高频电路设计与制作

合集下载

调频发射机

调频发射机

编号:(高频电路设计与制作)实训论文说明书题目:调频发射机院(系):信息与通信学院专业:电子信息工程学生姓名:学号:指导教师:2013年1月9日摘要本设计主要是设计一个调频发射机。

发射机的主要任务是完成有用的低频信号对高频载波的调制,将其变为在某一中心频率上具有一定带宽适合通过天线发射的电磁波。

课题重点在于设计能给发射就电路提供稳定频率的振荡调制电路。

首先通过放大器适当放大语音信号,以配合调制级工作;然后用电容三点式构成振荡电路为发射机提供基准频率载波,接着通过改变语音信号完成语音信号对载波信号的频率调制,最终利用丙类功率放大器,使已调制信号功率大大提高,经过串联滤波网络滤除高次谐波,最后通过拉杆天线发射出去。

通过后续电路的调试,可以证明本课题的电路基本成熟,基本能完成语音信号的电压放大、频率调制和功率放大,达到发射距离的要求。

关键字:调频发射机;调频;功率放大;LC振荡电路AbstractThis course is designed to design a FM transmitter. The transmitter is the main task of the complete useful low frequency signal of the high frequency modulation of the carrier, and turn it into a center frequency in the bandwidth for through the antenna has certain the launch of the electromagnetic waves. Subject to design can focus is to launch on the electric circuit provides stable frequency oscillation modulation circuit. First through the amplifier amplification appropriate speech signal to match a level; Then use capacitance SanDianShi constitute oscillating circuit for transmitter provide benchmark frequency carrier, and then through the change of speech signal to finish speech signal carrier signal frequency modulation, finally using c class power amplifier, make already modulation signal power greatly improved, after series filtering network higher harmonic filter, the last through the bars antenna launch out. Through subsequent circuit debugging, can prove this topic circuit basic mature, basic can finish speech signal voltage amplifier, frequency modulation and power amplifier, to launch the distance of the requirements.Key word: FM transmitter; FM; Power amplifier; LC oscillating circuit目录引言 (2)1 项目设计要求 (3)1.1设计任务 (3)1.2设计要求 (3)2 设计方案 (3)2.1设计方案框图 (3)2.2调制方案设计 (4)2.3单元方案设计 (4)3 电路设计 (4)3.1电路原理图设计 (4)3.2音频信号输入与放大 (5)3.3立体声合成与调频 (5)3.4高频振荡 (7)3.5高频功放 (8)4 系统调试 (8)5 实训总结 (9)致谢 (10)参考文献 (11)附录1 (12)附录2 (13)附录3 (14)引言高频电子技术的研究对象是产生、发射、接收和处理高频信号的有关电路,主要解决无线广播、电视和通信中发射和接收高频信号的有关技术问题。

基于单片机制作高频DDS信号发生器

基于单片机制作高频DDS信号发生器

基于单片机制作高频DDS信号发生器在现代科学和电子技术的不断进步下,数字信号发生器(DDS)已经成为了频率控制和生成的重要工具。

尤其是高频DDS信号发生器,其在雷达、通信、电子对抗等领域的应用具有不可替代的地位。

本文将介绍如何使用单片机制作高频DDS信号发生器。

一、DDS技术概述DDS,全称Direct Digital Synthesizer,即直接数字合成器,其工作原理是将数字信号通过数模转换器(DAC)转换成模拟信号。

DDS 技术的核心是相位累加器,它将输入的数字信号的相位进行累加,从而生成新的频率信号。

二、硬件设计1、单片机选择:本设计选用具有高速、低功耗、高集成度的单片机,如STM32F4系列。

2、频率控制字:通过设置频率控制字(FCW),可以控制输出信号的频率。

频率控制字由一个16位二进制数组成,表示了相位累加的步进大小。

3、存储器:使用Flash存储器存储预设的频率波形数据。

4、DAC:数模转换器将存储器中的波形数据转换成模拟信号。

本设计选用具有高分辨率、低噪声、低失真的DAC芯片。

5、滤波器:使用LC滤波器对DAC转换后的信号进行滤波,以得到更加纯净的信号。

三、软件设计1、相位累加器:相位累加器是DDS的核心,它将输入的数字信号的相位进行累加,从而生成新的频率信号。

2、波形查找表:将所需的波形数据存储在波形查找表中,通过查表的方式获取波形数据,可以大大提高DDS的工作效率。

3、控制逻辑:控制逻辑负责处理输入的控制信号,如启动、停止、频率控制字等。

4、通信接口:为了方便远程控制,需要设计通信接口,如SPI、I2C 等。

四、性能测试1、频率范围:测试DDS输出信号的频率范围是否满足设计要求。

2、频率分辨率:测试DDS输出信号的频率分辨率是否达到设计要求。

3、信号质量:测试DDS输出信号的信噪比、失真度等指标是否满足设计要求。

4、稳定性:长时间运行后,测试DDS输出信号的频率是否稳定。

5、远程控制:测试通信接口是否正常工作,可以通过计算机或者其他控制器对DDS进行远程控制。

高频感应加热电源控制电路优化设计

高频感应加热电源控制电路优化设计

高频感应加热电源控制电路优化设计摘要:感应加热电源是一种变压变频装置,广泛应用于机械行业中。

感应加热电源的负载是感应圈和工件共同组成的,实际应用时负载参数随被加热材料温度和量而变,其变化涉及磁、电、热传导等物理过程,影响因素很多,目前尚无实用的数学模型进行描述。

基于以上原因通常采用锁相环频率跟踪电路去控制逆变,让逆变器工作频率自动跟踪负载固有谐振频率,保证负载侧在高功率因数下运行。

但传统的控制电路存在许多缺点,下面本文对优化设计高频感应加热电源的控制电路进行研究。

关键词:感应加热;数字控制;自动保护;模块化设计前言:高频感应加热由于敏感度高,节能型好,近些年来备受人们的关注。

本文详细分析了半桥谐振逆变电路的工作原理,给出了其负载工作在感性、容性和电阻状态下的电路工作条件,并选择电路工作在感性状态才能确保主电路安全可靠的工作。

最后制作了样机并给出了实验结果,实验结果验证了理论分析的正确性。

1、概述感应加热相对于燃气、和煤等传统加热方式,它具有以下优点:(1)加热速度快;(2)热损少和加热效率高;(3)绿色环保无污染;(4)易于实现自动控制;(5)实现了加热部分和变换器部分的隔离,避免了因保护层的损坏而导致的漏电,在安全性上大大提高。

目前科研人员在感应加热电源方面做了大量的工作,利用全桥谐振电路设计了2kW的感应加热电源,能够实现开关器件的软开通,设计了数字控制的感应加热电磁炉,相对于模拟控制的感应加热电源,可以实现更多的控制功能,而且便于升级和维护。

2、感应加热电磁炉主电路的工作原理输入交流电为380V,经过二极管整流桥以及滤波后变为510V左右的直流,然后经过半桥逆变电路作用后,可以在负载两端的感应线圈中产生变化的磁场,从而使金属材料中产生涡流,最终产生热量。

接下来详细分析感应加热电磁炉所采用的半桥电路处在谐振工作情况下的工作原理。

开关管S1和S2为IGBT,并且S1和S2两端都反并联一个二极管D1和D2。

学好射频的书籍

学好射频的书籍

31.《无线通讯之射频被动电路设计》
『台』
台湾全华图书科技有限公司微带线设计,环形器,功分器,耦合器的设计理论加实例.
32.《射频与微波工程实践导论》
『美』 Joseph F. White 电子工业出版社2009新出,比较基础实用,适合射频工程师看。但内容不是很全面.
33.《移动通信技术》
科学技术出版社
个人书评:语言及其通俗易懂,完全没有深奥的理论在里面,入门者看看不错,但是设计方法感觉有点落后,完全手工计算.也感觉内容的太细致,此书一般.
5. 《振荡电路设计与应用》
『日』
稻叶宝

科学技术出版社
个人书评:这边书还不错,除了学到振荡电路设计,还学到了很多模拟电路的基础应用,唯一缺点书中的内容涉及频率的都不够高(k级,几M,几十,几百M的振荡器),做有源电路的可以看一下,整体感觉还行.
6. 《锁相环电路设计与应用》
『日』
远坂俊昭

科学技术出版社
个人书评:对PLL原理总是搞不太明白的同学可以参考此书,图形图片很多,让人很直观明白,比起其他PLL书只会千篇一律写公式强千倍。好书,值得收藏!
7. 《信号完整性分析》
『美』 Eric Bogatin 著电子工业出版社
个人书评:前几章用物理的方法看电子,感觉不好理解,写的感觉很拗口,翻译好像也有些不到位,但后面几章写的确实好,尤其是关于传输线的,对你理解信号的传输的实际过程,能建立一个很好的模型,推荐大家看一下,此书还是不错的.(看多了RF的,换换胃口)
『日』
市川欲一

科学技术出版社
个人书评:本人说实话比较喜欢日本人写书的风格和语言,及其通俗,配上图示,极其深奥的理论看起来明明朗朗,比那些从头到尾只会搬抄公式的某些教授强们多了,本书作者的实践之作,里面都是一些作者的设计作品和设计方法,推荐一看.

高频实验报告

高频实验报告
(5)记下此时AM波时对应的Ummax=和Ummin=,由公式m=(Um max --Um min) \ (Um max+Um min)求得调幅波m=。并画出条幅信号波形。
(6)调节调制信号的大小,观察m=100%和m>100%两种调幅波在过零点处的波形情况,比较他们的区别。
3.普通调幅波解调
(1)将示波器CH2接幅度调制模块中调幅波输出端J23(TF.OUT)。根据实验步骤调节红色旋钮VR5将输出信号设置为峰峰值为Vp-p=150mv左右的调幅信号,并调整调制信号大小使调幅度m<30%。
实验报告
课程名称:高频电子线路实验
实验项目:正弦波振荡器、振幅调制与解波
实验仪器:
系别:光电信息与通信工程
专业:通信工程
班级/学号:
学生姓名:
实验日期
成绩
实验一正弦波振荡器
一、实验目的:
1、掌握三端式振荡电路的基本原理,起震条件,振荡电路设计及电路参数计算。
2、通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影响。
CAP可变为C7、C14、C23、C19其中一个。为了满足起振条件的要求F的值不能太大也不能太小,通常取为1/3-1/8。其中Cj为变容二极管2CC1B,根据所加的静态电压对去静态电容,CT3为5-20PF的半可变电容。该高频等效电路未考虑负载电阻。西勒电路是在克拉波电路的基础上在电感两端并联了一个小电容,且满足CAP远大于(CT1+CT17),故其回路等效电容C≈CT1+CT17+Cj。故振荡频率f0=1/2л 。西勒电路在分立元件系统或集成高频电路系统中均获得广泛的应用。
用MC1496集成电路构成的条幅电路如下图所示,图中VR8用调节引出脚1、4之间平衡,R39与R46与电位器VR8组成平衡调节电路,改变VR8可以调节输出载波信号的大小,以使乘法器实现抑制载波的振幅调制或有载的振幅调制,脚1和脚4分别接电阻R43和R49可以较好的抑制载波漏信号和改变温度性能,器件采用双电源供电方式

高频电路设计与制作pdf

高频电路设计与制作pdf

高频电路设计与制作pdf高频电路设计与制作高频电路是指在频率较高的电磁波范围内工作的电路,通常在100kHz以上的频率范围内。

高频电路设计与制作是一门需要掌握许多专业知识和技巧的领域,但若能正确应用这些知识和技巧,将能设计出高效稳定的高频电路。

1. 高频电路的基本原理在开始设计高频电路之前,首先需要了解高频电路的基本原理。

高频电路的行为受到电磁波的特性以及元器件的频率响应影响。

因此,了解电磁波的传播原理以及各种元器件的频率响应是至关重要的。

2. 元器件选型与特性在设计高频电路时,正确选择元器件非常重要。

元器件的频率响应、耐压能力、噪声水平以及功耗等特性都必须考虑。

例如,对于高频放大电路,需要选择具有较高的增益和功率输出的应用特定晶体管。

3. 印制电路板(PCB)布局PCB布局对于高频电路来说至关重要。

首先,需要注意信号和电源线的走向,以减少干扰和串扰。

其次,为了最小化电磁波辐射,可以使用地面平面来提供完整的地面参考平面。

此外,适当的走线方式和阻抗匹配也是必不可少的。

4. 射频仿真工具的应用在进行高频电路设计时,使用射频仿真工具是必不可少的。

这些工具可以根据电路的参数和特性进行仿真,以提前预测电路的性能。

射频仿真工具还可以用于优化电路,提高性能并减少不必要的损耗。

5. 封装和散热设计对于高频电路来说,封装和散热设计也是重要的考虑因素。

封装应提供良好的屏蔽性能以及对高频信号的传输和接收能力。

散热设计则需要确保电路能够在高负载条件下保持稳定的工作温度。

在设计和制作高频电路时,需要注意以下几点:- 熟悉并理解高频电路的基本原理和特性。

- 选择合适的元器件,根据电路需求进行参数匹配。

- 进行良好的PCB布局,以减少干扰和电磁波辐射。

- 使用射频仿真工具对电路进行性能预测和优化。

- 注意封装和散热设计,确保电路的稳定性和高效性。

总之,高频电路设计与制作需要掌握一系列技术和知识,但是只要正确应用这些技术和知识,设计出高效稳定的高频电路是完全可行的。

电子电路——推荐书籍

电子电路——推荐书籍

1.《射频电路设计--理论与应用》『美』 Reinhold Ludwig 著电子工业出版社个人书评:射频经典著作,建议做RF的人手一本,里面内容比较全面,这本书要反复的看,每读一次都会更深一层理解.随便提一下,关于看射频书籍看不懂的地方怎么办?我提议先看枝干或结论有个大概印象,实在弄不明白就跳过(当然可问身边同事同学或GOOGLE一下),跳过不是不管它了,而是尽量先看完自己能看懂的,看第二遍的时候再重点抓第一次没有看懂的地方,人的思维是不断升华的,知识的也是一个系统体系,有关联的,当你把每一块砖弄明白了,就自然而然推测出金字塔塔顶是怎么架设出来的。

2. 《射频通信电路设计》『中』刘长军著科学技术出版社个人书评:有拼凑之嫌(大量引用书1和《微波晶体管放大电路分析与设计》内容),但还是有可取之处,加上作者的理解,比看外文书(或者翻译本)看起来要通俗易懂,毕竟是中国人口韵。

值得一看,书上有很多归纳性的经验.3.《高频电路设计与制作》『日』市川欲一著科学技术出版社个人书评:本人说实话比较喜欢日本人写书的风格和语言,及其通俗,配上图示,极其深奥的理论看起来明明朗朗,比那些从头到尾只会搬抄公式的某些教授强们多了,本书作者的实践之作,里面都是一些作者的设计作品和设计方法,推荐一看.4. 《LC滤波器设计与制作》『日』森荣二著科学技术出版社个人书评:语言及其通俗易懂,完全没有深奥的理论在里面,入门者看看不错,但是设计方法感觉有点落后,完全手工计算.也感觉内容的太细致,此书一般.5. 《振荡电路设计与应用》『日』稻叶宝著科学技术出版社个人书评:这边书还不错,除了学到振荡电路设计,还学到了很多模拟电路的基础应用,唯一缺点书中的内容涉及频率的都不够高(k级,几M,几十,几百M的振荡器),做有源电路的可以看一下,整体感觉还行.6. 《锁相环电路设计与应用》『日』远坂俊昭著科学技术出版社个人书评:对PLL原理总是搞不太明白的同学可以参考此书,图形图片很多,让人很直观明白,比起其他PLL书只会千篇一律写公式强千倍。

高频电子线路实验报告

高频电子线路实验报告

高频电子线路实验报告起止日期:年至年第学期学生姓名班级学号成绩指导教师电气与信息工程学院实验一高频小信号调谐放大器(3课时)一、实验目的1.掌握小信号调谐放大器的基本工作原理。

2.谐振放大器电压增益、通频带、选择性的定义、测试及计算。

二、实验仪器、器材1.THCGP-1 型高频电子线路综合实验箱 1 台2.双踪示波器 DS-5042M 1台万用表 MF-47 型 1 块3.器材:单调谐小信号放大模块 1 块三、实验原理单调谐小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。

其实验单元电路如图 2-1 所示(模块②上)。

图 2-1 实验电路该电路由三极管 Q1 及其集电极选频回路 T1 组成。

它对输入的高频小信号进行放大,并具有一定的选频作用。

基极偏置电阻 W3、R22、R4 和射极电阻 R5 决定三极管的静态工作点。

可变电阻 W3 改变基极偏置电阻将改变三极管的静态工作点,从而可改变放大器的增益。

四、实验步骤(一)单调谐小信号放大器单元电路实验1.根据图 2-1 实验电路熟悉实验板电路,并在电路板上找出与原理图对应的各测试点。

2.按图 2-2 所示图连接好实验电路。

3.打开实验箱电源,按下信号源和频率计的电源开关,此时开关下方的工作指示灯点亮。

4.打开小信号调谐放大器的电源开关,并观察工作指示灯是否点亮。

5.调节信号源“RF 幅度”和“频率调节”旋钮,使输出端口“RF1”“RF2”输出。

频率为 10.5MHz 左右的高频信号。

将信号输入到 2 号板的 J4 口。

先用示波器在 TH1 处观察信号峰-峰值约为 50mV。

(先调频率再调幅度)图 2-2 测试连接图6.调节高频信号发生器的输出信号频率,使单调谐放大器谐振:操作方法:将示波器探头接在调谐放大器的输出端 TH2,调节示波器直至能观察到输出信号的波形,先调节 W3 使输出信号幅度最大,再调节高频信号发生器的输出信号频率使示波器上的信号幅度最大(先用 500KHz 档调节,再用 20 KHz 档调节,直到示波器上的信号幅度最大),此时放大器即被调谐到输入信号的频率点上。

射频_微波工程师经典参考书汇总

射频_微波工程师经典参考书汇总

1.《射频电路设计--理论与应用》『美』Reinhold Ludwig 著电子工业出版社个人书评:射频经典著作,建议做RF的人手一本,里面内容比较全面,这本书要反复的看,每读一次都会更深一层理解.随便提一下,关于看射频书籍看不懂的地方怎么办?我提议先看枝干或结论有个大概印象,实在弄不明白就跳过(当然可问身边同事同学或GOOGLE一下),跳过不是不管它了,而是尽量先看完自己能看懂的,看第二遍的时候再重点抓第一次没有看懂的地方,人的思维是不断升华的,知识的也是一个系统体系,有关联的,当你把每一块砖弄明白了,就自然而然推测出金字塔塔顶是怎么架设出来的。

2. 《射频通信电路设计》『中』刘长军著科学技术出版社个人书评:有拼凑之嫌(大量引用书1和《微波晶体管放大电路分析与设计》内容),但还是有可取之处,加上作者的理解,比看外文书(或者翻译本)看起来要通俗易懂,毕竟是中国人口韵。

值得一看,书上有很多归纳性的经验.3.《高频电路设计与制作》『日』市川欲一著科学技术出版社个人书评:本人说实话比较喜欢日本人写书的风格和语言,及其通俗,配上图示,极其深奥的理论看起来明明朗朗,比那些从头到尾只会搬抄公式的某些教授强们多了,本书作者的实践之作,里面都是一些作者的设计作品和设计方法,推荐一看..5. 《振荡电路设计与应用》『日』稻叶宝著科学技术出版社个人书评:这边书还不错,除了学到振荡电路设计,还学到了很多模拟电路的基础应用,唯一缺点书中的内容涉及频率的都不够高(k级,几M,几十,几百M的振荡器),做有源电路的可以看一下,整体感觉还行.6. 《锁相环电路设计与应用》『日』远坂俊昭著科学技术出版社个人书评:对PLL原理总是搞不太明白的同学可以参考此书,图形图片很多,让人很直观明白,比起其他PLL书只会千篇一律写公式强千倍。

好书,值得收藏!7. 《信号完整性分析》『美』Eric Bogatin 著电子工业出版社个人书评:前几章用物理的方法看电子,感觉不好理解,写的感觉很拗口,翻译好像也有些不到位,但后面几章写的确实好,尤其是关于传输线的,对你理解信号的传输的实际过程,能建立一个很好的模型,推荐大家看一下,此书还是不错的.(看多了RF的,换换胃口)8. 《高速数字设计》『美』Howard Johnson著电子工业出版社个人书评:刚刚卓越买回来,还没有动“她”呢,随便翻了下目录,做高速电路和PCB Layout 的工程师一看要看下,这本书也是经典书喔!10.《EMC电磁兼容设计与测试案例分析》『中』郑军奇著电子工业出版社个人书评:实战性和很强的一本书,本人做产品经常要送去信息产业部电子研究5所做EMC 测试,认证.产品认证是产品成功的临门一脚,把这脚球踢好,老板会很赏识你的,如果你也负责产品的EMC,这本书必读。

高频pcb板制作需要注意的八个方面

高频pcb板制作需要注意的八个方面

高频pcb板制作需要注意的八个方面大家都知道高频板是使用于高频领域的线路板。

高频它对线路的电介数值有所要求,介电系数低,稳定性要强。

那么在设计高频PCB板的环节,需要注意哪些方面呢?一、设计就考虑到如何避免高频干扰?避免高频干扰的基本思路是尽量降低高频信号电磁场的干扰,也就是所谓的串扰(Crosstalk)。

可用拉大高速信号和模拟信号之间的距离,或加ground guard/shunt traces在模拟信号旁边。

还要注意数字地对模拟地的噪声干扰。

二、设计中考虑如何选择PCB板材?选择PCB板材必须在满足设计需求和可量产性及成本中间取得平衡点。

设计需求包含电气和机构这两部分。

通常在设计非常高速的PCB板子(大于GHz的频率)时这材质问题会比较重要。

例如,现在常用的FR-4材质,在几个GHz的频率时的介质损(dielectric loss)会对信号衰减有很大的影响,可能就不合用。

就电气而言,要注意介电常数(dielectric constant)和介质损在所设计的频率是否合用。

三、在高速设计中,如何解决信号的完整性问题?信号完整性基本上是阻抗匹配的问题。

而影响阻抗匹配的因素有信号源的架构和输出阻抗(output impedance),走线的特性阻抗,负载端的特性,走线的拓朴(topology)架构等。

解决的方式是靠端接(termination)与调整走线的拓朴。

四、对于只有一个输出端的时钟信号线,如何实现差分布线?要用差分布线一定是信号源和接收端也都是差分信号才有意义。

所以对只有一个输出端的时钟信号是无法使用差分布线的。

五,差分布线方式是如何实现的?差分对的布线有两点要注意,一是两条线的长度要尽量一样长,另一是两线的间距(此间距由差分阻抗决定)要一直保持不变,也就是要保持平行。

平行的方式有两种,一为两条线走在同一走线层(side-by-side),一为两条线走在上下相邻两层(over-under)。

高频小信号调谐放大器的电路设计

高频小信号调谐放大器的电路设计

⾼频⼩信号调谐放⼤器的电路设计1⾼频⼩信号调谐放⼤器的电路设计与仿真1.1主要技术指标谐振频率:o f =10.7MHz谐振电压放⼤倍数:dB A VO 20≥通频带:MHz B w 17.0=矩形系数:101.0≤r K要求:放⼤器电路⼯作稳定,采⽤⾃耦变压器谐振输出回路1.2给定条件回路电感L=4µH, 0100Q =,11p =,20.3p =,晶体管⽤9018,β=50。

查⼿册可知,9018在V V ce 10=、mA I E 2=时,s g ie u 2860=,us g oe 200=,pf c oe 7=,pf c ie 19=,45fe y ms =,0.31re y ms =。

负载电阻Ω=K R L 10。

电源供电V V cc 12=。

1.3设计过程⾼频⼩信号放⼤器⼀般⽤于放⼤微弱的⾼频信号,此类放⼤器应具备如下基本特性:只允许所需的信号通过,即应具有较⾼的选择性;放⼤器的增益要⾜够⼤;放⼤器⼯作状态应稳定且产⽣的噪声要⼩;放⼤器应具有⼀定的通频带宽度。

除此之外,虽然还有许多其它必须考虑的特性,但在初级设计时,⼤致以此特性作考虑即可. 基本步骤是:⑴选定电路形式依设计技术指标要求,考虑⾼频放⼤器应具有的基本特性,可采⽤共射晶体管单调谐回路谐振放⼤器,设计参考电路见图1-1所⽰。

图1-1 单调谐⾼频⼩信号放⼤器电原理图⼩信号放⼤器的主要特点是晶体管的集电极负载不是纯电阻,⽽是由LC 组成的并联谐振回路,如图2-1所⽰。

由于LC 并联谐振回路的阻抗是随频率⽽变的,在谐振频率o f =达到最⼤值。

因此,⽤并联谐振回路作集电极负载的调谐放⼤器在回路的谢振频率上具有最⼤的放⼤电压增益。

稍离开此频率,电压增益迅速减⼩。

我们⽤这种放⼤器可以放⼤所需要的某⼀频率范围的信号,⽽抑制不需要的信号或外界⼲扰信号。

图中放⼤管选⽤9018,该电路静态⼯作点Q 主要由R b1和Rw1、R b2、Re 与Vcc 确定。

调幅、调频发射与接收设计原理介绍

调幅、调频发射与接收设计原理介绍

课程设计指导高频电路的一般设计方法电子电路种类很多,千差万别,设计方法和步骤也因不同情况而异。

这里给出高频电路设计的一般步骤,以供参考,设计者应根据具体情况,灵活掌握。

1.总体实现方案的选择由课题要求实现的电路功能及性能指标,决定最终实现电路的构成。

2.单元电路形式的选择根据课题要求实现的电路性能指标,确定总体实现方案中,各单元电路的形式。

3.电路参数的计算根据所选单元电路的形式,对组成电路的各元器件的值进行计算。

4.元器件的选择元器件的选择,除了要考虑计算出的参数值外,还要遵从节约电路成本,元器件购买方便,以及尽量利用现有条件实现的原则。

以上各步骤之间不是绝对独立的,往往需要交叉进行,尤其是有时受到元器件选择的限制,常会推翻最初的设计方案,从头来做。

所以,在进行电路设计之初,要先把可能限制电路实现的因素考虑好,再着手设计,往往可以达到事半功倍的效果。

表1 评分办法高频电路设计举例课题一:基于MC1496的简易调幅发射机一、简要说明集成模拟乘法器性能好,外围电路结构简单,可实现振幅调制、同步检波、混频、倍频、鉴频等过程,目前在无线通信、广播电视等领域应用较多。

常见的产品型号有MC1495/1496 LM1595/1596等。

本课题的目的是练习集成模拟乘法器的使用,掌握幅度调制的原理。

一、要求1 .基本要求:工作频率5MHz载波频率稳定度优于10-3/分钟,发射功率(输出负载R_=75上的功率)P0 > 10mW,调制度m=30%-80痢调,调制频率F=500Hz〜3kHz。

2.发挥部分:(1)全机使用单电源供电。

(2)自行设计产生正弦波调制信号(3)提高整机性能指标。

电路要求:振荡器—缓冲级—调制电路—功率放大器(话筒)课题二:基于MC1496的简易调幅接收机一、简要说明本课题目的是练习集成模拟乘法器的使用,掌握同步检波的原理。

此题目与课题一结合,可制作出完整的调幅收发系统。

______ i ll,[、-二、要求1 .基本要求:直接放大式接收机,工作频率5MHz载波频率稳定度优于分钟,灵敏度1mV。

高频实训论文调频收音机(cxa1691)

高频实训论文调频收音机(cxa1691)

编号:(高频电路设计与制作)实训论文说明书题目:调频接收机院(系):信息与通信学院专业:电子信息工程学生姓名: X X X学号: XXXXXXXXXX指导教师: XXXX XXXX2011年12 月30 日------------------------------装---------------- 订----------------- 线----------------------------------摘要本文介绍了基于高频电子电路,采用CXA1691M芯片的混频、鉴频系统的工作原理硬件设计方法制作一个简易的调频收音机。

收音机从它的诞生至今,不仅方便了媒体信息的传播,也推进了现代电子技术和更先进的电信设备的发展。

目前调频式或调幅式收音机,一般都采用超外差式,它具有灵敏度高、工作稳定、选择性好及失真度小等优点。

了解收音机的工作原理并通过画原理图、焊接电路板、调试作品等电子电工实训对我们学习电子技术类的大学生有很多意义。

本实训报告简单分析了超外差式收音机电路的工作原理及其组装和调试等。

关键词:收音机,组装,调试------------------------------装---------------- 订----------------- 线----------------------------------AbstractThis paper introduces the electronic circuit based on high frequency, the CXA1691M chip frequency mixing, popularly used the working principle of the system hardware design method to produce a simple FM radio .The radio from its birth until now, went to the lavatory not only media dissemination of information, but also promote the modern electronic technology and more advanced telecommunications equipment development. Currently FM type or amplitude type radio, typically use the specialized superheterodyne type, it has a high sensitivity, stable and good selectivity and the distortion degree of small advantages. Understand the radio principle and through painting principle diagram, welding circuit board, commissioning works etc electronic electrician training for our learning of college students have many electro-mechanical significance. This training report a simple analysis the superheterodyne electric circuit principle of work and assembling and commissioning etc.key words : the radio, assembling, commissioning------------------------------装---------------- 订----------------- 线----------------------------------目录引言 (1)1 实训任务及要求 (1)1.1实训内容: (1)1.2实训内容及基本要求: (1)2 收音机的基本工作原理 (1)2.1无线电原理 (1)2.1.1无线电发射基本原理 (1)2.1.2基本无线电接收原理 (2)2.1.3调幅波 (2)2.2调频广播与单声道调频收音机的基本组成 (3)2.2.1调频波的特点 (3)2.2.2调频广播的优点 (3)2.2.3单声道调频收音机基本组成及信号流程 (4)2.3CXA1691芯片介绍 (5)2.4调频接收机电路原理图 (6)2.5收音机电路各功能块电路的作用 (6)3 收音机电路板的装配 (7)3.1收音机的装配 (7)4 调试 (8)4.1收音机的主要性能指标 (8)4.2调试步骤 (9)4.2.1基本调试过程 (9)4.2.2性能调试过程 (9)结论 (9)谢辞 (11)参考文献 (12)附录1 电路设计总图 (13)附录2 元件清单 (14)------------------------------装---------------- 订----------------- 线---------------------------------- 引言随着科学技术的不断发展,新颖的调频收音机的不断出现,技术不断的提高,设计出来的收音机外型精致和小巧。

小功率高频感应加热器的设计与制作

小功率高频感应加热器的设计与制作

小功率高频感应加热器的设计与制作小功率高频感应加热器的设计与制作家用感应加热装置的典型应用是电磁灶,其功率一般在lkW左右,要求被加热容器的底部直径不小于120mm.本设计的感虚加热器输出功率定在200W~300W,感应器有效直径lOOmm 左右,主要用于小容量的液体、食品、易拉罐饮品的加热,在家庭、医院、宾馆房间、零售商店中有广泛应用.感应加热要求感应线圈的品质因数(Q值)高,Q可由下式计算:Q=X/R=ωL/R 其中,L 是感应线圈的电感(单位H),ω 是驱动源的开关频率,R 是感应线圈的等效串联电阻(Ω).通过以不同的驱动频率驱动加热线圈,可以得到线圈参数与频率的关系.当感应线圈靠近铁制品时.其等效电阻将大幅度增加,Q 值下降;而当其靠近非铁磁性金属时,其等效电阻增加很少,其Q 值下降不大.这种特性使铁金属更易被感应加热.例如,在驱动频率为100kHz 时,靠近铁制品的线圈,其R 值为2Ω,而靠近铝制品时,R 值仪0.238Ω;当驱动频率为400kHz 时,空载线圈的Q 值达到318,在靠近铝制品时下降为124,而在靠近铁制品时下降至13.因此,在选择驱动源频率时,要选择空载线圈的R 值和有铁金属时的R 值相差大的频率,这个频率范围一般在lOOkHz 至400kHz.为了减小加热线圈自身的损耗,线圈需用很多股细铜线组成的绞合线来绕制,这样容易制战高频损失小、Q值高的线圈.感应线圈有两种形状,一种是加热普通平底铁金属容器的平板线圈.另一种是加热易拉罐的筒形线圈.在实际的感应加热电路中,感应线圈与其等效串联阻抗R,以及外加电容器C 等共同构成LCR 串联谐振电路.图1 是本高频感应加热器的方框图.采用绝缘栅场效应管的半桥驱动、LC 串联谐振电路,用锁相环(PLL)和脉宽调制(PWM)电路作闭环控制,以保证串联谐振频率的稳定:用半桥功率电路驱动加热线圈.半桥输出电路输出阻抗低,即使用方波信号作电压驱动,输出电流波形也是正弦波,因而电压相电流的相位差小,功率传输效率高.整机电路见图2.PLL 及PWM 恒流控制电路:采用开关稳压集成电路UC3825,实际开关频率可达lMHz,具有两路大电流推挽式输出电路.利用UC3825 内的振荡电路构成压控振荡器VCO,其频率范围可取为200kHz~300kHz,由定时阻容元件R10+R9//Rt 和C5 的值决定.动态电阻Rt 由小信号MOSFET 管构成,其阻值受MCl4060B 的输出控制.考虑到加热线圈L 的电感量及串联谐振电容量的自由度,这个频率的可变化范围应有两倍左右.当取图2中的数值时,振荡频率约160kHz~380kHz.为了保证振荡频率的稳定,采用PLL 电路MCl4046B 作相位检测器.由电流互感器CT 检测出通过加热线圈L 的电流,CT 次级的负载Rl 取200Ω,转换,比为1V/1A,经D1、D2 双向限幅.Cl 耦合至ICl 的PCa 端;ICl 的PCb 端输入电压由IC2 的PWM 输出电压分压.得到,其值约5Vpeak,以满足CMOS 电平的需要.由于流过加热线圈的电流有少许滞后,故在PCb 端加入容量约1000pF 的相位补偿电容器C2.如果工作频率和LC 参数有变化, 该电容量也应梢应变化. 如f=300kHz 、电流相位滞后45. 时.相位补偿电容:Ccomp=1/2πRf=l/6.28x500x300xl03=1061pF如果以某一频率驱动加热线圈,当接近铝制时,由于LCR串联谐振电路的阻抗很低,通过的大电流可能会损坏MOSFET;如果空载,也可能造成桐同后果.因此必须采用恒流控制.这里,利用电流互感器CT 的输出经D3、D4 倍压整流届作为反馈信号,输出电流的调节用脉宽调制方式控制平均电流,由IC2 内部的误差放大器来实现.由IC2 内部的基准电压源经电阻分压后取得+2.5V 的电压,作为比较器的基准电压.调节W1 可改变输出电流,也可调节输出功率.MOSFET 驱动电路、半桥输出电路及LC 串联谐振电路:在负荷为铁制品时,由于串联谐振电路的R 将增大,故应设置较高的电源电腥(选定为300V).又由于在空载时,R 很小而Q 值高.将有很大的电流流过功率输出管,故应选用漏极电流大的MOSFET 管.这里选用电流达12A 的2SKl489 两强构成半桥输出.驱动信号由UC3825 输出、经C13~CJ6 和脉冲变压器Tl、T2 耦合至推动级.D7~D10 用于保护大功率MOSFET.在半桥输出电路中插入了电流互感器CT,用以检出流过加热线圈的电流.加热线圈L 和电容C19、C20 构成LC 谐振电路.作为半桥输出的负载.当LC 串联电路谐振时,即使用方波驱动,流过线圈的电流波形也是正弦波.加热线圈可作为平板形(加热甲底容器)或筒形(加热易拉.罐).为减少由于集肤效应产生高频损失,加热线圈的材料用120 根φ0.08mm 的细铜线绞合而成.线圈的尺寸见图3.整机供电电路:功率输出电路由交流市电经桥式整流提供+300V 电源,用7812 和78L05 提供+12V 及+5V给其余电路供电.+300V 电源在开机时会有大的冲击电流,因而滤波电容不能用电解电容,而要选薄膜电容器;C24 为4.71μF,另在半桥输出的电源端子加4.7μF(C21),使滤波电容的总容最为9.4μF.为避免半桥输出电路产生的噪声串人交流供电线路,加入了电感L2 作滤波器.元件选用:D1l、D13、D7、D9 采用肖特基二级管,D8、D10 采用超高速二极管;电感Ll、L2 及电流互感器CT 均采用磁环绕制.试用效果:由WI 设定功率为250W,此时交流电流约1.2A.对盛水的平底铁制容器,用平板线圈加热到水温80℃耗时200 秒;当不盛水时,加热至100℃仅用加40 秒;当用筒形线圈加热盛满水的铁罐头盒时,加热至80℃耗时180 秒.。

高频电路详解

高频电路详解

第一章 高频电路基本常识 第一部分为何要学习高频电路的知识电子电路可以分为模拟电路与数字电路,而模拟电路又可以分类为低频率电路与高频电路。

一般的电子技术人员,首先尝试设计或制作的,大多以数位电路或低频率电路为主,此较少从高频电路开始的。

其主要原因是,高频电路较难去理解,往往所制作出的电路无法如预期的设计目标动作。

但是,如果忽略了高频电路的基本常识,也可能使所设计出的数位电路或低频率电路不能成为最适当,甚至於可能会造成动作的不稳定。

相反地,如果能够熟悉高频电路,也可以提高数位电路或低频率电路的设计水准。

近些年,无论是数位电路或以直流为主的测试仪器电路,对於处理系要求高速化,结果也使得高频电路的基本常识相当重要。

低频率电路与高频电路的区别为了了解高频电路的特征,在此,对低频率电路与高频电路作一此较。

如下图1所示的为低频率电路与高频电路的此较。

图(a )为低频率电路,图(b)为高频电路。

首先,说明信号的流通。

由於在低频率电路的信号其波长较长,一般可以忽略时间因素。

因此,振荡器的输出端舆放大器的输入端可视为同一信号。

也即是,在低频率电路中的信号流通如箭头的方向所示,成为闭回路,此也称的为集中常数的考虑方法。

而在高频电路中,由於波长较短,不可以忽略时间的要素。

在同一时间的振荡器输出端,中途的电缆线上,放大器的输入端的信号就非同一信号,也就是说信号像电波一样传输着,这种考虑电路问题的方法称为分布常数。

一般地,在集中常数电路中的低频电路中,对於电缆线的限制较少,可以使用一般的隔离线,重视杂讯兴频率特性。

而在分布常数电路中的高频电路中,为了不使信号发生传送路径上的失真,使用同轴电缆线,重视特性阻抗。

在放大器的输出端所连接的负载如下:图1-(a )低频电路图1-(b )高频电路图(a)低频率电路为定电压驱动……即使负载阻抗有变化,输出电压也一定,放大器的输出阻抗Zo 舆负载的阻抗ZL 的关系为Zo<ZL 。

高频课设报告 - 通信电子线路课程设计——电容三点式正弦波振荡器

高频课设报告 - 通信电子线路课程设计——电容三点式正弦波振荡器

目录一课程设计目的 (2)二课程设计题目 (2)三课程设计内容 (2)3.1 仿真设计部分 (2)3.1.1设计方案的选择 (2)3.1.2振荡器的原理概述 (3)3.1.3方案对比与选择 (5)3.1.4电路设计方案 (7)3.1.5元器件的选择 (9)3.1.6电路仿真 (9)3.1.7元器件清单 (12)3.2系统制作和调试 (13)3.2.1系统结构 (13)3.2.2系统制作 (15)3.2.3调试分析 (16)四课后总结和体会 (17)参考文献 (17)一课程设计目的《高频电子线路》课程是电子信息专业继《电路理论》、《电子线路(线性部分)》之后必修的主要技术基础课,同时也是一门工程性和实践性都很强的课程。

课程设计是在课程内容学习结束,学生基本掌握了该课程的基本理论和方法后,通过完成特定电子电路的设计、安装和调试,培养学生灵活运用所学理论知识分析、解决实际问题的能力,具有一定的独立进行资料查阅、电路方案设计及组织实验的能力。

通过设计,进一步培养学生的动手能力。

二课程设计题目1、模块电路设计(采用Multisim软件仿真设计电路)1)采用晶体三极管或集成电路,场效应管构成一个正弦波振荡器;2)额定电源电压5.0V ,电流1~3mA;输出中心频率 6 MHz (具一定的变化范围);2、高频电路制作、调试LC高频振荡器的制作和调试三课程设计内容3.1 仿真设计部分3.1.1设计方案的选择电容反馈式振荡电路的基本电路就是通常所说的三端式(又称三点式)的振荡器,即LC回路的三个端点与晶体管的三个电极分别连接而成的电路,如图2-0所示。

由图可见,除晶体管外还有三个电抗元件X1、X2、X3,它们构成了决定振荡器频率的并联谐振回路,同时构成了正反馈所需的网络,为此根据振荡器组成原则,三端式振荡器有两种基本电路,如图2-0所示。

图2-0中X1和X2为容性,X3为感性,满足三端式振荡器的组成原则,反馈网络是由电容元件完成的,称电容反馈振荡器图2-1 三端式振荡器基本电路电容反馈式振荡电路的设计及原理分析电路由放大电路、选频网络、正反馈网络组成。

高频电路知识点总结

高频电路知识点总结

高频电路知识点总结一、高频电路的基本概念高频电路是指工作频率在几百千赫兹至数吉赫兹范围内的电路,它们通常用于射频(射频)系统、通信系统、雷达系统等。

由于高频电路的工作频率很高,因此其特性和设计方法与低频电路有很大不同。

1、高频电路的特点(1)电压和电流的传输速度加快;(2)传输线的长度和电路尺寸相对较小;(3)传输线的电磁波特性需要考虑;(4)电缆损耗增大。

2、高频电路的设计要求(1)降低传输线的损耗;(2)减小串扰和反射;(3)提高电路的灵敏度和抗干扰能力;(4)提高电路的稳定性和可靠性。

二、高频电路的传输线在高频电路中,传输线的特性对系统的性能有着很大的影响,因此设计者需要充分了解和掌握传输线的特性。

1、传输线的特性(1)阻抗:传输线的特性阻抗随着工作频率的增加而改变,这意味着在高频电路中必须考虑传输线的阻抗匹配问题。

(2)传输速度:高频信号在传输线中的传输速度快于低频信号。

(3)色散:高频信号在传输线中会产生色散现象,导致不同频率的信号传播速度不同,需要进行补偿。

(4)损耗:传输线在高频下的损耗较大,特别是在微带线和同轴电缆中。

2、常见的传输线类型(1)同轴电缆:同轴电缆主要用于高频射频信号的传输,具有较好的屏蔽性能和抗干扰能力。

(2)微带线:微带线是常用的高频信号传输线路,其制作工艺简单、成本低廉、尺寸小,适合集成在集成电路板中。

(3)双平行线:双平行线具有低损耗和较高的阻抗稳定性,广泛应用于高频功率放大器和滤波器中。

三、高频电路的元件在高频电路中,元件的性能会影响整个电路的性能,因此需要选择合适的元件进行设计和应用。

1、适用于高频电路的元件(1)电阻器:在高频电路中,电阻器的频率响应特性、串扰和噪声等特性需要特别考虑,因此需要选择适合高频的电阻器进行应用。

(2)电容器:高频电路中常用的电容器包括表面贴装电容器、金属层电容器等,它们具有较小的等效串联电感和等效串联电阻,适合高频电路的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《高频电路设计与制作》第二章高频放大器设计与制作2-4
高频宽带功率放大器的设计与制作(第三部分)
高频功率放大器的制作与调试所制作的宽频带功率放大器的特性备注栏:电路负反馈与频带宽度的关系
《高频电路设计与制作》章节目录
第一章高频电路基本常识
第二章高频放大器设计与制作
第三章高频振荡电路的设计与制作
第四章PLL数字锁相环电路设计与制

第五章变频器电路设计与制作
第六章FM频率调制/解调电路的设计
制作
第七章AM幅度调制/解调电路设计与
制作
第八章实用高频电测仪表制作
回总目录页查看28个制作总装效果电路原理图PCB墨稿PROTEL格式文件器材供应
第二章高频放大器设计与制作查看本章节详细目录
查看本章节详细目录
2-1 高频信号放大器所应具备的特征
2-2 使用FET(场效应管)高频放大期的设计-制作
2-3 使用IC的宽频带放大器的设计-制作
2-4 宽频带功率放大器的设计-制作
小信号放大器与功率放大器的差异功率放大器工作点选取方法阻抗匹配-提高效率本AB类功率放大器的设
计要点
输入回路阻抗变换电路的设计输出1W功率高频晶体管放大电路的设计输出回路阻抗变换电路的设计
高频功率放大器的制作与调试所制作的宽频带功率放大器的特性备注栏:电路负反馈与频带宽度的关系
第二章高频放大器设计与制作2-4
高频宽带功率放大器的设计与制作(第三部分)
高频功率放大器的制作与调整
最後所完成电路如图46所示。

又,印刷电路基板如图47所示。

图(a)为零件配置图,图(b)为印刷电路铜箔图样。

也可以不打孔直接将零件装配在印刷电路的铜箔面上。

图46 制作完成的宽带功率放
大电路图(电路虽然简单,性能是由所
选择的零件决定的,也即是要灵活应用
晶体管,线圈和电容)
根据设计计算,虽然可以不必使用散热片,但是,仍然利用接地铜箔做为散热之用。

功率晶体管2SCl970的散热片与集极电极连接,因此,要使用绝缘片後再装设在接地铜箔面上。

温度补偿用二极管1S1588与2SCl970的散热片密接装配。

由零件配置看来,T1与T2虽安装得很近,但由於使用环形铁芯,其漏磁较少,此较不必像空芯线圈一样,要注意电磁结合的问题。

在此有一点要注意的是此功率放大器为AB类,在没有信号时,也有电流流过线圈,此一电流称为静态电流
( idlecurrent ) 。

此一静态电流的调整可以通过基极侧的VR1KΩ,先设定为最大值,接入电源电压12V(电源装置若附有电流限制功能,则将限制电流设定为0.5A)。

在此一状态下,将VR值往小方向调整,使集电极电流成为50mA~70mA。

(此PCB墨稿为1:1图,可利用激光打印机直接出稿)
PCB PROTEL文件格式下载
图47 宽带功率放大器的印刷电路基板图
(将零件的端子折成直角,焊接在印刷电路基板的铜箔图样面上,温度补偿用的二极管要紧贴在晶体管的散热片上)
所制作的宽带功率放大器的特性
▲输入功率-输出功率特性
图48所示的是以频率10MHz,输入功率在-20dBm~+20dBm间变化时的输出功率值。

在同一个电路中,使用2SC1970与2SC2092(日立,27MHz用)做对比测试用。

2SCl970为VHF频带,在10MHz时的功率放大率约为28dB(Po=1W时),对於设计要求的10dB而言显得很大。

因此,输出功率Po=1W时的输入功率仅要求1.6mW即可。

输出功率的饱和点为+33dBm(2W),在Po=1W内为线性放大领域。

也即是,若要保证线性放大器的线性特
征,应避免Po超过1W。

▲频率:功率增益
图49所示的为将输入功率定为1.6mW,频率为1M~50MHz范围变化时的电路输出特性。

2SC1970为VHF频带用晶体管,因此在高频的功率增益也不会降低很多。

在50MHz约为23dB,功率放大
率下降仅5dB。

与此相对的2SC2092的功率增益下降7dB,因此,电路所使用的频带范围为1M~30MHz较为适当。

由此可知当宽带功率放大器使用的晶体管为VHF频带用时,可以得到十分平坦的频率特性。

图48 所制作的功率放大器的输入功率对输出功率特性图49 所制作的功率放大器的频率
特性
(使用
2SCl970(170MHz
用)与
2SC2092(27MHz 用)做为比较,虽然晶体管的高频特性不同,但是,即使2SC2092到达
30MHz也可以人
为OK)
备注栏负回授与频带宽
负回授(feed back)是放大器里一项很重要的技术,它有什么作用呢?
负回授放大器如图E所示,将输出信号Vo经过回授电路回授到输入电路。

由於所回授的信号V f与输入信号
V i反相位,因此称之为负回授。

假设放大器原来的放大率用Ao表示,加入负回授后的增益为A NF,用ß表示回授率,则
由此,可以看出,加入负回授会使增益下降,但电路其频带宽会扩宽。

例如,在中频ß=00.1,Ao=100的负回授放大器的放大率,可以由(A)式计算而得到A NF=9.1。

如果此放大器用于高频Ao=50,·则A NF=8.3。

可以看出,电路未加负反馈的增益即使由100变化为50,而加有负回授的放大器仅从9.1变化至8.3,其增益变化却很小。

如此频带宽BW得以扩宽。

图E 负回授的原理
第一章高频电路基本常识第一部分
为何要学习高频电路的知识
电子电路可以分为模拟电路与数字电路,而模拟电路又可以分类为低频率电路与高频电路。

一般的电子技术人员,首先尝试设计或制作的,大多以数位电路或低频率电路为主,此较少从高频电路开始的。

其主要原因是,高频电路较难去理解,往往所制作出的电路无法如预期的设计目标动作。

但是,如果忽略了高频电路的基本常识,也可能使所设计出的数位电路或低频率电路不能成为最适当,甚至於可能会造成动作的不稳定。

相反地,如果能够熟悉高频电路,也可以提高数位电路或低频率电路的设计水准。

近些年,无论是数位电路或以直流为主的测试仪器电路,对於处理系要求高速化,结果也使得高频电路的基本常识相当重要。

低频率电路与高频电路的区别
为了了解高频电路的特征,在此,对低频率电路与高频电路作一此较。

如下图1所示的为低频率电路与高频电路的此较。

图(a)为低频率电路,图(b)为高频电路。

首先,说明信号的流通。

由於在低频率电路的信号其波长较长,一般可以忽略时间因素。

因此,振荡器的输出端舆放大器的输入端可视为同一信号。

也即是,在低频率电路中的信号流通如箭头的方向所示,成为闭回路,此也称的为集中常数的考虑方法。

而在高频电路中,由於波长较短,不可以忽略时间的要素。

在同一时间的振荡器输出端,中途的电缆线上,放大器的输入端的信号就非同一信号,也就是说信号像电波一样传输着,这种考虑电路问题的方法称为分布常数。

一般地,在集中常数电路中的低频电路中,对於电缆线的限制较少,可以使用一般的隔离线,重视杂讯兴频率特性。

而在分布常数电路中的高频电路中,为了不使信号发生传送路径上的失真,使用同轴电缆线,重视特性阻
抗。

在放大器的输出端所连接的负载如下:
图1-(a)低频电路图1-(b)高频电路
图(a)低频率电路为定电压驱动……即使负载阻抗有变化,输出电压也一定,放大器的输出阻抗Zo舆负载的阻抗ZL 的关系为Zo<ZL。

图b高频电路为功率驱动……信号的单位为功率,从负载能够取出的最有效功率为在Zo=ZL状态下,也即是在阻抗匹配( Impendance matting)状态下。

因此,低频率电路与高频的电路分析的考虑方法方法下一样。

集中常数电路与分布常数电路
右图所示的为以传送路线为例子,说明集中常数电路的分析方法与分布常数电路的分析方法。

实际上,无论任何低频/高频电路,也都存在有电阻R,电容器C,线圈L。

可是,如图(a)所示,在传送路径很短的情况下,或者在低频率信号的场台,可以忽略R,L,C的存在,当做集中常数处理。

如此,可以使电路分析简单化。

而在图(b)的场合,在传送路径较长,或者在高频信号的场合,不可以忽略R,L,C的存在。

随着时间的经过,信号在传送路径(路线)上,会以①→②→③的情况前进。

相关文档
最新文档