2020-2021潍坊市实验中学七年级数学下期中试卷附答案
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16.若 , ,则x=_____________.
17.若一个正数x的平方根是2a+1和4a-13,则a=____,x=____.
18.将点P向下平移3个单位,向左平移2个单位后得到点Q(3,-1),则点P坐标为______.
19.若规定 表示不超过 的最大整数,例 , ,若 ,则 的取值范围________
本题考查了同位角,两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.
6.D
解析:D
【解析】
【分析】
根据同位角的特征:两条直线被第三条直线所截形成的角中,两个角都在两条被截直线的同侧,并且在第三条直线(截线)的同旁,由此判断即可.
【详解】
∴a∥b,
∴∠4=∠5,
∵∠3=∠5,∠3=55°,
∴∠4=∠3=55°,
故选C.
【点睛】
本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识.
12.D
解析:D
【解析】
【分析】
【详解】
如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,
∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,
【点睛】
本题考查三次根式的规律,二次根式规律类似:二次根号内的式子扩大或缩小100倍,则得到的结果扩大或缩小10倍.
17.25【解析】【分析】【详解】∵正数m的平方根是2a+1和4a−13∴2a+1+4a−13=0解得a=2∴2a+1=2×2+1=5∴m=5²=25故答案为225
解析:25
【解析】
【分析】
【详解】
∵AB∥CD
∴∠GEC=∠1=50°
∵EF平分∠GED
∴∠2=∠GEF= ∠GED= (180°-∠GEC)=65°
故答案为C.
【点睛】
本题考查的知识点是平行线性质和角平分线定理,解题关键是熟记角平分线定理.
11.C
解析:C
【解析】
【分析】
利用平行线的判定和性质即可解决问题.
【详解】
如图,
∵∠1+∠2=180°,
8.下列生活中的运动,属于平移的是()
A.电梯的升降 B.夏天电风扇中运动的扇叶
C.汽车挡风玻璃上运动的刮雨器 D.跳绳时摇动的绳子
9.在平面直角坐标中,点M(-2,3)在()
A.第一象限 B.第二象限 C.第三象限 D.第四象限
10.如图,AB∥CD,EF平分∠GED,∠1=50°,则∠2=()
A.50°B.60°C.65°D.70°
【详解】
∵1- <1.493<1+ ,
∴ ,故①正确,
当x=0.3时, =1,2 =0,故②错误;
∵ ,
∴4- ≤ x-1<4+ ,
解得:9≤x<11,故③正确,
∵当m为非负整数时,不影响“四舍五入”,
∴ =m+ ,故④正确,
当x=1.4,y=1.3时, =3, =2,故⑤错误,
综上所述:正确的结论为①③④,
经检验 是分式方程的解;
当 ,即 时,所求方程变形为 ,
去分母得: 代入公式得: ,
解得: (舍去),
经检验 是分式方程的解,
综上,所求方程的解为 或-1.
故选D.
【点睛】
本题考查的知识点是分式方程的解,解题关键是弄清题中的新定义.
5.D
解析:D
【解析】
【分析】
根据同位角的定义,对每个图进行判断即可.
C.(3)、(4)、(5)D.(1)、(2)、(5)
6.下列图形中, 和 的位置关系不属于同位角的是()
A. B. C. D.
7.下列命题中,是真命题的是()
A.在同一平面内,垂直于同一直线的两条直线平行
B.相等的角是对顶角
C.两条直线被第三条直线所截,同旁内角互补
D.过一点有且只有一条直线与已知直线平行
2020-2021潍坊市实验中学七年级数学下期中试卷附答案
一、选择题
1.点A在x轴的下方,y轴的右侧,到x轴的距离是3,到y轴的距离是2,则点A的坐标是()
A. B. C. D.
2.下列说法一定正确的是()
A.若直线 , ,则 B.一条直线的平行线有且只有一条
C.若两条线段不相交,则它们互相平行D.两条不相交的直线叫做平行线
解析:A
【解析】分析:根据平行线的判定与性质,对顶角的性质,平行线的作图,逐一判断即可.
详解:根据平行公理的推论,可知:在同一平面内,垂直于同一直线的两条直线平行,故正确;
根据对顶角的定义,可知相等的角不一定是对顶角,故不正确;
根据两条平行的直线被第三条直线所截,同旁内角互补,故不正确;
根据平行公理,可知过直线外一点有且只有一条直线与已知直线平行,故不正确.
【分析】
【详解】
解:过B作BD∥a,
∵直线a平移后得到直线b,
∴a∥b,
∴BD∥b,
∴∠4=∠2,∠3=∠1=60°,
∴∠2=∠ABC-∠3=70°,
故答案为:70.
16.-00433【解析】【分析】三次根式变化规律为:三次根号内的式子扩大或缩小1000倍则得到的结果扩大或缩小10倍根据规律可得x的值【详解】从3512变为-03512缩小了100倍且添加了-∴根据规律
解析:-0.0433
【解析】
【分析】
三次根式变化规律为:三次根号内的式子扩大或缩小1000倍,则得到的结果扩大或缩小10倍,根据规律可得x的值.
【详解】
从35.12变为-0.3512,缩小了100倍,且添加了“-”
∴根据规律,三次根式内的式子应该缩小1000000倍,且添加“-”
故答案为:-0.0433
∴∠ABE+∠BED+∠CDE=360°.
又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,
∴∠FBE+∠FDE= (∠ABE+∠CDE)= (360°﹣90°)=135°,
∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.
故选D.
【点睛】
本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.
24.解方程组:
25.已知关于x、y的二元一次方程组 的解是 ,求关于a、b的二元一次方程组 的解.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【解析】
【分析】
根据点A在x轴的下方,y轴的右侧,可知点A在第四象限,根据到x轴的距离是3,到y轴的距离是2,可确定出点A的横坐标为2,纵坐标为-3,据此即可得.
20. ________.
三、解答题
21.如图,AD//BC,∠A=∠C.求证:AB//DC.
22.如图,点E在DF上,点B在AC上, , ,试说明: ,将过程补充完整.
解: 已知
______
等量代换
______
______
又 已知
______
______
23.某学校为了迎接“中招考试理化生实验”,需购进 , 两种实验标本共75个.经调查, 种标本的单价为20元, 种标本的单价为12元,若总费用不超过1180元,那么最多可以购买多少个 种标本?(列不等式解决)
二、填空题
13.3m-n<10【解析】【分析】根据题意利用不等符号进行连接即可得出答案【详解】解:由题意可得:3m-n<10故答案为:3m-n<10【点睛】本题考查不等式的书写
解析:3m-n<10.
【解析】
【分析】
根据题意利用不等符号进行连接即可得出答案.
【详解】
解:由题意可得:3m-n<10
故答案为:3m-n<10.
解:A.根据根据同位角的特征得,∠1和∠2是同位角.
B.根据根据同位角的特征得,∠1和∠2是同位角.
C.根据根据同位角的特征得,∠1和∠2是同位角.
D.由图可得,∠1和∠2不是同位角.
故选:D.
【点睛】
本题主要考查了同位角,同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.
7.A
【详解】
A、在同一平面内,平行于同一直线的两条直线平行.故正确;
B、过直线外一点,有且只有一条直线与已知直线平行.故错误;
C、根据平行线的定义知是错误的.
D、平行线的定义:在同一平面内,两条不相交的直线叫做平行线.故错误;
故选:A.
【点睛】
此题考查平行线的定义、性质及平行公理,熟练掌握公理和概念是解题的关键.
14.对非负实数 “四舍五入”到个位的值记为 ,即当 为非负整数时,若 ,则 ,如 , ,给出下列关于 的结论:
① ;
② ;
③若 ,则实数 的取值范围是 ;
④当 , 为非负整数时,有 ;
⑤ ;
其中,正确的结论有_________(填写所有正确的序号).
15.如图,直线a平移后得到直线b,∠1=60°,∠B=130°,则∠2=________°.
故选:A.
点睛:此题主要考查了平行线的判定与性质,关键是熟记公理的内容和特点,找到反例说明即可.
8.A
解析:A
【解析】
【分析】
平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动;
旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心.所以,它并不一定是绕某个轴的.然后根据平移与旋转定义判断即可.
【点睛】
本题考查不等式的书写.
14.①③④【解析】【分析】对于①可直接判断②⑤可用举反例法判断③④我们可以根据题意所述利用不等式判断【详解】∵1-<1493<1+∴故①正确当x=03时=12=0故②错误;∵∴4-≤x-1<4+解得:9
解析:①③④
【解析】
【分析】
对于①可直接判断,②、⑤可用举反例法判断,③、④我们可以根据题意所述利用不等式判断.
【详解】
∵正数m的平方根是2a+1和4a−13,
∴2a+1+4a−13=0,
解得a=2,
∴2a+1=2×2+1=5,
∴m=5²=25.
故答案为2,25.
18.(52)【解析】【分析】设点P的坐标为(xy)然后根据向左平移横坐标减向下平移纵坐标减列式进行计算即可得解【详解】设点P的坐标为(xy)根据题意x-2=3y-3=-1解得x=5y=2则点P的坐标为(
解析:(5,2)
【解析】
3.如图,AB∥CD,∠C=80°,∠CAD=60°,则∠BAD的度数等于( )
A.60°B.50°C.45°D.40°
4.对于两个不相等的实数 ,我们规定符号 表示 中较大的数,如 ,按这个规定,方程 的解为( )
A. B. C. D. 或-1
5.下列图中∠1和∠2是同位角的是( )
A.(1)、(2)、(3)B.(2)、(3)、(4)
【详解】
∵点A在x轴的下方,y轴的右侧,
∴点A的横坐标为正,纵坐标为负,
∵到x轴的距离是3,到y轴的距离是2,
∴点A的横坐标为2,纵坐标为-3,
故选A.
【点睛】
本题考查了点的坐标,熟知点到x轴的距离是点的纵坐标的绝对值,到y轴的距离是横坐标的绝对值是解题的关键.
2.A
解析:A
【解析】
【分析】
根据平行线的定义、性质、判定方法判断,排除错误答案.
【详解】
(1)图中∠1和∠2是同位角;故本项符合题意;
(2)图中∠1和∠2是同位角;故本项符合题意;
(3)图中∠1和∠2不是同位角;故本项不符合题意;
(4)图中∠1和∠2不是同位角;故本项不符合题意;
(5)图中∠1和∠2是同位角;故本项符合题意.
图中是同位角的是(1)、(2)、(5).
故选D.
【点睛】
11.如图,已知∠1+∠2=180°,∠3=55°,那么∠4的度数是( )
A.35°B.45°C.55°D.125°
12.如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=( )
A.110°B.120°C.125°D.135°
二、填空题
13.m的3倍与n的差小于10,用不等式表示为______________.
【详解】
电梯的升降的运动属于平移,运动的刮雨器、摇动的绳子和吊扇在空中运动属于旋转;
故选A.
【点睛】
此题考查了平移与旋转的意义及在实际当中的运用,关键是根据平移的定义解答.
9.B
0,
∴(−2,3)在第二象限,
故选B.
10.C
解析:C
【解析】
【分析】
由平行线性质和角平分线定理即可求.
3.D
解析:D
【解析】
【分析】
【详解】
∵∠C=80°,∠CAD=60°,
∴∠D=180°﹣80°﹣60°=40°,
∵AB∥CD,
∴∠BAD=∠D=40°.
故选D.
4.D
解析:D
【解析】
【分析】
分 和 两种情况将所求方程变形,求出解即可.
【详解】
当 ,即 时,所求方程变形为 ,
去分母得: ,即 ,
解得:
故答案为:①③④
【点睛】
本题考查了一元一次不等式组的应用和理解题意的能力,关键是看到所得值是个位数四舍五入后的值,问题可得解.
15.【解析】【分析】【详解】解:过B作BD∥a∵直线a平移后得到直线b∴a∥b∴BD∥b∴∠4=∠2∠3=∠1=60°∴∠2=∠ABC-∠3=70°故答案为:70
解析:【解析】
17.若一个正数x的平方根是2a+1和4a-13,则a=____,x=____.
18.将点P向下平移3个单位,向左平移2个单位后得到点Q(3,-1),则点P坐标为______.
19.若规定 表示不超过 的最大整数,例 , ,若 ,则 的取值范围________
本题考查了同位角,两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.
6.D
解析:D
【解析】
【分析】
根据同位角的特征:两条直线被第三条直线所截形成的角中,两个角都在两条被截直线的同侧,并且在第三条直线(截线)的同旁,由此判断即可.
【详解】
∴a∥b,
∴∠4=∠5,
∵∠3=∠5,∠3=55°,
∴∠4=∠3=55°,
故选C.
【点睛】
本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识.
12.D
解析:D
【解析】
【分析】
【详解】
如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,
∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,
【点睛】
本题考查三次根式的规律,二次根式规律类似:二次根号内的式子扩大或缩小100倍,则得到的结果扩大或缩小10倍.
17.25【解析】【分析】【详解】∵正数m的平方根是2a+1和4a−13∴2a+1+4a−13=0解得a=2∴2a+1=2×2+1=5∴m=5²=25故答案为225
解析:25
【解析】
【分析】
【详解】
∵AB∥CD
∴∠GEC=∠1=50°
∵EF平分∠GED
∴∠2=∠GEF= ∠GED= (180°-∠GEC)=65°
故答案为C.
【点睛】
本题考查的知识点是平行线性质和角平分线定理,解题关键是熟记角平分线定理.
11.C
解析:C
【解析】
【分析】
利用平行线的判定和性质即可解决问题.
【详解】
如图,
∵∠1+∠2=180°,
8.下列生活中的运动,属于平移的是()
A.电梯的升降 B.夏天电风扇中运动的扇叶
C.汽车挡风玻璃上运动的刮雨器 D.跳绳时摇动的绳子
9.在平面直角坐标中,点M(-2,3)在()
A.第一象限 B.第二象限 C.第三象限 D.第四象限
10.如图,AB∥CD,EF平分∠GED,∠1=50°,则∠2=()
A.50°B.60°C.65°D.70°
【详解】
∵1- <1.493<1+ ,
∴ ,故①正确,
当x=0.3时, =1,2 =0,故②错误;
∵ ,
∴4- ≤ x-1<4+ ,
解得:9≤x<11,故③正确,
∵当m为非负整数时,不影响“四舍五入”,
∴ =m+ ,故④正确,
当x=1.4,y=1.3时, =3, =2,故⑤错误,
综上所述:正确的结论为①③④,
经检验 是分式方程的解;
当 ,即 时,所求方程变形为 ,
去分母得: 代入公式得: ,
解得: (舍去),
经检验 是分式方程的解,
综上,所求方程的解为 或-1.
故选D.
【点睛】
本题考查的知识点是分式方程的解,解题关键是弄清题中的新定义.
5.D
解析:D
【解析】
【分析】
根据同位角的定义,对每个图进行判断即可.
C.(3)、(4)、(5)D.(1)、(2)、(5)
6.下列图形中, 和 的位置关系不属于同位角的是()
A. B. C. D.
7.下列命题中,是真命题的是()
A.在同一平面内,垂直于同一直线的两条直线平行
B.相等的角是对顶角
C.两条直线被第三条直线所截,同旁内角互补
D.过一点有且只有一条直线与已知直线平行
2020-2021潍坊市实验中学七年级数学下期中试卷附答案
一、选择题
1.点A在x轴的下方,y轴的右侧,到x轴的距离是3,到y轴的距离是2,则点A的坐标是()
A. B. C. D.
2.下列说法一定正确的是()
A.若直线 , ,则 B.一条直线的平行线有且只有一条
C.若两条线段不相交,则它们互相平行D.两条不相交的直线叫做平行线
解析:A
【解析】分析:根据平行线的判定与性质,对顶角的性质,平行线的作图,逐一判断即可.
详解:根据平行公理的推论,可知:在同一平面内,垂直于同一直线的两条直线平行,故正确;
根据对顶角的定义,可知相等的角不一定是对顶角,故不正确;
根据两条平行的直线被第三条直线所截,同旁内角互补,故不正确;
根据平行公理,可知过直线外一点有且只有一条直线与已知直线平行,故不正确.
【分析】
【详解】
解:过B作BD∥a,
∵直线a平移后得到直线b,
∴a∥b,
∴BD∥b,
∴∠4=∠2,∠3=∠1=60°,
∴∠2=∠ABC-∠3=70°,
故答案为:70.
16.-00433【解析】【分析】三次根式变化规律为:三次根号内的式子扩大或缩小1000倍则得到的结果扩大或缩小10倍根据规律可得x的值【详解】从3512变为-03512缩小了100倍且添加了-∴根据规律
解析:-0.0433
【解析】
【分析】
三次根式变化规律为:三次根号内的式子扩大或缩小1000倍,则得到的结果扩大或缩小10倍,根据规律可得x的值.
【详解】
从35.12变为-0.3512,缩小了100倍,且添加了“-”
∴根据规律,三次根式内的式子应该缩小1000000倍,且添加“-”
故答案为:-0.0433
∴∠ABE+∠BED+∠CDE=360°.
又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,
∴∠FBE+∠FDE= (∠ABE+∠CDE)= (360°﹣90°)=135°,
∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.
故选D.
【点睛】
本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.
24.解方程组:
25.已知关于x、y的二元一次方程组 的解是 ,求关于a、b的二元一次方程组 的解.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【解析】
【分析】
根据点A在x轴的下方,y轴的右侧,可知点A在第四象限,根据到x轴的距离是3,到y轴的距离是2,可确定出点A的横坐标为2,纵坐标为-3,据此即可得.
20. ________.
三、解答题
21.如图,AD//BC,∠A=∠C.求证:AB//DC.
22.如图,点E在DF上,点B在AC上, , ,试说明: ,将过程补充完整.
解: 已知
______
等量代换
______
______
又 已知
______
______
23.某学校为了迎接“中招考试理化生实验”,需购进 , 两种实验标本共75个.经调查, 种标本的单价为20元, 种标本的单价为12元,若总费用不超过1180元,那么最多可以购买多少个 种标本?(列不等式解决)
二、填空题
13.3m-n<10【解析】【分析】根据题意利用不等符号进行连接即可得出答案【详解】解:由题意可得:3m-n<10故答案为:3m-n<10【点睛】本题考查不等式的书写
解析:3m-n<10.
【解析】
【分析】
根据题意利用不等符号进行连接即可得出答案.
【详解】
解:由题意可得:3m-n<10
故答案为:3m-n<10.
解:A.根据根据同位角的特征得,∠1和∠2是同位角.
B.根据根据同位角的特征得,∠1和∠2是同位角.
C.根据根据同位角的特征得,∠1和∠2是同位角.
D.由图可得,∠1和∠2不是同位角.
故选:D.
【点睛】
本题主要考查了同位角,同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.
7.A
【详解】
A、在同一平面内,平行于同一直线的两条直线平行.故正确;
B、过直线外一点,有且只有一条直线与已知直线平行.故错误;
C、根据平行线的定义知是错误的.
D、平行线的定义:在同一平面内,两条不相交的直线叫做平行线.故错误;
故选:A.
【点睛】
此题考查平行线的定义、性质及平行公理,熟练掌握公理和概念是解题的关键.
14.对非负实数 “四舍五入”到个位的值记为 ,即当 为非负整数时,若 ,则 ,如 , ,给出下列关于 的结论:
① ;
② ;
③若 ,则实数 的取值范围是 ;
④当 , 为非负整数时,有 ;
⑤ ;
其中,正确的结论有_________(填写所有正确的序号).
15.如图,直线a平移后得到直线b,∠1=60°,∠B=130°,则∠2=________°.
故选:A.
点睛:此题主要考查了平行线的判定与性质,关键是熟记公理的内容和特点,找到反例说明即可.
8.A
解析:A
【解析】
【分析】
平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动;
旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心.所以,它并不一定是绕某个轴的.然后根据平移与旋转定义判断即可.
【点睛】
本题考查不等式的书写.
14.①③④【解析】【分析】对于①可直接判断②⑤可用举反例法判断③④我们可以根据题意所述利用不等式判断【详解】∵1-<1493<1+∴故①正确当x=03时=12=0故②错误;∵∴4-≤x-1<4+解得:9
解析:①③④
【解析】
【分析】
对于①可直接判断,②、⑤可用举反例法判断,③、④我们可以根据题意所述利用不等式判断.
【详解】
∵正数m的平方根是2a+1和4a−13,
∴2a+1+4a−13=0,
解得a=2,
∴2a+1=2×2+1=5,
∴m=5²=25.
故答案为2,25.
18.(52)【解析】【分析】设点P的坐标为(xy)然后根据向左平移横坐标减向下平移纵坐标减列式进行计算即可得解【详解】设点P的坐标为(xy)根据题意x-2=3y-3=-1解得x=5y=2则点P的坐标为(
解析:(5,2)
【解析】
3.如图,AB∥CD,∠C=80°,∠CAD=60°,则∠BAD的度数等于( )
A.60°B.50°C.45°D.40°
4.对于两个不相等的实数 ,我们规定符号 表示 中较大的数,如 ,按这个规定,方程 的解为( )
A. B. C. D. 或-1
5.下列图中∠1和∠2是同位角的是( )
A.(1)、(2)、(3)B.(2)、(3)、(4)
【详解】
∵点A在x轴的下方,y轴的右侧,
∴点A的横坐标为正,纵坐标为负,
∵到x轴的距离是3,到y轴的距离是2,
∴点A的横坐标为2,纵坐标为-3,
故选A.
【点睛】
本题考查了点的坐标,熟知点到x轴的距离是点的纵坐标的绝对值,到y轴的距离是横坐标的绝对值是解题的关键.
2.A
解析:A
【解析】
【分析】
根据平行线的定义、性质、判定方法判断,排除错误答案.
【详解】
(1)图中∠1和∠2是同位角;故本项符合题意;
(2)图中∠1和∠2是同位角;故本项符合题意;
(3)图中∠1和∠2不是同位角;故本项不符合题意;
(4)图中∠1和∠2不是同位角;故本项不符合题意;
(5)图中∠1和∠2是同位角;故本项符合题意.
图中是同位角的是(1)、(2)、(5).
故选D.
【点睛】
11.如图,已知∠1+∠2=180°,∠3=55°,那么∠4的度数是( )
A.35°B.45°C.55°D.125°
12.如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=( )
A.110°B.120°C.125°D.135°
二、填空题
13.m的3倍与n的差小于10,用不等式表示为______________.
【详解】
电梯的升降的运动属于平移,运动的刮雨器、摇动的绳子和吊扇在空中运动属于旋转;
故选A.
【点睛】
此题考查了平移与旋转的意义及在实际当中的运用,关键是根据平移的定义解答.
9.B
0,
∴(−2,3)在第二象限,
故选B.
10.C
解析:C
【解析】
【分析】
由平行线性质和角平分线定理即可求.
3.D
解析:D
【解析】
【分析】
【详解】
∵∠C=80°,∠CAD=60°,
∴∠D=180°﹣80°﹣60°=40°,
∵AB∥CD,
∴∠BAD=∠D=40°.
故选D.
4.D
解析:D
【解析】
【分析】
分 和 两种情况将所求方程变形,求出解即可.
【详解】
当 ,即 时,所求方程变形为 ,
去分母得: ,即 ,
解得:
故答案为:①③④
【点睛】
本题考查了一元一次不等式组的应用和理解题意的能力,关键是看到所得值是个位数四舍五入后的值,问题可得解.
15.【解析】【分析】【详解】解:过B作BD∥a∵直线a平移后得到直线b∴a∥b∴BD∥b∴∠4=∠2∠3=∠1=60°∴∠2=∠ABC-∠3=70°故答案为:70
解析:【解析】