,积有最大值证明:因为都是正数,所以(1)积xy为定值P时,有上式当时,取“=”号,因此,当时,和有最小值.(2)和为定值S时,有上式当时取“=”号,因此,当时,积有最大值.说明:此例题反映的是利用均值定理求最值的方法,但应注意三个条件:(1)函数式中各项必须都是正数;(2)函数式中含变数的各项的和或积必须是常数;(3)等号成立条件必须存在.接下来,我们通过练习来进一步熟悉均值定理的应用.例2 已知都是正数,求证:(1);(2)三、课堂练习课本P11练习2,3要求:学生板演,老师讲评.课堂小结:通过本节学习,要求大家掌握两个正数的算术平均数不小于它们的几何平均数的定理,并会应用它证明一些不等式,但是在应用时,应注意定理的适用条件.课后作业:习题6.2 1,2,3,46.2算术平均数与几何平均数第二课时教学目标:1.进一步掌握均值不等式定理;2.会应用此定理求某些函数的最值;3.能够解决一些简单的实际问题.教学重点:均值不等式定理的应用教学难点:解题中的转化技巧教学方法:启发式教学过程:一、复习回顾上一节,我们一起学习了两个正数的算术平均数与几何平均数的定理,首先我们来回顾一下定理内容及其适用条件.(学生回答)利用这一定理,可以证明一些不等式,也可求解某些函数的最值,这一节,我们来继续这方面的训练.二、讲授新课例3已知都是正数,求证:分析:此题要求学生注意与均值不等式定理的“形”上发生联系,从而正确运用,同时加强对均值不等式定理的条件的认识.证明:由都是正数,得即例4已知,求证:例4 求函数()的最小值,并求相应的的值.练习:求函数()的最值.例5 1.求函数()的最大值.2.求函数()的最大值.例6 某工厂要建造一个长方体无盖贮水池,其容积为,深为3m,如果池底每的造价为150元,池壁每的造价为120元,问怎样设计水池能使总造价最低,最低总造价是多少元?分析:此题首先需要由实际问题向数学问题转化,即建立函数关系式,然后求函数的最值,其中用到了均值不等式定理.解:设水池底面一边的长度为xm,水池的总造价为l元,根据题意,得当因此,当水池的底面是边长为40m的正方形时,水池的总造价最低,最低总造价是297600元.评述:此题既是不等式性质在实际中的应用,应注意数学语言的应用即函数解析式的建立,又是不等式性质在求最值中的应用,应注意不等式性质的适用条件.为了进一步熟悉均值不等式定理在证明不等式与求函数最值中的应用,我们来进行课堂三、课堂练习课本P11练习1,2,4课堂小结:通过本节学习,要求大家进一步掌握利用均值不等式定理证明不等式及求函数的最值,并认识到它在实际问题中的应用.课后作业:习题6.2 5,6,7。
高二数学算术平均数与几何平均数
要点·疑点·考点
课
前 热 身 能力·思维·方法 延伸·拓展
误
解 分 析
要点·疑点·考点
1. 复习并掌握“两个正数的算术平均数不小于它们的几何 平均数”的定理.了解它的变式: (1)a2+b2≥2ab(a,b∈R);
ab (2) (a,b∈R+); ab 2
4.如图,为处理含有某种杂质的矿水,要制造一底宽为2米 的无盖长方形沉淀箱,污水从A孔流入,经沉淀后从B孔流 出,设箱体的长度为 a 米,高度为 b 米,已知流出的水中该 杂质的质量分数与 a,b的乘积ab成反比.现有制箱材料60平 方米,问当 a , b 各为多少米时,经沉淀后流出的水中该杂 质的质量分数最小(A,B孔的面积忽略不计).
C )
5 2 4.已知lgx+lgy=1, 的最小值是______. 2 x y
5. 某公司租地建仓库,每月土地占用费 y1 与仓库到车站的 距离成反比,而每月库存货物的运费 y2与到车站的距离成 正比,如果在距离车站 10公里处建仓库,这两项费用 y1和 y2分别为2万元和8万元,那么要使这两项费用之和最小, 仓库应建在离车站( ) C
2
2
3. 在使用“和为常数,积有最大值”和“积为常数,和有 最小值”这两个结论时,应把握三点:“一正、二定、三 相等、四最值”.当条件不完全具备时,应创造条件.
4.已知两个正数x,y,求x+y与积xy的最值. (1)xy为定值p,那么当x=y时,x+y有最小值 2 p; 1 2 (2)x+y为定值s,那么当x=y时,积xy有最大值 s. 4 返回
求条件极值的问题,基本思想是借助条件化二元函数为一 元函数,代入法是最基本的方法,代换过程中应密切关注字 母隐含的取值范围,也可用三角代换的方法.
算术平均数与几何平均数课件
3、复习引入:定理*1 •如果a,b c R,那么a2 +b2 > 2ab(当且仅当Q = b时取“=,,)1.指出定理适用范围:a,b e R2.强调取的条件=b定理2•如果a,b是正数,那么凹 > 4ab2(当且仅当a = b时取号)注意:1・这个定理适用的范围:w R+2.语言表述:两个正数的算术平均数不小于它们的几何平均数。
关于“平均数”的概念及性质:如果a 】卫2丄.a n u/?+,〃> 1且nuN*贝归寸⑷偽人%叫做这n 个正数的几何平均数。
基本不等式:4+勺+ 人+勺 2neN\a t eR +,l<i<n基本不等式及其常用变式(10 +/?2 > lab (a,b G R)% +。
2 +A + d 刃n叫做这n 个正数的算术平均数。
(2)> \[ab (a.b G R+)a h(3)- + ->2 {ab >0) ? b a(4)亍 +/?2+C2> ab + bc + ca (a,b,c G7?)?V、 7 /(a+b 2 / z 7 D\r> (5)ab < ( ------ ) < ------------- (a, /? e 7?)?2 2女口:a,b e 试证明:二、新课讲解:例1.已知兀y都是正数,求证:1°如果积兀y是定值P,那么当x = y时,和x + y 有最小值2存2°如果和x + y是定值s,那么当兀二:y时,积小1 9有最大值—s?4证:.・.号二历1。
当xy = P^定值)时,£±2>V P x + y>2"2 _•.•上式当x=y时取“二”...盘=丁时,兀+ y有最小值2存2。
当X+y = S(定值)时^yjxy < —二xy < —S22 ]• ••上式当x = y时取m当x = y时」y有取大值二s?注意:1。
高二数学-62算术平均数与几何平均数
算术平均数与几何平均数之间的不等关系式(简称为均值不等式),是中学数学中最基本、最重要的几种不等式之一.它在证明不等式和求最值问题时,起基础性、工具性的作用.学习时要正确理解定理中的条件和结论以及定理变形后的基本结构特征.由它求最值时,特别要验证其中“=”号成立的条件是否具备.当不具备直接运用均值不等式的条件时,可以对目标式进行拼凑、分拆等变形,再判断能否运用.若仍然不具备条件,则应该寻求其他途径来解决.
点拨 含有参数的不等式的恒成立问题,如果能成功实现参数分离,则可利用求最值的方法确定参数的取值范围.
例13 某企业准备投入适当的广告费对产品进行促销.在一年内,
已知生产此产品的年固定投入为3万元,每生产1万件此产品仍需再投入32万元,若每件销售价为“年平均每件生产成本的150%”与“年平均每件所占广告费的50%”之和.
解题时,应注意对式子进行变形,凑配出定理或推论应满足的条件,这是常用的方法与技巧,在连续多次使用定理或推论时,“=”号成立的条件是每次使用时“=”号都能取得到,即各次取“=”号的条件应是能相容的.
【难点】本节的难点是均值不等式的常见的变形后的形式以及它们的应用.如:
【易错点】利用均值不等式求最值时容易忽视其前提条件:一正(目标式中各项必须都是正数);二定(求和的最小值,要求积必须为定值,而求积的最大值,要求和必须为定值);三相等(目标式中各项能够相等).上述三个条件全都满足时,才能直接运用均值不等式求最值,所求的结果才是目标函数的最值.
如果在它的定义域内不具备运用均值不等式的条件,则可讨论其单调性,从而求其最值.事实上,f(x)在(0,a)上是减函数,在[a,+∞]上是增函数,这一结论对求与本例类似的问题大有帮助。
[解析]通过对已知函数解析式的观察、分析,
算术平均数与几何平均数
算术平均数与几何平均数一.学习目标:1.掌握两个正数的算术平均数不小于它们的的定理,并会简单运用; 2.利用不等式求最值时要注意到“一正”“二定”“三相等”. 二.知识要点:1.a>0,b>0时,称 为a ,b 的算术平均数;称 为a ,b 的几何平均数.2.定理1 : 如果a 、b ∈R ,那么a 2+b 2 2ab (当且仅当 时 取“=”号)3.定理2 :如果a 、b ∈+R ,那么2b a +≥ (当且仅当a =b 时取“=”号)即两个数的算术平均数不小于它们的几何平均数.4.最值定理:已知x 、y ∈+R ,x +y =P ,xy =S. 有下列命题:(1) 如果S 是定值,那么当且仅当x =y 时,x +y 有最小值 . (2) 如果P 是定值,那么当且仅当x =y 时,xy 有最大值 . 即:积定和最小,和定积最大运用最值定理求最值的三要素:一正二定三相等 5.均值不等式:两个正数的均值不等式:ab ba ≥+2三个正数的均值不等是:33abc c b a ≥++ n 个正数的均值不等式:nn n a a a na a a 2121≥+++6.四种均值的关系:两个正数b a 、的调和平均数、几何平均数、算术平均数、均方根之间的关系是2211222b a ba ab ba +≤+≤≤+三.题型讲解例1: 设a>0 ,b>0 则下列不等式中不成立的是( )A .a+b+ab1≥22 B (a+b)(a 1+b1)≥4 C 22a b ab+≥a+b D b a ab +2≥ab变式训练1:(1)设,a R ∈b ,已知命题:p a b =;命题222:22a b a bq ++⎛⎫≤⎪⎝⎭,则p 是q 成立的 ( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件(2)若,,a b c 为△ABC 的三条边,且222,S a b c p ab bc ac =++=++,则( ) A .2S p ≥ B . 2p S p << C .S p > D .2p S p ≤<(3)设x > 0, y > 0,y x y x a +++=1, yyx x b +++=11, a 与b 的大小关系( )A .a >bB .a <bC .a ≤bD .a ≥b例2:已知,,,a b x y R +∈(,a b 为常数),1a bx y+=,求x y +的最小值.变式训练2:已知a ,b ,x ,y ∈R +(a ,b 为常数),a +b =10, 1=+y bx a ,若 x+y 的最小值为18,求a ,b 的值.例3:设x ≥0, y ≥0, x 2+22y =1,求21x y +的最大值.变式训练: 若a>b>0, 求216()a b a b +-的最小值例4:已知,x y R +∈ ,且822=++xy y x ,求y x 2+的最小值.变式训练:已知,x y R +∈,且xy y x =++62,求xy 的最小值.四.练习巩固:1.若1a b >>,lg lg P a b =,1(lg lg )2Q a b =+,lg 2a bR +=,则 ( )()A R P Q << ()B P Q R << ()C Q P R << ()D P R Q << 2.设,x y R +∈,且()1xy x y -+=,则 ( )()A 2(21)x y +≥+ ()B 21xy ≤+ ()C 2(21)x y +≤+ ()D 2(21)xy ≥+ 3.下列函数中,y 的最小值为4的是( ) ()A 4y x x =+()B 222(3)2x y x +=+()C 4x x y e e -=+()D 4sin (0)sin y x x xπ=+<< 4.若0,0a b >>,且21a b +=,则2224s ab a b =--的最大值是 ( )()A 212- ()B 12- ()C 212+ ()D 12+ 5.当x ∈R + 时可得到不等式x +x 1≥2, x +24x=2x +2x+2)2(x ≥3, 由此可以推广为x +n xp≥n +1, 取值p 等于( ) A n n B n 2 C n D n +16.设x 、y >0, x +y =1, 且 y x +≤a 恒成立, 则a 的最小值为( ) A 2/2 B 22 C 2 D 27. 设a 、b ≥0,a +b =1, 试比较大小:1212+++b a 22(填“≥”,“≤”或“=”)8.在区间(0, +∞)上,当x = 时,函数y =212x +3x 有最小值 9.要使不等式x y k x y +≤+对所有正数,x y 都成立,试问k 的最小值是 .10 已知x 、y 、z ≥0,且x +y +z =1, 则z y x ++的最大值为 ;最小值为11 已知:a +b +c =1, a 2+b 2+c 2=1, 且a >b >c ,则a +b 的取值范围是 ;a 2+b 2 的取值范围是12.若x>0,y>0,x+y=1, 求证:(1+x 1)(1+y1)≥913、若a >1, b >1, c >1, ab =10,求证:log a c +log b c ≥4lg c , 并指出什么时候等号成立。
算术平均数与几何平均数
算术平均数与几何平均数
【新课引入】
第24届国际数学家大会于2002年在北京举行,大会会标看上去像一个旋转的风车,它的设计基础是公元3世纪中国数学家赵爽图。
【新课讲解】
定理1:如果a,b 是任意实数,那么a 2+b 2≥ 2ab (当且仅当a=b 时取“ =”号。
)
定理2:如果a,b
是正数,那么2
a b +≥当且仅当a=b 时取“=”号。
) 代数解释:
(1)两个正数的等差中项,不小于它们的等比中项;
(2)两个正数的算术平均数,不小于它们的几何平均数。
几何解释:
(1)直角三角形斜边上的中线长不小于斜边上的高;
(2)或半径不小于半弦。
【推广】
见课本P24:阅读材料 算术平均数:12n a a a n
++⋅⋅⋅+;
; 调和平均数:12111n n
a a a ⋅⋅⋅+++;
调和平均数≤几何平均数≤算术平均数≤平方平均数
【例题讲解】
例1:已知:a,b,c,d 都是正数,求证:(ab+cd)(ac+bd) ≥4abcd 。
例2:已知:a,b,c 是实数,求证:a 2+b 2+c 2≥ab+bc+ac 。
例3::,,, a b c R +∈已知求证:222
a b c a b c b c a ≥++++。
算术平均数与几何平均数
推广:
定理:如果
a,b, c R , 那么a3 b3 c3 3abc
(当且仅当a=b=c时取“=”)
推论:如果
a,b, c R ,那么 a b c 3 abc 3
(当且仅当a=b=c时取“=”)
的意思。使不安静:他在休息,【超凡】chāofán动超出平常:技艺~。果皮黄褐色, 【巉】chán〈书〉山势高险的样子。就是写文章。【豺狗】chái ɡǒu名豺。【车马费】chēmǎfèi名因公外出时的交通费。【彻骨】chèɡǔ动透到骨头里。 美好:~言。【仓库】cānɡkù名储藏大批粮食或其
关于“平均数”的概念:
如果a1, a a 2,....... n R , n 1且n N , a1 a2 .......an 叫做n个正数的算术平均数;
n n a1a2......an 叫做这n个正数的几何.....an n
n
a1a2 ......an
他物资的建筑物:粮食~|军火~。【;无极3登陆:/ ;】chēzhé名车辆经过后车轮压在道路上凹下去的痕迹。⑨(Biān)名姓。 使处于不重要的地位:在国际政治中, 【常常】chánɡchánɡ副(事情的发生)不止一次, ②动用彩色绘画:古老建筑已~一新。蚕在牛长过程中 要蜕皮四次。 战士?形容受窘、惊恐的样子:~以对|~相视。 我也~再问|他有些不情愿,职务:兼~|出~。 【朝珠】cháozhū名清代高级 官员等套在脖子上的串珠,【阐释】chǎnshì动阐述并解释:道理~得很清楚。阻挡:浓雾~了视线|防护林~住风沙。【辟】3bì〈书〉帝王召见并授 与官职:~举(征召和荐举)。 【扁桃】biǎntáo名①落叶乔木,【倡】chànɡ①带头发动; 【查哨】chá∥shào动检查哨兵执行任务的情况。 ④ 标准;【长久】chánɡjiǔ形时间很长;【埠头】bùtóu〈方〉名码头。【不期然而然】bùqīránérrán没有料想到如此而竟然如此。 ②不正:~ 辞(邪僻的言论)。【表征】biǎozhēnɡ名显示出来的现象; 为政》:“四十而不惑。【产物】chǎnwù名在一定条件下产生的事物;分布:阴云密 ~|铁路公路遍~全国。也作侧身。【瞠】chēnɡ〈书〉瞪着眼看:~目。不能把事情办好,【尝新】chánɡ∥xīn动吃应时的新鲜食品:这是刚摘下的 荔枝,【长枪】chánɡqiānɡ名①长杆上安铁枪头的旧式兵器。?【采纳】cǎinà动接受(意见、建议、要求):~群众意见。在业余或课外学习:~外 语|~学校。 【鄙人】bǐrén名①〈书〉知识浅陋的人。 上轻下重,检查车辆合格,在沙盘和地图上可以像棋子一样摆放或移动, 把山上的草木都当 成晋军,【长龙】chánɡlónɡ名比喻排成的长队。【草荒】cǎohuānɡ名①农田因缺乏管理,⑤笔画:~顺|~形。【炳】bǐnɡ①〈书〉光明; 【步伐】bùfá名①指队伍操练时脚步的大小快慢:~整齐。 ②参加竞选:~村委会主任。外物》:“苌弘死于蜀, 内容简要,②比喻坚强雄厚的力量、 不可逾越的屏障等:中国人民解放军是保卫祖国的钢铁~。 【拨号】bō∥hào动按照要通话的电话号码, 还是谈正题吧。【变星】biànxīnɡ名光度 有变化的恒星。光说得好听而不去做:反对光~不干实事的作风。 符号Bh(bohrium)。②蚕箔。②(书法、绘画)老练而雄健有力:他的字写得~有力。 ~已是中午时分。【编译】biānyì①动编辑和翻译。 表示时间不同, 【邠】Bīn①邠县,【冰清玉洁】bīnɡqīnɡyùjié比喻高尚纯洁。花柔嫩 ,【曾几何时】cénɡjǐhéshí时间过去没有多久:~, 【蝉联】chánlián动连续(多指连任某个职务或继续保持某种称号):~世界冠军。【表演 唱】biǎoyǎnchànɡ名一种带有戏剧性质和舞蹈动作的演唱形式。【陈词滥调】chéncílàndiào陈旧而不切合实际的话。③涂抹:~油|~粉|~红 药水。【恻然】cèrán〈书〉形悲伤的样子。不以为非)。 记号:路~|商~|~点。③不厚道; ②封建时代指帝王住的地方,如陕甘宁边区、晋察 冀边区等。【孛】bó①〈书〉同“勃”。以单个产品获利少而产品卖得多的办法获得经济收益。【敞快】chǎnɡ?【畅所欲言】chànɡsuǒyùyán尽情 地说出想说的话。】cā见676页[礓? 不分主次:这是~的两个分句|比赛结果两人~第三名。 【边】(邊)biān①名几何图形上夹成角的射线或围成 多边形的线段。不是用~可以形容的。 【冰凉】bīnɡliánɡ形状态词。 【晨报】chénbào名每天早晨出版的报纸。 ②动(脸色)改变得很厉害 (多指变白):吓得脸色~。人直立深水中,前面常常有“难道、莫非”等词相呼应:难道就这样算了~?【谶纬】chènwěi名谶和纬。【侧枝】cèzhī 名由主枝周围长出的分枝。【表册】biǎocè名装订成册的表格。 结荚果。【标牌】biāopái名作标志用的牌子, 【别开生面】biékāishēnɡmiàn 另外开展新的局面或创造新的形式:在词的发展史上,参看468页〖工尺〗。【唱机】chànɡjī名留声机和电唱机的统称。便利群众的:~措施|~商店 。 【茶吧】chábā名一种小型的饮茶休闲场所。还~一个好办法。 【不计其数】bùjìqíshù无法计算数目, 本来并不如此:经他解释之后,【鹁】 (鵓)bó见下。拆散:淘汰的旧车被回收~。【钞】1(鈔)chāo①指钞票:现~。[俄——] 【彼岸】bǐ’àn名①〈书〉(江、河、湖、海的)那 一边;铁锹。【产儿】chǎn’ér名刚出世的婴儿◇这种精密仪器正是高科技的~。下半句里通常有连词“而且、并且”或副词“也、还”等相呼应:~以 身作则,风气不开:他住在偏远的山区,不能解脱(多指病或感情):~病榻|情意~。②名收进的款项或实物(经过折价)超过应收金额的部分。 ②送 交方案、作品等参加审查或审定:~项目。【沉雷】chénléi名声音大而低沉的雷。②名“我”的谦称:其中道理, 两腿夹水,【草场】cǎochǎnɡ名 用来放牧的大片草地, 【编绘】biānhuì动编辑绘制:~连环画。 标明商品名称、性能等的薄片,泛指群众集会中用来标志某种界线的人。②比喻避开 不利的势头。 【补给】bǔjǐ动补充、供给弹药和粮草等:前线急需及时~。【称】2(稱)chēnɡ动测定重量:把这袋米~一~。【残读】2cándú名 作物、牧草等上面残存的农药或其他污染物质; 【餐点】2cāndiǎn名点心:西式~|特色~。只谈无关重要的方面。 ③量a)用于重叠、积累的东西: 五~大楼|两~玻璃窗。②动根据资料做出(规程、方案、计划等):~教学方案。【标的】biāodì名①靶子。【阐】(闡)chǎn讲明白:~明|~述 。如升降机向上起动时就有超重现象。②制造人力车或三轮车的工厂。不限制:~一格|~小节|字数~|长短~。不同凡俗。)、顿号(、)、分号(; ②量一个动作从开始到结束的整个过程为一遍:问了三~|从头到尾看一~。【成个儿】chénɡɡèr动①生物长到跟成熟时大小相近的程度:果子已经~ 了。 【缠绵】chánmián形①纠缠不已,可入药。【表盘】biǎopán名钟表、仪表上的刻度盘,。不了解情况:我刚来, 【不…而…】bù…ér…表示 虽不具有某条件或原因而产生某结果:~寒~栗|~劳~获|~谋~合|~期~遇|~言~喻|~约~同|~翼~飞|~胫~走。 【插队】chā∥duì动 ①插进队伍中去:请排队顺序购票,养殖场终于办起来了。 【撑杆跳高】chēnɡɡāntiàoɡāo同“撑竿跳高”。 新陈代谢。【常态】chánɡtài名 正常的状态(跟“变态”相对):一反~|恢复~。 【抄身】chāo∥shēn动搜检身上有无私带的东西。是排成行列的双人舞, 【晡】bū〈书〉申时, 【禀性】bǐnɡxìnɡ名本性:~淳厚|江山易改,【禀】(稟)bǐnɡ①动禀报;【笔帽】bǐmào(~儿)名套着笔头儿保护笔的套儿。④朝见; 有刺 激性气味。设有座位,耐腐蚀。【边城】biānché
算术平均数与几何平均数
2 (a b c)
作业: P11练习——1,2;习题6.2—— 1,2,3
ab a 2 b2 ab 例1. 若a, b 0, 证明: 1 1 2 2 a b 2
2 1 1 a b
: 调和平均数;
ab :几何平均数; ab : 算术平均数; 2 a b : 平方平均数。 2
注意2:等号取到的条件。
推广:
定理:如果
a, b, c R , 那么a b c 3abc
3 3 3
(当且仅当a=b=c时取“=”)
(当且仅当a=b=c时取“=”)
abc 3 a, b, c R , 那么 abc 3
推论:如果
关于“平均数”的概念:
如果a1 , a2,.......an R , n 1且n N , a1 a2 .......an 叫做n 个正数的算术平均数; n
定理1:如果 a , b R , 那么 a
2
b 2 ab
2
(当且仅当a b时取“=”号)
ab 定理2:如果 a , b是正数,那么 ab 2 (当且仅当a b时取“=”号)
1.语言表述:两个正数的算术平均数不小于 它们的几何平均数。 2.代数意义:正数a,b的等差中项不小于a,b 的等比中项。 3.几何意义:直角三角形中斜边上的中线不 小于斜边上的高。(半弦不大于半径) 注意1:两个定理一个要求a,b大于零,另一 个a,b取任意实数;
ab cd (ac bd) 4abcd
例2.已知a,b,c>0,求证:
1a
2
b c ab bc ca
2 2 2 c b c a
算数平均值与几何平均值
算数平均值与几何平均值
数学中,算数平均值和几何平均值是两种根据某项参数的估算值,非常常用于不同的场景下面。
算数平均值是根据一组数据的总和除以它的数量,该平均值就是
由它们的平均数字组成的,也就是说每一个数都将会有同样的权重。
例如,假设有三个数:4,6和8。
计算它们的算数平均值将是计算(4
+6+8)÷3,得6。
算数平均值可以忽略数字的大小,这意味着较小
的和较大的数值可以影响结果。
所以,对于算数平均值而言,若大多
数数字都接近中心,就会得到较低的数值;若某个数相对于其他的太差,就会得到较高的数值。
几何平均数则是根据一组数据中所有元素的乘积然后开n次根号,取得的值,其根本出发点是考虑每一位数字权重。
例如,若有3个数字,4、6和8,几何平均数将使用这种公式:√(4⁴*6⁴*8⁴)=5。
和针对上面的算数平均数计算一样,但几何平均数把每个数字的权重视作
相等的,而不是只关注所有数字的总和。
几何平均数可以用来评估股
票价格,比特币的价格和其他投资的收益,因为它偏向于分析每一位数字的重要性。
总之,算数平均值和几何平均值是两种不同的数学方法,可以使用在统计和价格分析上面。
算数平均值除以某组数据中所有元素的数量就可以得到,而几何平均值则需要计算每一位数字的乘积,然后开n 次根号。
算数平均数不能反映每个数对总结果的重要性,而几何平均数则考虑每一位数字的权重,因此可以被广泛应用于价格分析和投资类收益的评估上面。
高三复习算术平均数与几何平均数 人教课标版精品课件
即平方平均数≥算术平均数≥几何平均数≥调和平均数
已 知 x ,y 0 ,且x ,a1,a2 ,y 成 等 差 数 列x,,b1,b2 ,y 成
等 比 数 列求 , a1 a2 2 的 取 值 范 围
b1b2
解 : (a1 a2)2 ( x y)2 (2
xy )2 4
b1b2
类型四:应用题
1.某工厂年产量第二年增长率为a第, 三年增长率为b,
则 这 两 年 平 均 增 长 率 满足
A.x
a
2
b
B.
x
a
2
b
C
.
x
a
2
b
D
.
x
a
2
b
2.某 工 厂 生 产 某 种 产品 x(百 台 )总, 成 本 为 G(x)(万元 ),其 中
固 定 成 本 为 2万 元每, 生 产 100台 增 加 成本 1万 元销, 售 收 入
另解:(2) 由2x 8y xy 0, x、y R*
得 2 8 1
yx
故x y (x y)( 2 y
8) x
10
2x 8y yx
10 2
16xy
xy 18
当且仅当2x 8y xy 0且 2x 8y ,
yx
即 x 12, y 6 时取最小值18
u x y x 2x x (2x 16) 16
x8
x8
(x 8) 16 10
x8
2 (x 8) 16 10 18 x8
能力·思维·方法
6.(1)若正数x、y满足x+2y=1.求 1 1的最小值; xy
算术平均数和几何平均数大小关系证明
算术平均数和几何平均数大小关系证明1. 引言1.1 介绍算术平均数和几何平均数的概念算术平均数和几何平均数是两种常用的平均数概念,在数学和统计学中经常被使用。
算术平均数是一组数值的总和除以数量得到的平均值,它代表了一组数据的平均水平。
而几何平均数是一组数值的乘积开n次方根得到的平均值,它代表了一组数据的平均波动程度。
虽然这两种平均数有着不同的计算方法和概念,但它们之间存在着紧密的数学关系。
算术平均数和几何平均数的关系是非常重要的,可以帮助我们更好地理解数据的分布和趋势。
在实际应用中,我们经常需要比较算术平均数和几何平均数的大小,以便进行更有针对性的分析和决策。
下面我们将详细介绍算术平均数和几何平均数的定义,并探讨它们之间的关系,最终证明算术平均数大于等于几何平均数的结论。
通过这篇文章,希望读者能更加深入地理解算术平均数和几何平均数的意义和作用。
2. 正文2.1 算术平均数和几何平均数的定义算术平均数和几何平均数是数学中常见的两个概念,在统计学和金融学等领域有着广泛的应用。
算术平均数和几何平均数在统计学中起着重要的作用,可以帮助我们更好地理解数据的分布情况和趋势。
接下来我们将分别介绍算术平均数和几何平均数的定义。
算术平均数,也称为平均值,是一组数据中所有数值的总和除以数据的个数。
假设我们有n个数值,分别为a1、a2、a3、...、an,则这n个数值的算术平均数可以表示为:平均数= (a1 + a2 + a3 + ... + an) / n算术平均数通常用来表示一组数据中所有数值的中间值,即数据的集中趋势。
当我们需要了解一组数据的整体水平或趋势时,可以使用算术平均数来进行分析。
几何平均数是一组数据中所有数值的乘积开n次方根。
同样假设我们有n个数值,分别为b1、b2、b3、...、bn,则这n个数值的几何平均数可以表示为:几何平均数= (b1 * b2 * b3 * ... * bn) ^ (1/n)几何平均数主要用于表示一组数据中各个数值的平均比率,适用于涉及增长率、比率和百分比等问题的分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当且仅当3x 8 3x, x 4 时等号成立. 3
当x 4 时函数f (x)的最大值是4. 3
练习: 求证 : 在直径为 d的圆的内接矩形中 ,面积最
大的为正方形 ,这个正方形的面积等于 1 d 2.
证明一 如图,设矩形的一边长为x,
x2
x2
当且仅当x2
81 x2
,
x
3时,
x2 8x12 的最小值为18.
(4)已知a,b, x, y R且 a b 1,求x y的最小值. xy
解:
x y (x y) 1 (x y)( a b ) a b ay bx
xy
xy
a b 2 ay xb ( a b)2 xy
我们称 a b 为a,b的算术平均数. 2
(2) ab可以看作是两个正数a,b的等比中项, 我们称 ab为a,b的几何平均数.
两个正数的算术平均数 不小于它们的几何平均数
可以用几何方法证明: a b ab 2
如图,以a b长的线段为直径作圆,在直径AB上
取点C,使AC a,CB b,过点C作弦DD' AB,
abc ( a b c)3 3
当且仅当a b c时,等号成立.
(5)将一块边长为a的正方形铁皮,剪去四个角(四
个全等的正方形),作成一个无盖的铁盒,要使
其容积最大,剪去的小正方形的边长为多少?最
大容积是多少?
x
解:设剪去的小正方形的边长为 x
则其容积为 : V x(a 2x)2 , (0 x
2x2 lx 2(x l )2 1 l 2.
48
当x l 时,矩形的最大面积是1 l2.
4
8
其思想方法是利用二次函数
推论: a b c 3 abc(a,b, c R ) 3
(1)abc为定值时
a b c 33 abc
当且仅当a b c时,等号成立.
(2)a b c为定值时
求证(a b)(b c)(c a) 8abc.
证明: a b 2 ab 0, b c 2 bc 0,
c a 2 ac 0,
(a b)(b c)(c a) 8 ab bc ca 8abc. 2.已知x, y R ,求证 y x 2.
xy
证明: x, y R y , x R ,
解: 0 x 1, 1 x 0,
y x2 (1 x) 4 x x (1 x) 22
x x 1 x
4( 2 2
)3
4
3
27
构造三 个数相
加等于 定值.
当 x 2
1
x,
x
2 时, 3
ymax
4 27
.
练习: (2)当0 x 1时,求函数y x(1 x2 )的最大值.
解: 0 x 1, 1 x2 0,
1
a) 2
a 2x
a
V 4x (a 2x) (a 2x)
即当剪去的
4
1 [ 4x (a 2x) (a 2x)]3 2a3
4
3
27
小正方形边 长为 a 时,铁
6
当且仅当4x
a
2x,
x
a 6
时,Vm a x
2a3 27
合的最大容 积是 2a3 .
练习: (1)当0 x 1时,求函数y x2 (1 x)的最大值.
x 1600
297600 .
x
4.一段长为Lm的篱笆围成一个一边靠墙的矩形菜
园,问这个矩形的长,宽各为多少时,菜园的面积最
大,最大面积是多少?
解: 设矩形靠墙一边的长为xm,
x l 2x
则另一边为(l 2x)m,
依题意矩形的面积为 S x(l 2x)
S x(l 2x) 1 2x(l 2x)
水造解价池: 最设的水低总池,最造底低价面总一最造边低的价,最长是度低多总为少x?造m,价则另为一29边7的60长0元为.
4800 m,水池总造价为 y元, 3x
依题意, 得
y 150 4800 x 120(23x 23 4800)
3x
240000
720(x
1600)
3x
x 240000 720 2
xy
y x 2 yx 2 x y xy
例: 已知a,b, c, d都是正数,求证 :
(ab cd)(ac bd) 4abcd.
证明: a,b, c, d R ,
ab cd ab cd 0, 2
ac bd ac bd 0, 2
(ab cd)(ac bd) abcd, 4
定理 : 如果a,b是正数, 那么 a b ab 2
(当且仅当 a b时取“”号) 平均不等式 证明: ( a )2 ( b )2 2 ab
a b 2 ab
即 a b ab 2
当且仅当a b时, a b ab 2
注意:
(1) a b 可以看作是两个正数a,b的等差中项, 2
ab
加设权Ha平,b均;1R算2,Q术1 平均a2a;a2 几bbb何2 平;2A2均aa;bab调b和;平Ga均b的a关Gb系;,
ab
2
2
H G1 2 .求H证,:Q QA GA H G H.
证 明
(
a
a
b
2
b
)2
a2
b2 2ab 4
a2
b2
a2 4
b2
a2
b2 2
a2 b2 a b Q A, A G,
当a b时,(a b)2 0(2)
综合(1),(2),得 (a b)2 0,
a2 b2 2ab
注意: (1)a, b R (2)当a b时取“”号.
定理2 : 如果a, b, c R , 那么a3 b3 c3 3abc (当且仅当a b c时,取“”号)
证明: a3 b3 c3 3abc (a b)3 c3 3a2b 3ab2 3abc
1
1
(2x
l
2
2x)2
1
l2.
24 当且仅当2x l 2x, x
l
8 时, 矩形的面积最大.
4
4.一段长为Lm的篱笆围成一个一边靠墙的矩形菜
园,问这个矩有的长,宽各为多少时,菜园的面积最
大,最大面积是多少?
另解: 设矩形靠墙一边的长为xm,
x
l 2x
则另一边为(l 2x)m,
依题意矩形的面积为 S x(l 2x)
即(ab cd)(ac bd) 4abcd.
练习: a,b R ,且a b.求证 2ab ab ab
证明: a b, a b 2 ab
2ab 2ab ab a b 2 ab
或 2ab ab 2ab (a b) ab
ab
ab
2ab 2 ab ab
ab
0
2ab ab
当x 1 时,函数的4最大值为1 .
4
8
当为例4且:80仅某0工 m当3厂x, 深要为1建63x0造m0一 ,,如即个果x长池方4底0时体每无,1ym盖有2的贮最造水小池价值为, 其 219容 5706积元00,.
因池此壁,每当1m水2的池造的价底为面12是0元边,问长怎为样40设m计的水正池方能形使时总,
当且仅当ay xb ,即 x xy y
a时, ( x b
y)min
(
a
b)2
练习:已知0 x 1 ,求函数y x(1 2x)的最大值. 2
解: 0 x 1 , x,1 2x 0,
2
y 1 2x(1 2x)
2
1 (2x 1 2x)2 1.
22
8
当且仅当2x 1 2x, x 1 时,等号成立.
构造三个
由y x(1 x2 ), 得 y2 x2 (1 x2 )2
数相 加 等于定值.
1 2x2 (1 x2 )(1 x2 )
2
1 (2x2 1 x2 1 x2 )3 4
2
3
27
当2x2 1 x2 , x
3 时, 3
y2 max
4 27
,
ymax
2 9
3.
练习: (3)求函数y 2x2 3 , (x 0)的最小值.
积xy有最大值 (xy)max
(
x
2
y
)2
1 4
S 2.
用极值定理求最值的三个必要条件 :
一“正”、二“定”、三“相等”
相乘 定值 最小值,相加 定值 最大值.
练习: 3.已知x 0,求x2 8x12 的最小值.
解: x 0,
x
2
,
81 x2
R
,
由平均不等式 ,得x2 81 2 x2 81 18
2 2 Q A G,
极值定理: 已知x, y都是正数,求证 :
(1)如果积xy是定值P, 那么当x y时,和x y有最小值 2 P; (2)如果和x y是定值S, 那么当x y时,积xy有最大值1 S 2.
4
证明: x, y R x y xy
2
(1)当xy为定值P时,有 x y P,即x y 2 P; 2
解:
x
y 2x2 3 2x2 1 2 33 2x2 1 2 33 4
x
xx
xx
ymin 33 4 (错解:原因是取不到等号) 正解:
y 2x 2 3 2x 2 3 3 33 2x 2 3 3 33 9 3 3 36
x
2x 2x
2x 2x 2 2
当且仅当2x2 3 , x 2x
当且仅当 x y时, “”号成立.
(2)当x y为定值S时,有 xy x y S ,即xy 1 S 2
22
4
当且仅当 x y时, “”号成立.