桥梁上部结构荷载计算
桥梁上部结构支架现浇计算书
桥梁上部结构支架现浇计算书一、编制依据二、工程简介本标段上部结构现浇支架施工桥梁3座,其中窑头互通ZA1匝道桥跨径为6*25m,箱梁为单箱双室截面,顶板宽19.5m,底板宽15.5m;悬臂2m,翼缘板外侧厚O.20m,根部厚0.45m;顶板厚0.25m,底板厚0.22m,腹板厚跨中段为0.5m,变厚段为0.8m;端横梁宽度为1.5m,中横梁宽度2.0m,现浇梁板距离地面最高12.3m,最低6.6m。
窑头互通ZA2匝道桥跨径组合为:4×20m钢筋混凝土连续箱梁+4X20m简支桥面连续预应力混凝土箱梁,箱梁为单箱双室截面,顶板宽20m,底板宽16m;悬臂2m,翼缘板外侧厚0.20m,根部厚0.45m;顶板厚0.25m,底板厚0.22m,腹板厚跨中段为0.5Onb变厚段为0.80m;端横梁宽度为15m,中横梁宽度2.0m,现浇梁板距离地面8.5m,最低1.7m0窑头互通ZD匝道桥跨径组合为:5×20m预应力混凝土简支桥面连续小箱梁+5X20m 钢筋混凝土连续现浇箱梁,箱梁为单箱单室截面,顶板宽9m,底板宽5m;悬臂2m,翼缘板外侧厚0.2Onb根部厚0.45m;顶板厚0.25m,底板厚0.22m,腹板厚跨中段为0.5Onb变厚段为0.80m;端横梁宽度为15m,中横梁宽度2.0m,现浇梁板距离地面最高I175m,最低3.4m0三、现浇箱梁模板及支架体系设计三座桥梁上部结构均采用支架法现浇施工,均采用满堂支架法施工。
四、现浇箱梁支架计算书ZD ZA1互通ZA2匝道桥,为施工简便,支架横距和纵距布置均不超出窑头互通ZA1匝道桥最大间距布置。
4.1荷载计算4.1.1荷载分析根据本桥现浇箱梁的结构特点,在施工过程中将涉及到以下荷载形式:⑴卬——箱梁自重荷载,新浇混凝土密度取2600kg∕πΛ(2)q2一箱梁内模、底模、内模支撑及外模支撑荷载,按均布荷载计算,经计算取q2=1∙0kPa0⑶q3——施工人员、施工材料和机具荷载,按均布荷载计算,当计算模板及其下肋条时取2.5kPa;当计算肋条下的梁时取1.5kPa;当计算支架立柱及替他承载构件时取1OkPa o(4)q4——振捣混凝土产生的荷载,对底板取2.0kPa,对侧板取4.0kPa°(5)q5——新浇混凝土对侧模的压力。
桥梁工程荷载横向分布计算简介
•由于跨中截面车轮加载值占总荷载的绝大多 数, 近似认为其它截面的横向分布系数与跨中 相同 •对于剪力
从影响线看跨中与支点均占较大比例 从影响面看近似影响面与实际情况相差较大
计算剪力时横向分布沿桥纵向的变化
与铰接板、梁的区别: 未知数增加一倍, 力法方程数增加一倍
5 .铰接板桥计算m举例:
如图所示,l=12.60m的铰接空心板桥横截面布置。 桥面净空为净-7+2x0.75m人行道。全桥由9块预应力混凝 土空心板组成,欲求1、3.5号板的公路-I级和人群荷载作用 的跨中横向分布系数?
分析: 荷载横向分布影响线竖标值与刚度参数γ ,板 块数n以及荷载作用位置有关。 5.8 I (b)2
4.目前常用的荷载横向分布计算方法: (1)梁格系模型
①杠杆原理法
②偏心压力法
③横向铰接梁(板)法
④ 横向刚接梁法 (2)平板模型——比拟正交异性板法(简称G—M法) 各计算方法的共同点: (1)横向分布计算得m (2)按单梁求主梁活载内力值
二、杠杆原理法 (一)计算原理 1.基本假定:
忽略主梁间横向结构的联系作用,假设桥面 板在主梁上断开,当作沿横向支承在主梁上的简 支梁或悬臂梁来考虑。
荷载横向分布计算
一、概述
荷载: 恒载: 均布荷载(比重×截面积)
活载: 荷载横向分布
1.活载作用下,梁式桥内力计算特点:
(1)单梁 (平面问题)
P
S=P·η1(x)
x
L/4
1
(2)梁式板桥或由多片主梁组成的梁桥(空间问题): S=P·η(x,y) 实际中广泛使用方法: 将空间问题转化成平面问题
S P (x, y) P 2 (y) 1(x)
为求1号梁的荷载 假设: a、P=1作用于1号梁梁轴, 跨中,偏心距为e; b、 各主梁惯性矩Ii不相等; c、横隔梁刚度无穷大。 则由刚体力学: 偏心力P=1 <====> 中心荷载 P=1+偏心力矩M=1·e
道路桥梁荷载计算与设计方法
道路桥梁荷载计算与设计方法摘要:桥梁荷载是指桥梁结构设计所应考虑的各种可能出现的荷载的统称。
本文依托实测车辆的统计数据,对桥梁车辆设计荷载进行了研究和分析,为公路桥梁荷载设计理念和设计方法的逐步完善实现科学化和合理化。
关键词:设计荷载;公路桥梁;荷载效应;分项系数前言桥梁荷载是指桥梁结构设计所应考虑的各种可能出现的荷载的统称,包括恒载、活载和其他荷载。
包括铁路列车活载或公路车辆荷载,及它们所引起的冲击力、离心力、横向摇摆力(铁路列车)、制动力或牵引力,人群荷载,及由列车车辆所增生的土压力等。
在公路桥上行驶的车辆种类很多,而且出现机率不同,因此把大量出现的汽车排列成队,作为计算荷载;把出现机率较少的履带车和平板挂车作为验算荷载。
车辆活载对桥梁结构所产生的动力效应中,铅直方向的作用力称冲击力、它使桥梁结构增加的挠度或应力对荷载静止时产生的挠度或应力之比称为动力系数μ,也称冲击系数。
最近的研究成果把动力系数分为两部分:一为适用于连续完好的线路部分μ1;另一为受线路不均匀性影响部分μ2。
动力系数则为μ1与μ2之和。
在计算公式中,除考虑桥梁的跨度外,反映了车辆的运行速度和桥梁结构的自振频率。
公路桥梁汽车荷载的冲击力为汽车荷载乘以冲击系数,平板挂车和履带车不计冲击力。
1 公路桥梁荷载标准2004 年修订的《公路桥涵设计通用规范》(JTGD60-2004)采用车道荷载形式。
2004 版公路桥梁荷载标准中规定:汽车荷载修改调整为车道荷载的模式,废除车队荷载计算模式。
并且提出车道荷载的均布荷载kq和集中荷载KP 的标准值2 荷载效应计算2.1 影响线计算桥梁结构必须承受桥面上行驶车辆时的移动荷载的作用,结构的内力也随作用点结构上的变化而变化。
所以需要研究并确定其变化范围和变化规律和内力的最大值此过程中作为设计标准。
因此,需要确定的是荷载最不利位置和最大值。
首先要确定在移动荷载作用下,结构内力的变化规律,将多种类型的移动荷载抽象成单位移动荷载P=1 的最简单基本形式。
桥梁计算书(含水文、荷载、桩长、挡墙的计算)
年河桥梁计算书(含水文、荷载、桩长、挡墙的计算)**本计算书中包括桥涵水文的计算、恒荷载计算、活荷载计算桩长、以及挡墙的计算。
荷载标准:公路Ⅱ级乘0.8的系数桥面宽度:净4.5+2×0.5m跨度:13孔×13m1、工程存在问题年河桥位于长江下游1000m处,建于1982年,为钢筋砼双排架式桥墩,预制拼装型板梁桥面,17孔,每跨8.85m。
总长150.45m,宽5.3m。
该桥运行20多年,根据***省水利建设工程质量监测站检验测试报告检测结果如下:(1)桥墩A.桥墩基础桥墩基础为抛石砼,设计强度等级为150#,钻芯法检测砼现有强度代表值为16.4MPa。
B.排架立柱及联系梁立柱设计强度等级为200#,超声回弹综合法检测砼现有强度代表值为14.0~18.3MPa。
联系梁设计强度等级为200#,超声回弹综合法检测砼现有强度代表值为14.7MPa。
立柱外观质量总体较差,局部区域麻面较重。
立柱砼碳化深度最大值为31mm,最小值为5mm,平均值为14mm。
立柱钢筋保护层实测厚度为20mm,钢筋目前未锈,但碳化深度平均值已接近钢筋保护层厚度。
通过普查,全桥64根立柱中有12根35处箍筋锈胀外露,有6处联系梁主筋外露。
C.盖梁盖梁设计强度等级为200#,超声回弹综合法检测砼现有强度代表值为17.4~21.5MPa。
盖梁外观质量一般,梁体砼总体感觉较疏松。
盖梁砼碳化深度最大值为24mm,最小值为9mm,平均值为18mm。
,盖梁主筋侧保护层实测厚度为9~13mm,底保护层实测厚度29~42mm,砼碳化深度已超过钢筋侧保护层厚度,盖梁主筋已开始锈蚀。
通过普查,全桥32根盖梁中共有14根15处主筋锈蚀膨胀,表层砼脱落,主筋外露,长度15~70cm;有28处箍筋锈胀外露。
(2)T型梁T型梁设计强度等级为200#,每跨中间两根T型外观较好,两边T型梁外观较差。
T型梁砼碳化深度最大值为20mm,最小值为7mm,平均值为14mm。
桥梁常用计算公式
桥梁常用计算公式桥梁是道路、铁路、水路等交通工程中非常重要的基础设施。
在设计和施工过程中,需要进行一系列的计算来保证桥梁的稳定性和安全性。
下面是桥梁常用的计算公式和方法,供参考:1.静力平衡计算桥梁的静力平衡是保证桥梁结构稳定的基础。
在计算静力平衡时,常用的公式有:-受力平衡公式:对于简支梁,ΣFy=0,ΣMa=0;对于连续梁,ΣFy=0,ΣMa=0。
-桥墩反力计算公式:P=Q+(M/b),其中P为桥墩反力,Q为桥面荷载,b为桥墩底宽度。
2.梁的弯矩计算桥梁在受到荷载作用时,会出现弯矩。
常用的梁的弯矩计算公式有:-点荷载的弯矩计算公式:M=Px;- 面荷载的弯矩计算公式:M=qx^2/2;-均布载荷的弯矩计算公式:M=qL^2/83.梁的挠度计算挠度是指梁在受荷载作用时的变形程度。
常用的梁的挠度计算公式有:-点荷载的挠度计算公式:δ=Px^2/(6EI);- 面荷载的挠度计算公式:δ=qx^2(6L^2-4xL+x^2)/24EI;-均布载荷的挠度计算公式:δ=qL^4/(185EI)。
4.桥梁的自振频率计算自振频率是指桥梁结构固有的振动频率。
常用的自振频率计算公式有:-单跨梁自振频率计算公式:f=1/2π(1.875)^2(EI/ρA)^0.5/L^2;-多跨梁自振频率计算公式:f=1/2π(π^2(EI/ρA)^0.5/L^2+Σ(1.875)^2(EI/ρA)^0.5/L_i^2)。
5.破坏形态计算桥梁在受到荷载作用时可能发生不同的破坏形态,常用的破坏形态计算公式有:-弯曲破坏计算公式:M=P*L/4;-剪切破坏计算公式:V=P/2;-压弯破坏计算公式:M=P*L/2;-压剪破坏计算公式:V=P。
6.抗地震设计计算在地震区设计的桥梁需要进行抗地震设计,常用的抗地震设计计算公式有:-设计地震力计算公式:F=ΣW*As/g;-结构抗震强度计算公式:S=ηD*ηL*ηI*ηW*A。
其中,ΣW为结构作用力系数,As为地震地表加速度,g为重力加速度,ηD为调整系数,ηL为长度和工况调整系数,ηI为体型和影响系数,ηW为材料和连接性能系数,A为结构抗震强度。
钢栈桥荷载计算
2、钢栈桥荷载计算(1)设计说明本桥为台山1号桥施工钢栈桥,根据施工现场的具体地质、水文和气候情况,拟建便桥长100m,栈桥宽5m,栈桥两侧设护栏。
上部结构形式纵向采用5排贝雷梁,下部结构采用钢管桩,具体材料及规格见表格(2)钢栈桥结构设计计算每跨按最不利简支计算,计算单跨即可A 桁架设计计算静载计算上部结构自重G静=9.556×1000×10×2=191.12kN 活载计算G活=4.5×2×56×1.3= 655.2kN均布荷载 q1=191.12/10=19.112kN/m均布荷载 q2=(4.5×2×56×1.3)/10=65.52kN/m 弯矩计算静载在跨中产生的总弯矩M1=q1l²/8=238.9kN·m静载对单片桁架的弯矩M11=M1/5=47.78kN·m活载在跨中产生的总弯矩M2=q2l²/8=819kN·m活载在跨中对单片桁架产生的总弯矩M22=M2/5=163.8kN·m对于单片桁架,荷载系数取1.4M222=1.4×M22=229.32kN·m故单片桁架承受总弯矩为 M=M11+M222=277.1kN·m剪力计算Qmax=Q静+Q活×1.4/5(1)静载在桁架端部产生的总剪力Q1=G/2=95.56kN(2)静载在端部对单排桁架产生的总剪力Q11=Q1/5=19.112kN(3)活载在端部对单排桁架产生的总剪力Q2=(q2×l/2)×1.4/5=91.728kN 故单排桁架承受总剪力Q=Q11+Q2=110.84kNB 桁架强度验算查《装配式公路钢桥》多用途使用手册,得单排桁架容许弯矩为【M】=788.2kN·m>277.1kN·m单排桁架容许剪力为【Q】=245.2kN>110.84kN经验算,桁架安全C 局部弯曲应力验算桁架上弦支撑间距为1m,上弦抗弯模量W=79.4cm³,计算荷载按履带压两个弦杆,按集中荷载计算,则1根弦杆承受的荷载为P=G活/4=163.8kN则产生的跨中最大弯矩为M0=Pl/4=409.5kN·m根据《军用桥梁设计准则》,弦杆局部弯矩计算公式为:M=0.7M0=286.65kN·m弦杆局部弯曲应力为σ=M/W=36.1MPaD 桁架稳定性验算由于桁架之间每隔3m用支撑架和槽钢连接,所以稳定性不用验算E 综合应力验算弦杆为压弯杆件,除了受到弯曲应力,还受到应承受主桁弯矩而产生的压应力,桁架上下弦杆中心距为1.4m,桁架最大弯矩为M,则上弦杆的压力为 P=M/h=197.93kN弦杆的截面积为 A=25.48cm²则压应力为σ’=P/A=77.68MPa则弦杆的综合应力为σ=σ+σ’=113.78<【σ】=273MPa满足要求F 钢管桩承压计算荷载在桥墩处产生的压力R=(G静+G活)/4=211.58kNσ=R/A=3.02MPa<【σ】=4.21MPa,安全G 钢管桩失稳验算按最不利情况考虑>211.58kN满足要求。
13桥梁设计和荷载计算
级
级
级
级
级
b.由车道荷载和车辆荷载组成
第一篇 总论
27
2.车道荷载的标准值
k k
车道 均布荷载标准值 qk=10.5kN/m(公路-I级); 荷载 集中荷载标准值 180~360kN (公路-I级)
Pk kN
360 180
5
50
lm
注: 1. 计算剪力效应时,集中荷
载标准值PK应乘以1.2的系数。 2.公路-Ⅱ级车道荷载的标准
使用和技术要求
(1) 通航河流:应满足桥下的通航要求。通航孔应布置在航行最方 便的河域。对于变迁性河流,根据具体条件,应多设几个通航孔。
(2) 平原区宽阔河流上的桥梁:通常在主河槽部分按需要布置较大 的通航孔,而在两侧浅滩部分按经济跨径进行分孔。
第一篇 总论
13
(3) 对于在山区深谷上、水深流急的江河上,或需在水库上修 桥时,应加大跨径,甚至采用特大跨径的单孔跨越。 (4) 从结构的受力特性考虑,合理地确定相邻跨之间的比例。 (5) 可以适当加大跨径避开不利的地质段。
特殊:
对于深埋基础,一般允许稍大一点的冲刷,使总跨径能适当减 小;
对于平原区稳定的宽滩河段,流速较小、漂流物少、主河槽较 大,可以对河滩的浅水流区段作较大的压缩,但必须慎重校核, 压缩后的桥梁的壅水不得危及河滩路堤以及附近农田和建筑物。
第一篇 总论
12
2、桥梁的分孔
原则:在满足使用和技术要求的前提下,使上、下部结构的总造价趋 于最低。
7
基础变位作用
用
8
9
汽车荷载 汽车冲击力
分
10
11
汽车离心力 汽车引起的土侧压力
12
人群荷载
桥梁桩基础计算
桩长计算一、计算参数根据XXX桥《岩土工程勘察报告》取如下参数:(1)桩长埋入黄土地基容许承载力[б0]黄土:[б0]=164KPa(2)钻孔桩桩周的摩阻力标准值τi黄土:τi =80KPa桩长验算例:1号桥墩二、上部和下部荷载(1)上部荷载支点最大反力:中梁:949 kN;边梁:893 kN每个桥墩上部荷载为2*949+2*893=3684kN(2)单个桥墩下部结构自重盖梁N1=26*22.1=574.6kN墩柱N2=26*2*16.78*3.1416*0.75*0.75=1541.9kN系梁N3=26*7.49=194.7kN承台N3=26*88.2=2293.2kN桩基N5=26*4*L*3.1416*0.75*0.75=183.8LkN 桩基取自重的一半计算91.9LkN每个桩基承受的荷载为1/4* 51N N+3684/4=1/4*(574.6+1541.9+194.7+2293.2+91.9L)+3684/4= 1151.1+23L+921=2072.1+23L(kN)二、桩基轴向受压承载力容许值[Ra]按照《公路桥涵地基与基础设计规范》 JTG D63-2007中5.3.3条 摩擦桩单桩轴向受压承载力容许值:[][][])3(21a 22001-+=+=∑=h k f m q q A l q u R a r n i r p i ik γλ 其中r q =0.7*0.7*(164+1.5*18*(L-3)=13.23L+40.67则单桩轴向受压承载力容许值[Ra]=1/2*4.71*(80*L )+3.1416*0.75*0.75*(13.23L+40.67)=211.8L+71.9三、结论当N<[Ra],桩长满足设计要求。
即2072.1+23L <211.8L+71.9L>10.6桩顶至冲刷线5m根据甘肃地区地震区带划分,本桥址地处青藏北部地震区南北地震带兰州—通渭地震亚带,桥址地震动峰值加速度为0.2g ,为8度区,加之桥址处为饱和黄土地质,地质情况较差,建议采用钻孔灌注桩群桩基础,桩径1.5m,桩长30m 。
桥梁工程荷载横向分布计算简介
2、横向分布系数(m)的概念:
• 多片式梁桥,在横向分布影响线上用规范规定的车轮 横向间距按最不利位置加载
说明:1)近似计算方法,但对直线梁桥,误差不大
2)不同梁,不同荷载类型,不同荷载纵向位置, 不同横向连接刚度,m不同。
3、横向连结刚度对荷载横向分布的影响
结论:横向分布的规律与结构横向连结刚度关系密切,
根据表中的横向影响线坐 标值绘制影响线图
公路-I级
七、横向分布系数沿桥纵向的变化
•对于弯矩
由于跨中截面车轮加载值占总荷载的绝大多数,近 似认为其它截面的横向分布系数与跨中相同
•对于剪力
从影响线看跨中与支点均占较大比例 从影响面看近似影响面与实际情况相差较大
计算剪力时横向分布沿桥纵向的变化
横向分布系数
横向分布系数 :在横向分布影响线上加载
3. 铰接梁法
假定各主梁除刚体 位移外,还存在截 面本身的变形
与铰接板法的区别:变位系数中增加桥面板变形项
4.刚接梁法
假定各主梁间除传递剪力外,还传递弯矩
与铰接板、梁的区别: 未知数增加一倍,力法方程数增加一倍
5 .铰接板桥计算m举例:
如图所示,l=12.60m的铰接空心板桥横截面布置。 桥面净空为净-7+2x0.75m人行道。全桥由9块预应力混凝 土空心板组成,欲求1、3、5号板的公路-I级和人群荷载作用 的跨中横向分布系数?
值(ki)
1 ai ak 若各梁截面尺寸相同: ki Rki Rik n n 2 ai
i 1
(三) 计算举例
例2-5-3: 已知:l=19.50m,荷载位于跨中 试求:1#边梁,2#中梁的mcq,mcr
作业
已知:l=29.16m, 38.88m,荷载位于跨中时 试求:2#中梁的mcq,mcr
(10)桥梁上部结构计算书
桥梁上部结构计算书第一篇理论计算(上部结构)一、20m预应力混凝土组合箱梁计算书1.分析计算的主要内容⑴上部箱梁持久状态极限承载承载能力计算;⑵上部箱梁正常使用阶段抗裂计算;⑶上部箱梁持久状态压应力计算;⑷上部箱梁刚度计算。
2.计算方法及原则上部箱梁纵向计算按平面杆系理论,采用《QJX系列程序》进行计算。
根据桥梁的实际施工过程和施工方案划分施工阶段,并进行结构离散。
1.荷载取值与荷载组合⑴荷载取值①一期恒载:预应力混凝土容重取2.6t/m3。
②二期恒载:包括护栏、桥面铺装等,详见各桥梁取值。
③活载: 公路-Ⅰ级。
④温度梯度:主梁顶、底板日照温差按照《公路桥涵设计通用规范》4.3.10条规定取值计算;竖向梯度温度分布见图7-1(尺寸单位:mm):降温梯度升温梯度图1-1 温度梯度⑤强迫位移:10mm。
⑵材料预制箱梁C40混凝土现浇接头、湿接缝C40混凝土⑶荷载组合组合一:恒载(1.05的自重系数)组合二:恒载+活载(中(边)板横向分布系数,公路I级,车道荷载,不计挂车)组合三:恒载+活载+温度荷载1(整体升温30)组合四:恒载+活载+温度荷载2(整体降温30)组合五:恒载+活载+温度荷载1+强迫位移(不均匀沉降,L/3000)组合六:恒载+活载+温度荷载2+强迫位移3.桥梁计算1.概述上部结构跨径为4×20m,桥宽12.50m。
共设置4片小箱梁,梁高1.2 m。
边跨中梁钢束与边跨边梁钢束布置相同,中跨中梁钢束与中跨边梁钢束布置相同。
采用刚接梁法进行横向分布系数计算,边主梁横向分布系数最大为0.744,中主梁横向分布系数为0.612。
(可以用GQJS计算)2.荷载取值①二期恒载:包括护栏、桥面铺装等,经横向分配后边梁为共计 1.795t/m,中梁为1.673m。
②预应力钢束张拉控制应力取0.75f pk,即1395Mpa。
③冲击系数:按照《公路桥涵设计通用规范》4.3.2计算求得,边梁冲击系数为μ=0.340;中梁冲击系数为μ=0.350。
(30+36+30)m现浇梁顶升支架结构受力计算书
(30+36+30)m现浇梁顶升支架结构受力计算书1.工程概况本项目高架桥共 2 段,结构形式采用现浇、悬浇预应力混凝土箱梁,主线高架1号桥桥梁全宽18-19.2m,桥梁全长802.55m,共有现浇梁9联;主线高架2号桥桥梁全宽19.2-20.7m,桥梁全长3267.507m,共有现浇梁34联。
主线高架1号桥与现状金融区互通主线桥相接,对原桥跨永兴路联进行顶升调坡利用,第二、三联上部结构拆除,下部结构改造后利用;高架跨越翻身河、凤凰路路口后落地。
跨越凤凰路路口采用50m预应力砼变高度连续箱梁,其他各联上部结构均为预应力砼等高度连续箱梁,下部结构为柱式墩、花瓶墩、组合式桥台,钻孔灌注桩基础,台后填土高度3.2m 左右。
顶升段桥梁为主线高架1号桥第1联,桥梁上跨永兴路,交角94.3°,通行净空14×5m,跨永兴路联跨(30+36+30)m,中心桩号范围为K0+000.0~K0+096.0,顶升段桥梁全长96m,共一联;本桥上部结构形式为预应力混凝土连续箱梁。
下部结构为柱式花瓶墩、薄壁式桥台,基础为钻孔灌注桩承台。
桥面铺装为沥青混凝土,桥墩采用D160伸缩缝,支座采用JQZ球型支座。
主线1号桥第1联跨永兴路桥平面图2.设计参数2.1.Q235钢抗拉、抗压、抗弯强度设计值f=215Mpa,抗剪强度设计值fv=125Mpa,弹性模量E=2.06×105Mpa。
2.2.荷载取值(1)新浇筑混凝土及钢筋自重:2.6t/m3。
(2)Φ609×16mm钢管支撑自重234Kg/m。
(3)施工荷载取2.5kN/m2。
(4)荷载分项系数:永久荷载分项系数取1.3,可变荷载分项系数取1.5。
2.3.支架结构支撑架设置与现状承台上,现状墩柱高度6m~10m,钢管支撑高度 6.5~10.5m,钢管立柱支撑采用Ф609*16mm钢管,其中0#、3#墩设置1排6根钢管,1#、2#中墩设置2排12根钢管。
桥梁桩基础设计计算部分
一方案比选优化公路桥涵结构设计应当考虑到结构上可能出现的多种作用,例如桥涵结构构件上除构件永久作用(如自重等)外,可能同时出现汽车荷载、人群荷载等可变作用。
《公路桥规》要求这时应该按承载力极限状态和正常使用极限状态,结合相应的设计状况进行作用效应组合,并取其最不利组合进行计算。
1、按承载能力极限状态设计时,可采用以下两种作用效应组合。
(1)基本作用效应组合。
基本组合是承载能力极限状态设计时,永久作用标准值效应与可变作用标准值效应的组合,基本组合表达式为(1-1)或(1-2)γ0-桥梁结构的重要性系数,按结构设计安全等级采用,对于公路桥梁,安全等级一级、二级、三级,分别为1.1、1。
0和0。
9;γGi-第i个永久荷载作用效应的分项系数。
分项系数是指为保证所设计的结构具有结构的可靠度而在设计表达式中采用的系数,分为作用分项系数和抗力分项系数两类。
当永久作用效应(结构重力和预应力作用)对结构承载力不利时,γGi=1.2;对结构的承载能力有利时,γGi=10;其他永久作用效应的分项系数详见《公路桥规》;γQ1-汽车荷载效应(含汽车冲击力、离心力)的分项系数,取γQ1=1.4;当某个可变作用在效用组合中,其值超过汽车荷载效用时,则该作用取代汽车荷载,其分项系数应采用汽车荷载的分项系数;对专门为承受某种作用而设置的结构或装置,设计时该作用的分项系数取与汽车荷载同值;计算人行道板和人行道栏杆的局部荷载时,其分项系数也与汽车荷载取同值。
γQj-在作用效应组合中除汽车荷载效应(含汽车冲击力、离心力)、风荷载以外的其他第j个可变作用效应的分项系数,取γQ1=1。
4,但风荷载的分项系数取γQ1=1.1;S gik、S gid-第i个永久作用效应的标准值和设计值;S Qjk-在作用效应组合中除汽车荷载效应(含汽车冲击力、离心力)外的其他第j个可变作用效应的标准值;S ud-承载能力极限状态下,作用基本组合的效应组合设计值,作用效应设计值等于作用效应标准值S d与作用分项系数的乘积。
桥梁的设计荷载
桥梁的设计荷载2.1.1 公路桥涵的汽车荷载《公路桥涵设计通用规范》(JDG D60-2004)将公路桥梁汽车荷载分为公路-Ⅰ级和公路-Ⅱ级两个等级。
汽车荷载由车道荷载和车辆荷载组成。
车道荷载由均布荷载和集中荷载组成。
桥梁结构的整体计算采用车道荷载:桥梁结构的局部加载、涵洞、桥台和挡土墙土压力等的计算采用车辆荷载。
车道荷载与车辆荷载的作用不得叠加。
车道荷载的计算图式如图2-3所示。
图2-3 公路桥梁车道荷载公路-Ⅰ级车道荷载的均布荷载标准值为=10.5kN/m,集中荷载标准值按表 2-4选取:k q k P 表2-4 公路桥梁集中荷载标准值计算跨径集中荷载标准值k P 备注5m ≤L480kN m 305m <<L采用直线内插求得50m ≥L360kN计算剪力效应时,上述荷载标准值应乘以1.2的系数。
公路-Ⅱ级车道荷载的均布荷载标准值和集中荷载标准值为公路-Ⅰ级车道荷载的0.75倍。
车道荷载的均布荷载标准值应满布于使结构产生最不利效应的同号影响线上,集中荷载标准值只作用于相应影响线中一个影响线峰值处。
k q k P 公路桥梁车辆荷载的立面、平面尺寸如图2-4,其主要技术指标规定如表2-5。
公路-Ⅰ级和公路-Ⅱ级汽车荷载采用相同的车辆荷载标准值。
(a) 立面 (b) 平面 图2-4 公路桥梁车辆荷载布置图(单位:kN.m) 表2-5 公路桥梁车辆荷载主要技术指标项 目 单 位 技 术 指 标项 目 单 位 技 术 指 标车辆重力标准值 kN 550 轮距m 1.8 前轴重力标准值 kN 30 前轮着地宽度及长度 m 0.3×0.2 中轴重力标准值kN2×120中、后轮着地宽度及长度m0.6×0.2后轴重力标准值kN 2×140 车辆外形尺寸(长×宽)m 15×2.5轴距m3+1.4+7+1.4公路工程技术旧标准中把大量、经常出现的汽车荷载排列成车队形式,作为设计荷载,把偶然、个别出现的平板挂车和履带车作为验算荷载。
超高车辆—桥梁上部结构碰撞的若干思考
超高车辆—桥梁上部结构碰撞的若干思考0.引言近几年,我国城市立体交通的发展越来越迅速,导致超高车辆碰撞桥梁上部结构的事故也越来越多。
2008年在我国成渝高速公路,一辆超高货车强行通过一座正在建的跨线公路桥时将桥梁的主轴直接撞歪,直接导致前两个月的施工作废,金额损伤近百万元,其中还未包括对社会的影响。
不仅是在我国,在发达国家这种超高车辆撞击桥梁上部结构的事件也频频发生。
可以看出,导致桥梁损坏的主要原因就是受到超高车辆的撞击。
对其破坏模式与荷载计算进行分析,从而对优化桥梁上部结构具有一定重要意义。
1.超高车辆-桥梁上部结构碰撞的破坏模式(1)破坏类型:通过对超高车辆-桥梁上部结构碰撞的事故调查与有限元仿真分析发现,其出现的破坏模式可以分为两种,一种是局部性破坏,另一种则是整体性破坏。
局部性破坏是桥梁上部结构受到局部冲剪作用引起的损坏[1]。
如果是钢筋混凝土T梁桥,这种局部破坏的程度将会更加明显,整个碰撞区域不仅会出现开裂、崩落,钢筋屈服,甚至整个腹板—面板交界处的混凝土出现纵向开裂。
如果是T型钢梁桥,局部破坏也会十分明显,会产生严重的塑性变形。
如果是钢箱梁桥,破坏形式表现为钢材屈服。
如果是混凝土箱梁桥,则表现为碰撞区域出现混凝土开裂。
整体性破坏与位移响应有关,包括扭转损伤、弯曲损伤、落梁破坏,整体性破坏既可以发生在超高车辆-桥梁上部结构碰撞的过程中,也可以发生在碰撞结束之后。
(2)破坏程度:通过分析竖向荷载与位移曲线的关系,发现了解碰撞之后竖向承载力的损失程度。
竖向承载力是整体性破坏和局部性破坏综合作用的结果,能够在宏观上了解其破坏程度[2]。
T梁桥在受到超高车辆碰撞之后,竖向正常使用承载力会随着碰撞速度的变大而减小。
如果是组合梁桥,底板对腹板形成一个横向支撑,整个桥梁结构的抗击能力较大,屈服并不明显。
如果是人行天桥,落梁破坏直接安东志桥梁失去竖向承载能力,甚至造成交通拥挤、人员伤亡。
因此针对人行天桥需要有效改善橋梁结构或者增设防护装置,避免其破坏程度过于严重[3]。
40m组合梁上部结构计算
一、概述一跨简支,标准跨径:40m,计算跨径38.5m,斜交角77°,主梁中心高1.8m,采用预弯钢-砼组合箱梁结构,钢箱梁中心高1.5m,采用Q345C钢材,现浇混凝土C50钢纤维混凝土,厚30cm。
桥型截面布置如下(单位:mm):单幅桥主梁断面图 1二、主梁材料及参数1.主梁Q345C钢,工厂预制。
Q345C钢物理-力学性能如下:弹性模量: E s=2.06x105 MPa剪切模量: G s=0.79x105 MPa质量密度: r=78.5 kN/m3线膨胀系数: a s=1.2 x10-5/℃泊松比: m s=0.3应力松弛: s=1.5%局部次要钢结构采用Q235C钢屈服强度取σs=324MPa,其相应的基本容许应力乘以折减系数324/343=0.945,折减后见上表括号内数值。
2. C50混凝土抗压标准强度:f ck=32.4MPa、抗压设计强度为f cd=22.4MPa;抗拉标准强度:ft k=2.65MPa、抗拉设计强度为f td=1.83MPa;弹性模量Ec=3.45x104MPa3.普通钢筋:R235钢筋的抗拉(抗压)设计强度:f sd=195MPa;HRB335钢筋的抗拉(抗压)设计强度:f sd=280MPa;三、荷载计算1、主梁自重边梁1#、3#梁宽5.1m、2#梁宽4.8m一片钢箱梁自重(每延米): q=863.7*1.05/40=22.67 kN/m现浇层自重(每延米):1#、3#梁 q=5.1*0.3*26=39.78 kN/m2#梁 q=4.8*0.3*26=37.44 kN/m2、二期恒载铺装自重(每延米):1#、3#梁 q=5.1*0.1*24=12.24 kN/m2#梁 q=4.8*0.1*24=11.52 kN/m地袱及盖板(每延米): q=16 kN/m栏杆(每延米): q=2 kN/m防撞墙(每延米): q=8 kN/mD500mm水管及支撑板: q=2.9 kN/m(※钢箱梁、现浇层、附属构造具体尺寸详见施工图※)3、可变作用1)温度荷载简支梁整体温差按±30℃考虑,温度梯度按《公路桥涵设计通用规范》(JTG D60-2004)的规定计算。
钢筋混凝土T梁桥承载能力验算
图 1.1-2 标准横断面图
1
1.2 材料参数
1、 本次建模将上部结构分为 4 片 T 梁,主梁之间互相刚接。结构划分形式如下: 桥梁中梁高 1.3m,宽 2.21m,翼缘板厚 20cm,腹板厚为 27cm;边梁高 1.3m,宽 2.19m, 内侧翼缘板厚 20cm,外侧翼缘板由 20cm 变厚至 12cm,腹板厚 27cm,具体构造见图 1.2-1~图 1.2-2。
本次计算采用 Midas 2015 计算软件,采用梁格法建立桥梁有限元空间模型。
2.1 静力荷载集度
桥面采用 8cm 厚沥青铺装,两侧设置 1m 宽人行道以及护栏,共 4 道横隔板,横隔
板高度为 90cm,厚度为 20cm。
表 2.1-1 主梁二期恒载一览表
序号
项目
中梁
边梁
1
桥面铺装
4.07kN/m
表2441作用效应基本组合弯矩值项目基本组合弯矩值边梁最大弯矩20496中梁最大弯矩21530图2441桥梁基本组合弯矩值04规范2验算荷载采用89规范表2442作用效应基本组合弯矩值项目基本组合弯矩值边梁最大弯矩19314中梁最大弯矩19998图2442桥梁基本组合弯矩值89规范245作用长短期效应组合弯矩值钢筋混凝土构件在正常使用极限状态下的裂缝宽度应按照作用短期效应组合并考虑长期影响进行验算
图 1.2-1 中梁一般构造图
图 1.2-2 边梁一般构造图
2、 主梁纵向受力钢筋共 8 根直径 φ28 的螺纹钢筋,1 根直径 φ22 的螺纹钢筋。钢 筋布置见图 1.2-3。
图 1.2-3 主梁梁肋钢筋布置图
2
3、 由于桥梁建造年代为 90 年代,材料参数按照《混凝土结构设计规范》(GBJ 10-89) 规定取值:主梁采用 C30 混凝土,弯曲抗压强度设计值取为 16.5MPa;钢筋采用Ⅱ级热 轧钢筋,抗拉强度设计值为 335Mpa。