3-金属材料(金属的晶体结构)全解

合集下载

金属组织结构的基本轮廓(晶粒、晶界、亚晶、晶体结构)

金属组织结构的基本轮廓(晶粒、晶界、亚晶、晶体结构)

金属组织结构的基本轮廓(晶粒、晶界、亚晶、晶体结构)1. 引言1.1 概述金属组织结构是材料科学领域中的一个重要研究内容,它涉及到金属材料的微观结构和性能之间的关系。

金属材料广泛应用于制造业和其他领域,因此深入了解金属组织结构对于提高材料性能、改进加工工艺以及开发新型高性能金属具有重大意义。

1.2 文章结构本文将从晶粒、晶界、亚晶和晶体结构四个方面来介绍金属组织结构的基本轮廓。

首先,我们将探讨晶粒的定义、特征以及形成机制与生长过程;其次,我们将详细研究晶界的定义、分类以及对材料力学性能的影响;然后,我们将介绍亚晶的定义、形成机制、观测方法以及研究进展;最后,我们将深入探讨晶体结构,并分析不同类型的晶格结构对材料性质的影响。

1.3 目的本文旨在向读者介绍金属组织结构的基本概念和特征,并探讨其与材料性能之间的关系。

通过对晶粒、晶界、亚晶和晶体结构的详细讨论,读者将能够了解金属材料中微观组织的形成原理以及不同组织结构对材料性质(如强度、塑性、导电性等)的影响。

这将为材料科学工作者和工程师提供有力的指导,以优化金属材料的设计和应用。

2. 晶粒晶粒是金属材料中的基本组织单位,它由大量的原子或分子有序排列而成。

每个晶粒内的原子结构和取向相对稳定,在固态材料中晶粒大小和形状各不相同,具有一定的特征。

2.1 定义与特征晶粒是由同一种晶体结构组成的半球或多面体区域,在结构上呈现出高度有序、周期性和规则性。

它们在材料中是随机分布的,并且相邻晶粒之间以边界进行分割。

每个晶粒具有自己独特的取向和晶格结构,这使得不同的晶粒在外部场合下会表现出不同的性质。

2.2 形成机制与生长过程初始时,金属材料以液态或气态形式存在。

当冷却或凝固时,从液态转变为固态,并开始形成初生晶核。

这些初生晶核会通过吸收周围溶质进行长大并扩张,直到与其他固相结合形成完整的晶体。

这个过程叫做再结晶或冷却结晶。

2.3 晶粒大小与材料性能的关系晶粒的大小对金属材料的性能具有重要影响。

第一章-金属的晶体结构(共118张PPT)可修改全文

第一章-金属的晶体结构(共118张PPT)可修改全文
(3) 不需最小整数化; (4) 〔1 1 1〕
B面:
(1) 该面与z轴平行,因此x=1,y=2, z=∞; (2) 1/x=1,1/y=1/2,1/z=0; (3) 最小整数化1/x=2,1/y=1,1/z=0; (4) 〔2 1 0〕
C面:
(1) 该面过原点,必须沿y轴进行移动,因此x= ∞ ,y=-1,z=∞ (2) 1/x=0,1/y=-1,1/z=0; (3) 不需最小整数化;(4) 〔0 1 0〕
晶胞在三维空间的重复构成点阵
〔4〕晶格常数
在晶胞中建立三维坐标体系, 描述出晶胞的形状与大小
晶胞参数- 晶格常数:a、b、c 棱间夹角:α、β、γ
2 晶系与布拉菲点阵
依据点阵参数 的不同特点划分为七种晶系
(1) 三斜晶系
α≠β≠γ≠90° a≠ b≠ c
复杂单胞 底心单斜
(2) 单斜晶系
α=γ=90°≠β a≠ b≠ c
3 原子半径: r 2 a
4 配位数= 12
4
5 致密度= nv/V=(4×3πr3/4)/a3=0.74
γ-Fe(912~1394℃)、Cu、Ni、Al、Ag 等
——塑性较高
面心立方晶胞中原子半径与晶 格常数的关系
a
r 2a 4
(三)密排六方结构〔 h.c.p〕 〔 了解〕
金属:Zn、Mg、Be、α-Ti、α-Co等
具有光泽:吸收了能量从被激发态回到基态时所 产生的幅射;
良好的塑性:在固态金属中,电子云好似是 一种流动的万能胶,把所有的正离子都结合 在一起,所以金属键并不挑选结合对象,也 无方向性。当一块金属的两局部发生相对位 移时,金属正离子始终“浸泡〞在电子云中, 因而仍保持着金属键结合。这样金属便能经 受较大的变形而不断裂。

金属材料的结构与结晶

金属材料的结构与结晶

只有当溶质原子尺寸较小,溶剂晶格间隙较大时
才能形成间隙固溶体。
例:Fe和C形成间隙固溶体。
间隙固溶体溶解的溶质数量是有限的。
图2-12(b)
图2-12(a)
(2)臵换固溶体:溶质原子占据晶格结点位臵而形 成的固溶体。 (图2-12b)
两组元原子尺寸相近时,易形成臵换固溶体。可形
成有限固溶体和无限固溶体。 例:Cr和Ni等合金元素溶入铁中形成的固溶体为臵
立方晶格中的某些晶面立方晶格中的某些晶面100100面面110110面面111111面面立方晶格中的某些晶向立方晶格中的某些晶向111111向向110110向向在同一晶格的不同晶面和晶向上原子排列的疏密在同一晶格的不同晶面和晶向上原子排列的疏密不同因此原子结合力也就不同从而在不同的不同因此原子结合力也就不同从而在不同的晶面和晶向上显示出不同的性能这就是晶体具晶面和晶向上显示出不同的性能这就是晶体具有各向异性的原因
1.晶格:描述原子在晶体中排列方式的空间几何格架。 2.晶胞:反映晶格特征的最小单元。
3. 晶格参数:
晶胞棱边的长度和棱边夹角α、β、γ。
4. 三种典型的金属晶体结构 面心立方晶格、体心立方晶格、密排六方晶格。 面心立方晶格类型的金属有Cu、Al、Ni等,具有良
好的塑性; 密排六方晶格的金属有 Mg、Zn、Be等
Fe3C组成的机械混合物。
机械混合物的性质,基本上是各组成相性能的
平均值。
35 钢的显微组织
机械混合物P
将黑色部分放大,看到指纹状结构。其中白色
基体是Fe与C形成的固溶体, 含碳0.0218% 体 心立方晶格(称为铁素体F), 黑色条纹为 渗
碳体(Fe3C)。
黑色部分是F与Fe3C形成的机械混合物,称为

第一章金属的晶体结构

第一章金属的晶体结构

图2-6密排六方晶胞
第三节 晶体学概念
• • • • • • • 1.3.1 晶胞中的原子数 体心立方: 面心立方: 密排六方: 1.3.2 原子半径 1.3.3 配位数和致密度 配位数:指晶体结构中与任一个原子最近邻且等距离的原 子数目。 • 体心立方晶体8个,面心立方12个,密排六方12个,所以 面心立方和密排六方致密度高 • 致密度分别为0.68、0.74、0.74
图2-5
面心立方晶胞
• (3)密排六方晶胞(close packed lattice hexagonal):密排六方晶体的晶胞如图1.6所示。 • 它是由六个呈长方形的侧面和两个呈正六边形的 底面所组成的一个六方柱体。因此,需要用两个 晶格常数表示,一个是正六边形的边长a,另—个 是柱体的高c。在密排六方晶胞的每个角上和上、 下底面的小心都有一个原子,另外在中间还有三 个原子。因此,密排六方晶格的晶胞中所含的原 子数为:6×1/6×2+2×1/2+3=6个。 • 具有密排六方晶体结构的金属有Mg、Zn、Be、 Cd、α-Ti、α-Co等。
A、B组元组成的固溶体也可表示为A(B), 其中A为溶剂, B为 溶质。例如铜锌合金中锌溶入铜中形成的固溶体一般用α表 示, 亦可表示为Cu(Zn)。
• 固溶体特性:1固溶体成分可以在一定范围内变化, 在相图上表现为一个区域。2固溶体必须保持溶剂 组元的点阵类型。3纯金属结构有哪些类型,固溶 体也应有哪些类型,即固溶体本身没有独立的点 阵类型。4组元的原子尺寸不同会引起的点阵畸变, 原子尺寸相差越大,引起的畸变也越大。
• 1.3.4晶体中原子的排列方式(略) • 1.3.5 晶体结构中的间隙 • 三种典型晶体结构的四面体间隙、八面体间 隙(图1-13,1-14,1-15) • 间隙半径与原子半径之比rB/rA=?(见表1-2) • 可见面心立方结构八面体间隙比体心立方结 构四面体间隙还大,因此溶碳量大的分类 • 1.按溶剂分类 • (1)一次固溶体:以纯金属组元作为溶剂的 固溶体称为一次固溶体,也叫边际固溶体。 • (2)二次固溶体:以化合物为溶剂的固溶体 称二次固溶体,或叫中间固溶体。如电子 化合物、间隙相。 • 有的化合物和化合物之间,也可以相互溶 解而组成固溶体,如Fe3C和Mn3C,TiC和 TiN等。

第三章金属的晶体结构与结晶

第三章金属的晶体结构与结晶
第三章 金属的晶体结构与结晶
钢和铁是制造机器设备的主要材料,它们都是以铁和碳为 主而组成的合金,要了解钢和铸铁的本质,首先要了解纯铁的 晶体结构。固态物质按原子的聚集状态分为晶体和非晶体。
§3-1 金属的晶体结构 一、晶体的概念
金属在固态下一般都是晶体。 晶体:原子在空间呈规律性排列的固体物质; 注意:在固态时呈规律性排列,而在液态时金属原子的排列 并不规律。如图3-1(a) 金属的结晶就是由液态金属转变为固态金属的过程。
图3-5 实际金属晶体
在晶界上原子的排列不像晶粒内部那样有规则,这种原子 排列不规则的部位称为晶体缺陷。根据晶体缺陷的几何特点, 将晶体缺陷分为点缺陷、线缺陷和面缺陷三种。 1. 点缺陷:不规则区域在空间三个方向上的尺寸都很小, 例如空位、置换原子、间隙原子。如图3-6
空位
间隙原子
置换原子
间隙原子
图3-3 面心立方晶格Fra bibliotek 3.密排六方晶格:由两个简单六方晶胞穿插而成,晶胞为六 方柱体,柱体的12个顶角和上、下面中心上各排列一个原子, 在上、下面之间还有三个原子。如图3-4
图3-4 密排六方晶格
(一般规律)面心立方的金属塑性最好,体心立方次之,密排六方的 金属较差。
§3-2 实际金属的结构 一、多晶体结构
1.铸态晶:液态金属结晶后形成的晶体。将铸锭剖开可以 看到三个不同的晶区: 表面细小等轴晶粒层:组织致密,性能比较均匀一致,无 脆弱晶界面,有良好的热加工性能和力学性能,但易形成缩松。 柱状晶粒区:性能具有方向性;热加工性能较低;组织致 密,空隙和气孔较少,所以沿柱状晶粒的轴向强度高,韧性也 较好。 中心粗大等轴晶粒层:组织不均匀,还存在缩孔,缩松, 夹杂及偏析等缺陷。
图3-9 纯金属冷却曲线

金属材料的实际晶体结构金属的同素异构转变合金的相结构金属材料

金属材料的实际晶体结构金属的同素异构转变合金的相结构金属材料

金属材料的实际晶体结构
•点缺陷 •线缺陷
的晶体缺陷
晶体中呈点状的缺陷,即在三维
空间上尺寸都很小的晶体缺陷 三维空间的两个方向上尺寸很小
•面缺陷
在二维方向上尺寸很大,在第三
个方向上尺寸很小,呈面状分布的缺陷
二、纯金属的结晶
金属由原子不规则排列的 液体转变为原子规则排 列的固体的过程称为结 晶。 纯金属的冷却曲线及过 冷度。 用热分析法进行研究 纯金属的冷却曲线(理论) 纯金属的冷却曲线(实际)
晶体结构的概念
晶格和晶胞: 表示原子在晶体中排列规律的空间格架叫做晶 格。 能完整地反映晶格特征的最小几何单元,称为 晶胞。 晶面和晶向: 在晶体中由一系列原子组成的平面,秋为晶面。 通过两个或两个以上原子中心的直线,可代表 晶格空间排列的一定方向,称为晶向
金属晶格的类型
体心立方晶格:它的晶胞是一个立方体,原子位于立方 体的八个顶角上和立方体的中心。如:铬(Cr)、钒 (V)、钨(W)、钼(Mo)及α-Fe 面心立方晶格:它的晶胞也是一个立方体,原子位于立 方体的八个顶角上和立方体六个面的中心。 如:铝 (Al)、铜(Cu)、铅(Pb)、镍(Ni)及γ-Fe 密排六方晶格:它的晶胞是一个正六棱柱体,原子排列 在柱体的每个顶角上和上、下底面的中心,另外三个 原子排列在柱体内。属于这种晶格类型的金属有镁 (Mg)、铍(Be)、镉(Cd)、及锌(Zn)等。
1.铸锭的组织结构
表面细晶粒区
柱状晶粒区
等轴晶粒区
2.定向结晶和单晶
七、金属材料塑性变形与再结晶
金属材料塑性变形
塑性变形实质 冷变形化
回复
再结晶
晶粒长大
八、金属材料焊接接头组织
焊缝
熔合区

工程材料与机械制造基础-3-金属的晶体结构与结晶

工程材料与机械制造基础-3-金属的晶体结构与结晶

17:05
金属的结晶
• 纯金属的结晶过程 • 液态金属的结晶过程分为两个阶段:① 形成晶核,② 晶核长大。
17:05
纯金属的结晶过程
• 晶核的形成过程 • 液态金属中存在着原子排列规则的小原子团,它们时 聚时散,称为晶坯。 • 在T0以下, 经一段时间后(即孕育期), 一些大尺寸的 晶坯将会长大,称为晶核。
刃型位错
螺型位错
刃型位错和螺型位错
刃型位错的形成
实际金属的结构
• 刃型位错:当一个完整晶体某晶面以上的某处多出半 个原子面,该晶面象刀刃一样切入晶体,这个多余原 子面的边缘就是刃型位错。 • 半原子面在滑移面以上的称正位错,用“ ┴ ”表示。 • 半原子面在滑移面以下的称负位错,用“ ┬ ”表示。
17:05
{110}
Z (110) (011) (011) (101) (101) Y (110)
X
17:05
金属的晶体结构
立方晶系常见的晶向为:
100 : [100]、 [010]、 [001] 110 : [110]、 [101]、 [011]、 [1 10]、 [1 01]、 [0 1 1] 111 : [111]、 [1 11]、 [1 1 1]、 [111]
密排六方晶格的参数
常见的金属晶格
• 密排六方晶格
晶格常数:底面边长 a 和高 c,
c/a=1.633
1 原子半径 :r a 2 原子个数:6 配位数: 12 致密度:0.74 常见金属: Mg、Zn、 Be、Cd等
常见的金属晶格
三种常见晶格的密排面和密排方向
•单位面积晶面上的原子数称晶面原子密度。
17:05 三斜
金属的晶体结构

金属材料与热处理(全)精选全文

金属材料与热处理(全)精选全文

2、常用的细化晶粒的方法:
A、增加过冷度
B、变质处理 C、振动处理。
三、同素异构转变
1、金属在固态下,随温度的改变有一种晶格转变为另一晶格的现象称为 同素异构转变。
2、具有同素异构转变的金属有:铁、钴、钛、锡、锰等。同一金属的同素 异构晶体按其稳定存在的温度,由低温到高温依次用希腊字母α,β,γ, δ等表示。
用HBS(HBW)表示,S表示钢球、W表示硬质合金球 当F、D一定时,布氏硬度与d有关,d越小,布氏硬度值越大,硬度越高。 (2)布氏硬度的表示方法:符号HBS之前的数字为硬度值符号后面按以下顺 序用数字表示条件:1)球体直径;2)试验力;3)试验力保持的时间 (10~15不标注)。
应用范围:主要适于灰铸铁、有色金属、各种软钢等硬度不高的材料。
2、洛氏硬度
(1)测试原理:
采用金刚石圆锥体或淬火钢球压头,压入金属表面后,经规定保持时间后即 除主试验力,以测量的压痕深度来计算洛氏硬度值。
表示符号:HR
(2)标尺及其适用范围:
每一标尺用一个字母在洛氏硬度符号HR后面加以注明。常用的洛氏硬度标 尺是A、B、C三种,其中C标尺应用最为广泛。
见表:P21 2-2
§2-2金属的力学性能
学习目的:★了解疲劳强度的概念。 ★ 掌握布氏硬度、洛氏硬度、维氏硬度的概念、硬
度测试及表示的方法。 ★掌握冲击韧性的测定方法。 教学重点与难点 ★布氏硬度、洛氏硬度、维氏硬度的概念、硬度测
试及表示的方法。
§2-2金属的力学性能 教学过程:
复习:强度、塑性的概念及测定的方法。
2、 非晶体:在物质内部,凡原子呈无序堆积状态的(如普通玻璃、松 香、树脂等)。 非晶体的原子则是无规律、无次序地堆积在一起的。

金属材料的结构与组织 36页PPT文档

金属材料的结构与组织 36页PPT文档
docin/sundae_meng
2.固溶体
• 根据溶质原子在溶剂中所处位置不同,固溶体可分为间隙 固溶体和置换固溶体两大类。 (1)间隙固溶体 如图2-10(a)所示。 (2)置换固溶体 如图2-10(b)所示。
docin/sundae_meng
图2-10 晶格结构模型
2.1.4 金属材料的组织
图2do-1ci2n/su大nd分ae_子me链ng的形态
(3)空间构型 • 图2-13 所示为乙烯聚合物常见的三种空间构型。
图2-13 乙烯聚合物的立体异构
docin/sundae_meng
2.大分子链的构象及柔性
图2-14 do分cin/子sun链da的e_m内en旋g 转示意图
3.高分子材料的聚集态 • 图2-15为聚合物三种聚集态结构示意图。
(1‰~1%)。如图2-29所示。
docin/sundae_meng
图2-29 晶格构造模型
总之,陶瓷材料的性能特点是: 具有不可燃烧性、高耐热性、高化 学稳定性、不老化性、高硬度和良 好的抗压能力,但脆性很高,温度 急变抗力很低,抗拉、抗弯性能差。
docin/sundae_meng
思考题
• 2-1 什么叫晶体?什么叫非晶体? • 2-2 什么叫晶格?什么叫晶胞? • 2-3 常见的金属晶体有哪几种? • 2-4 铁有哪几种同素异晶体? • 2-5 晶体缺陷有哪几种?它们对力学性能有什么影响? • 2-6 什么叫固溶体?什么叫固溶强化现象? • 2-7 什么叫金属化合物?它有何特征? • 2-8 什么叫金属的组织? • 2-9 试述晶粒大小与力学性能的关系。 • 2-10 什么叫高分子材料?简述高分子材料的结构。
图2-22 橡胶在do一cin个/su承nd载ae_周me期ng中的应力-应变曲线

第3章金属的晶体结构

第3章金属的晶体结构
金属的晶体结构
1.1 1.2 1.3 金属的特征 金属的晶体结构 实际金属晶体中的晶体缺陷
1.1

金属的特征
良好的导电性和导热性;
良好的延展性(塑性变形能力);
不透明,具有光泽;

具有正的电阻温度系数,即电阻随温度升 高而升高。
金属:最外层电子数少,易变 成自由电子——正电性元素
原子结合:电子逸出共有,结合 力较大,无方向性和饱和性;
原子半径: a / 2 配位数:
a
密排六方晶格的配位数
晶格常数
底面边长a 底面间距c 侧面间角120 侧面与底面夹角90
晶胞原子数:
c
1 1 12 2 3 6 6 2
原子半径: a / 2 配位数: 12
a
致密度: 0.74
表 常见晶格类型的晶格参数 BCC 常见金属 原子半径R 原子个数N 配位数CE 致密度K
例:体心立方单晶体Fe其弹性 模量在 <111>方向为290000MN/m 2, 而在<100>方向为135000MN/m 2 体心立方单晶体Fe在磁场中, 沿<100>方向磁化比沿<111>方向磁 化容易。
1.3
实际金属晶体中的晶体缺陷
实际使用的金属是多晶体,并存在晶体缺陷。
单晶体:内部晶格位向完全一致的晶体(理想晶体)。 如单晶Si半导体。 多晶体:由许多位向不同的晶粒构成的晶体。
通常称晶体上半部多出原子面的位错为正刃型位错,用符号“┴”表 示,反之为负刃型位错,用“┬”表示。立体模型
(b)平面图 刃型位错示意图
(2)螺型位错
设想在简单立方晶体右端施加一切应力,使右端ABCD滑移面上下两

金属的晶体结构

金属的晶体结构

金属的晶体结构1、金属的晶体结构金属在固态下原子呈有序、有规则排列。

晶体有规则的原子排列,主要是由于各原子之间的相互吸引力与排斥力相平衡。

晶体特点:(1)有固定熔点,(2)原子呈规则排列,宏观断口有一定形态且不光滑(3)各向异性,由于晶体在不同方向上原子排列的密度不同,所以晶体在不同方向上的性能也不一样。

三种常见的晶格及分析(1)体心立方晶格:铬,钒,钨,钼,α-Fe。

1/8*8+1=2个原子(2)面心立方晶格:铝,铜,铅,银,γ-Fe。

1/8*8+1/2*6=4个原子(3)密排六方晶格:镁,锌。

6个原子•用以描述原子在晶体中排列的空间格子叫晶格体心立方晶格面心立方晶格密排六方晶格2、金属的结晶结晶的概念:金属材料通常需要经过熔炼和铸造,要经历有液态变成固态的凝固过程。

金属由原子的不规则排列的液体转变为规则排列的固体过程称为结晶。

结晶过程:不断产生晶核和晶核长大的过程冷却曲线:过冷现象:实际上有较快的冷却速度。

过冷度:理论结晶温度与实际结晶温度之差,过冷度。

金属结晶后晶粒大小一般来说,晶粒越细小,材料的强度和硬度越高,塑性韧性越好为了提高金属的力学性能,必须控制金属结晶后晶粒的大小。

细化晶粒的根本途径:控制形核率及长大速度。

细化晶粒的方法:(1)增大过冷度,增加晶核数量(2)加入不熔物质作为人工晶核(3)机械振动、超声波振动和电磁振动金屬晶體缺陷:金屬材料以肉眼觀察其外表似乎是完美的;實際不然,金屬晶體含有許多缺陷,這些缺陷可分類為點缺陷、線缺陷及面缺陷。

這些缺陷對金屬材料的性質有很重要的影響。

點缺陷:金屬最簡單形式的點缺陷就是空孔空孔是最簡單形式的點缺陷,原子在結晶格子位置上消失间隙原子置代原子線缺陷:線缺陷一般通稱為「差排」(dislocation) 。

差排的產生主要與金屬在機機加工時的塑性變形有關;亦即金屬塑性變形量愈大,差排也就愈多。

面缺陷金屬的缺陷有:外表面、晶粒界面(簡稱晶界)及疊差等。

工程材料及机械制造基础-3-金属的晶体结构及结晶

工程材料及机械制造基础-3-金属的晶体结构及结晶
工程材料与机械制造基础
第三章 金属的晶体结构与结晶
海洋科学与技术学院 贾 非
Dalian University of Technology
12:39
主要内容
金属的晶体结构 晶体的概念 常见的金属晶格 晶体结构的致密度
实际金属的结构 多晶体结构 晶格缺陷
金属的结晶 金属的结晶过程 金属的同素异构转变 金属铸锭的组织特点
• 刃型位错:当一个完整晶体某晶面以上的某处多出半 个原子面,该晶面象刀刃一样切入晶体,这个多余原 子面的边缘就是刃型位错。
• 半原子面在滑移面以上的称正位错,用“ ┴ ”表示。 • 半原子面在滑移面以下的称负位错,用“ ┬ ”表示。
• 位错密度:单位体积内所包 含的位错线总长度。
= S/V(cm/cm3或1/cm2)
12:39
金属的晶体结构
立方晶系常见的晶面为:
{100} : (100)、(010)、(001)



{110} : (110)、(101)、(011)、(110)、(1 01)、(011)



{111} : (111)、(111)、(111)、(111)
12:39
{110}
Z
(011)
(110) (011) (101)
• 金属的位错密度为104~1012/cm2
• 位错对性能的影响:金属的 塑性变形主要由位错运动引 起,因此阻碍位错运动是强 化金属的主要途径。
• 减少或增加位错密度都可以 提高金属的强度。

金属晶须
退火态 (105-108/cm2)
加工硬化态 (1011-1012/cm2)

实际金属的结构
电子显微镜下的位错
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 金属材料
上节回顾
原子间的键合
离子键 共价键 金属键 范德瓦尔斯键 氢键
晶体学基础
空间点阵 晶胞 晶系 布拉菲点阵 空间点阵与晶体结构
2.2.3 纯金属的晶体结构
金属晶体中的结合键为金属键,由 于金属键无饱和性、无方向性,所 以大多数金属晶体都是具有紧密排 列、对称性高的简单晶体结构。
1. 三种典型的金属晶体结构
纯铁加热时的膨胀曲线
2.3 晶体结构的缺陷
晶体在定义上有序是完美无缺的,但实际晶体 中存在各式各样的缺陷(原子水平的,有的则是较 大尺寸)。 原子水平的缺陷对聚合物材料没有什么影响,但 对金属或陶瓷的性质和性能就会有很大影响。缺陷的 影响既有正面的也有负面的,利用和控制晶体中的缺 陷,可以对材料进行增强,提高材料的流动加工性。 有时甚至可以人为引入一些缺陷,赋予材料更高的导 电性、更强的磁性等。所以“缺陷”并不一定是贬义 的,它有许多值得利用的价值。
(2)点阵常数与原子半径的关系
点阵常数:晶胞的棱边长度(a,b,c)
不同金属可以有相同的点阵类型,但却具有 各不相同的点阵常数,且随温度不同而变化
面心立方结构(a=b=c )
体心立方结构(a=b=c )
密排六方结构(a=b≠c )
点阵常数用a和c来表示, 轴比:c/a=1.633,a=2r(原子看做等径钢球) 轴比:c/a≠1.633,(a2/3+c2/4)1/3=2r
1. 金属形变基础
加工硬化或冷变形强化 断裂
塑性形变 (均匀的) 弹性形变
应力-应变曲线
1. 塑性形变对金属材料组织和性能的影响
(1)冷形变金属的组织
金属材料经塑性形变后,组织结构会发生明显 的变化。除了每个晶粒内部出现大量的滑移带 或孪晶带外,还会出现新的亚晶,各种结构缺 陷(如位错、空位、间隙原子、层错)的浓度 也升高。随着形变量的增加,原来的等轴晶粒 将逐渐沿其变形方向伸长。当形变量很大时, 晶界变得模糊不清,晶粒以难以分辨并沿材料 流变伸展的方向呈现纤维状,称为纤维组织。 这种纤维组织沿其形变方向强度、硬度增加, 横向则不然,出现了性能的各向异性。
点缺陷:其特征是在三维空间的各个方向上
尺寸都很小,尺寸范围约为一个或几个原子尺 度,故称为零维缺陷,如:空穴、间隙原子、 杂质或溶质原子等
线缺陷:其特征是在三维两个方向上尺寸都
很小,另外一个方向上的尺度相对很长,故也 称一维缺陷,如:位错
面缺陷:其特征是在三维空间一个方向上尺
寸很小,另外两个方向上的尺寸很大,故称为 二维缺陷,如:晶界、相界等
体心立方结构 (BCC) 面心立方结构(FCC) 密排六方结构 (HCP)
面心立方(FCC或A1)的晶胞与刚球模型
Al、Cu、Au、Ag、Pt、Pb、γ-Fe
体心立方(BCC或A2)晶胞与刚球模型
W、V、β-Ti、α-Fe、K
六方密堆积结构(hcp或A3)
Mg、Zn、Cd、Ag、α-Be、α-Ti、
1. 点缺陷
材料在加工过程中得到能量产生空穴,或人为 导入杂质,或人为制造合金时就会产生各类点 缺陷,正常的晶体位置缺少原子就称为空穴。 材料在结晶过程中,加热时或受到辐射作用时 都会产生空穴。室温下空穴数目很少,但随着 温度升高而增多。
当有外来原子占据正常晶格点中间的间隙位置 时,就构成间隙缺陷。虽然间隙原子比晶格上 的原子小得多,但仍比间隙尺寸要大。结果使 周围的原子受到挤压而变形。间隙原子有时是 杂质,有时是人为导入的。如将碳原子导入铁 的晶格以形成钢。这种间隙缺陷一旦引入,数 目就是固定的,不会因温度变化而改变。
3种典型的金属单晶体的应力-应变曲线
铝单晶与多晶体的应力-应变曲线比较(室温)
课堂作业
1. 试述原子间的键合方式,并举例说明。
2. 空间点阵的概念?空间点阵和晶体结构的关系?
3. 纯金属的晶体结构有哪些?并分析他们的特征
4. 金属晶体结构的缺陷?
5. 描述金属材料的形变过程。
(2)冷形变金属的加工硬化
Ⅱ线性硬化阶段: 位错密度增加, 其它滑移系统被 激活,形成压杆 位错,阻碍位错 的继续运动,从 而产生大的硬化 效应 Ⅰ易滑移阶段: 加工硬化主要来 自位错的增殖所 引起的内应力 单晶体加工硬化3阶段示意图
Ⅲ抛物线型硬化 阶段:滑移线变 粗成滑移带,新 增加的应变几乎 全部集中在这些 滑移带内,且滑 移带碎花。
(3)配位数和致密度 定量地表示原子排列的紧密程度
配位数:晶体结构中任一原子周围最近邻且等 距离的原 晶胞中原子体积与晶胞体积之比值。
K=nv/V
(4)晶体结构中的间隙 面心立方晶体结构的间隙
体心立方晶体结构的间隙
密排六方晶体结构的间隙
2. 金属的多晶型性
螺旋位错
3. 面缺陷
晶粒的边界与相的边界构成面缺陷。晶粒生长时 相遇的面就是晶粒的边界。尽管晶体的结构相同, 但原子平面的取向可以不同,所以在晶体界面上的 原子可能不属于任何一方。
(a) 小角晶粒边界 (b) 双层边界
2.4 金属材料的形变
1. 金属形变基础
2. 塑性形变对金属材料组织和性能的影响
点缺陷 (a)空穴;(b)间隙原子;(c)小取代原子;(d)大取代原子; (e)Frenkel缺陷;(f)Schttky缺陷
2. 线缺陷
线缺陷就是晶体中的位错。按严格的几何意义,位 错是直径约5个原子的柱状缺陷,在晶体中以各种 方向延伸,不一定是直线。位错在金属材料中大量 存在,在自然生长的金属单晶中,每单位平方厘米 的面积就有106个位错穿过。
(1)晶胞中的原子数 (2)点阵常数与原子半径的关系 (3)配位数和致密度 (4)晶体结构中的间隙
(1)晶胞中的原子数
顶点占1/8
棱占1/4
面心占1/2
体心占1
面心立方结构:
n=8×1/8+6×1/2=4
体心立方结构:
n=8×1/8+1=3
密排六方结构:
n=12×1/6+2×1/2+3=6
相关文档
最新文档