定积分的几何应用例题与习题

合集下载

高中数学定积分计算习题

高中数学定积分计算习题

定积分的计算班级 姓名一、利用几何意义求下列定积分 (1)dx x ⎰11-2-1 (2)dx x ⎰22-4(3)dx x ⎰22-2x (4)()dx x x ⎰-24二、定积分计算 (1)()dx ⎰107-2x (2)()d x ⎰+21x2x 32(3)dx ⎰31x 3(4)dx x ⎰ππ-sin (5)dx x ⎰e 1ln (6)dx ⎰+1x 112(7)()d x x x⎰+-10232 (8)()dx 2311-x ⎰ (9)dx ⎰+11-2x x 2)((10)()d x x ⎰+212x1x (11)()d x x x ⎰-+11-352x (12)()d xe e x x ⎰+ln2x -e(13)dx x ⎰+ππ--cosx sin )( (14)dx ⎰e1x 2(15)dx x ⎰21-x sin -2e )((16)dx ⎰++21-3x1x x 2 (17)dx ⎰21x13 (18)()dx 22-1x ⎰+三、定积分求面积、体积1求由抛物线y 2=2x 与直线y =4-x 围成的平面图形的面积。

2.求曲线y =x ,y =2-x ,y =-13x 所围成图形的面积.3.求由曲线y =cos x (0≤x ≤2π)与直线y =1所围成的图形面积4.如图求由两条曲线y =-x 2,y =-14x 2及直线y =-1所围成的图形的面积.5、求函数f(x)=⎩⎪⎨⎪⎧x +1 (-1≤x<0)cosx (0≤x ≤π2)的图象与x 轴所围成的封闭图形的面积。

6.将由曲线y =x 2,y =x 3所围成平面图形绕x 周旋转一周,求所得旋转体的体积。

7.将由三条直线x =0、x =2、y =0和曲线y =x 3所围成的图形绕x 周旋转一周,求所得旋转体的体积。

8.由曲线y =x 与直线x =1,x =4及x 轴所围成的封闭图形绕x 周旋转一周,求所得旋转体的体积。

定积分典型例题及习题答案

定积分典型例题及习题答案

04 定积分习题答案及解析
习题一答案及解析
要点一
答案
$frac{1}{2}$
要点二
解析
根据定积分的几何意义,该积分表示一个半圆的面积,半径 为1,因此结果为半圆的面积,即$frac{1}{2}$。
习题二答案及解析
答案:$0$
解析:由于函数$f(x) = x$在区间$[-1, 1]$上为奇函数,根据定积分的性质,奇函数在对称区间上的积 分为0。
定积分的分部积分法
总结词
分Hale Waihona Puke 积分法是一种通过将两个函数的乘积进行求导来计算定积分的方法。
详细描述
分部积分法是通过将两个函数的乘积进行求导来找到一个函数的定积分。具体来说,对于两 个函数u(x)和v'(x),其乘积的导数为u'v+uv',其中u'表示u对x的导数。分部积分法可以表示 为∫bau(x)v'(x)dx=∫bau'(x)v(x)dx+∫bau(x)v(x)dx,其中u'(x)和u(x)分别是u对x的导数和函
定积分典型例题及习题答案
目录
• 定积分的基本概念 • 定积分的计算方法 • 定积分典型例题解析 • 定积分习题答案及解析
01 定积分的基本概念
定积分的定义
总结词
定积分的定义是通过对函数进行分割、 近似、求和、取极限等步骤来得到的。
详细描述
定积分定义为对于一个给定的函数f(x),选择一 个区间[a,b],并将其分割为n个小区间,在每 个小区间上选择一个代表点,并求出函数在这 些点的近似值,然后将这些近似值进行求和, 最后取这个和的极限。
数值。通过分部积分法,可以将复杂的定积分转换为更简单的形式进行计算。

定积分典型例题20例答案

定积分典型例题20例答案

定积分典型例题20例答案例 1 求 Iim 42(3n τ 32n^ JH 3n 3).n厂n分析将这类问题转化为定积分主要是确定被积函数和积分上下限. 若对题目中被积函数难以想到,可采取如下方法:先对区间 [0, 1] n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限•解 将区间[0, 1] n 等分,则每个小区间长为.* ,然后把1的一个因子-乘n n n nn入和式中各项•于是将所求极限转化为求定积分•即Iim A (V n 4 5+⅛2n 2切|+卅)=1计气卩弋F + 山 +;F )=[坏dx=3 •n -r ,n n n I n∖ n 042 -----------------2例 2 [J 2x —xdx= ______________•2 ry解法1由定积分的几何意义知, 0J 2x —X 2dx 等于上半圆周(x —1)2+y 2=1 ( y ≥0)与X 轴所围成的图形的面积.故$ 2χ 一χ2d χ= •■■02解法2本题也可直接用换元法求解.令x_1 = Sint (丄兰t ≤三),则2 2这是求变限函数导数的问题,禾U 用下面的公式即可d V(X)— f (t)dt = f[v(x)]v(x) - f[u(x)]u (X) • dxU(X )丄2-e;可得.Xf (X) = 0f (t)dt Xf(X) •X 3丄解 对等式;f(t)dt =x 两边关于X 求导得3 2f (x -1) 3x =1,4_..1 —sin 2tcostdt =2 :、1 —sin 2tcostdt2522例3(1)若f (x) e 丄Xdt ,则 f (X) =— ; (2)若 f(x)=Xxf (t)dt ,求 f (X )=— •■:'≡. 2 -= 2 02COs tdt=- 分析(2) 由于在被积函数中 X 不是积分变量,故可提到积分号外即Xf (X)=X Of (t)dt ,则V(X) 例4设f (x)连续,且X 3 -1O f (t)dt =X ,贝U f(26)=------ 2-XdX =例7已知两曲线y =f (X)与y =g(χ)在点(0,0)处的切线相同,其中arcs inx 十2g(x) = 0e dt , X [-1,1],试求该切线的方程并求极限Iim nf (-3). n 性 n分析 两曲线y =f(χ)与y =g(χ)在点(0,0)处的切线相同,隐含条件 f (0^g (0).解由已知条件得12X 2= (2) Iim =0 .x-⅛ Si nx注此处利用等价无穷小替换和多次应用洛必达法则.故 f(x 3-1)=13X 2 3 1,令X 46得x=3 ,所以f(26)冷1例5函数F(x) = j (3 _4)dt (x >0)的单调递减开区间为F(X)= 31 1 1x ,令F(X z O 得X 3 ,解之得。

定积分应用方法总结(经典题型归纳)

定积分应用方法总结(经典题型归纳)

定积分复习重点定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物理问题等. 1.定积分的运算性质1212(1)()()().(2)[()()]()().(3)()()()().bbaab bb aaab c baackf x dx k f x dx k f x f x dx f x dx f x dx f x dx f x dx f x dx =±=±=+⎰⎰⎰⎰⎰⎰⎰⎰为常数其中a<c<b2.微积分基本定理如果()f x 是区间[a ,b]上的连续函数,并且'()()F x f x =,那么()()()baf x dx F b F a =-⎰,这个结论叫微积分基本定理,又叫牛顿—莱布尼兹公式。

3.求定积分的方法(1)利用微积分基本定理就定积分 ①对被积分函数,先简化,再求定积分.例如:230(1-2sin)2d πθθ⎰注:322()3x x '=,(-cos )sin x x '=②分段函数,分段求定积分,再求和.(被积函数中带有绝对值符号时,计算的基本思路就是用分段函数表示被积函数,以去掉绝对值符号,然后应用定积分对积分区间的可加性,分段进行计算)1.计算积分⎰---322|32|dx x x解1. 由于在积分区间]3,2[-上,被积函数可表示为⎩⎨⎧≤<-----≤≤---=--.31,)32(,12,32|32|222x x x x x x x x 所以⎰---322|32|dx x x 13)32()32(312122=-----=⎰⎰---dx x x dx x x .(2)利用定积分的几何意义求定积分如定积分12014x dx π-=⎰,其几何意义就是单位圆面积的14。

(课本P60 B 组第一题) (3)利用被积函数的奇偶性a. 若()f x 为奇函数,则()0aa f x dx -=⎰;b. 若()f x 为偶函数,则0()()a aa f x dx f x dx-=⎰⎰2;其中0a >。

定积分典型例题20例答案

定积分典型例题20例答案

定积分典型例题20例答案例1求lim 丄(循2丁2『L Vn 3) •n n分析将这类问题转化为定积分主要是确定被积函数和积分上下限. 若对题目中被积函数难以想到,可采取如下方法:先对区间 [0, 1] n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限.解 将区间[0, 1] n 等分,则每个小区间长为 % -,然后把1丄的一个因子-乘nn n nn入和式中各项•于是将所求极限转化为求定积分•即lim A (习n 2 ^2n 2 LVn 3) = lim -(^—L ^—) = VXdx - • n nnnn,n ,n ° 42 -- ------ r例 2o (2x x dx = ___________• 2 . ________解法1由定积分的几何意义知, °. 2x x 2dx 等于上半圆周(x 1)2 y 2 1 ( y 0)与x 轴所围成的图形的面积.故2,2x x 2dx = _ • 0 2'1 sin 2tcostdt = 2。

2J sin 2t costdt =2 : cos 2 tdt^22x 2 2x例 3 (1)若 f (x) x e 七 dt ,则 f (x) = ________; (2)若 f (x) 0 xf (t)dt ,求 f (x)=分析这是求变限函数导数的问题,利用下面的公式即可(1) f (x) =2xe x e x可得xf (x) = 0 f (t)dt xf (x) •x 1例 4 设 f(x)连续,且。

f(t)dt x ,贝U f (26) = _________________O Ax 1解 对等式0 f(t)dtx 两边关于x 求导得3 2f(x 1) 3x 1,解法2本题也可直接用换元法求解.令x 1= Sint (2 t 2),则d v(x)dx u(x)f(t)dt f[v(x)]v(x) f[u(x)]u (x) • (2) 由于在被积函数中x 不是积分变量,故可提到积分号外即xf (x) x 0 f (t)dt ,则x 2dx =3 1 令x 1 26得x 3,所以f (26)27故f(x 3 1) 丄3x 例5函数F(x)F (x)1 1,令F (x) 0得r 3,解之得xx1 10 x -,即(0,-)为所求.9 9f (x)x0 (1 t)arctan tdt 的极值点.f (x) = (1 x)arctan x .令 f (x) = 0,得 x 1 , x 0.列表如下:x(,0)0 (0,1) 1(1,)f (x)-0 +f (x)的极大值例7已知两曲线y f (x)与y g(x)在点(0,0)处的切线相同,其中arcs inxg(x) 0t 2e dt , x [ 1,1],试求该切线的方程并求极限 lim nf (?).n n分析两曲线y f (x)与y g(x)在点(0,0)处的切线相同,隐含条件f(0) g(0),f (0)g (0) •解由已知条件得f(0)g(0)°e " dt且由两曲线在(0,0)处切线斜率相同知f (0)g(0)(arcsin x)2e1 x 2故所求切线方程为 y x .而lim nf (-) n nIim3nf(-) n3 0 nf(0) 一 3f (0) 3 •x 22sin tdtlim 0;x 0分析 该极限属于型未定式,可用洛必达法则. 0X 22sin tdt lim ------------------ = lim = ( 2) lim= ( 2)x 0:t (t sin t)dt x 0( 1) x (x sinx) 、7 x 0x sinx ' 丿2x(sin x 2)22 2(x ) 34x(x 0)的单调递减开区间为x 1(3点,x 0为极小值点.由题意先求驻点.于是12x=(2) lim =0 . x 0sinx注此处利用等价无穷小替换和多次应用洛必达法则.1 x t 2例9 试求正数a 与b ,使等式lim -------------------- dt 1成立.x 0x bsin x 0 ‘ ―t 2分析 易见该极限属于 0型的未定式,可用洛必达法则.1 x 2lim.a x 01 bcosx21 x lim3x 0x 2故f(x)是g(x)同阶但非等价的无穷小.2例11计算1|x|dx .分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分.2 220 2x 0 x 251|x|dx = 1( x)dx 0xdx = [ y] 1 [y]0 =-.在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如[-]32丄,则是错误的.错误的原因则是由于被积函数 」2在x 0处间断且在被x 6 x 2lim__ x 0x bsin x 0 . a 2x_ _t 「dt = lim _— =lim 1f 2 x 01 bcosx x op x 2x 2limx 01 bcosx由此可知必有 lim(1 bcosx) 0,得 b 1 .又由得a 4 .即a 4 , si nx1xlim a x 01 cosxb 1为所求. 例10设f (x)sin t 2dt , g(x) x 3 x 4,则当0 时,f (x)是 g(x)的( ). A .等价无穷小.B .同阶但非等价的无穷小.解法1由于lim 型 lim si 门伽浪)cosxx 0g(x) x 0C .高阶无穷小.D .低阶无穷小.mo Hx3x 2 4x 3cosx3 4xmo Hxsin (sin x)x解法2 将sin t 2展成t 的幕级数, 1 2 3 3!(t)f (x) 0 sin x 2 [t 2 再逐项积分,得到1 si n 42L ]dt 1 . 3 一 sin xlim 少 x 0g(x).31sin x(- lim -1 . 4sin x 4234x x1 lim -x 01 ■ 4 . sin x L 42 1 xUdx x积区间内无界 例12设f(x)是连续函数,且f(x) 1x 3 0 f(t)dt ,则 f (x)所以 分析本题只需要注意到定积分因f (x)连续,f (x)必可积,从而a 1—,所以 4例13 计算12x21 分析 bf (x)dx 是常数(a, b 为常数).从而f (x) x 3a ,且f(x) x1 21[―X 2 3ax]0 23 2 .10 f (t)dt 是常数,记 10 f (t)dt a ,则1 o(x3a)dx3a a ,x dx. 1 1 x 2由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性. I 2x 2 x ------ dx = II 1 x 2 I 2x 2----- dxII .1 x 2 ___ dx .由于 11 1 x 2一是偶函数,而 1 1 x 2 旦古函数, 是奇 2 x 111=dx 2 x0,I2x 2 xII1 x 2dx = 4 由定积分的几何意义可知 例14计算肿(x 2 011 x 20 1x 2dx 1 2x 2 1 dx = 4 1x 2 (11x 2) 0x _= dx 1 1 x 2t 2)dt ,其中 分析 要求积分上限函数的导数, 元使被积函数中不含 ,然后再求导. 由于 x 2 otf(xx 2dx = 4 dx 4;FVdx故令x 2xdx 01 4 dx 0 f(x)连续. 但被积函数中含有 x ,因此不能直接求导,必须先换2 1 x2 2 2t )dt = 2 0f(x t )dt .2 20时u x ;当t x 时u 0,而dtx2 2 1tf(x t)dt=;222d 1 x tf(x t)dt= dx [2 0x 2f (U)( du)=idu ,所以x 2f (u)du ,f (u)du] =£ f(x 2) 2x = xf (x 2).错误解答 — tf(x 2 t 2)dtxf(x 2 x 2) xf(O).dx 0错解分析这里错误地使用了变限函数的求导公式,公式d x(x) a f (t)dt f (x)dx a中要求被积函数f(t)中不含有变限函数的自变量 x ,而f (x 2 t 2)含有x ,因此不能直接求导,而应先换元. 15 计算 3 xsinxdx .分析 被积函数中出现幕函数与三角函数乘积的情形,通常采用分部积分法.=1ln21 In3 .417计算2e si nxdx .分析 被积函数中出现指数函数与三角函数乘积的情形通常要多次利用分部积分法. 解 由于 02e x sin xdx;sin xde x [e x sinx]〕2e x cosxdxe^2e x cos xdx ,(1)而02 *cosxdx2cos xde x[e x cosx](?o2e x ( sin x)dx2e x sin xdx 01 , (2)将(2)式代入(1)式可得?e x s in xdx e 2[2 e x sin xdx 1],故2 e xsin xdx1 ~2-(e 2 1). 21例 18 计算 xarcsinxdx .解 3 xs in xdx 3 xd(0 0 '3cosx) [x ( COSX )]oo3( cos x) dx616计算0兽dx .3cosxdx¥ 6分析被积函数中出现对数函数的情形,可考虑采用分部积分法.1x)d(-3 xJdx= 1ln(1 0(3 x)2'1Fln(1x)】1(3 x) (1 x)dx1 In2 21 xarcsin xdx分析被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解. 解 由于 0 [ f (x) f (x)]cos xdx 0 f (x)d sinxcosxdf (x){ f (x)sin x 00 f (x)sin xd" {[ f (x)cosx]° 0f (x)sin xd 冷f ( ) f (0) 2 .故 f (0) 2 f ( )2 3分析 该积分是无穷限的的反常积分,用定义来计算.解 dxtdx1 t 11 解2= lim 2= lim ()dxx 4x 3 t 0 x 4x 3 t 2 0 x 1 x 31 x 1 t 1 t 1 1 =lim [In ]0= lim (In In ) t2 x3 t 2 t 3 3分析 被积函数中出现反三角函数与幕函数乘积的情形,通常用分部积分法.1解xarcs in xdx1x20arcsinxd (一2x1[ arcsinx]。

最新定积分的几何应用例题与习题(学生用)

最新定积分的几何应用例题与习题(学生用)

定积分的几何应用例题与习题1曲线】的极坐标方程T=「COSR(0),求该曲线在所对应的点处的切线L的2 4直角坐标方程,并求曲线〕、切线L与x轴所围图形的面积。

2、设直线y=ax与抛物线y=x2所围成的面积为S n它们与直线x =1所围成的面积为务并且a <1(1)试确定a的值,使S ' S2达到最小,并求出最小值;(2)求该最小值所对应的平面图形绕x轴旋转一周所得旋转体的体积。

3、设xoy平面上有正方形D = {(x, y) 0兰x乞1,0兰y兰1}及直线L:x+y = t(t^O)x若S(t)表示正方形D位于直线I左下部分的面积,试求S(t)dt(x _0)4、求由曲线y =e»J sinx|(x Z0)与x轴所围图形绕x轴旋转所得旋转体的体积乂35、求由曲线^aC0S3t(a -0^n<-)与直线y=x及y轴所围成的图形[y=asi n3t 4 2绕x轴旋转所得立体的全表面积。

X _x6. 曲线y = e e—与直线x = 0, x =t(t • 0)及y = 0围成一曲边梯形,该曲边梯2形绕x轴旋转一周得一旋转体,其体积为V(t),侧面积为S(t),在x = t处的底面积为F(t)(1) 求的值;(2)计算极限limV(t) t-和F(t)泄2伽抄 (1)V(t) -::F(t)7、求由摆线x=a(t -sint),y= a(1-cost)的一拱(0辽t辽2二)与横轴所围成的平面图形的面积, 及该平面图形分别绕x轴、y轴旋转而成的旋转体的体积。

(1)A=3二a2 , (2)V x =5二2a3 , (3)V y =6二3a38、设平面图形A由x2y2 -2x及y-x所确定,求图形A绕直线x=2旋转一周所得旋转体的体积。

兀2 2V 二2 39设函数f (x), g(x)可微,且f (x)二g(x), g (x)二f (x), f (0) = 0, g(x) = 0.求:1)F(x)二丄©;(2)作出函数曲线y二F(x)的图形;(3)计算由曲线y = F(x)及直线g(x)x=0,x二b(b 0)和y =1围成的面积•(1) F(x)=1—飞^.e +1(2) 当XA0时,F"(x)c0,曲线上凸;当xc0时,F"(x)>0,曲线下凹,所以(0,0)为拐点,且y二_1为其水平渐近线•b b 2(3) S= °(1-F(x))dx= °孑”dx = 2b I n2-ln( 2b 1).10. 已知曲线y=a.x,(a 0)与曲线y = In ■■、x在点(x0, y0)处有公共切线,求(1常数a及切点(x0, y0);(2)两曲线与x轴围成的平面图形的面积;(3)两曲线与x轴围成的平面图形绕x轴旋转一周所得旋转体的体积V(1 a =1 ,切点(e2,1) RjsJe2—1(3)V x :e 6 2 2x11. 对于指数曲线y =e2(1)试在原点与x(x 0)之间找一点.-v x (0 ::: x :: 1),使这点左右两边有阴影部分的面积相等,并写出 v的表达式(2)求lim v -?x T十x xt xe" -2e2 2lim J xj •2_ xx(e2 -1)12、抛物线y=ax2・bx,c通过点(0,0),且当0_x_1时,y_0,它和直线x = 1及y=0所围的图形的面积是4,问这个图形绕x轴旋转而成的旋转体的体积为最小值时,a,b与c的9值应为多少?5a ,b = 2,c = 0313、过点P(1,0)作抛物线y x-2的切线,该切线与上述抛物线及x轴围成一平面图形(如图),求此图形绕x轴旋转所成旋转体的体积。

(完整word版)定积分典型例题20例答案

(完整word版)定积分典型例题20例答案

定积分典型例题20例答案例1 求33322321lim(2)n n n n n →∞+++.分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限.解 将区间[0,1]n 等分,则每个小区间长为1i x n ∆=,然后把2111n n n=⋅的一个因子1n 乘入和式中各项.于是将所求极限转化为求定积分.即33322321lim(2)n n n n n →∞+++=333112lim ()n n n n nn →∞+++=13034xdx =⎰.例2 2202x x dx -⎰=_________.解法1 由定积分的几何意义知,2202x x dx -⎰等于上半圆周22(1)1x y -+= (0y ≥)与x 轴所围成的图形的面积.故2202x x dx -⎰=2π. 解法2 本题也可直接用换元法求解.令1x -=sin t (22t ππ-≤≤),则222x x dx -⎰=2221sin cos t tdt ππ--⎰=2221sin cos t tdt π-⎰=2202cos tdt π⎰=2π 例3 (1)若22()x t xf x e dt -=⎰,则()f x '=___;(2)若0()()xf x xf t dt =⎰,求()f x '=___.分析 这是求变限函数导数的问题,利用下面的公式即可()()()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-⎰.解 (1)()f x '=422x x xe e ---;(2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()xf x x f t dt =⎰,则可得()f x '=0()()xf t dt xf x +⎰.例4 设()f x 连续,且31()x f t dt x -=⎰,则(26)f =_________.解 对等式310()x f t dt x -=⎰两边关于x 求导得32(1)31f x x -⋅=,故321(1)3f x x -=,令3126x -=得3x =,所以1(26)27f =. 例5 函数11()(3)(0)x F x dt x t =->⎰的单调递减开区间为_________.解 1()3F x x'=-,令()0F x '<得13x >,解之得109x <<,即1(0,)9为所求. 例6 求0()(1)arctan xf x t tdt =-⎰的极值点.解 由题意先求驻点.于是()f x '=(1)arctan x x -.令()f x '=0,得1x =,0x =.列表如下:故1x =为()f x 的极大值点,0x =为极小值点.例7 已知两曲线()y f x =与()y g x =在点(0,0)处的切线相同,其中2arcsin 0()xt g x e dt -=⎰,[1,1]x ∈-,试求该切线的方程并求极限3lim ()n nf n→∞.分析 两曲线()y f x =与()y g x =在点(0,0)处的切线相同,隐含条件(0)(0)f g =,(0)(0)f g ''=.解 由已知条件得2(0)(0)0t f g e dt -===⎰,且由两曲线在(0,0)处切线斜率相同知2(arcsin )2(0)(0)11x x e f g x -=''===-.故所求切线方程为y x =.而3()(0)3lim ()lim33(0)330n n f f n nf f n n→∞→∞-'=⋅==-. 例8 求 22000sin lim(sin )x x xtdtt t t dt→-⎰⎰;分析 该极限属于型未定式,可用洛必达法则. 解 22000sin lim (sin )x x xtdtt t t dt→-⎰⎰=2202(sin )lim (1)(sin )x x x x x x →-⋅⋅-=220()(2)lim sin x x x x →-⋅-=304(2)lim 1cos x x x→-⋅-x(,0)-∞0 (0,1)1 (1,)+∞()f x '-+-=2012(2)lim sin x x x→-⋅=0.注 此处利用等价无穷小替换和多次应用洛必达法则.例9 试求正数a 与b ,使等式2201lim1sin x x t dt x b x a t→=-+⎰成立. 分析 易见该极限属于型的未定式,可用洛必达法则. 解 20201lim sin x x t dt x b x a t →-+⎰=220lim 1cos x x a x b x →+-=22001lim lim 1cos x x x b x a x→→⋅-+201lim 11cos x x b x a →==-,由此可知必有0lim(1cos )0x b x →-=,得1b =.又由2012lim 11cos x x x a a→==-, 得4a =.即4a =,1b =为所求. 例10 设sin 20()sin x f x t dt =⎰,34()g x x x =+,则当0x →时,()f x 是()g x 的( ).A .等价无穷小.B .同阶但非等价的无穷小.C .高阶无穷小.D .低阶无穷小.解法1 由于 22300()sin(sin )cos lim lim()34x x f x x xg x x x →→⋅=+ 2200cos sin(sin )lim lim34x x x x x x →→=⋅+ 22011lim 33x x x →==. 故()f x 是()g x 同阶但非等价的无穷小.选B .解法2 将2sin t 展成t 的幂级数,再逐项积分,得到sin 223370111()[()]sin sin 3!342x f x t t dt x x =-+=-+⎰,则344340001111sin (sin )sin ()1342342lim lim lim ()13x x x x x x f x g x x x x→→→-+-+===++. 例11 计算21||x dx -⎰.分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分.解 21||x dx -⎰=0210()x dx xdx --+⎰⎰=220210[][]22x x --+=52.注 在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如 33222111[]6dx x x --=-=⎰,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界.例12 设()f x 是连续函数,且10()3()f x x f t dt =+⎰,则()________f x =.分析 本题只需要注意到定积分()baf x dx ⎰是常数(,a b 为常数).解 因()f x 连续,()f x 必可积,从而10()f t dt ⎰是常数,记1()f t dt a =⎰,则()3f x x a =+,且11(3)()x a dx f t dt a +==⎰⎰.所以2101[3]2x ax a+=,即132a a +=, 从而14a =-,所以 3()4f x x =-.例13 计算2112211x x dx x-++-⎰.分析 由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性. 解 2112211x x dx x-++-⎰=211112221111x x dx dx x x--++-+-⎰⎰.由于22211x x+-是偶函数,而211x x+-是奇函数,有112011xdx x-=+-⎰, 于是2112211x x dx x -++-⎰=2102411x dx x +-⎰=22120(11)4x x dx x--⎰=11200441dx x dx --⎰⎰ 由定积分的几何意义可知12014x dx π-=⎰, 故211122444411x x dx dx xππ-+=-⋅=-+-⎰⎰.例14 计算220()xd tf x t dt dx -⎰,其中()f x 连续. 分析 要求积分上限函数的导数,但被积函数中含有x ,因此不能直接求导,必须先换元使被积函数中不含x ,然后再求导.解 由于220()xtf x t dt -⎰=2221()2x f x t dt-⎰. 故令22x t u -=,当0t =时2u x =;当t x =时0u =,而2dt du =-,所以220()x tf x t dt -⎰=201()()2x f u du -⎰=201()2x f u du ⎰, 故220()x d tf x t dt dx -⎰=201[()]2x d f u du dx ⎰=21()22f x x⋅=2()xf x .错误解答220()x d tf x t dt dx -⎰22()(0)xf x x xf =-=. 错解分析 这里错误地使用了变限函数的求导公式,公式()()()xad x f t dt f x dx 'Φ==⎰中要求被积函数()f t 中不含有变限函数的自变量x ,而22()f x t -含有x ,因此不能直接求导,而应先换元.例15 计算30sin x xdx π⎰.分析 被积函数中出现幂函数与三角函数乘积的情形,通常采用分部积分法.解30s i n x x d x π⎰30(c o s )x d x π=-⎰33[(c o s )](c o s )x x x d x ππ=⋅---⎰ 30cos 6xdx ππ=-+⎰326π=-. 例16 计算120ln(1)(3)x dx x +-⎰.分析 被积函数中出现对数函数的情形,可考虑采用分部积分法.解 120ln(1)(3)x dx x +-⎰=101ln(1)()3x d x +-⎰=1100111[ln(1)]3(3)(1)x dx x x x +-⋅--+⎰ =101111ln 2()2413dx x x-++-⎰11ln 2ln324=-. 例17 计算20sin x e xdx π⎰.分析 被积函数中出现指数函数与三角函数乘积的情形通常要多次利用分部积分法.解 由于2sin xe xdx π⎰20sin xxde π=⎰220[sin ]cos xx e x e xdx ππ=-⎰220cos x e e xdx ππ=-⎰, (1)而20cos xe xdx π⎰20cos xxde π=⎰220[cos ](sin )xx e x e x dx ππ=-⋅-⎰20sin 1x e xdx π=-⎰, (2)将(2)式代入(1)式可得20sin xe xdx π⎰220[sin 1]x e e xdx ππ=--⎰,故20sin xe xdx π⎰21(1)2e π=+.例18 计算1arcsin x xdx ⎰.分析 被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法.解 10arcsin x xdx ⎰210arcsin ()2x xd =⎰221100[arcsin ](arcsin )22x x x d x =⋅-⎰21021421x dx x π=--⎰. (1) 令sin x t =,则2121x dx x-⎰222sin sin 1sin td t tπ=-⎰220sin cos cos ttdt t π=⋅⎰220sin tdt π=⎰201cos22t dt π-==⎰20sin 2[]24t t π-4π=. (2)将(2)式代入(1)式中得1arcsin x xdx =⎰8π. 例19设()f x [0,]π上具有二阶连续导数,()3f π'=且0[()()]cos 2f x f x xdx π''+=⎰,求(0)f '.分析 被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解. 解 由于0[()()]cos f x f x xdx π''+⎰00()sin cos ()f x d x xdf x ππ'=+⎰⎰[]000{()sin ()sin }{[()cos ]()sin }f x x f x xdx f x x f x xdx ππππ'''=-++⎰⎰()(0)2f f π''=--=.故 (0)f '=2()235f π'--=--=-. 例20 计算243dxx x +∞++⎰. 分析 该积分是无穷限的的反常积分,用定义来计算. 解2043dx x x +∞++⎰=20lim 43t t dx x x →+∞++⎰=0111lim ()213t t dx x x →+∞-++⎰ =011lim [ln ]23t t x x →+∞++=111lim (ln ln )233t t t →+∞+-+ =ln 32.。

(完整版)定积分应用题附答案

(完整版)定积分应用题附答案

《定积分的应用》复习题一.填空:1.曲线ln ,ln ,ln (0)y x y a y b a b y ===<<及轴所围成的平面图形的面积为A =ln ln by ae dy ⎰=b-a______2.2y x y ==曲线和 ____13____二.计算题:1.求由抛物线 y 2 = 2x 与直线 2x + y – 2 = 0 所围成的图形的面积。

解:(1)确定积分变量为y ,解方程组2222y x y x ⎧=⎨=-+⎩ 得12121/22,12x x y y ==⎧⎧⎨⎨==-⎩⎩ 即抛物线与直线的交点为(21,1)和( 2 , - 2 ).故所求图形在直线y = 1和y = - 2 之间,即积分区间为[-2,1 ]。

(2)在区间[-2,1]上,任取一小区间为[ y , y + dy ],对应的窄条面积近似于高为[(1-21y )-21y 2 ],底为dy 的矩形面积,从而得到面积元素 dA = [(1-21y)- 21y 2 ]dy (3)所求图形面积 A =⎰-12[(1- 21y )-21y 2 ]dy = [y - 41y 2 – 61y 3]12-= 942.求抛物线 y = - x 2 + 4x - 3 及其在点(0,- 3)和(3,0)处的切线所围成的图形的面积。

解:由y = - x 2 + 4x – 3 得 '24,'(0)4,'(3)2y x y y =-+==-。

抛物线在点(0,- 3)处的切线方程为 y = 4x – 3 ;在点(3,0)处的切线方程为 y = - 2x + 6 ; 两切线的交点坐标为 ( 32,3 )。

故 面积A =332223029[(43)(43)][(26)(43)]4x x x dx x x x dx --+-+-+-+-=⎰⎰3.求由摆线 x = a (t – sint) , y = a( 1- cost) 的一拱(02t π≤≤)与横轴所围成的图形的面积。

高考数学新课标定积分应用例题、习题及详解

高考数学新课标定积分应用例题、习题及详解

图3定积分应用1、直角坐标系下平面图形面积的计算①连续曲线()(()0),y f x f x x a x b =≥==及及x 轴所围成的平面图形面积为()baA f x dx =⎰②设平面图形由上下两条曲线y =f 上(x )与y =f 下(x )及左右两条直线x =a 与x =b 所围成, 则面积元素为[f 上(x )- f 下(x )]dx , 于是平面图形的面积为: dx x f x f S ba ⎰-=)]()([下上.③连续曲线()(()0),x y y c y d φφ=≥==及y 及y轴所围成的平面图形面积为()d cA y dy φ=⎰④由方程1()x y φ=与2()x y φ=以及,y c y d==所围成的平面图形面积为12[()()]dcA y y dy φφ=-⎰ 12()φφ>例1 计算两条抛物线2x y =与2y x =所围成的面积.解 求解面积问题,一般需要先画一草图(图3),我们要求的是阴影部分的面积.需要先找出交点坐标以便确定积分限,为此解方程组:⎩⎨⎧==22y x x y得交点(0,0)和(1,1).选取x 为积分变量,则积分区间为]1,0[,根据公式(1) ,所求的面积为31)3132()(103102=-=-=⎰x x x dx x x S .一般地,求解面积问题的步骤为:(1) 作草图,求曲线的交点,确定积分变量和积分限. (2) 写出积分公式. (3) 计算定积分.例2 计算抛物线y 2=2x 与直线y =x -4所围成的图形的面积. 解 (1)画图.(2)确定在y 轴上的投影区间: [-2, 4]. (3)确定左右曲线: 4)( ,21)(2+==y y y y 右左ϕϕ.(4)计算积分⎰--+=422)214(dy y y S 18]61421[4232=-+=-y y y .例3 求在区间[21,2 ]上连续曲线 y=ln x ,x 轴及二直线 x =21,与x = 2所围成平面区域(如图2)的面积 。

定积分应用经典例题课件

定积分应用经典例题课件

例5. 求过点( 2 , 1 , 3 ) 且与直线
垂直相交的直线方程.
提示: 先求二直线交点 P. 过已知点且垂直于已知直线
的平面的法向量为
故其方程为

化已知直线方程为参数方程, 代入 ①式, 可得交 点
最后利用两点式得所求直线方程
x 2 y 1 z 3 2 1 4
(2,1,3)
P (3,2,1) (1,1,0)
n P 14
7
机动 目录 上页 下页 返回 结束
例5. 设函数
(1) 求函数在点 M ( 1, 1, 1 ) 处沿曲线 在该点切线方向的方向导数;
(2) 求函数在 M( 1, 1, 1 ) 处的梯度与(1)中切线方向
的夹角 .
2. 求函数 u x2 y2 z2 在椭球面 x2 y2 z2 1 a2 b2 c2
且垂直于直线L1
:
x 1 3
y 2
z
1, 1
相交,求此直线方程 .
解: 方法1 利用叉积.
设直线 Li 的方向向量为 si (i 1, 2),过 A 点及 L2 的平
面的法向量为 n, 则所求直线的方向向量 s s1 n , n
因原点 O 在 L2 上, 所以
A
i jk
n s2 OA 2 1 1 3 i 3 j 3k O 121
(2) grad f M (2 , 1 , 0)
cos
l
l
arccos 6
130
f l M
grad f M
2.
u
2x0
2x0 a2
2 y0
2 y0 b2
2z0
2z0 c2
n M0
2
x02 a4

利用定积分求简单几何体的体积

利用定积分求简单几何体的体积

6
变式引申:某电厂冷却塔外形如图所示,双曲线的一部分 绕其中轴(双曲线的虚轴)旋转所成的曲面,其中A,A’是 双曲线的顶点,C,C’是冷却塔上口直径的两个端点, B,B’ 是下底直径的两个端点,已知 AA’=14m,CC’=18m,BB’=22m,塔高20m.
(1)建立坐标系,并写出该曲线厚度不计,
取3.14)

x2 (1)

y2
1
49 98
C’ A’
(2)V 8 x2dy 8 ( 1 y2 49)dy
12
12 2
B’
C A
7B
归纳总结:求旋转体的体积和侧面积
由曲线 y f (x),直线
x a, x b及 x
x 轴所围成的曲边梯形绕
轴旋转而成的旋转体体积为
V
b
[f
( x)]2 dx
y
y f (x)
a

oa
bx
2
例题研究
利用定积分求曲边旋转体的体积
例1、求由曲线 y 2 4x, x 1所围成的图形绕
x 轴旋转所得旋转体的体积。
V=
1
4 xdx 2
0
y
y2 4x
o x=1 x
3
变式练习1、求曲线 y ex ,直线 x 0,x 1
V b[ f (x)]2d.x其侧面积为 a
求S侧体积2的ab过f (程x)就1是[对f '(定x)]积2 dx分概念的进一步理解
过程,总结求旋转体体积公式步骤如下:
1.先求出 y f x 的表达式;2.代入公式8
V

b
a
f
2

高中数学——定积分的概念常考试题解析讲解

高中数学——定积分的概念常考试题解析讲解

‫‪3‬‬
‫(‪−3‬׬‪6.计算‬‬
‫‪1 3‬‬
‫‪2 3‬‬
‫‪2 2‬‬
‫‪1‬‬
‫‪15‬‬
‫‪7‬‬
‫‪1 = ,‬׬‪1 = ,‬׬‪0 = ,‬׬‪7.已知‬‬
‫‪4‬‬
‫‪4‬‬
‫‪3‬‬
‫‪4 2‬‬
‫‪56‬‬
‫‪2 = 3 ,求:‬׬‬
‫‪2‬‬

这就是定积分‫ ׬‬
的几何意义.
直线=把一个大的曲边梯形分成了两个小曲边梯形,
因此大曲边梯形的面积是两个小曲边梯形的面积1,
2之和,即=2)‫׬‬
=

‫( )( ׬‬为常数)
1 () ± 2 () =
形”的所有边都是直线段.
思考3:能否将求曲边梯形的面积问题转化为求“直边
图形”的面积问题?
求曲边梯形面积的步骤:①分割,②近似代替,③求
和,④取极限.
1、求由直线=0,=1,=0和曲线=(-1)
围成的图形面积.
2、求由抛物线=2与直线=4所围成的曲边梯形
的面积.
求变速直线运动的(位移)路程
高中数学—定积分的概念
1.5.1 曲边梯形的面积常考试题解析
1.5.2 汽车行驶的路程常考试题解析
思考1:如何计算下列两图形的面积?
思考2:如图,为求由抛物线=2与
直线=1,=0所围成的平面图形
的面积,图形与我们熟悉的“直边
图形”有什么区别?
曲边梯形,曲边梯形的一条边为曲线段,而“直边图
=( < ),=0及曲线=()所围成的曲边梯形的面积.

(2)当函数() ≤ 0时,曲边梯形位于轴的下方,此时‫ ׬‬等

(完整版)§定积分的应用习题与答案

(完整版)§定积分的应用习题与答案

第六章 定积分的应用(A )1、求由下列各曲线所围成的图形的面积 1)221x y =与822=+y x (两部分都要计算)2)xy 1=与直线x y =及2=x3)xe y =,xe y -=与直线1=x4)θρcos 2a =5)t a x 3cos =,t a y 3sin =1、求由摆线()t t a x sin -=,()t a y cos 1-=的一拱()π20≤≤t 与横轴所围成的图形的面积2、求对数螺线θρae=()πθπ≤≤-及射线πθ=所围成的图形的面积3、求由曲线x y sin =和它在2π=x 处的切线以及直线π=x 所围成的图形的面积和它绕x 轴旋转而成的旋转体的体积4、由3x y =,2=x ,0=y 所围成的图形,分别绕x 轴及y 轴旋转,计算所得两旋转体的体积5、计算底面是半径为R 的圆,而垂直于底面上一条固定直径的所有截面都是等边三角形的立体体积6、计算曲线()x y -=333上对应于31≤≤x 的一段弧的长度7、计算星形线t a x 3cos =,t a y 3sin =的全长8、由实验知道,弹簧在拉伸过程中,需要的力→F (单位:N )与伸长量S (单位:cm )成正比,即:kS =→F (k 是比例常数),如果把弹簧内原长拉伸6cm , 计算所作的功9、一物体按规律3ct x =作直线运动,介质的阻力与速度的平方成正比,计算物体由0=x 移到a x =时,克服介质阻力所作的功10、 设一锥形储水池,深15m ,口径20m ,盛满水,将水吸尽,问要作多少功?11、 有一等腰梯形闸门,它的两条底边各长10cm 和6cm ,高为20cm ,较长的底边与水面相齐,计算闸门的一侧所受的水压力12、 设有一长度为λ,线密度为u 的均匀的直棒,在与棒的一端垂直距离为a 单位处有一质量为m 的质点M ,试求这细棒对质点M 的引力(B)1、设由抛物线()022>=p px y 与直线p y x 23=+ 所围成的平面图形为D 1) 求D 的面积S ;2)将D 绕y 轴旋转一周所得旋转体的体积2、求由抛物线2x y =及x y =2所围成图形的面积,并求该图形绕x 轴旋转所成旋转体的体积3、求由x y sin =,x y cos =,0=x ,2π=x 所围成的图形的面积,并求该图形绕x 轴旋转所成旋转体的体积4、求抛物线px y 22=及其在点⎪⎭⎫⎝⎛p p ,2处的法线所围成的图形的面积5、求曲线422+-=x x y 在点()4,0M 处的切线MT 与曲线()122-=x y 所围成图形的面积6、求由抛物线ax y 42=与过焦点的弦所围成的图形面积的最小值7、求由下列曲线所围成图形的公共部分的面积 1)θρcos 3=,θρcos 1+=2)θρsin a =,()θθρsin cos +=a ,0>a8、由曲线()16522=-+y x 所围成图形绕x 轴旋转所成旋转体的体积9、求圆心在()b ,0半径为a ,()0>>a b 的圆,绕x 轴旋转而成的环状体的体积10、计算半立方抛物线()32132-=x y 被抛物线32x y =截得的一段弧的长度(C)1、用积分方法证明半径为R 的球的高为H 的球缺的的体积为⎪⎭⎫ ⎝⎛-=32H R H V π2、分别讨论函数x y sin =⎪⎭⎫⎝⎛≤≤20πx 在取何值时,阴影部分的面积1S ,2S 的和21S S S +=取最大值和最小值3、求曲线x y =()40≤≤x 上的一条切线,使此切线与直线0=x , 4=x 以及曲线x y =所围成的平面图形的面积最小4、半径为r 的球沉入水中,球的上部与水面相切,球的密度与水相同,现将球从水中取出,需作多少功?第六章 定积分应用 习 题 答 案(A )1、1)342+π,346-π 2)2ln 23- 3)21-+ee 4)2a π 5)283a π2、23a π 3、()ππ2224--e e a 4、12-π,42π 5、7128π,564π 6、3334R 7、3432- 8、a 6 9、kJ 18.0 10、3732727a kc (其中k 为比例常数)11、()kJ 5.57697 12、()kN 14373 13、取y 轴经过细直棒⎪⎪⎭⎫⎝⎛+-=2211t a aGmu F y 22t a a Gmu F x +-=λ(B)1、1)⎰-=⎪⎪⎭⎫ ⎝⎛--=pp p dy p y y p S 322316223 或()⎰⎰=⎪⎭⎫⎝⎛+-++=20229231622322pp p p dx px x p dx px px S2)⎰⎰--=⎪⎪⎭⎫⎝⎛-⎪⎭⎫⎝⎛-=pp p p p dy p y dy y p V 33322215272223πππ 2、()⎰=-=10231dx x x A ()()ππ⎰=⎪⎭⎫⎝⎛-=10222103dx x x V3、()()⎰⎰-=-+-=244222cos sin sin cos πππdx x x dx x x A()()()()()()⎰⎰=-+-=24224022cos sin sin cos πππππdx x x dx x x V4、抛物线在点⎪⎭⎫⎝⎛p p ,2处的法线方程为: p y x 23=+,以下解法同第一题2316p A = 5、MT :x y 24-=,切线MT 与曲线()122-=x y 的交点坐标为⎪⎭⎫⎝⎛1,23,()2,3- ⎰-=⎪⎪⎭⎫ ⎝⎛---=122491224dy y y A 6、提示:设过焦点()0,a 的弦的倾角为α则弦所在直线的方程为()a x y -=αtan由()a x y -=αtan ,ax y 42=得两交点纵坐标为()()21csc 2csc 2y ctg a ctg a y =+<-=αααα所以()()dy a y yctg a A y y ⎰⎥⎦⎤⎢⎣⎡-+=2142αα ()()32222csc 34csc 4csc 4ααααa ctg a a -+=()()3232csc 34csc 4ααa a -=()32csc 38αa =因为πα<<0 当2πα=时 ()3csc α取得最小值为1所以 当2πα=时 过焦点的弦与抛物线ax y 42=所围成的图形面积()32csc 382απa A =⎪⎭⎫ ⎝⎛最小7、1)()()πθθθθπππ45cos 321cos 1212232302=⎥⎦⎤⎢⎣⎡++=⎰⎰d d A2)()()[]⎰⎰-=++=ππππθθθθθ22220241cos sin 21sin 21a d a d a A 8、()()⎰⎰------+=44442222165165dx xdx xV ππ()()⎰-=⎭⎬⎫⎩⎨⎧----+=4422222160165165ππdx xx9、解法同题810、提示:()32132-=x y ,32x y = 联立得交点⎪⎪⎭⎫ ⎝⎛36,2,⎪⎪⎭⎫ ⎝⎛-36,2 所求弧长()⎰+=212'12dx y s由()32132-=x y 得()yx y 2'1-=于是()()()()()1231321134222'-=--=⎪⎪⎭⎫ ⎝⎛-=x x x y x y于是得()⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡-+=⎰12598123122321221dx x S(C)1、证明:此处球缺可看作由如图阴影(图222R y x =+的一部分)绕y 轴旋转而成所以()⎰⎰---==RHR RHR dy y R dy x V 222ππR HR R HR y yR ---=332ππ()[]()[]3323H R R H R R R -----=ππ⎪⎭⎫ ⎝⎛-=32H R H π2、解:()⎰-=tdx x t S 11sin sin ()⎰-=22sin sin πtdx t x S()()⎰-=tdx x t t S 1sin sin +()⎰-2sin sin πtdx t x=⎪⎭⎫ ⎝⎛≤≤-⎪⎭⎫⎝⎛-+201sin 22cos 2ππt t t t ()0cos 22'=⎪⎭⎫⎝⎛-=t t t S π,得驻点2421ππ==t t易知()()002''1''<>t S t S122max -=⎪⎭⎫ ⎝⎛=∴ππS S ,124min -=⎪⎭⎫⎝⎛=πS S3、解:设()00,y x 为曲线x y =()40≤≤x 上任一点,易得曲线于该点处的切线方程为:()00021x x x y y -=- 即0022x x y y +=得其与0=x , 4=x 的交点分别为⎪⎭⎫ ⎝⎛2,00y ,⎪⎪⎭⎫⎝⎛+0022,4y y 于是由此切线与直线0=x , 4=x 以及曲线x y =所围的平面图形面积为:3164222004000-+=⎪⎪⎭⎫ ⎝⎛-+=⎰x y dx x x x y S3164200-+=x x 问题即求31642-+=xx S ()40≤≤x 的最小值 令022321=+=--xxS 得唯一驻点2=x 且为唯一极小值所以 当2=x 时,S 最小 即所求切线即为:2222+=x y 4、如图:以水中的球心为原点,上提方向作为坐标轴建立坐标系易知任意[]dx x x +,段薄片在提升过程中在水中行程为r -x ,而在水上的行程为2r -(r -x )=r +x因为求的密度与水相同,所以在水中提升过程中浮力与重力的合力为零,不做功,而在水面上提升时,做功微元为()()dx x r x r g dW +-=22π()()g r dx x r x r g dW W r r r r 42234ππ⎰⎰--=+-==。

定积分-1

定积分-1
0 i 1
n
被 积 函 数
被 积 表 达 式
积 分 变 量
积 分 和
定积分仅与被积函数及积分区间有关 , 而与积分 变量用什么字母表示无关 , 即
a f ( x) dx a f (t) d t a f (u)du
b
b
b

根据定积分的定义 曲边梯形的面积为 A a f ( x)dx
思考:证明可积函数一定有界;有界未必可积(举例)
3.定积分的几何意义:
f( x ) 0 , f( x ) d x A 曲边梯形面积 a
b
f( x ) 0 , f( x ) d x A 曲边梯形面积的负值
a
b
y
A1 a
b
A3
A2 A4
A5
b x
f ( x ) d x A A A A A 1 2 3 4 5 a
3 求和 n
i 1
A f ( ) x i i i
Af ( x i) i.
分法越细,越接近精确值
o
a x1 x2
x i 1 i x i
x n 1 b
x
4 取极限
n
令分法无限变细
x A = lim f (i ) i
0 i 1
.
(2).变速直线运动的路程 已知物体直线运动的速度vv(t)是时间 t 的连续函数, 且v(t)0, 计算物体在时间段[T1, T2]内所经过的路程S. (1)分割: T1t0<t1<t2< <tn1<tnT2, tititi1;
2 近似: 以直代曲 (以常代变)
3 求和 n
i 1
A f ( ) x i i i

微积分 第六章 第四节 定积分的应用

微积分 第六章 第四节 定积分的应用

4ab
1
ab .
0
22
2 0
sinn
xdx
n
n
n
n
1 1
n n n n
3 2 3 2
3 4 4 5
1 2 2 3
, n为正偶数
2
, n为大于1的奇数
19
例4 计算由曲线 y2 2x 和直线 y x 4所围成
的图形的面积. 解 两曲线的交点
y
y2 2x
(8, 4)
2
Vy 2
1 x 2x2dx .
0
o 1x
35
例12 求由曲线 y ( x 1)( x 2) 和 x 轴所围平面图
形绕 y 轴旋转一周而成的旋转体体积.

Vy 2
2
x( x 1)( x 2)dx
.
1
2
y
y
a
b
12
o
xo
x
y f (x)
“套筒法”推广:
由平面图形 0 a x b, f ( x) y 0 绕 y 轴
t (t 2 x2 )dx
1
(
x2
t
2
)
dx
0
t
y
1
y = x2
[t 2 x
x3 3
]
t 0
x3 [
3
t
2
x]
1 t
4t 3 t 2 1 , 0 t 1
3
3
t2
S2
S1
o
t1 x
S 4t 2 2t

2t(2t 1)
0 ,得驻点:
t
0, t
1,
2
经比较,当t 1 时两面积和最小.

定积分典型例题20例解答

定积分典型例题20例解答

定积分典型例题20例答案例1 求3321lim)n n n →∞+.分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限.解 将区间[0,1]n 等分,则每个小区间长为1i x n ∆=,然后把2111n n n=⋅的一个因子1n 乘入和式中各项.于是将所求极限转化为求定积分.即3321lim)n n n →∞+=31lim )n n n n →∞+=34=⎰.例2 0⎰=_________.解法1 由定积分的几何意义知,0⎰等于上半圆周22(1)1x y -+= (0y ≥)与x 轴所围成的图形的面积.故0⎰=2π. 解法2 本题也可直接用换元法求解.令1x -=sin t (22t ππ-≤≤),则⎰=22tdt ππ-⎰=2tdt =2202cos tdt π⎰=2π 例3 (1)若22()x t xf x e dt -=⎰,则()f x '=___;(2)若0()()xf x xf t dt =⎰,求()f x '=___.分析 这是求变限函数导数的问题,利用下面的公式即可()()()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-⎰.解 (1)()f x '=422x x xe e ---;(2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()xf x x f t dt =⎰,则可得()f x '=0()()xf t dt xf x +⎰.例4 设()f x 连续,且31()x f t dt x -=⎰,则(26)f =_________.解 对等式310()x f t dt x -=⎰两边关于x 求导得32(1)31f x x -⋅=,故321(1)3f x x -=,令3126x -=得3x =,所以1(26)27f =. 例5函数1()(3(0)x F x dt x =>⎰的单调递减开区间为_________.解()3F x '=()0F x '<3>,解之得109x <<,即1(0,)9为所求.例6 求0()(1)arctan xf x t tdt =-⎰的极值点.解 由题意先求驻点.于是()f x '=(1)arctan x x -.令()f x '=0,得1x =,0x =.列表如下:故1x =为()f x 的极大值点,0x =为极小值点.例7 已知两曲线()y f x =与()y g x =在点(0,0)处的切线相同,其中2arcsin 0()xt g x e dt -=⎰,[1,1]x ∈-,试求该切线的方程并求极限3lim ()n nf n→∞.分析 两曲线()y f x =与()y g x =在点(0,0)处的切线相同,隐含条件(0)(0)f g =,(0)(0)f g ''=.解 由已知条件得2(0)(0)0t f g e dt -===⎰,且由两曲线在(0,0)处切线斜率相同知(0)(0)1f g =''===.故所求切线方程为y x =.而3()(0)3lim ()lim33(0)330n n f f n nf f n n→∞→∞-'=⋅==-. 例8 求 22000sin lim(sin )x x xtdtt t t dt→-⎰⎰;分析 该极限属于型未定式,可用洛必达法则. 解 22000sin lim (sin )x x xtdtt t t dt→-⎰⎰=2202(sin )lim (1)(sin )x x x x x x →-⋅⋅-=220()(2)lim sin x x x x →-⋅-=304(2)lim 1cos x x x→-⋅-=2012(2)lim sin x x x→-⋅=0.注 此处利用等价无穷小替换和多次应用洛必达法则.例9 试求正数a 与b,使等式201lim1sin x x x b x →=-⎰成立. 分析 易见该极限属于型的未定式,可用洛必达法则. 解2001lim sin x x x b x →-⎰=20x →=20lim 1cos x x x b x →→-2011cos x x b x →==-,由此可知必有0lim(1cos )0x b x →-=,得1b =.又由2011cos x x x →=-, 得4a =.即4a =,1b =为所求. 例10 设sin 20()sin x f x t dt =⎰,34()g x x x =+,则当0x →时,()f x 是()g x 的( ).A .等价无穷小.B .同阶但非等价的无穷小.C .高阶无穷小.D .低阶无穷小.解法1 由于 22300()sin(sin )cos lim lim()34x x f x x xg x x x →→⋅=+ 2200cos sin(sin )lim lim34x x x x x x →→=⋅+ 22011lim 33x x x →==. 故()f x 是()g x 同阶但非等价的无穷小.选B .解法2 将2sin t 展成t 的幂级数,再逐项积分,得到sin 223370111()[()]sin sin 3!342x f x t t dt x x =-+=-+⎰,则344340001111sin (sin )sin ()1342342lim lim lim ()13x x x x x x f x g x x x x→→→-+-+===++. 例11 计算21||x dx -⎰.分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分.解 21||x dx -⎰=0210()x dx xdx --+⎰⎰=220210[][]22x x --+=52.注 在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如33222111[]6dx x x --=-=⎰,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界.例12 设()f x 是连续函数,且10()3()f x x f t dt =+⎰,则()________f x =.分析 本题只需要注意到定积分()baf x dx ⎰是常数(,a b 为常数).解 因()f x 连续,()f x 必可积,从而10()f t dt ⎰是常数,记1()f t dt a =⎰,则()3f x x a =+,且11(3)()x a dx f t dt a +==⎰⎰.所以2101[3]2x ax a+=,即132a a +=, 从而14a =-,所以 3()4f x x =-.例13 计算21-⎰.分析 由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性. 解 21-⎰=211--+⎰⎰2是偶函数,而是奇函数,有10-=⎰, 于是21-⎰=214⎰=04⎰=1044dx -⎰⎰由定积分的几何意义可知4π=⎰, 故2114444dx ππ-=-⋅=-⎰⎰.例14 计算220()xd tf x t dt dx -⎰,其中()f x 连续. 分析 要求积分上限函数的导数,但被积函数中含有x ,因此不能直接求导,必须先换元使被积函数中不含x ,然后再求导.解 由于220()xtf x t dt -⎰=2221()2x f x t dt-⎰. 故令22x t u -=,当0t =时2u x =;当t x =时0u =,而2dt du =-,所以220()x tf x t dt -⎰=201()()2x f u du -⎰=201()2x f u du ⎰,故220()x d tf x t dt dx -⎰=201[()]2x d f u du dx ⎰=21()22f x x⋅=2()xf x .错误解答220()xd tf x t dt dx -⎰22()(0)xf x x xf =-=. 错解分析 这里错误地使用了变限函数的求导公式,公式()()()xad x f t dt f x dx 'Φ==⎰中要求被积函数()f t 中不含有变限函数的自变量x ,而22()f x t -含有x ,因此不能直接求导,而应先换元.例15 计算30sin x xdx π⎰.分析 被积函数中出现幂函数与三角函数乘积的情形,通常采用分部积分法.解30sin x xdx π⎰30(cos )xd x π=-⎰330[(cos )](cos )x x x dx ππ=⋅---⎰30cos 6xdx ππ=-+⎰6π=-. 例16 计算120ln(1)(3)x dx x +-⎰.分析 被积函数中出现对数函数的情形,可考虑采用分部积分法.解 120ln(1)(3)x dx x +-⎰=101ln(1)()3x d x +-⎰=1100111[ln(1)]3(3)(1)x dx x x x +-⋅--+⎰ =101111ln 2()2413dx x x-++-⎰11ln 2ln324=-. 例17 计算20sin x e xdx π⎰.分析 被积函数中出现指数函数与三角函数乘积的情形通常要多次利用分部积分法.解 由于2sin xe xdx π⎰20sin xxde π=⎰220[sin ]cos xx e x e xdx ππ=-⎰220cos x e e xdx ππ=-⎰, (1)而20cos xe xdx π⎰20cos xxde π=⎰220[cos ](sin )xx e x e x dx ππ=-⋅-⎰20sin 1x e xdx π=-⎰, (2)将(2)式代入(1)式可得20sin xe xdx π⎰220[sin 1]x e e xdx ππ=--⎰,故20sin xe xdx π⎰21(1)2e π=+.例18 计算1arcsin x xdx ⎰.分析 被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法.解 10arcsin x xdx ⎰210arcsin ()2x xd =⎰221100[arcsin ](arcsin )22x x x d x =⋅-⎰21142π=-⎰. (1) 令sin x t =,则21⎰22sin t π=⎰220sin cos cos ttdt t π=⋅⎰220sin tdt π=⎰201cos22t dt π-==⎰20sin 2[]24t t π-4π=. (2)将(2)式代入(1)式中得1arcsin x xdx =⎰8π. 例19设()f x [0,]π上具有二阶连续导数,()3f π'=且0[()()]cos 2f x f x xdx π''+=⎰,求(0)f '.分析 被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解. 解 由于0[()()]cos f x f x xdx π''+⎰00()sin cos ()f x d x xdf x ππ'=+⎰⎰[]000{()sin ()sin }{[()cos ]()sin }f x x f x xdx f x x f x xdx ππππ'''=-++⎰⎰()(0)2f f π''=--=.故 (0)f '=2()235f π'--=--=-. 例20 计算2043dxx x +∞++⎰.分析 该积分是无穷限的的反常积分,用定义来计算.解2043dx x x +∞++⎰=20lim 43t t dx x x →+∞++⎰=0111lim ()213t t dx x x →+∞-++⎰ =011lim [ln ]23t t x x →+∞++=111lim (ln ln )233t t t →+∞+-+ =ln 32.。

(完整版)定积分典型例题精讲

(完整版)定积分典型例题精讲
从而
= .证毕.
证法2由于 单调增加,有 ,从而


= = .


例18计算 .
分析被积函数含有绝对值符号,应先去掉绝对值符号然后再积分.
解 = = = .
注在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如
,则是错误的.错误的原因则是由于被积函数 在 处间断且在被积区间内无界.
,


例32计算 .
分析被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法.

. (1)
令 ,则
.(2)
将(2)式代入(1)式中得

例33设 在 上具有二阶连续导数, 且 ,求 .
分析被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解.
解由于

故 .
例34(97研)设函数 连续,
,且 ( 为常数),

于是可得

又由于

因此
= .
例8设函数 在 上连续,在 内可导,且 .证明在 内存在一点 ,使 .
分析由条件和结论容易想到应用罗尔定理,只需再找出条件 即可.
证明由题设 在 上连续,由积分中值定理,可得

其中 .于是由罗尔定理,存在 ,使得 .证毕.
例9(1)若 ,则 =___;(2)若 ,求 =___.
图5-2
= = = , = ,于是
= = .
例43求心形线 与圆 所围公共部分的面积.
分析心形线 与圆 的图形如图5-3所示.由图形的对称性,只需计算上半部分的面积即可.
解求得心形线 与圆 的交点为 = ,由图形的对称性得心形线 与圆 所围公共部分的面积为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定积分的几何应用例题与习题
11cos ,(0),2
4
L π
π
ρθθθΓ=+≤≤
=
Γ、曲线的极坐标方程求该曲线在所对应的点处的切线的
直角坐标方程,并求曲线、切线L 与x 轴所围图形的面积。

212122,1,1
(1)2y ax y x S x S a a S S x ===<+、设直线与抛物线所围成的面积为它们与直线所围成的
面积为并且试确定的值,使达到最小,并求出最小值;
()求该最小值所对应的平面图形绕轴旋转一周所得旋转体的体积。

{}0
3(,)01,01:(0)
(),()(0)
x
xoy D x y x y L x y t t S t D l S t dt x =≤≤≤≤+=≥≥⎰、设平面上有正方形及直线若表示正方形位于直线左下部分的面积试求
4
、0)x y e
x x -=≥求由曲线与轴所围图形绕x 轴旋转所得旋转体的体积V
3
3
2cos (0,)42sin 11)5x a t
a t y a t a πππ⎧=⎪>≤≤⎨=⎪⎩5、求由曲线与直线y=x 及y 轴所围成的图形绕x 轴旋转所得立体的全表面积。

(S=(
6.0,(0)02
(),()()
()()(1)(2)lim
()
()()()
2,lim 1
()
()x x
t t e e y x x t t y x V t S t x t F t S t S t V t F t S t S t V t F t -→+∞→+∞+===>=====曲线与直线及围成一曲边梯形,该曲边梯
形绕轴旋转一周得一旋转体,其体积为侧面积为,在处的底面积为求的值;计算极限22333
(sin )(1cos )3,
(2)5,
(3)6x y a t t a t a V a V a ππππ--≤≤===7、求由摆线x=,y=的一拱(0t 2)与横轴所围成的平面图形的面积,及该平面图形分别绕x 轴、y 轴旋转而成的旋转体的体积。

(1)A 222
222
23
A x y x y x A x V ππ+≤≥==
-8、设平面图形由及所确定,求图形绕直线旋转一周所得旋转体的体积。

''2''''9.(),()()(),()(),(0)0,()0.
()
(1)();(2)()()()0,(0)12
(1) ()1.
1
(2) 0()0,0()0,x f x g x f x g x g x f x f g x f x F x y F x y F x g x x x b b y F x e x F x x F x ===≠=====>==-+><<>设函数可微,且求:作出函数曲线的图形;(3)计算由曲线及直线
和围成的面积.
当时,曲线上凸;当时,曲线下20012
(1())2ln 2ln(21).
1
b b x y S F x dx dx b b e =±=-==+-++⎰⎰凹,所以(0,0)为拐点,且为其水平渐近线.
(3)
0000220)ln (,)1(,)231
11
1,,1)(2)(3)62
2
x x y a y x y a x y x x x V a e S e V e
π
=>==
=-
=
10.已知曲线与曲线处有公共切线,求
()常数及切点;
()两曲线与轴围成的平面图形的面积;
()两曲线与轴围成的平面图形绕轴旋转一周所得旋转体的体积()切点(
2
2
2
2
11.(1)(0)(01),2lim ?221
,
lim 2
(1)
x x x
x x x y e
x x x x xe e x e ξθθθθθ+
+
→→=>=<<=-+=
=-对于指数曲线试在原点与之间找一点使这点左右两边有阴影部分的面积相等,并写出的表达式。

()求
2(0,0)010,104
9
?
5
,2,0
3y ax bx c x y x y x a b c a b c =++≤≤≥===-==12、抛物线通过点,且当时,它和直线及所围的
图形的面积是,问这个图形绕轴旋转而成的旋转体的体积为最小值时,,与的
值应为多少(1,0)6
P y x x V π
==
13、过点作抛物线轴围成一平面图形(如图),求此图形绕轴旋转所成旋转体的体积。

22214.(0,0)14,1875
y ax a x y x A o A y ax a x a V =>≥=-===
最大设曲线与交于点,过坐标原点和点的直线与曲线围成一平面图形,问为何值时,该图形绕轴旋转一周所得的旋转体体积最大?最大体积是多少?
15、设曲线方程为)0(≥=-x e y x
(1)把曲线x
e
y -=,x 轴,y 轴和直线)0(>=ξξx 所围成平面图形绕x 轴旋转一周,
得一旋转体,求此旋转体体积)(ξV ;并求满足)(lim 21
)(ξξV a V +∞
→=
的a ; (2)在此曲线上找一点,使过该点的切线与两个坐标轴所夹平面图形的面积最大,并求
出该面积.
(1)1
ln 2.2
a =
(2)(1,1
-e ),最大面积 11
2222
1--=⋅=
e e S . min ln 1,322ln 23ln3)
y x x x ====+-16.求由曲线直线及曲线上方任一直线围成面积的最小值(A
3152726432;;47x y x y x S V πΓ=Γ≥⎡
⎤=+==⎢⎥⎣⎦
17.过点(,)作曲线:的切线L,(1)求L 的方程;
(2)求与L 所围平面图形D 的面积;
(3)求图形D 的x 0的部分绕x 轴旋转一周所得立体的体积。

22222223x y x y x x V ππ+≤≥=⎡⎤=-⎢⎥⎣⎦
18.求由与所围区域绕旋转一周所得旋转体的体积。

2
sin 0)2()sin 2y x x x x x xdx π
πππππ=≤≤=-=⎰19.求由曲线(和轴所围成的平面图形绕直线旋转所生成的旋转体的体积。

解:V=
21
20.,,(0),2
1
106b a a b x dx a b y x ax y bx S =≤≤=+=⎛=-= ⎝⎭
⎰最大最小已知满足求曲线与直线所围区域的面积的
最大值与最小值
(此题用多元函数条件极值做,S (,)))。

相关文档
最新文档