§5.6 理想的二组分液态混合物
物理化学下册题库(含答案)
二 相平衡2-1 是非题1、在一个给定的体系中,物种数可因分析问题的角度不同而不同,但独立组分数是一个确定的数。
( √ )2、自由度就是可以独立变化的量。
( × )3、)()(22g I s I ⇔平衡共存,因10',1,2====C R R S 所以。
( √ )4、单组份体系的相图中两相平衡线都可以用克拉贝隆方程定量描述。
( √ )5、在相图中总可以利用杠杆规则计算两相平衡时两相的相对量。
( √ )6、对于二元互溶液系,通过精馏方法总可以得到两个纯组分。
( × )7、部分互溶双液系总以互相共轭的两相平衡共存。
( × )8、恒沸物的组成不变。
( × )9、相图中的点都是代表体系状态的点。
( √ )10、三组分体系最多同时存在4个相。
( × )11、完全互溶双液系T -x 图中,溶液的沸点与纯组分的沸点的意义是一样的。
( × )12、根据二元液系的p-x 图,可以准确判断该体系的液相是否为理想液体混合物。
( √ )13、二元液系中若A 组分对拉乌尔定律产生正偏差,那么B 组分必定对拉乌尔定律产生负偏差。
( × )14、A 、B 两液体完全不互相溶,那么当有B 存在时,A 的蒸汽压与体系中A 的摩尔分数成正比。
( × )15、双组分体系中,易挥发组分在气相中的组成大于其在液相中的组成。
16、二元液系中若A 组分对拉乌尔定律产生正偏差,那么在T -x 图上必有最高恒沸点。
( × )17、在水的三相点,冰、水、水蒸气三相共存,此时的温度和压力都有确定值,体系的自由度为0。
( √ )18、将双组分进行连续的部分气化和部分冷凝,使混合液得以分离就是精馏的原理。
( √ )19、双组分体系中,易挥发组分在气相中的组成大于其在液相中的组成。
( √ )20、二元体系相图中,物系点移动方向是垂直上下,而相点则水平移动。
( × )21、确定体系的物种数可以人为随意设定,但是组分数是固定不变的。
双组分理想液态混合物的相图
pA
A
3. 应用相图讨论相变
例如系统从状态a→b。 t tA t t 1 t 2
3
p=const.
b g
p t=100°C
a G1 G2
pB
L1 l+g a l
0 A
tB p L3
A
L2
M G3 b
0 A
xM
1 B
xL xM xG xB
1 B
p
B
p t=const. l
pB
L3
L2
L1
G1
G3 G2
pA
l+g
p
A
g
0 A
x1 xB
y1
1 B
0 A
xB
1 B
C6H5CH3(A) - C6H6(B)
相点
表示某个相状态(如相态、组成、
温度等)的点称为相点。L1,G1
物系点 相图中表示体系总状态的点称为物
系点。在p-x图上,物系点可以沿着与压力坐
标平行的垂线上、下移动; 在单相区,物系点与相点重合;在两相区中, 只有物系点,它对应的两个相的组成由对应 的相点表示。
2.温度 - 组成图
将组成与沸点的 关系标在下一张 以温度和组成为 坐标的图上,就 得到了T-x图。
将x1 ,x2,x3和x4 的对应温度 连 成曲线就得液相 组成线。
(2) p - y 线——气相线
pA pA x A yA p p
pB苯系统: pA < p <pB yB> xB
易挥发组分在气相中的相对含量大于它在液相中的含量。
pB x B p yB
第5章-两组分系统-液相
1
二组分系统相律
两组分系统的相律可表达为:C=2; =2
f=4- (1)
f=0, max=4, 最多四相共存。 =1, fmax=3, 需三维图象才能完整描绘系统状态。 二元系统的相图常常固定某因素不变(如温度或压力), 用二维平面相图表示系统状态的变化情况。 二元系统的相图常为:
T/℃
连接 T-x 图中液相线的各点便 384℃
可得到液相线.
383
373
用类似的方法可以绘制 T-x
图中的气相线,或者用计算的方
363
法也可得到气相线。
353
0.2
0.4
0.6
0.8
1.0 xA
381℃ 373℃ 365℃ 357℃
353.3℃
0
0.2
0.4
0.6
0.8
1.0 xA
精馏原理
T
B的沸点低, 挥发性较强: yB>xB 将组成为y1的气相收集起来, 并将其冷却至温度T1: 其中将有部分冷凝为液体x2, 与之达平衡的气相组成为 y2, y2>y1. 重复以上过程,气相中B的浓度愈 来愈高,最后可以获得纯的B。 而由液相可以获得纯的A。
A
液相 xB
气相
y1 y2
T1
y3
x2
x3 B
13
精馏原理
实际的工业精馏工 段, 为连续操作,各层的操 作温度相对稳定,溶液 的组成也稳定;
在精馏塔的低温段一般 可以获得纯净的B,在 高 温段,可获得纯净的A。
T
T7 x8 T6 x7
T5
x6
T
T1 T2
y8
x1 x2
T3
物理化学核心教程(第二版)思考题习题答案—第6章 相平衡
第六章相平衡一.基本要求1.掌握相平衡的一些基本概念,会熟练运用相律来判断系统的组分数、相数和自由度数。
2.能看懂单组分系统的相图,理解相图中的点、线和面的含义及自由度,知道相图中两相平衡线的斜率是如何用Clapeyron方程和Clausius-Clapeyron方程确定的,了解三相点与凝固点的区别。
3.能看懂二组分液态混合物的相图,会在两相区使用杠杆规则,了解蒸馏与精馏的原理,知道最低和最高恒沸混合物产生的原因。
4.了解部分互溶双液系和完全不互溶双液系相图的特点,掌握水蒸汽蒸馏的原理。
5.掌握如何用热分析法绘制相图,会分析低共熔相图上的相区、平衡线和特殊点所包含的相数、相的状态和自由度,会从相图上的任意点绘制冷却时的步冷曲线。
了解二组分低共熔相图和水盐相图在湿法冶金、分离和提纯等方面的应用。
6.了解生成稳定化合物、不稳定化合物和形成固溶体相图的特点,知道如何利用相图来提纯物质。
二.把握学习要点的建议相律是本章的重要内容之一,不一定要详细了解相律的推导,而必须理解相律中各个物理量的意义以及如何求算组分数,并能熟练地运用相律。
水的相图是最简单也是最基本的相图,要把图中的点、线、面的含义搞清楚,知道确定两相平衡线的斜率,学会进行自由度的分析,了解三相点与凝固点的区别,为以后看懂相图和分析相图打好基础。
超临界流体目前是分离和反应领域中的一个研究热点,了解一些二氧化碳超临界流体在萃取方面的应用例子,可以扩展自己的知识面,提高学习兴趣。
二组分理想液态混合物的相图是二组分系统中最基本的相图,要根据纵坐标是压力还是温度来确定气相区和液相区的位置,理解气相和液相组成为什么会随着压力或温度的改变而改变,了解各区的条件自由度(在二组分相图上都是条件自由度),为以后看懂复杂的二组分相图打下基础。
最高(或最低)恒沸混合物不是化合物,是混合物,这混合物与化合物的最根本的区别在于,恒沸混合物含有两种化合物的分子,恒沸点的温度会随着外压的改变而改变,而且两种分子在气相和液相中的比例也会随之而改变,即恒沸混合物的组成也会随着外压的改变而改变,这与化合物有本质的区别。
物理化学相图试卷及答案
物理化学相图试卷及答案相平衡一、选择题41、(本题2分)用比较准确的语言表达,相图说明的是()系统。
A.封闭系统B.已达平衡的多相开放系统C.非平衡开放系统D.开放系统B2、(本题2分)在标准压强下,根据吉布斯相律,双组分平衡系统的最大条件自由度数为()。
4A.1B.2C.3D.4B3、(本题2分)NH4HS(s)和任意量的NH3(g)及H2S(g)达平衡时有()。
6A.C=2,Φ(P)=2,?=2;B.C=1,Φ(P)=2,?=1;C.C=1,Φ(P)=3,?=2;D.C=1,Φ(P)=2,?=3。
A4、(本题2分)二组分合金处于两相平衡时系统的条件自由度数?(F)为()。
6A.0;B.1;C.2;D.3。
B5、(本题2分)I2在液态水和CCl4中达到分配平衡(无固态碘存在)则该系统的条件自由度数为()。
6A.?’=1;B.?’=2;C.?’=0;D.?’=3。
D6、(本题2分)对恒沸混合物的描写,下列各种叙述中哪一种是不正确的()5A.与化合物一样,具有确定的组成;B.恒沸混合物的组成随压力的改变而改变;C.平衡时,气相和液相的组成相同;D.其沸点随外压的改变而改变。
B7、(本题2分)硫酸与水可形成H2SO4?H2O(s),H2SO4?2H2O(s),H2SO4?4H2O(s)三种水合物,问在101325Pa的压力下,能与硫酸水溶液及冰平衡共存的硫酸水合物最多可有多少种()6A.3种;B.2种;C.1种;D.不可能有硫酸水合物与之平衡共存。
C8、(本题2分)某系统存在C(s)、H2O(g)、CO(g)、CO2(g)、H2(g)五种物质,相互建立了下述三个平衡:H2O(g)+C(s)H2(g) +CO(g);CO2(g)+H2(g)H2O+CO(g);CO2(g)+C(s)2CO(g)。
则该系统的组分数C为()。
6A.3;B.2;C.1;D.4。
A9、(本题2分)当水、冰、水蒸气三相平衡共存时,系统的自由度数为()。
6-2二组分系统理想液态混合物的气—液平衡相图
(a)完全互溶
(b)完全不互溶 (c)部分互溶
液态完全互溶系统 p-x、t-x图
理想系统 真实系统
一般正偏差 最大正偏差
一般负偏差 最大负偏差
液态部分互溶系统 t-x图
气相组成介于两液相之间 气相组成位于两液相同侧
液态完全不互溶系统 t-x图
完全互溶系统:理想液态混合物系统气-液平衡相图
1. 压力—组成图
A、B形成理想液态混合物:均符合拉乌尔定律
A组分分压: pA pA* xA pA* 1 xB
B组分分压: pB pB* xB
pA,pB,p和xB均成
气相总压: p pA pB
直线关系
pA* 1 xB pB* xB
pA* pB* pA* xB
液相线:气相总压 p 与液相组成 xB 之间的关系曲线
nL
解: (1) 先确定系统点的总组成
xM
nB nA nB
6 46
0.6
利用
nG (xM yB ) nL (xB xM ) 即 nG (0.6 0.2) nL (0.7 0.6) (1)
nG nL n总 =4+6=10mol (2)
解得
nG =2mol
nL =8mol
(2) 气相中: 甲苯 nB nG yB 2 0.2 0.4mol 苯 nA nG yA 2 0.8 1.6mol
(4)最大负偏差系统
p实际 p理想
且在某一组成范围内比 难挥发组分的饱和蒸气 压还小,实际蒸气总压 出现最小值
液相线
氯仿(A)—丙酮(B)系统
加上气相线:
一般正偏差系统
一般负偏差系统
最大正偏差系统
液相线 气相线
§5.6 理想的二组分液态混合物
pA p xA
* A
* pB p xB p( B 1 xA)
* B
p pA pB p x p (1 xA )
* A A * B
p ( p p ) xA
* B * A * B
3
理想的完全互溶双液系
p / Pa
p pA pB
pA p xA
* A
的p-x图求得。
8
从 p-x 图绘制
p
等温p x图
p
x1
B(甲苯)
T /K * TB
等压T x图
381
373 365 357
x2 xA
x3
x4
A(苯)
* yA pA xA * yB pB xB
g
g-l
x1
B(甲苯)
x2 xA
x3
l
* TA
x4
A(苯)
9
从 实验绘制 T-x 图
T /K
x1
y2 y1
1.0 B
l
D
xB
剩余物组成为x2
17
精馏
蒸馏(或精馏)原理
精馏是多次简单蒸馏的组合。
精馏塔底部是加热区, 温度最高; 塔顶温度最低。 精馏结果,塔顶冷凝
收集的是纯低沸点组分,
纯高沸点组分则留在塔底 精馏塔有多种类型,如图所示是早期用的泡罩
式塔板状精馏塔的示意图。
18
19
精馏
从塔的中间O点进料 B的液、气相组成 分别为 x3 和 y3 每层塔板都经历部分
n(l) CD n(g) CE
若已知的是质量分数
T /K
* Tb,B
n(总) n(l) n(g)
6-4相平衡-二组分理想液态混合物气液平衡相图
p* A3
p* As
p* B3
p* Bs
x B3 1.0
y B 3 1.0
3.绘图: T—XB线(紫)T—YB线(红)
§6-3二组分理想液态混合物气液平衡相图
四、温度——组成图(T—X图)分析 1.相图静分析:坐标、区、线、点 坐标:T,XB(YB) 区: 下线下边(浅蓝色区)
P=1、液相、F=2 上线上边(灰色区)
第六章 相平衡
§6-!本章基本要求 §6-1 相平衡系统基本概念 §6-2 单组分相平衡 §6-3二组分理想液态混合物气液平衡相图 §6-4二组分真实液态混合物液态完全互溶系统气液平衡相图 *§6-5 精镏原理 §6-6二组分液态部分互溶及完全不互溶系统气液平衡相图 §6-7二组分无中间化合物的凝聚系统相图 §6-8二组分有中间化合物的凝聚系统相图 *§6-9三组分系统相图简介 §6-$本章小结与学习指导
(上册)
第六章就先讲到这里 下节课再见!
LM G
§6-3二组分理想液态混合物气液平衡相图
二、压力——组成图(p—x图)分析 2.相图动分析: 压力不变往液体A中
加入B气体 组成不变改变压力
§6-3二组分理想液态混合物气液平衡相图
三、杠杆规则(物料衡算)
对二组分2相系统(如左下图气液2相):
中间M点称为系统点
L
M点组成XM,B称为系统组成
§6-3二组分理想液态混合物气液平衡相图
前面课程我们讲述了二组份系统的特征 1.描述二组分系统需要的三个独立变量,可以用三维坐标系表
示二组分系统相平衡 。 2.二组分系统若固定一个变量,就可以用二维坐标系表示相平
衡。 3主要讨论:确定温条件下的压力—组成图,确定压条件下的温
理想液态混合物
nB (VB Vm,B ) B
p, x
0
(2) mixH = 0
B / T B / T R ln xB
(B / T ) (B / T ) 0 p T p, x T
SB SB, m R ln xB
mix S B nB ( SB Sm,B )
p, x
(4) mixG = RT nBlnxB < 0
由 G = H T S 即得上式. 后两性质均表明混合是自发的. 3
RB nB lnxB
即
HB T
2
H m,B
T2
理想液态混合物
理想液态混合物: 理想液态混合物中任意组分B 在全部组成 范围内都遵守拉乌尔定律 pB=pB*xB. • 理想液态混合物中各组分间的分子间作用力与各组分 在混合前纯组分的分子间作用力相同(或几近相同) .
• 理想液态混合物中各组分的分子体积大小几近相同.
• 近于理想混合物的实际系统: H2O与D2O等同位素化合 物, C6H6 与 C6H5CH3等相邻同系物, 正己烷与异己烷等 同分异构物, Fe-Mn等周期系中相邻金属组成的合金. Nhomakorabea1
理想液态混合物中任一组分的化学势
T 一定
g p pB pC pD
理想液态混合物在T, p下与其蒸气呈平衡, B (l) B (g) B(g) RT ln( pB / p )
B (g) RT ln( pB / p ) RT ln xB
令 B (l) B (g) RT ln( pB / p )
p p
实验2 dyl双液相图
物理化学实验备课材料实验二完全互溶两组分液态混合物的气液平衡相图一、基本介绍相平衡属于物理化学的重要教学内容,其中气液平衡是最常见,同时也是讨论最多的内容之一。
理想的二组分体系在全部浓度范围内符合拉乌尔定律。
结构相似、性质相近的组分之间可以形成近似的理想体系,此时体系的沸点组成图(T -x图)如下图1a所示。
大多数情况下为非理想体系,这时在反映体系沸点与组成关系的T-x图上将出现或正或负的偏差,当这一偏差足够大时,T-x曲线上将出现极低点(对拉乌尔定律产生极大正偏差,如下图1b所示)或极高点(对拉乌尔定律产生极大负偏差,如下图1c所示)。
出现极大点的体系常见的有:乙酸异戊酯—四氯乙烷;丙酮-氯仿;水—盐酸;水—硝酸等。
出现极小点的体系常见的有:四氯化碳—乙酸乙酯;甲醇—苯;正丙醇—水;异丙醇—环己烷,乙醇—水等。
这种最高和最低沸点称为恒沸点,所对应的溶液称为恒沸混合物。
注意,恒沸混合物不是一种物质,而是一种具有特定组成的混合物。
在恒沸点是气液两相的组成一致。
恒沸混合物的组成由温度或压力中的一个所确定,即指定温度,压力及组成由体系自定,不能改变。
图1 两组分体系的等压T-x图根据相平衡原理,对二组分体系,当压力恒定时.在气液平衡两相区,体系的自由度为1。
若温度一定.则气液两相的组成也随之而定,反之亦然。
当原溶液组成一定时,根据杠杆原理,两相的相对量也一定。
反之,实验中利用回流的方法保持气液两相的相对量一定,则体系的平衡温度也随之而定。
沸点测定仪就是根据这一原理设计的。
二、实验目的1、用沸点测定仪测定常压下不同组成的正丙醇—水体系的沸点,绘制该体系的T-x图。
2、掌握沸点测定方法。
阿贝折射仪1-反光镜;2-棱镜座转轴;3-遮光板;4-温度计;5-进光棱镜座;6-色散调节手轮; 7-色散刻度图;8-目镜;9-盖板10-手轮;11-折射棱镜;12-照明刻度盘聚光镜;13-温度计座3、进一步掌握阿贝折射仪的测量原理及操作方法。
智慧树知道网课《物理化学(下)(中国石油大学(华东))》课后章节测试满分答案
绪论单元测试1【判断题】(10分)物理化学课程是建立在数学、物理学、基础化学等学科上的一门理论化学A.错B.对2【判断题】(10分)物理化学主要涉及研究过程发生后能量的转化、反应的方向和限度等问题。
A.错B.对3【判断题】(10分)物理化学课程学习过程中需要注意例题的演练、公式概念的应用条件和高等数学微积分知识的应用。
A.对B.错第一章测试1【判断题】(10分)低温低压的真实气体可以认为是理想气体A.错B.对2【判断题】(10分)分子间无作用力,分子本身无体积的气体一定是理想气体A.错B.对3【判断题】(10分)道尔顿分压定律和阿玛伽分体积定律只适用于理想气体混合物A.对B.错4【判断题】(10分)对于不同的真实气体,范德华方程中的特性常数也不同A.对B.错5【判断题】(10分)理想气体在一定温度、压力下也能液化A.对B.错6【判断题】(10分)不同的真实气体,只要处于相同的对应状态,就具有相同的压缩因子A.错B.对7【单选题】(10分)已知某气体的临界温度为304.15K,临界压力为7.375Mpa。
钢瓶中储存着302.15K的这种气体,则该气体()状态A.一定为气体B.数据不足,无法确定C.一定为气液共存D.一定为液体8【多选题】(10分)对临界点性质的描述中,正确的是A.固、液、气三相共存B.液相与气相界面消失C.当真实气体的温度低于临界点温度时,是真实气体液化的必要条件D.液相摩尔体积与气相摩尔体积相等9【单选题】(10分)理想气体的压缩因子ZA.随所处状态而定B.z>1C.z<1D.z=110【单选题】(10分)恒温300K下,某一带隔板的容器中,两侧分别充入压力相同的3dm3氮气和1dm3二氧化碳的理想气体,当抽调隔板后混合气体中氮气和二氧化碳的压力之比为()A.1:3B.3:1C.1:4D.4:1第二章测试1【判断题】(10分)状态函数的变化值只与始态和末态的状态有关,与具体的实现途径无关A.错B.对2【判断题】(10分)据焦耳实验可知,理想气体的内能只是温度的函数A.错B.对3【判断题】(10分)液态水和水蒸气的标准摩尔燃烧焓的值均为0A.错B.对4【判断题】(10分)A.错B.对5【判断题】(10分)热力学第一定律可表述为隔离系统中的热力学能守恒A.错B.对6【判断题】(10分)气体的节流膨胀过程一定是绝热不可逆过程A.错B.对7【多选题】(10分)关于热力学可逆过程,下列表述正确的是A.一般化学都是热力学可逆过程B.可逆压缩过程环境对系统做最小功C.可逆过程是一种理想的过程,实际过程只能无限接近它D.可逆过程发生后,系统和环境一定同时复原8【单选题】(10分)A.理想气体在101325Pa恒定外压下从101325Pa膨胀到10132.5PaB.气体从373K,10132.5Pa可逆变化到298K,101325PaC.在一定温度、压力下电解CuSO4水溶液D.在一定温度、压力下,冰融化成水9【多选题】(10分)下列关于焓的说法,正确的是A.焓是人为定义的一种具有能量量纲的物理量B.焓是系统能与环境进行交换的能量C.焓是系统的状态函数D.焓变只有在特定条件下,才与过程热数值相等10【单选题】(10分)下列关于绝热过程的说法正确的是A.其余选项均不正确B.绝热的恒外压过程也可能是绝热可逆过程C.绝热可逆压缩过程的末态温度可能会升高,也可能不变D.绝热可逆过程始末态压力、体积之间符合过程方程第三章测试1【判断题】(10分)热不可能全部转换成功。
多组分系统热力学
多组分系统热力学一、判断题:1 克拉佩龙方程适用于纯物质的任何两相平衡。
()2 克—克方程比克拉佩龙方程的精确度高。
( )3 一定温度下的乙醇水溶液,可应用克—克方程式计算其饱和蒸气压。
()4 将克—克方程的微分式用于纯物质的液气两相平衡,因为 vap H m>0,所以随着温度的升高,液体的饱和蒸气压总是升高的。
()5 二组分理想液态混合物的总蒸气压大于任一纯组分的蒸气压。
()6 理想混合气体中任意组分B的逸度就等于其分压力p B。
()7 因为溶入了溶质,故溶液的凝固点一定低于纯溶剂的凝固点。
()8 溶剂中溶入挥发性溶质,肯定会引起溶液的蒸气压升高。
()9 理想稀溶液中的溶剂遵从亨利定律,溶质遵从拉乌尔定律()10 理想液态混合物与其蒸气成气、液两相平衡时,气相总压力p与液相组成x B呈线性关系。
()11 如同理想气体一样,理想液态混合物中分子间没有相互作用力。
()12 一定温度下,微溶气体在水中的溶解度与其平衡气相分压成正比。
()13 化学势是一广度量。
()14 只有广度性质才有偏摩尔量。
()15 稀溶液的沸点总是高于纯溶剂的沸点。
()16 单组分系统的熔点随压力的变化可用克劳休斯-克拉佩龙方程解释。
()17.公式 d G = -S d T + V d p只适用于可逆过程。
()18.某一体系达平衡时,熵最大,自由能最小。
()19.封闭体系中,由状态1经定温、定压过程变化到状态2,非体积功W/<0,且有W/>∆G 和∆G<0,则此变化过程一定能发生。
()20.根据热力学第二定律,能得出,从而得到。
()21.只有可逆过程的∆G才可以直接计算。
()22.凡是自由能降低的过程一定都是自发过程。
()23.只做体积功的封闭体系,的值一定大于零。
()24.偏摩尔量就是化学势。
()25.在一个多组分溶液中,只有溶质才有偏摩尔量。
()26.两组分混合成溶液时,没有热效应产生,此时形成的溶液为理想溶液。
()27.拉乌尔定律和亨利定律既适合于理想溶液,也适合于稀溶液。
二组分理想液体混合物
xA,0 nA / n(总) (200/ 92) / 4.7380 0.4588; xB,0 0.5412 (1) 刚开始产生气相时, 可认为液相组成与系统总组成相等
p(总) pA x A pB xB
yA = 1-yB = 0.523
2
例 已知甲苯和苯在90℃下纯液体的饱和蒸气压分别为54.22 理想液态混合物气液计算 kPa和136.12kPa, 两者可形成理想液态混合物. 取200.0g甲苯和200.0g苯于带活塞的导热容器中, 始态为一 定压力下90℃的液态混合物. 在始产生气相, 此气相的组成如何? (2)压力降到多少时, 液相开始消失, 最后一滴液相的组成如何? (3)压力为92.00kPa时, 系统内气液两相平衡, 两相的组成如何? 两相的物质的量各为多少? 以 A代表甲苯, B 代表苯. 系统总组成为:
解得
xA 0.6803 ,
xB 0.3197
对应总压
p(总) pA xA pB xB 80.40kPa
x A pB xB 92.00kPa (3)压力为92.00kPa时, p(总) pA
解得
x A 0.5387 ,
xB 0.4613
yA pA xA / p(总) 54.22 0.5387/ 98.54 0.3175, yB 0.6825
理想液态混合物气液组成计算 例 60℃时甲醇(A)的饱和蒸气压83.4 kPa , 乙醇(B)的饱和蒸 气压是47.0 kPa , 二者可形成理想液态混合物, 若液态混合物 的组成为质量分数 wB = 0.5 , 求60℃时与此液态混合物的平衡 蒸气组成(以摩尔分数表示). (已知甲醇及乙醇的M r 分别为 32.04及46.07.) 该液态混合物的摩尔分数:
理想液态混合物
上式中纯组分的化学势μ*B(l, T, p)与温度和压力都有关, 它与
标准化学势的关系为
∫ μB* (l,T, p) = μBΘ(l,T) +
p pΘ
Vm* ,B
(l,T
,
p)dp
代入式
μ
B(l,
T,
p,
xC)
=μBiblioteka * B(l,T
,
p) +
RT ln xB
,
得
∫ μ B
(l,T
,
p,
xC )
=
μ
Θ B
=
83.4 × 0.5898 68.47
= 0.718
yB = 0.282
11
理想液态混合物
若某液态混合物中任意组分B在全部组成范围内都遵守 拉乌尔定律 pB=pB*xB , 则称为理想液态混合物.
理想液态混合物中任一组分的化学势
μB
(l)
=
μ
Θ B
(l,
T
)
+
RT
ln
xB
液体B标准态:温度T,压力p\ 下的纯液体B
12
理想液态混合物的混合性质
(1)ΔmixV = 0 (体积不变) (2) ΔmixH = 0 (焓不变) (3) ΔmixS = -RΣnBlnxB > 0 (熵增大) (4) ΔmixG = RTΣnBlnxB < 0 (吉布斯函数减少)
13
#气-液平衡时蒸气总压p与液相组成xB的关系:
p = pA* + ( pB* − pA* )xB
16
解:85℃时,101.3kPa下该理想液态混合物沸腾时(气、 液两相平衡)的液相组成,即
理想液态混合物定义
理想液态混合物定义理想液态混合物是指由两种或多种化学物质以液态形式混合而成的物质。
在理想液态混合物中,各组分之间没有化学反应发生,且能够均匀混合,形成单一相态。
这种混合物具有许多特殊的性质和应用。
理想液态混合物的组成可以通过改变各组分的比例来调节。
不同比例的组分混合会产生不同的性质和特点。
例如,酒精和水的混合物可以通过调节酒精的含量来制备不同浓度的酒,满足人们不同的需求。
理想液态混合物的物理性质是可以预测并计算的。
根据理想溶液的定义,当混合物的组分之间没有相互作用时,可以使用理想溶液模型进行计算。
例如,根据理想气体定律,可以根据混合物中各组分的摩尔分数和压强来计算混合物的总压强。
理想液态混合物的热力学性质也是可以研究的。
通过测量混合物的热容、熵和焓等热力学参数,可以了解混合物的热力学特性。
这些参数对于工业过程的设计和优化非常重要。
理想液态混合物还具有一些特殊的应用。
例如,在制药工业中,通过混合不同的药物和溶剂,可以制备出各种药物溶液。
这些药物溶液可以用于口服药液、注射剂、外用药等。
另外,在化妆品工业中,通过混合不同的化学物质,可以制备出各种化妆品,如洗发水、护肤品等。
理想液态混合物还在环境保护和能源领域具有重要应用。
例如,在水处理领域,通过混合不同的化学物质,可以去除水中的污染物,提高水的质量。
在能源领域,通过混合不同的燃料,可以调节燃烧过程,提高能源利用效率。
理想液态混合物是由两种或多种化学物质以液态形式混合而成的物质。
这种混合物具有可调节的组成、可预测的物理性质和热力学性质,以及广泛的应用领域。
通过研究理想液态混合物,可以深入了解混合物的特性,并为相关工业过程的设计和优化提供理论基础。
物理化学习题
第一章气体一、选择题1. 在温度为T、体积恒定为V 的容器中,内含A、B两组分的理想气体混合物,它们的分压力与分体积分别为p A、p B、V A、V B;若又往容器中再加入物质的量为n C 的理想气体C,则组分A的分压力p A,组分B的分体积V B;A. 变大B. 变小C. 不变D. 无法判断应分别填入: c不变;b变小;因为:pA=n A RT/V;V B=n B RT/p2. 已知CO2的临界参数tc=℃,pc=;有一钢瓶中贮存着29℃的CO2,则CO2状态;A. 一定为液体B. 一定为气体C. 一定为气、液共存D. 数据不足,无法确定应选择填入: d 数据不足,无法确定;因为不知道其压力;3. 在恒温100℃的带活塞气缸中,放有压力为的水蒸气;于恒温下压缩该水蒸气,直到其体积为原体积的1/3,此时水蒸气的压力;A. B.C. D. 数据不足,无法计算应填入: c ;因为温度未变,可有水蒸气冷凝,但压力不变;4、真实气体在 D 条件下,其行为与理想气体相近;A.高温高压B.低温低压C.低温高压D.高温低压5、双参数普遍化压缩因子图是基于:AA. 对应状态原理;B. 不同物质的特征临界参数C. 范德华方程;D. 理想气体状态方程式6、若一个系统在变化过程中向环境放出热量,则该系统的:DA. 热力学能必定减少;B. 焓必定减少;C. 焓必定增加;D. 单一条件无法判断;二、判断:1、道尔顿分压定律只适用于理想气体; ×2、当真实气体分子间吸引力起主要作用时,则压缩因子Z小于1; √三、填空题:1. 物质的量为5mol的理想气体混合物,其中组分B的物质的量为2mol,已知在30℃下该混合气体的体积为10dm3,则组分B的分压力p B= kPa,分体积V B= dm3填入具体数值;分别填入: p B = n B RT/V = kPa V B= n B RT/p = y B·V = dm32. 一物质处在临界状态时,其表现为;应填入: 气、液不分的乳浊状态;3. 已知A、B两种气体临界温度关系为TcA<TcB ,则两气体中相对易液化的气体为;应填入: B气体;4. 在任何温度、压力条件下,压缩因子Z恒为一的气体为; 若某条件下的真实气体的Z > 1 ,则表明该气体的V m同样条件下理想气体的V m, 也就是该真实气体比同条件下的理想气体压缩;应分别填入: 理想气体; 大于; 难于;5. 已知耐压容器中某物质的温度为30 ℃,而它的对比温度T r= ,则该容器中的物质应为,其临界温度为;应分别填入: 气体;K ;第二章热力学第一定律一、选择题1、理想气体向真空膨胀,所做的体积功为 A ;A.等于零B.大于零C.小于零D.不能计算2、下列过程中, 系统内能变化不为零的是A 不可逆循环过程B 可逆循环过程C 两种理想气体的混合过程D 纯液体的真空蒸发过程答案:D;因液体分子与气体分子之间的相互作用力是不同的故内能不同;另外,向真空蒸发是不做功的,W =0,故由热力学第一定律ΔU=Q+W得ΔU=Q,蒸发过程需吸热Q>0,故ΔU>0;3、第一类永动机不能制造成功的原因是A 能量不能创造也不能消灭B 实际过程中功的损失无法避免C 能量传递的形式只有热和功D 热不能全部转换成功答案:A4、盖斯定律包含了两个重要问题, 即A 热力学第一定律和热力学第三定律B 热力学第一定律及热的基本性质C 热力学第三定律及热的基本性质D 热力学第一定律及状态函数的基本特征答案:D5、功和热AA.都是途径函数,无确定的变化途径就无确定的数值;B.都是途径函数,对应某一状态有一确定值;C.都是状态函数,变化量与途径无关;D.都是状态函数,始终态确定,其值也确定;答:A都是途径函数,无确定的变化途径就无确定的数值;6、一定量的理想气体,从同一初态压力p1可逆膨胀到压力为p2,则等温膨胀的终态体积V等温与绝热膨胀的终态体积V绝热的关系是: A ;A. V等温V绝热;B. V等温V绝热;C. 无法确定;D. V等温= V绝热;7、可逆过程是DA. 变化速率无限小的过程;B. 做最大功的过程;C. 循环过程;D. 能使系统和环境完全复原的过程;答:“d 能使系统和环境完全复原的过程”;8、某气体从一始态出发,经绝热可逆压缩与恒温可逆压缩到相同终态体积V2,则p2恒温p2绝热;W r恒温W r绝热;△U恒温△U绝热;A.大于; B. 小于;C. 等于; D. 不能确定;答: p2恒温> p2绝热;W r恒温> W r绝热;△U恒温<△U绝热;9、dU=C v dT及dU m=C v,m dT适用的条件完整地说应当是A 等容过程B 无化学反应和相变的等容过程C 组成不变的均相系统的等容过程D 无化学反应和相变且不做非体积功的任何等容过程及无反应和相变而且系统内能只与温度有关的非等容过程答案:D10、反应H 2g +12O 2g == H 2Og 的标准摩尔反应焓为r H T ,下列说法中不正确的是: BA. r H T 是H 2Og 的标准摩尔生成焓;B. r H T 是H 2Og 的标准摩尔燃烧焓;C. r H T 是负值;D. r H T 与反应的r U 数值不等;11、当某化学反应Δr C p,m <0,则该过程的△r H θm T 随温度升高而AA 下降B 升高C 不变D 无规律答案:A;根据Kirchhoff 公式,()/r m r p m d H T dT C ∆=∆可以看出;12、在一个循环过程中,物系经历了i 步变化,则 DA ∑Qi=0B ∑Qi -∑Wi=0C ∑Wi=0D ∑Qi +∑Wi=013、已知反应 2Ag+Bg= 2Cg 在400K 下的△rHθm400k = 150kJ·mol-1,而且Ag 、Bg 和Cg 的摩尔定压热容分别为20、30和35J·K-1·mol-1,若将上述反应改在800K 下进行,则上述反应的△rHθm800k 为 kJ·mol-1 ;A. 300;B. 150 ;C. 75 ;D. 0答:选b 150 kJ·mol-1;14、在实际气体的节流膨胀过程中,哪一组描述是正确的: CA Q >0, H =0, p < 0B Q =0, H <0, p >0C Q =0, H =0, p <0D Q <0, H =0, p <0答案:C;节流膨胀过程恒焓绝热且压力降低;15、经绝热可逆膨胀和绝热反抗恒外压膨胀到相同终态体积V 2,则T 2可 T 2不,在数值上W 可 W 不;A .大于; B. 小于; C. 等于; D. 可能大于也可能小于;答: 应分别填入 b 小于;a 大于;二、判断题1、隔离或孤立系统的热力学能总是守恒的; √2、理想气体在恒定的外压力下绝热膨胀到终态;因为是恒压,所以H =Q ;又因为是绝热,Q=0,故H=0; ×3、隔离系统中无论发生什么变化,0=∆U ; √4、真实气体的节流膨胀过程是等焓过程; √三、填空题1、1mol 某理想气体的C v,m = ,当该气体由p 1、V 1、T 1的始态经过一绝热过程后,系统终态的p 2V 2 与始态的p 1V 1之差为1kJ,则此过程的W = kJ, H= kJ;2、若将1mol 、p =、t = 100℃的液体水放入到恒温100℃的真空密封容器中,最终变为100℃、的水蒸气,△vap Hm=·mol-1,则此系统在此过程中所作的 W= kJ,△U= kJ;答:填入“0”;“”;3、已知下列反应的r H 298 K 分别为: 1COg+12O 2g −→− CO 2g,r H ,1=-2830 kJ·mol -1; 2H 2g+12O 2g −→− H 2Ol, r H ,2=-2858 kJ·mol -1; 3C 2H 5OHl+3O 2g −→−2CO 2g+ 3H 2Ol,r H ,3 =-1370 kJ·mol -1;则反应 2COg+4H 2g==H 2Ol+C 2H 5OHl 的r H 298 K= ;已知反应产物分别为纯水和纯乙醇,两者未混合,不必考虑混合焓;-3392 kJ ·mol -1 21+42-34、已知25℃下的热力学数据如下:C 石墨的标准摩尔燃烧焓△c H θm = ·mol -1;H 2g 的标准摩尔燃烧焓△c H θm = ·mol -1; CH 3OHl 的标准摩尔燃烧焓△c H θm = kJ·mol-1;则CH 3OHl 的标准摩尔生成焓△f H θm = kJ·mol -1;第三章热力学第二定律1、在T 1=750K 的高温热源与T 2=300K 的低温热源间工作一卡诺可逆热机,当其从高温热源Q 1=250kJ 时,该热机对环境所做的功W= -150 Kj,放至低温热的热Q 2= -100kJ;2、以汞为工作物质时,可逆卡诺热机效率为以理想气体为工作物质时的 100% ; 可逆热机效率与工质无关3、液体苯在其沸点下恒温蒸发,则此过程的△U 大于零; △H 大于零;△S 大于零; △G 等于零 ;4、将1mol 温度为100℃ 、压力为的液体水投入一密封真空容器中,并刚好完全蒸发为同温同压的水蒸气,则此过程的△H 大于零;△S 大于零 ; △G 等于零 ;5、H2与O2均为理想气体,当经历如下所示的过程后,则系统的△U 等于零 ; △H 等于零 ; △S 等于零 ; △G 等于零 ;6、732 K 时,反应NH 4Cls==NH 3g+HClg 的 r G =- kJ ·mol -1,r H =154 kJ ·mol -1,则该反应的r S= 239 J ·K -1·mol -1 ; 7、某双原子理想气体3 mol 从始态300 K,200 KPa 下经过恒温可逆膨胀到150KPa,则其过程的功W 是 - J;8、某双原子理想气体3 mol 从始态350K,200 KPa 下经过绝热可逆膨胀到 K 平衡,则其过程的功W 是 - J;9、在真空密封的容器中,1mol 温度为100℃、压力为 kPa 的液体水完全蒸发为100℃、 kPa的水蒸气, 测得此过程系统从环境吸热,则此过程的△H= kJ, △S= J ·K -1,△G= 0 kJ;判断题1、绝热过程都是等熵过程;×2、理想气体的熵变公式∆S nC V V nC p p p V =⎛⎝ ⎫⎭⎪+⎛⎝ ⎫⎭⎪,,ln ln m m 2121只适用于可逆过程;× 3、等温等压且不涉及非体积功条件下,一切吸热且熵减小的反应,均不能自动发生;√4、若隔离系统内发生了一不可逆过程,则该隔离系统的△S 增加;√5、不可逆过程一定是自发的,而自发过程一定是不可逆的;×选择题1、任意两相平衡的克拉贝龙方程d T / d p = T V H m m /∆,式中V m 及H m 的正负号BA .一定是相反,即 V m > 0,H m < 0;或 V m < 0,H m > 0;B .可以相同也可以不同,即上述情况均可能存在;C .一定是V m > 0,H m >0 ;D. 一定是V m <0,H m < 0 ;2、下列热力学四个基本方程中不正确的式子是:DA. dU= TdS -PdV ;B. dH= TdS +VdP ;C. dG=-SdT+VdP ;D. dA=-SdT+PdV ;3、液态水在100℃及101325 kPa 下汽化成水蒸气,则该过程的DA. H = 0 ;B. S = 0;C. A = 0;D. G = 0 ;4、已知某化学反应的∑B C p, m B > 0,则从T 1升温到T 2时,该反应的r H 与r S 都 : CA. 不随温度升高变化;B. 随温度升高而减小;C. 随温度升高而增大;D. r H 增大r S 减小;5、对于只作膨胀功的封闭系统,的值是:B A. 大于零; B. 小于零; C. 等于零; D. 不能确定;6、某封闭物系进行了一个过程时,DA. 物系的熵值一定增加;B. 过程可逆则物系的熵差等于零;C. 物系的熵值一定减小;D. 物系的熵差可能大于零也可能小于零;7、在263K 和,1mol 过冷水结成冰,则系统、环境的熵变及总熵变为 CA.0<∆系统S ,0<∆环境S ,0<∆总熵变SB.0>∆系统S ,0>∆环境S ,0<∆总熵变SC.0<∆系统S ,0>∆环境S ,0>∆总熵变SD.0<∆系统S ,0>∆环境S ,0<∆总熵变S8、 Al+g=Cg 在500K 、恒容条件下反应了 1mol 进度时热效应为- kJ;若该反应气体为理想气体,在500K 、恒压条件下同样反应了 1mol 进度时,则热效应为: D kJA. ;B. -;C. ;D. -9、理想气体经可逆与不可逆两种绝热过程 CA. 可以达到同一终态;B. 可以达到同一终态,但给环境留下不同的影响;C. 不可能达到同一终态;D .无法确定答: “C 不可能到达同一终态 ”10、公式H=Q p 适用于下列哪个过程 BA. 理想气体从反抗恒定的外压膨胀;B. 273K, 下冰融化成水;C. 298K, 下点解CuSO 4水溶液;D. 气体从状态I 等温变化到状态II11、由物质的量为n 的某纯理想气体组成的系统,若要确定该系统的状态,则系统的 D 必须确定;A. pB. VC. T,UD. T,P12、2. 根据热力学第二定律,在一循环过程中 C ;A .功与热可以完全互相转换;B .功与热都不能完全互相转换;C .功可以完全转变为热,热不能完全转变为功;D .功不能完全转变为热,热可以完全转变为功.13. 在一带活塞绝热气缸中,W ’= 0条件下发生某化学反应后,系统的体积增大,温度升高,则此反应过程的W B ,△rU B ,△rH C ,△rS A ,△rG B ;V T A ⎪⎭⎫ ⎝⎛∂∂A. 大于零;B.小于零;C. 等于零;D. 可能大于也可能小于零.14、在下过程中,△G =△A 的过程为 C ;A. 液体在正常沸点下汽化为蒸气;B. 理想气体绝热可逆膨胀;C. 理想气体A与B在恒温下混合;D. 恒温、恒压下的可逆反应过程;15、理想气体与温度为T的大热源接触做等温膨胀,吸热Q,所做的功是变到相同终态的最大功的20%,则系统的熵变为:CA.Q/T B. 0C. 5Q/T T第四章多组分系统热力学选择题1. 在和101325Pa•下,水的化学势与水蒸气化学位的关系为AA μ水=μ汽B μ水<μ汽C μ水>μ汽D 无法确定2.下列哪种现象不属于稀溶液的依数性 DA 凝固点降低B沸点升高 C 渗透压D蒸气压升高3.98K时,A、B两种气体在水中的亨利常数分别为k1和k2,且k1>k2,则当P1=P2时,A、B在水中的溶解量c1和c2的关系为BA C1>C2B C1<C2C C1=C2D 不能确定4.将非挥发性溶质溶于溶剂中形成稀溶液时,将引起 AA 沸点升高B 熔点升高C 蒸气压升高D 都不对5. 定义偏摩尔量时规定的条件是 DA 等温等压B 等熵等压C 等温, 溶液浓度不变D 等温等压, 溶液浓度不变6. 关于偏摩尔量, 下面的说法中正确的是 BA 偏摩尔量的绝对值都可求算B 系统的容量性质才有偏摩尔量C 同一系统的各个偏摩尔量之间彼此无关D 没有热力学过程就没有偏摩尔量7. 影响沸点升高常数和凝固点降低常数值的主要因素是AA 溶剂本性B 温度和压力C溶质本性D 温度和溶剂本性8. 已知373K时液体A的饱和蒸气压为,液体B的饱和蒸气压为;设A和B形成理想溶液,当溶液中A 的物质的量分数为时,在气相中A 的物质的量分数为:CA 1B 1/2C 2/3D 1/3因为y A =p A /p A +p B =+=2/39. 两只各装有1kg 水的烧杯,一只溶有蔗糖,另一只溶有,按同样速度降温冷却,则: AA 溶有蔗糖的杯子先结冰B 两杯同时结冰C 溶有NaCl 的杯子先结冰D 视外压而定10.下列各式叫化学势的是:B A. )B C (,,B c ≠⎪⎪⎭⎫⎝⎛∂∂n V S n G B. )B C (,,B c ≠⎪⎪⎭⎫ ⎝⎛∂∂n p T n G C. )B C (≠⎪⎭⎫ ⎝⎛∂∂V T G D. (C B)S U T ≠∂⎛⎫ ⎪∂⎝⎭ 11.冬季建筑施工中,为了保证施工质量,常在浇注混凝土时加入盐类,其主要作用是 CA.增加混凝土强度B.防止建筑物被腐蚀C.降低混凝土的固化温度D.吸收混凝土中的水分判断题1.理想混合气体中任意组分B 的化学势表达式为:B =B g,T +RTlnp B /p ;√2.二组分的理想液态混合物的蒸气总压力介于二纯组分的蒸气压之间;√3. 拉乌尔定律的适用条件是等温时的稀溶液; ×因为必须是非挥发性溶质的稀溶液4.溶液的化学势等于溶液中各组分的化学势之和;×溶液中可以分为溶剂的化学势或溶质的化学势,而没有整个溶液的化学势;5. 在室温下,相同浓度的蔗糖溶液与食盐水溶液的渗透压相等;×填空题1. 在一定温度下,对于理想稀溶液中溶剂的化学势μA =μA + RT ln x A ;若浓度变量用组分的b B 表示μA ,假设b B M A <<1, 则μA =μA - ;填入 ” RTM A b B “;2. 在一定T 、p 下,一切相变化必然是朝着化学势 的方向进行;填入 “ 减小”;3. 在一定的T 、p 下,由纯Al 和纯Bl 混合而成理想液态混合物,则此过程的mix V m 0;H m 0;mix G0;mix S 0填=;<;>;mix填入=;=;<;>第五章化学平衡选择题1. 对于化学平衡, 以下说法中不正确的是 CA 化学平衡态就是化学反应的限度B 化学平衡时系统的热力学性质不随时间变化C 化学平衡时各物质的化学势相等D 任何化学反应都有化学平衡态2.反应2Cs + O2g2COg,其r G mθ /J·mol-1 = -232600 - K,若温度升高,则:CA r G mθ变负,反应更完全B K pθ变大,反应更完全C K pθ变小,反应更不完全D无法判断G m=r H m -T r S m;r H m<0r3.在一定温度和压力下,对于一个化学反应,能用以判断其反应方向的是:CA r G mθB K pC r G mD r H m4.某温度时,NH4Cls分解压力是pθ ,则分解反应的平衡常数K pθ为:CA 1B 1/2C 1/4D 1/85.某实际气体反应在温度为500K,压力为102kPa下的平衡常数K fθ=2,则该反应在500K,下反应的平衡常数K fθ为:C还是AA 2B >2C <2D 26.在温度为T,压力为p时,反应3O2g=2O3g的K p与K x的比值为:DA RTB pC RT-1D p-17.已知反应3O2g = 2O3g 在25℃时r H mθ J·mol-1,则对该反应有利的条件是:CA 升温升压B 升温降压C 降温升压D 降温降压8.加入惰性气体对哪一个反应能增大其平衡转化率AA C6H5C2H5g = C6H5C2H3g + H2gB COg + H2Og = CO2g + H2gC 3/2 H2g + 1/2 N2g = NH3gD CH3COOHl + C2H5OHl = H2Ol + C2H5COOH3lA9. 在一定温度、压力下Ag + Bg = Cg + Dg 的Kθ1=;Cg + Dg= Ag + Bg 的Kθ2= ;2Ag + 2Bg = 2Cg + 2Dg 的K θ3= ;A ;B 4 ;C ; D答:应分别选择B 和C;10. 已知在1000K 时,理想气体反应 As+B 2Cg=ACs+B 2g 的K θ=;若有一上述反应系统,其 pB 2C=pB 2,则此反应系统 B ;A 自发由左向右进行;B 不能自发由左向右进行;C 恰好处在平衡;D 方向无法判断;答:应选填 “ B ”; >0 11. 在温度T 下Ag+ 2Bg == 2Dg 的1=θK ;若在恒定温度T 的真空密封容器中通入A 、B 、C 三种气体,分压力均为100kpa,则反应 CA. 向右进行B. 向左进行C. 处于平衡D.无法判断判断题1. 在一定的温度、压力且不作非膨胀功的条件下,若某反应的G>0,因此可以研制出一种催化剂使反应正向进行; ×2. 某反应的平衡常数是一个不变的常数; ×3. 反应COg +H 2O g == CO 2g +H 2O g,因为反映前后分子数相等,所以无论压力如何变化,对平衡均无影响; ×因为压力太高时气体不是理想气体填空题1. 在一个真空容器中,放有过量的B 3s,于900K 下发生反应B 3s = 3Bg, 反应达平衡时容器内的压力为300kPa, 则此反应在900K 下的K θ = ;答: 应填入“ ”2. 在300K 、下,取等摩尔的C 与D 进行反应:Cg + Dg = Eg;达平衡时测得系统的平衡体积只有原始体积的80%,则平衡混合物的组成 y C = , y D = ,y E = ; 答:应分别填入 “ ”;“ ”;“ ”3. 将1molSO 3g 放入到恒温1000K 的真空密封容器中,并发生分解反应:SO 3g = SO 2g + g ;当反应平衡时,容器中的总压为,且测得SO 3g 的解离度α= ,则上述分解以应在1000K 时之K θ= ;答:应填入 “ ”;4. 已知反应C 2H 5OHg=C 2H 4g+H 2Og 的△r H θm = kJ·mol -1,△r S θm = J ·K -1·mol -1,而且均不随温度而变;在较低温度下升高温度时,△r G θm ,有利于反应 向 ;r m ln ln PG RT K RT J ∆=-+答:应分别填入 “ 变小 ”;“ 右进行”;5. 理想气体化学反应为 2Ag + g = Cg ;在某温度T 下,反应已达平衡,若保持反应系统的T 和V 不变,加入惰性气体Dg 重新达平衡后,上述反应的K θ ,参加反应各物质的化学势μ ,反应的K y ;答:应分别填入“ 不变 ”;“ 不变”;“ 变大”;第六章相平衡 一、选择题1. N 2的临界温度是124 K ,如果想要液化N 2就必须:D A 在恒温下增加压力 B 在恒温下降低压力C 在恒压下升高温度D 在恒压下降低温度2. CuSO 4与水可生成CuSO 4H 2O ,CuSO 43H 2O ,CuSO 45H 2O 三种水合物,则在一定温度下与水蒸气平衡的含水盐最多为:BA3种 B2种 C1种 D 不可能有共存的含水盐3. 将固体 NH 4HCO 3s 放入真空容器中,恒温到 400 K ,NH 4HCO 3 按下式分解并达到平衡:NH 4HCO 3s = NH 3g + H 2Og + CO 2g 体系的组分数 C 和自由度数 f 为:C A C = 2, f = 1 B C = 2, f = 2 C C = 1, f = 0 D C = 3, f = 24. 在一个密封的容器中装满了温度为 K 的水,一点空隙也不留,这时水的蒸气压: D A 等于零 B 等于 kPa C 小于 kPa D 大于 kPa5. 组分A 和B 可以形成四种稳定化合物:A 2B,AB,AB 2,AB 3,设所有这些化合物都有相合熔点;则此体系的低共熔点最多有几个 C P261A3 B4 C5 D66. 在相图上,当体系处于下列哪一点时只存在一个相 CA 恒沸点B 熔点C 临界点D 低共熔点7. 在 p θ下,用水蒸气蒸镏法提纯某不溶于水的有机物时,体系的沸点: AA 必低于 KB 必高于 KC 取决于水与有机物的相对数量D 取决于有机物的分子量大小二、填空1. 冰的熔点随压力的增大而 降低 ;2. 形成共沸混合物的双液系在一定外压下共沸点时的组分数C 为 2 ,相数P 为 2 ,条件自由度F 为 0 ;3. 在反应器中通入 nNH 3:nHCl=1: 的混合气体发生下列反应并达平衡NH 3g + HClg = NH 4Cls,此系统的组分数C= 2 ;自由度数F= 2 ; B B B (,)(,)ln p T p T p RT pμμ=+8、.下列化学反应,同时共存并到达到平衡温度在900~1200K范围内:CaCO3s = CaOs + CO2g CO2g + H2g = COg + H2OgH2O g + COg + CaOs = CaCO3s + H2g;该体系的自由度为 _____ ;8. S = 6 , R = 2 , C= 6 - 2 = 4 f = 4 - 3 + 2 = 3第七章电化学练习题1. 用同一电导池分别测定浓度为mol·kg-1和mol·kg-1的两个电解质溶液,其电阻分别为1000和500,则它们依次的摩尔电导率之比为 BA 1 : 5B 5 : 1C 10 : 5D 5 : 102. mol·kg-1的K3FeCN6的水溶液的离子强度为: CA ×10-2 mol·kg-1B×10-2 mol·kg-1C×10-2 mol·kg-1D×10-2 mol·kg-13. 室温下无限稀释的水溶液中,离子摩尔电导率最大的是: DA La3+B Ca2+C NH4+D OH -4. 质量摩尔浓度为m的Na3PO4溶液, 平均活度系数为,则电解质的活度CA a B= 4m/m4 4B a B= 4m/m4C a B= 27m/m4 4D a B = 27m/m45. 浓度为m的Al2SO43溶液中,正负离子的活度系数分别为和,则平均活度系数等于: CA 1081/5 mB 1/5 mC 1/5D 1/56. 298 K时,反应为Zns+Fe2+aq=Zn2+aq+Fes 的电池的Eθ为V,则其平衡常数Kθ为: CA ×105B ×1010C ×104D ×1027. 下列电池中,电动势与Cl- 离子的活度无关的是: CA Zn│ZnCl2a│Cl2pθ│PtB Zn│ZnCl2a1‖KCl a2│AgCls│AgC Ag│AgCl│KCl a│Cl2pθ│PtD Pt│H2p│HCl a│Cl2pθ│Pt8.电解时, 在阳极上首先发生氧化作用而放电的是: DA 标准还原电势最大者B 标准还原电势最小者C 考虑极化后,实际上的不可逆还原电势最大者D 考虑极化后,实际上的不可逆还原电势最小者9.下列示意图描述了原电池和电解池中电极极化规律, 表示原电池阳极的是 AA 曲线1B 曲线2C 曲线3D 曲线410. 电池在恒温、恒压和可逆情况下放电,则其与环境交换的热 CA 一定为零B 为△HC 为T△S D无法确定判断题1.电极Pt|H2p=100kPa |OH-a=1是标准氢电极,其电极电势E H2+2OH-2H2O+2e = 0;×2. 凡发生氧化反应的电极为阴极,发生还原反应的电极为阳极; ×填空题:1. 已知25℃无限稀释的水溶液中, Λ∞m KCl=×10-4 S·m2·mol-1,Λ∞m NaCl=×10-4 S·m2·mol-1,25℃的水溶液中: Λ∞m K+-Λ∞m Na+ = ×10-4 S·m2·mol-1;2. 在25℃无限稀释的LaCl3水溶液中: Λ∞m1/3La3+= ×10-4 S·m2·mol-1, Λ∞m Cl-= ×10-4 S·m2·mol-1,则Λ∞m LaCl3= S·m2·mol-1;Λ∞m 1/3LaCl3=S·m2·mol-1;Λ∞m LaCl3= Λ∞m La3+ +3Λ∞m Cl- = ×10-4 S·m2·mol-1Λ∞m 1/3LaCl3=×10-4 S·m2·mol-13.电池Ag,AgCls│CuCl2m│Cus 的电池反应是_2Ag+2Cl-=Cu2++2AgCl, 电池Ags│Ag+aq‖CuCl2aq│Cus 的电池反应是__2Ag+ Cu2+=2Ag++Cu4. 质量摩尔浓度为b的KCl、K2SO4、CuSO4及LaCl3的水溶液的离子强度分别为IKCl= ;IK2SO4= ;ICuSO4= ;ILaCl3= ;b;3b;4b;6b5. 已知25℃时,电极反应Cu2++2e-→Cus的标准电极电势Eθ1 = V;Cu++e →Cus;Eθ2=; Cu2++e-→Cu+的Eθ3 = V;Δr G mθ= zFEθEθ3 = 2Eθ1- Eθ2 = V6. 在温度T,若电池反应Cus+Cl2g→Cu2++2Cl-的标准电动势为Eθ1;反应s+g→++Cl-的标准电动势为Eθ2,则Eθ1与Eθ2的关系为Eθ1= Eθ2 ;填>、<、=第十章界面现象1. 气固相反应CaCO3s CaOs + CO2g 已达平衡;在其它条件不变的情况下,若把CaCO3s 的颗粒变得极小,则平衡将: BA 向左移动B 向右移动C 不移动D 来回不定移动2. 在相同温度下,同一液体被分散成具有不同曲率半径的物系时,将具有不同饱和蒸气压;以p平、p凹、p凸分别表示平面、凹面和凸面液体上的饱和蒸气压,则三者之间的关系是:CA p平> p凹> p凸B p凹> p平> pC p凸> p平> p凹D p凸> p凹> p平3. 微小晶体与普通晶体相比较,哪一种性质不正确 DA微小晶体的饱和蒸气压大B微小晶体的溶解度大C微小晶体的熔点较低D微小晶体的溶解度较小4. 水/油乳化剂的HLB 值的范围是 AA 2-6B 8-12C 14-18D 20-244..当表面活性物质加入溶剂后,所产生的结果是 AA d/ d a < 0,正吸附B d/ d a < 0,负吸附C d/ d a > 0,正吸附D d/ d a > 0,负吸附6. 天空中的水滴大小不等, 在运动中, 这些水滴的变化趋势如何 BA 大水滴分散成小水滴, 半径趋于相等B 大水滴变大, 小水滴缩小C 大小水滴的变化没有规律D 不会产生变化5. 水在临界温度时的表面Gibbs自由能 CA大于零 B 小于零 C 等于零 D 无法确定6. 同一固体, 大块颗粒和粉状颗粒, 其溶解度哪个大 BA 大块颗粒大B 粉状颗粒大C 一样大D 无法比较7. 在一定T、p下,当润湿角θ B 时,液体对固体表面不能润湿;当液体对固体表面的润湿角 C 时,液体对固体表面完全润湿;选择填入:A<90o B >90o C 趋近于零 D 趋近于180o8. 通常称为表面活性剂的物质是指当其加入后就能 C 的物质;A 增加溶液的表面张力B 改变溶液的导电能力C 显着降低溶液的表面张力D 使溶液表面发生负吸附9. 朗格谬尔等温吸附理论中最重要的基本假设是 CA 气体为理想气体B 多分子层吸附C 单分子层吸附D 固体表面各吸附位置上的吸附能力是不同的10. 在一定温度下,液体能在被它完全润湿的毛细管中上升的高度反比于 C ;A 大气的压力B 固—液的界面张力C 毛细管的半径D 液体的表面张力填空题1. 在一定条件下,液体分子间作用力越大,其表面张力越大;2. 弯曲液面的附加压力△p指向弯曲液面曲率半径的中心;3. 空气中的小气泡,其内外气体压力差在数值上等于4γ/r ;4. 物理吸附的作用力是范德华力;化学吸附的作用力则是化学键力;5. 在两支水平放置的毛细管中间皆有一段液体,如附图所示,a管内的液体对管内壁完全润湿,对a,右端加热后会使液体向左移动;b管中的液体对管内壁完全不润湿,对b,右端加热后会使液体向右移动;答: 当温度升高,加热端表面张力减小,附加压力减小;另一方面,由于加热,会使液面的曲率半径变大,也会使附加压力减小;第十一章化学动力学一、选择题1. 在反应A k1Bk2C,Ak3D 中,活化能E1> E2> E3,C 是所需要的产物,从动力学角度考虑,为了提高 C 的产量,选择反应温度时,应选择: CA 较高反应温度B 较低反应温度C 适中反应温度D 任意反应温度2. 某反应物反应掉7/8 所需的时间恰好是它反应掉1/2 所需时间的 3 倍,则该反应的级数是: BA 零级B 一级反应C 二级反应D 三级反应3. 二级反应的速率常数的单位是: DA s-1B dm6·mol-2·s-1C s-1·mol-1D dm3·s-1·mol-14. 某反应在指定温度下,速率常数k为×10-2 min-1,反应物初始浓度为mol·dm-3 ,该反应的半衰期应是: BA 150 minB 15 minC 30 minD 条件不够,不能求算5. 连串反应A k1Bk2C 其中k1= min-1, k2= min-1,假定反应开始时只有A,且浓度为 1 mol·dm-3 ,则B 浓度达最大的时间为: CA minB minC minD ∞6. 某反应,A → Y,其速率系数k A=,则该反应物A的浓度从×dm-3变到×dm-3所需时间是:B A;B;C1min;D以上答案均不正确;7. 某反应,A → Y,如果反应物A的浓度减少一半,它的半衰期也缩短一半,则该反应的级数为:AA零级;B一级;C二级;D以上答案均不正确;8. 在指定条件下,任一基元反应的分子数与反应级数之间的关系为A 二者必然是相等的;B 反应级数一定小于反应分子数;C 反应级数一定大于反应分子数;D 反应级数可以等于或少于其反应的分子数,但绝不会出现反应级数大于反应分子数的情况;9. 基元反应的分子数是个微观的概念,其值 CA 只能是0,1,2,3B 可正、可负、可为零C 只能是1,2,3这三个正整数D 无法确定10. 在化学动力学中,质量作用定律只适用于 CA 反应级数为正整数的反应B 恒温恒容反应C 基元反应D 理想气体反应11.络合催化属于 AA 单相催化B 多相催化C 既是多相催化,又是单相催化D 以上都不对12.不属于简单碰撞理论模型的要点的说法是: DA. 反应物分子在反应前须先发生碰撞;B. 动能达到并超过某一阈值E C的碰撞才是有效的碰撞;C. 有效碰撞次数乘以有效碰撞分数即反应速率;D. 总碰撞次数乘以有效碰撞分数即反应速率;13.对于任意给定的化学反应A+B−→−2Y,则在动力学研究中: CA. 表明它为二级反应;B. 表明了它是双分子反应;C. 表明了反应物与产物分子间的计量关系;D. 表明它为元反应;14.在一定温度和压力下进行的化学反应A + B Y,E+为正反应的活化能,E-为逆反应的活化能,则:AA.E+ -E-=∆r U m;B.E- -E+=∆r U m;C.E+ -E-=∆r H m;D.E--E+=∆r H m;15.反应A1−→−Y23−→−−→−Z(P产物),已知反应的活化能E2 < E3 ,为利于产物Z的生成,原则上选择: BA. 升高温度;B. 降低温度;C. 维持温度不变;D. 及时移走副产物P;二、判断题1. 反应速率系数k A与反应物A的浓度有关;×2. 反应级数不可能为负值;×3. 对二级反应来说,反应物转化同一百分数时,若反应物的初始浓度愈低,则所需时间愈短;×4.对同一反应,活化能一定,则反应的起始温度愈低,反应的速率系数对温度的变化愈敏感;√5. 阿伦尼乌斯方程适用于所有的反应;×6. 若同时存在几个反应,则高温对活化能高的反应有利,低温对活化能低的反应有利;√7. 对于反应:A2 + B2−→−2AB,若其速率方程为r =kC A2C B2,则可以断定这是一基元反应;×8. 质量作用定律和反应分子数概念只能适用于基元反应;√三、填空题1. 放射性元素201Pb的半衰期为8h,1g放射性201Pb在24h后还剩下1/8 g;2. 某一级反应在300K时的半衰期为50min,在310K时半衰期为10min,则此反应的活化能Ea= kJ·mol-1;。
二组分理想混合物的气液平衡相图
22二组分理想混合物的气液平衡相图鉴于理想液体混合物中的组分都遵守Raoult 定律,这种混合物的气液平衡相图是可以通过计算得到的,它是各种实际气液平衡相图研究的基础。
本专题便来介绍这种模型混合物的气液平衡相图,并从中引出杠杆规则等重要的概念。
1. 相律分析对于一个二组分气液平衡系统,若两个组分间没有化学反应,也没有其他独立的限制条件,则由相律可得系统的自由度为:πππ−=−−+−=′−−+−=400222R R K F (22-1)由于系统至少有一个相,自由度最多等于3。
这就是说,要构作二组分气液平衡相图需要三个坐标,是一个T 、p 、B x 或B y 的三维立体图。
然而,为了简单和易读,人们常常使其中一个强度性质保持不变,而去表示其它两者的关系,从而将立体相图变成两个平面相图。
例如,在T 保持不变的条件下,构作B x 或B y 与p 的关系图,此图称为恒温相图。
或者,也可在保持p 不变的条件下,构作B x 或B y 与T 的关系图,此图称为恒压相图。
因此,所有二组分气液平衡系统,都可有两个平面相图。
2. 恒温相图专题17已述,理想混合物中的所有组分,在任意温度和压力下,都遵守Raoult 定律。
如果气液平衡时气相压力较低,则可得总压B *B B *A B A )1(x p x p p p p +−=+= (22-2)AB *A B p p p p x −−= (22-3) 式(22-3)便是液相组成B x 与压力p 的关系式。
式中*A p 、*B p 分别为两个纯组分的饱和蒸气压,对于确定的系统,在指定的温度下是两个常数。
不难看出,式(22-2)是一个线性关系,在图22-1所示的恒温相图中,是一条直线(如实线所示),它称为液相线。
又因气相中组分B 的平衡分压可由下式表示B *B B B x pp p p y == (22-4) 故将式(22-3)代入式(22-4),可得)()(*A *B *A *B B p p p p p p y −−= (22-5)式(22-5)便是气相组成B y 与压力p 的关系式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
l
xB
简单蒸馏
* TA
g
c
g-l
定压
T
T2 T1
d
a
x1
b
* TB
x2
0 A
y2 y1
1.0 B
l
xB
16
简单蒸馏的T-x-y图
混合物起始组成为x1
加热到温度为T1 对应气相组成为y1 沸点升高到T2 对应馏出物组成为y2
C
g
T
T2 T1
定压
g-l
O
x2
0 A
一次简单蒸馏 接收在T1到T2间的馏出物 馏出物组成从y1 到y2
* pB pB xB
* pA
* pB
B
xA
A
4
pA yA yB 1 yA p * pA pA xA yA * * * p pB ( pA pB ) xA
* * p p xA 或 xB ,就可把各液相组成对应的气 已知 A , B ,
p p ( p p ) xA
§5.6 理想的二组分液态混合物
理想的二组分液态混合物 杠杆规则 蒸馏(或精馏)的基本原理
1
对于二组分系统,C=2, 为1,则 f 最多为3。
f =4 -, 至少
这三个变量通常是T,p 和组成 x。所以要表示 二组分系统状态图,需用三个坐标的立体图表示。 保持一个变量为常量,从立体图上得到平面截面图。
p / Pa
液相线 l
* pB
* pA
g-l
气相线 g
B
xA
7
A
2。 T-x 图
亦称为沸点-组成图
外压为大气压力,当溶液的蒸气压等于外压 时,溶液沸腾,这时的温度称为沸点。 某组成的蒸气压越高,其沸点越低,反之亦然。 T-x图在讨论蒸馏时十分有用,因为蒸馏通常
在等压下进行。
T-x图可以从实验数据直接绘制。也可以从已知
pA p xA
* A
* pB p xB p( B 1 xA)
* B
p pA pB p x p (1 xA )
* A A * B
p ( p p ) xA
* B * A * B
3
理想的完全互溶双液系
p / Pa
p pA pB
pA p xA
* A
的p-x图求得。
8
从 p-x 图绘制
p
等温p x图
p
x1
B(甲苯)
T /K * TB
等压T x图
381
373 365 357
x2 xA
x3
x4
A(苯)
* yA pA xA * yB pB xB
g
g-l
x1
B(甲苯)
x2 xA
x3
l
* TA
x4
A(苯)
9
从 实验绘制 T-x 图
T /K
n(l) CD n(g) CE
若已知的是质量分数
T /K
* Tb,B
n(总) n(l) n(g)
[n(l) n(g)]xA n(l) x1 n(g) x2
g
定压 F
T1
C
D
E
g-l
* Tb,A
ml CD mg CE
x1
l
xA
xA
x2
14
B
A
蒸馏(或精馏)的基本原理
(1) 保持温度不变,得 p-x 图
(2) 保持压力不变,得 T-x 图
较常用
常用
(3) 保持组成不变,得 T-p 图
不常用。
2
理想的二组分液态混合物—— 完全互溶的双液系
两个纯液体可按任意比例互溶,每个组分都服 从Raoult定律,这样的系统称为理想的液体混物
如苯和甲苯,正己烷与正庚烷等结构相似的化 合物可形成这种系统。 1。 p-x 图
* Tb,B
g
定压
F E
T1
D
g-l
* Tb,A
l
x1
B
x2
xA
A
10
混合物起始组成为x1 加热到温度为T1 液体开始沸腾 D点称为泡点 对应气相组成为x2 组成为F的气体冷到E
T /K
* Tb,B
g
定压 F
T1
E
D
g-l
* Tb,A
l
有组成为x1的液体出现
E点称为露点
x1
x2
B
xA
A 例7例8
11
* A A * A
p / Pa
液相线
* pB
l
g
气相线
p
* A
g-l
B
xA
A
6
在等温条件下,p-x-y 图分为三个区域。在液 相线之上,系统压力高于任一混合物的饱和蒸气压, 气相无法存在,是液相区。
在气相线之下,系 统压力低于任一混合物 的饱和蒸气压,液相无 法存在,是气相区。
在液相线和气相线 之间的梭形区内,是气 -液两相平衡。
l
气相组成,都由D点和
E点的组成表示。
B
x1
xA
xA
x2
A
12
液相和气相的数量借助于力学中的杠杆规则求算
以物系点为支点,支点两边连结线的长度为力 矩,计算液相和气相的物质的量或质量 这就是杠杆规则,可用于任意两相平衡区
nl CD ng CE
或 ml CD mg CE 若已知
将泡点都连起来,就是液相组成线
将露点都连起来,就是气相组成线
杠杆规则(Lever rule)
在T-x图上,由nA和nB混合成的物系的组成为xA 加热到T1温度,物系点C 落在两相区 DE线称为等温 连结线 落在DE线上所有 物系点的对应的液相和
T /K
* Tb,B
g
定压 F
T1
C
D
E
g-l
* Tb,A
* TA y6 T6 x y5 T5 6 x5 T4 x4 O T3 x3 T2 x2 T1
g
y4
定压
汽化和部分冷凝过程
越往塔顶温度越低, 含低沸点物质递增 越往塔底温度越高, 含高沸点物质递增
T
y3
x1
y2 y1
* TB
x
0 A
l
1.0 B
xB
例9例10例11例12例13
20
* B * A * B
相组成求出,画在 p-x 图上就得 p-x-y 图。
yB pB p x p p
* A * B
* B B
* yA pA xA * yB pB xB
若
p p
则
yA xA yB xB
yA xA
即易挥发的组分在气相中的含量大于液相中的含 5 量,反之亦然。
pA p x yA * * p pB ( p pB ) xA
简单蒸馏 简单蒸馏只能把双液系中的A和B粗略分开。 在A和B的T-x图上,纯A 的沸点高于纯B的沸点, 则蒸馏时气相中B组 分的含量较高,液相中A 组分的含量较高。 一次简单蒸馏,馏出 物中B含量会显著增加,剩 余液体中A组分会增多。
* TA
g
c
g-l
定压
T
T2 T1
d
a
x1
b
* TB
x2
0 A
y2 y1
T /K
* Tb,B
g
定压 F
T1
C
D
E
n(总) n(l) n(g) m(总) m(l) m(g)
可计算气、液相的量
B
g-l
* Tb,A
l
x1
xA
xA
x2
13
A
杠杆规则计算公式的推导
n(总)xA n(l) x1 n(g) x2
n(l)( xA x1 ) n(g)( x2 xA )
x1
y2 y1
1.0 B
l
D
xB
剩余物组成为x2
17
精馏
蒸馏(或精馏)原理
精馏是多次简单蒸馏的组合。
精馏塔底部是加热区, 温度最高; 塔顶温度最低。 精馏结果,塔顶冷凝
收集的是纯低沸点组分,
纯高沸点组分则留在塔底 精馏塔有多种类型,如图所示是早期用的泡罩
式塔板状精馏塔的示意图。
18
19
精馏
从塔的中间O点进料 B的液、气相组成 分别为 x3 和 y3 每层塔板都经历部分