【精品】2021江苏省中考数学精选真题预测2套(含答案)
2021年江苏省无锡市某校中考数学考前预测卷祥细答案与解析
2021年江苏省无锡市某校中考数学考前预测卷一、选择题(本大题共10小题,每题3分,共30分.)1. 下列各数中,属于无理数的是()A.(π2)0 B.√33C.√4D.√−832. 下列四个图形中,可以由图通过平移得到的是()A. B. C. D.3. 函数y=2x4−x中自变量x的取值范围是()A.x≠−4B.x≠4C.x≤−4D.x≤44. 下列运算正确的是()A.(ab)2=ab2B.a2⋅a3=a6C.(−√2)2=4D.√2×√3=√65. 如图,直线l1 // l2,将一直角三角尺按如图所示放置,使得直角顶点在直线l1上,两直角边分别与直线l1、l2相交形成锐角∠1、∠2且∠1=25∘,则∠2的度数为()A.25∘B.75∘C.65∘D.55∘6. 某地一家庭记录了去年12个月的月用水量如下表,下列关于用水量的中位数、众数描述正确的是()A.中位数为5,众数为4B.中位数为5,众数为5C.中位数为4.5,众数为4D.中位数、众数均无法确定7. 如图,⊙O与正五边形ABCDE的边AB,DE分别相切于点B,D,则劣弧BD所对的圆心角∠BOD的大小为()A.108∘B.118∘C.144∘D.120∘8. 某数学研究性学习小组制作了如图的三角函数计算图尺:在半径为1的半圆形量角器中,画一个直径为1的圆,把刻度尺CA的0刻度固定在半圆的圆心O处,刻度尺可以绕点O旋转.图中所示的图尺可读出sin∠AOB的值是()A.4 5B.58C.78D.7109. 如图,A,B两点在反比例函数y=k1x 的图象上,C,D两点在反比例函数y=k2x的图象上,AC⊥y轴于点E,BD⊥y轴于点F,AC=6,BD=3,EF=8,则k1−k2的值是()A.10B.18C.12D.1610. 在矩形ABCD中,AB=4,BC=2,E为BC中点,H,G分别是边AB,CD上的动点,且始终保持GH⊥AE,则EH+AG最小值为()A.2√3B.√852C.3√152D.√732+1二、填空题(本大题共8小题,每题2分,共计16分)因式分解:18−2x2=________.已知x=2是关于x的方程x2−4x+m=0的一个根,则m=________.截止2月28日17时,中国红十字会共接收到用于新型冠状病毒肺炎疫情防控的社会捐赠款逾15.7亿元,将数据15.7亿用科学记数法表示为________.已知点P(x, y)位于第四象限,且x≤y+4(x,y为整数),写一个符合条件P的坐标________.如图所示的电路中,当随机闭合开关S1,S2,S3中的两个时,能够让灯泡发光的概率为________.如图,抛物线y=ax2+c与直线y=mx+n交于A(−1, p),B(3, q)两点,则不等式ax2−mx+c>n的解集是________.如图,在△ABC 中,AB =AC =6,∠B =30∘,边BC 上一个动点M 从B 运动到C ,连AM ,将射线AM 绕M 顺时针旋转30∘交AC 于N ,则N 的路径长________.如图,在四边形CABD 中,BD =AB =8,AC =2,点M 为AB 的中点,若∠CMD =120∘,则CD 的最大值是________.三、简答题计算题(1)(π−3.14)0−(12)−2+√273;(2)(2x −y)2−(x +y)(x −y).先化简,再求值:(x x 2+x −1)÷x 2−1x 2+2x+1,其中x 的值从不等式组{−x ≤12x −1<4 的整数解中选取.如图,矩形ABCD 中,E 是AD 的中点,延长CE ,BA 交于点F ,连接AC ,DF .(1)求证:四边形ACDF 是平行四边形;(2)当CF 平分∠BCD 时,写出BC 与CD 的数量关系,并说明理由.某市在一次九年级数学做了检测中,有一道满分8分的解答题,按老师为了了解学生的得分情况与题目的难易情况,从全市8000名考生的试卷中随机抽取一部分,通过分析与整理,绘制了如图两幅图不完整的统计图.请根据以上信息解答下列问题:(1)填空:a=________,b=________,并把条形统计图补全;(2)请估计该地区此题得满分(即的学生人数;(3)已知难度系数的计算公式为L=X,其中L为难度系数,X为样本平均得分,W为W试题满分值.一般来说,根据试题的难度系数可将试题分为以下三类:当0<L≤0.4时,此题为难题;当0.4<L≤0.7时,此题为中等难度试题;当0.7<L<1时,此题为容易题.试问此题对于该地区的九年级学生来说属于哪一类?并说明理由?汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜.假如甲,乙两队每局获胜的机会相同.(1)若前四局双方战成2:2,那么甲队最终获胜的概率是________;(2)现甲队在前两局比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?如图,在△ABC中,∠ACB=90∘,O是边AC上一点,以O为圆心,OA为半径的圆分别交AB,AC于点E,D,在BC的延长线上取点F,使得BF=EF,EF与AC交于点G.(1)试判断直线EF与⊙O的位置关系,并说明理由;(2)若OA=2,∠A=30∘,求图中阴影部分的面积.某校为了在九月份迎接高一年级的新生,决定将学生公寓楼重新装修.现学校招用了甲、乙两个工程队.若两队合作,8天就可以完成该项工程;若由甲队先单独做3天后,剩余部分由乙队单独做需要18天才能完成.(1)求甲、乙两队工作效率分别是多少?(2)甲队每天工资3000元,乙队每天工资1400元.学校要求在12天内将学生公寓楼装修完成.若完成该工程甲队工作m天,乙队工作n天.求学校需支付的总工资w(元)与甲队工作天数m(天)的函数关系式,并求出m的取值范围及w的最小值.二次函数y=−x2+(m−1)x+m(m>0)图象与x轴交于A,B(A在B左侧),与y轴交于C,顶点为D,连接AC,tan∠OAC=3.(1)求抛物线的解析式和D点坐标;(2)有一点Q在直线BC上,当Q,C,D三点构成的三角形和△AOC相似,直接写出Q点坐标;(3)P点坐标为(0, t)(t>0),G (3, t),连结PG,在线段PG上是否存在一点M,连结MO,MB,使∠OMB=30∘,如果存在,求出t的取值范围,如果不存在,说明理由.(1)①发现:如图1,G是△ABC的重心,连结BG,CG,并分别延长BG,CG,交AC,BA于D,E连结DE,则DE与BC的位置关系是________.②证明:如图2,AF是△ABC的中线,P是AF上任一点,连结BP,CP,并分别延长交AC,BA于D,E,连结DE,①中的结论还成立吗?如果成立,请证明你的结论,如果不成立,请说明理由.(2)应用:用无刻度直尺根据要求作图:如图3,M是▱ABCD边CD上一定点.(i)在AB边上作一点N,使AN=CM;(ii)如图4中,BA的延长线上作一点Q,使AQ=CM.如图:在▱ABCD中,AC⊥AB,且AD=5,AB=4,如果将△ACD绕着点A顺时针方向旋转一个角度(小于180∘),如(1)图得到△AC′D′,则在旋转过程中.(1)线段C′D′________经过原来点C的位置(填“能”或“不能”);=________;(2)如(2)图,当C′D′ // BC时,AC′与BC相交于点E,则C′EAE(3)如(3)图,当C′D′经过点B时,AD′与BC相交于点F,求△ABF的面积;(4)如(4)图,当C′落在BC上时,记∠CAF=∠1,求sin∠1的值.参考答案与试题解析2021年江苏省无锡市某校中考数学考前预测卷一、选择题(本大题共10小题,每题3分,共30分.)1.【答案】B【考点】无理数的判定无理数的识别二次根式的乘除法【解析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】)0=1,是有理数,选项错误;A、(π2B、是无理数,选项正确;C、√4=2,是有理数,选项错误;3=−2,是有理数,选项错误.D、√−82.【答案】D【考点】平移的性质【解析】根据平移的性质解答即可.【解答】解:图形平移后所得图形与原图形全等,只有D选项的图形的形状和大小没有变化,符合平移的性质,属于平移得到.故选D.3.【答案】B【考点】函数自变量的取值范围【解析】根据分母不等于0列式计算即可得解.【解答】解:由题意得,4−x≠0,解得x≠4.故选B.4.【考点】同底数幂的乘法算术平方根【解析】根据同底数幂的乘法,幂的乘方和积的乘方,算术平方根法则分别求出每个式子的值,再判断即可.【解答】A、结果是a2b2,故本选项不符合题意;B、结果是a5,故本选项不符合题意;C、结果是2,故本选项不符合题意;D、结果是√6,故本选项符合题意;5.【答案】C【考点】平行线的性质【解析】依据∠1=25∘,∠BAC=90∘,即可得到∠3=65∘,再根据平行线的性质,即可得到∠2=∠3=65∘.【解答】如图,∵∠1=25∘,∠BAC=90∘,∴∠3=65∘,又∵l1 // l2,∴∠2=∠3=65∘,6.【答案】C【考点】频数与频率众数中位数【解析】根据去年记录了12个月的月用水量,求出m+n的值,再根据中位数、众数的概念进行求解即可.【解答】∵共12个月,∴m+n=12−2−4−3=3,把这些数从小到大排列,最中间的数是第6和第7个数的平均数,∴用水量的中位数是4+5=4.5吨;2∵4吨出现的次数最多,出现了4次,∴众数为4吨;7.【考点】多边形的外角和多边形的内角和切线的性质【解析】根据正多边形内角和公式可求出∠E、∠D,根据切线的性质可求出∠OAE、∠OCD,从而可求出∠AOC,然后根据圆弧长公式即可解决问题.【解答】解:∵五边形ABCDE是正五边形,∴∠E=∠A=180∘−360∘5=108∘.∵AB、DE与⊙O相切,∴∠OBA=∠ODE=90∘,∴∠BOD=(5−2)×180∘−90∘−108∘−108∘−90∘=144∘.故选C.8.【答案】A【考点】旋转的性质解直角三角形圆周角定理【解析】如图,连接AD.只要证明∠AOB=∠ADO,可得sin∠AOB=sin∠ADO=810=45.【解答】如图,把刻度尺与圆的另一个交点记作D,连接AD.∵OD是直径,∴∠OAD=90∘,∵∠AOB+∠AOD=90∘,∠AOD+∠ADO=90∘,∴∠AOB=∠ADO,由刻度尺可知,OA=0.8,∴sin∠AOB=sin∠ADO=810=45.9.【答案】D【考点】反比例函数图象上点的坐标特征【解析】由反比例函数的性质可知S△AOE=S△BOF=12k1,S△COE=S△DOF=−12k2,结合S△AOC=S△AOE+S△COE和S△BOD=S△DOF+S△BOF可求得k1−k2的值.【解答】连接OA、OC、OD、OB,如图:由反比例函数的性质可知S△AOE=S△BOF=12|k1|=12k1,S△COE=S△DOF=12|k2|=−12k2,∵S△AOC=S△AOE+S△COE,∴12AC⋅OE=12×6×OE=3OE=12(k1−k2)…①,∵S△BOD=S△DOF+S△BOF,∴12BD⋅OF=12×3×(EF−OE)=12×3(8−OE)=12−32OE=12(k1−k2)…②,由①②两式得:12−32OE=3OE,解得OE=83,则k1−k2=16,10.【答案】B【考点】勾股定理相似三角形的性质与判定矩形的性质【解析】过G作GN⊥AB于N,依据△ABE∽△GNH,即可得到GH的长;以AG,AH为邻边作平行四边形AEMG,可得AG+HE=ME+HE,当H,E,M在同一直线上时,AG+HE 的最小值等于HM的长,再根据勾股定理求得HM的长,即可得到EH+AG的最小值.【解答】如图所示,过G作GN⊥AB于N,则∠ANG=90∘,GH=AD=2,∵GH⊥AE,∴∠ANG=∠AFG=90∘,∴ ∠BAE =∠NGH ,∴ △ABE ∽△GNH ,∴ AE GH =AB GN ,∵ Rt △ABE 中,AE =√AB 2+BE 2=√42+12=√17,∴ √17GH =42,∴ GH =√172, 如图所示,以AG ,AH 为邻边作平行四边形AEMG ,则AG =ME ,GM =AE =√17,∠HGM =∠AFG =90∘,∴ AG +HE =ME +HE ,当H ,E ,M 在同一直线上时,AG +HE 的最小值等于HM 的长,此时,Rt △GHM 中,HM =√HG 2+GM 2=√(√172)2+(√17)2=√852, ∴ EH +AG 的最小值为√852, 二、填空题(本大题共8小题,每题2分,共计16分)【答案】2(x +3)(3−x)【考点】提公因式法与公式法的综合运用因式分解-提公因式法因式分解【解析】原式提取2,再利用平方差公式分解即可.【解答】原式=2(9−x 2)=2(x +3)(3−x),【答案】4【考点】一元二次方程的解【解析】把x =2代入已知方程,列出关于m 的新方程,通过解新方程来求m 的值.【解答】∵ x =2是关于x 的方程x 2−4x +m =0的一个根,∴ 22−4×2+m =0,解得,m =4.【答案】1.57×109【考点】科学记数法--表示较大的数【解析】首先把15.7亿写成15 7000 0000,再表示成a ×10n 的形式,其中a 是整数数位只有一位的数,n 是正整数.【解答】15.7亿=15 7000 0000=1.57×109,(2, −1)【考点】点的坐标【解析】首先确定x、y的取值范围,然后再结合不等式x≤y+4(x,y为整数)确定x、y的值,进而可得答案.【解答】∵P(x, y)位于第四象限,∴x>0,y<0,∵x≤y+4(x,y为整数),∴P(2, −1),【答案】23【考点】概率公式【解析】根据题意可得:随机闭合开关S1,S2,S3中的两个,有3种方法,其中有两种能够让灯.泡发光,故其概率为23【解答】解:因为随机闭合开关S1,S2,S3中的两个,有3种方法,其中有2种能够让灯泡发光,.所以P(灯泡发光)=23故答案为:2.3【答案】x<−1或x>3【考点】二次函数与不等式(组)【解析】根据题意和函数图象中的数据,可以得到不等式ax2−mx+c>n的解集,本题得以解决.【解答】解:∵抛物线y=ax2+c与直线y=mx+n交于A(−1, p),B(3, q)两点,∴ax2+c−mx−n>0的解集是x<−1或x>3,故答案为:x<−1或x>3.【答案】9【考点】旋转的性质轨迹等腰三角形的性质【解析】先求出AM′=3,∠M′AC=60∘,进而求出CN′,再判断出点M从点B运动到点C时,点N 从点C运动到点N′,再从N′运动到点C,即可得出结论.如图,过点A作AM′⊥BC于M′,将射线AM′绕点M′顺时针旋转30∘交AC于N′,∴∠AMC=90∘,在△ABC中,AB=AC=6,∠B=30∘,∴AM′=12AB=3,∠C=∠B=30∘,∴∠BAC=180∘−∠B−∠C=120∘,∴∠CAM′=12∠BAC=60∘,∴∠AN′M′=90∘,在Rt△AN′M′中,AN′=12AM′=32,∴CN′=AC−AN′=92,当点M和点B重合时,点N和点C重合,点M从点B向点M′运动时,点C向点N′运动,当点M和点M′重合时,点N和点N′重合,当点M从点M′向点C运动时,点N从点N′向点C运动,当点M和点C重合时,点N和点C重合,即点M从点B运动到点C时,点N从点C运动到点N′,再由点N′运动到点C,∴点N的路径长为2CN′=9,【答案】14【考点】线段的性质:两点之间线段最短轴对称的性质【解析】如图,作点A关于CM的对称点A′,点B关于DM的对称点B′,证明△A′MB′为等边三角形,即可解决问题.【解答】如图,作点A关于CM的对称点A′,点B关于DM的对称点B′.∵∠CMD=120∘,∴∠AMC+∠DMB=60∘,∴∠CMA′+∠DMB′=60∘,∴∠A′MB′=60∘,∵MA′=MB′,∴△A′MB′为等边三角形∵CD≤CA′+A′B′+B′D=CA+AM+BD=2+4+8=14,∴CD的最大值为14,三、简答题【答案】(π−3.14)0−(1)−2+√273=0;(2x−y)2−(x+y)(x−y)=4x2−4xy+y2−(x2−y2)=4x2−4xy+y2−x2+y2=3x2−4xy+2y2.【考点】负整数指数幂实数的运算完全平方公式零指数幂平方差公式【解析】(1)直接利用零指数幂的性质以及负整数指数幂的性质、立方根的性质分别化简得出答案;(2)直接利用乘法公式化简,再合并同类项得出答案.【解答】(π−3.14)0−(12)−2+√273=1−4+3=0;(2x−y)2−(x+y)(x−y)=4x2−4xy+y2−(x2−y2)=4x2−4xy+y2−x2+y2=3x2−4xy+2y2.【答案】解:=−x 2x(x+1)÷(x+1)(x−1)(x+1)2=−xx+1⋅x+1x−1=−xx−1.解{−x≤12x−1<4得:−1≤x<52,∴不等式组的整数解为−1,0,1,2.若使分式有意义,只能取x=2,∴原式=−22−1=−2.【考点】分式的化简求值一元一次不等式组的整数解分式的混合运算一元一次不等式的整数解【解析】此题主要考查了分式的混合运算以及不等式组的解法.【解答】解:=−x 2x(x+1)÷(x+1)(x−1)(x+1)2=−xx+1⋅x+1x−1=−xx−1.解{−x≤12x−1<4得:−1≤x<52,∴不等式组的整数解为−1,0,1,2.若使分式有意义,只能取x=2,∴原式=−22−1=−2.【答案】(1)证明:∵四边形ABCD是矩形,∴AB // CD,∴∠FAE=∠CDE,∵E是AD的中点,∴AE=DE,又∵∠FEA=∠CED,∴△FAE≅△CDE(ASA),∴CD=FA,又∵CD // AF,∴四边形ACDF是平行四边形;(2)解:BC=2CD.理由:∵CF平分∠BCD,∴∠DCE=45∘,∵∠CDE=90∘,∴△CDE是等腰直角三角形,∴CD=DE,∵E是AD的中点,∴AD=2CD,∵AD=BC,∴BC=2CD.【考点】全等三角形的性质与判定平行四边形的判定角平分线的性质【解析】(1)利用矩形的性质,即可判定△FAE≅△CDE,即可得到CD=FA,再根据CD // AF,即可得出四边形ACDF是平行四边形;(2)先判定△CDE是等腰直角三角形,可得CD=DE,再根据E是AD的中点,可得AD =2CD,依据AD=BC,即可得到BC=2CD.【解答】(1)证明:∵四边形ABCD是矩形,∴AB // CD,∴∠FAE=∠CDE,∵E是AD的中点,∴AE=DE,又∵∠FEA=∠CED,∴△FAE≅△CDE(ASA),∴CD=FA,又∵CD // AF,∴四边形ACDF是平行四边形;(2)解:BC=2CD.理由:∵CF平分∠BCD,∴∠DCE=45∘,∵∠CDE=90∘,∴△CDE是等腰直角三角形,∴CD=DE,∵E是AD的中点,∴AD=2CD,∵AD=BC,∴BC=2CD.【答案】25,208000×20%=1600(人),即该地区此题得满分(即的学生有1600人;此题对于该地区的九年级学生来说属于中等难度的题目,理由:X=0×10%+3×25%+5×45%+8×20%=4.6,=0.575,L=4.68∵当0.4<L≤0.7时,此题为中等难度试题,0.4<0.575≤0.7,∴此题对于该地区的九年级学生来说属于中等难度的题目.【考点】用样本估计总体频数(率)分布直方图扇形统计图条形统计图【解析】(1)根据得分为0分的人数和所占的百分比,可以求得本次调查的人数,然后即可得到a、b的值;(2)根据统计图中的数据,可以计算出该地区此题得满分(即8分)的学生人数;(3)根据题意,可以计算出对应的L的值,然后即可判断该题属于那种类型.本次调查的学生有:24÷10%=240(人),×100%=20%,b%=48240a%=1−10%−45%−20%=25%,得分3分的学生有:240×25%=60(人),补全的条形统计图如右图所示,故答案为:25,20;8000×20%=1600(人),即该地区此题得满分(即的学生有1600人;此题对于该地区的九年级学生来说属于中等难度的题目,理由:X=0×10%+3×25%+5×45%+8×20%=4.6,L=4.6=0.575,8∵当0.4<L≤0.7时,此题为中等难度试题,0.4<0.575≤0.7,∴此题对于该地区的九年级学生来说属于中等难度的题目.【答案】1(2)解:画树状图为:共有8种等可能的结果数,其中甲至少胜一局的结果数为7,.所以甲队最终获胜的概率为78【考点】列表法与树状图法概率公式【解析】(1)直接利用概率公式求解;(2)画树状图展示所有8种等可能的结果数,再找出甲至少胜一局的结果数,然后根据概率公式求.解:∵甲、乙两队每局获胜的机会相同,所以甲队在第五局获胜的概率为12,即甲队最终获胜的概率是12.故答案为:12.(2)解:画树状图为:共有8种等可能的结果数,其中甲至少胜一局的结果数为7,所以甲队最终获胜的概率为78.【答案】连接OE,∵OA=OE,∴∠A=∠AEO,∵BF=EF,∴∠B=∠BEF,∵∠ACB=90∘,∴∠A+∠B=90∘,∴∠AEO+∠BEF=90∘,∴∠OEG=90∘,∴EF是⊙O的切线;∵AD是⊙O的直径,∴∠AED=90∘,∵∠A=30∘,∴∠EOD=60∘,∴∠EGO=30∘,∵AO=2,∴OE=2,∴EG=2√3,∴阴影部分的面积=12×2×2√3−60⋅π×22360=2√3−23π.【考点】直线与圆的位置关系【解析】(1)连接OE ,根据等腰三角形的性质得到∠A =∠AEO ,∠B =∠BEF ,于是得到∠OEG =90∘,即可得到结论;(2)由AD 是⊙O 的直径,得到∠AED =90∘,根据三角形的内角和得到∠EOD =60∘,求得∠EGO =30∘,根据三角形和扇形的面积公式即可得到结论.【解答】连接OE ,∵ OA =OE ,∴ ∠A =∠AEO ,∵ BF =EF ,∴ ∠B =∠BEF ,∵ ∠ACB =90∘,∴ ∠A +∠B =90∘,∴ ∠AEO +∠BEF =90∘,∴ ∠OEG =90∘,∴ EF 是⊙O 的切线;∵ AD 是⊙O 的直径,∴ ∠AED =90∘,∵ ∠A =30∘,∴ ∠EOD =60∘,∴ ∠EGO =30∘,∵ AO =2,∴ OE =2, ∴ EG =2√3,∴ 阴影部分的面积=12×2×2√3−60⋅π×22360=2√3−23π.【答案】设甲队单独完成需要x 天,乙队单独完成需要y 天.由题意{1x +1y =183x +18y =1 ,解得{x =12y =24 , 经检验{x =12y =24是分式方程组的解, ∴ 甲、乙两队工作效率分别是112和124.设乙先工作x 天,再与甲合作正好如期完成.则1224+12−x12=1,解得x =6.∴ 甲工作6天,∵ 甲12天完成任务, ∴ 6≤m ≤12.∵ 完成该工程甲队工作m 天,乙队工作n 天, ∴m 12+n 24=1,∴ n =24−2m , m ≤12,n ≤12, ∴ 24−2m ≤12, ∴ m ≥6,∴ 6≤m ≤12,∴ w =3000m +1400(24−2m)=200m +33600, ∵ 200>0,∴ m =6时,此时费用最小,∴ w 的最小值为200×6+33600=34800元.【考点】分式方程的应用 【解析】(1)设甲队单独完成需要x 天,乙队单独完成需要y 天.列出分式方程组即可解决问题; (2)设乙先工作x 天,再与甲合作正好如期完成.则1224+12−x 12=1,解得x =6.由此可得m 的范围,再构建一次函数,利用一次函数的性质即可解决问题; 【解答】设甲队单独完成需要x 天,乙队单独完成需要y 天. 由题意{1x+1y =183x+18y=1,解得{x =12y =24 , 经检验{x =12y =24 是分式方程组的解,∴ 甲、乙两队工作效率分别是112和124. 设乙先工作x 天,再与甲合作正好如期完成. 则1224+12−x 12=1,解得x =6.∴ 甲工作6天,∵ 甲12天完成任务, ∴ 6≤m ≤12.∵ 完成该工程甲队工作m 天,乙队工作n 天, ∴m 12+n 24=1,∴ n =24−2m , m ≤12,n ≤12, ∴ 24−2m ≤12, ∴ m ≥6,∴ 6≤m ≤12,∴ w =3000m +1400(24−2m)=200m +33600, ∵ 200>0,∴ m =6时,此时费用最小,∴w的最小值为200×6+33600=34800元.【答案】如图1中,对于抛物线y=−x2+(m−1)x+m,令y=0,可得x2+(1−m)x−m=0,∴(x+1)(x−m)=0∴x=−1或m,∴A(−1, 0),B(m, 0),C(0, m),∴OA=1,OB=OC=m,在Rt△AOC中,∵tan∠OAC=OCOA=3,∴OA=OB=3,即m=3,∴y=−x2+2x+3=−(x−1)2+4,∴D(1, 4).由(1)可知,A(−1, 0),C(0, 3),B(3, 0),D(1, 4),∴OA=1,OC=OB=3,AC=√10,CD=√2,BC=3√2BD=2√5,∴BD2=CD2+BC2,∴∠DCB=90∘,∵OAOC =CDBC=13,∴OACD =OCBC,∵∠AOC=∠BCD=90∘,∴△BCD∽△COA,∴当Q1与B重合时,Q,C,D三点构成的三角形和△AOC相似,此时Q1(3, 0),根据对称性可知,当Q4(−3, 6)时,也满足条件,当CQ2=CQ3且CQ2=CQ3=13CD=√23时,也满足条件,此时Q2(13, 83),Q3(−13, 103),综上所述,满足条件的点Q的坐标为(3, 0)或(−3, 6)或(13, 83)或(−13, 103).如图3中,以OB为边向上作等边△OBT,以T为圆心,TO为半径作⊙T,交y轴于M,则M(0, 3√3),观察图象可知,当线段与⊙T 有交点时,在线段PG 上是否存在一点M ,使∠OMB =30∘, 过点T 作TH ⊥OB 于H ,交⊙T 于N .则OH =HB =32,TH =3√32,TN =3, ∴ N(32, 3+3√32), ∴ 满足条件的t 的值为3√3≤t ≤3+3√32. 【考点】二次函数综合题 【解析】(1)首先确定A ,B 的坐标,解直角三角形求出OC 即可解决问题.(2)首先证明∠DCB =90∘,证明△BCD ∽△COA ,推出当Q 1与B 重合时,Q ,C ,D 三点构成的三角形和△AOC 相似,此时Q 1(3, 0),再根据对称性求出Q 4,当CQ 2=CQ 3且CQ 2=CQ 3=13CD =√23时,也满足条件,求出Q 2,Q 3的坐标即可. (3)如图3中,以OB 为边向上作等边△OBT ,以T 为圆心,TO 为半径作⊙T ,交y 轴于M ,则M(0, 3√3),观察图象可知,当线段与⊙T 有交点时,在线段PG 上是否存在一点M ,使∠OMB =30∘,求出等N 的坐标即可判断. 【解答】 如图1中,对于抛物线y =−x 2+(m −1)x +m ,令y =0,可得x 2+(1−m)x −m =0, ∴ (x +1)(x −m)=0∴ x =−1或m ,∴ A(−1, 0),B(m, 0),C(0, m), ∴ OA =1,OB =OC =m ,在Rt △AOC 中,∵ tan ∠OAC =OCOA =3,∴ OA =OB =3,即m =3,∴ y =−x 2+2x +3=−(x −1)2+4, ∴ D(1, 4).由(1)可知,A(−1, 0),C(0, 3),B(3, 0),D(1, 4),∴ OA =1,OC =OB =3,AC =√10,CD =√2,BC =3√2BD =2√5, ∴ BD 2=CD 2+BC 2, ∴ ∠DCB =90∘, ∵ OAOC =CDBC =13, ∴OA CD =OC BC,∵ ∠AOC =∠BCD =90∘, ∴ △BCD ∽△COA ,∴ 当Q 1与B 重合时,Q ,C ,D 三点构成的三角形和△AOC 相似,此时Q 1(3, 0), 根据对称性可知,当Q 4(−3, 6)时,也满足条件, 当CQ 2=CQ 3且CQ 2=CQ 3=13CD =√23时,也满足条件,此时Q 2(13, 83),Q 3(−13, 103), 综上所述,满足条件的点Q 的坐标为(3, 0)或(−3, 6)或(13, 83)或(−13, 103).如图3中,以OB 为边向上作等边△OBT ,以T 为圆心,TO 为半径作⊙T ,交y 轴于M ,则M(0, 3√3),观察图象可知,当线段与⊙T 有交点时,在线段PG 上是否存在一点M ,使∠OMB =30∘, 过点T 作TH ⊥OB 于H ,交⊙T 于N .则OH =HB =32,TH =3√32,TN =3, ∴ N(32, 3+3√32), ∴ 满足条件的t 的值为3√3≤t ≤3+3√32. 【答案】DE // BC可知EM // AC ,且AB // CD , ∴ 四边形ACMQ 是平行四边形, ∴ AQ =CM 【考点】作图—复杂作图 三角形的重心平行四边形的性质与判定【解析】(1)①由平行线的判定可得结论;②延长PF 到M ,使FM =PF ,连接BM 、CM ,可证四边形BPCM 是平行四边形,由平行线分线段成比例可得AD:AC =AP:AM ,AE:AB =AP:AM ,可得结论; (2)(i)连接AC ,BD 交于点O ,连接OM ,延长MO 交AB 于N ,可得AN =CM ;(ii)连接AM 于BD 交于点F ,连接CF 并延长交AD 于E ,连接ME 并延长交BA 的延长线于点Q ,可得AQ =CM . 【解答】(1)①∵ G 是△ABC 的重心, ∴ BG =2DG ,CG =2EG , ∵ BGDG =CGEG =2, ∴ DE // BC , 【答案】 不能 14如(3)图,过A 作AE ⊥BC 于E ,∵ AD // BC , ∴ AE ⊥AD , ∴ ∠DAE =90∘, 由(2)知:AE =125,∵ AB =4,∴ BE =√AB 2−AE 2=√42−(125)2=165,由旋转得:∠DAF =∠CAC ′,∴ ∠DAF −∠DAE =∠CAC ′−∠CAB , 即∠EAF =∠BAC ′,Rt△ABC′中,AB=4,AC′=3,∴BC′=√42−32=√7,∵tan∠BAC′=tan∠EAF,∴BC′AC′=EFAE,即√73=EF125,∴EF=4√75,∴BF=BE−EF=165−4√75=16−4√75,∴△ABF的面积=12BF⋅AE=12×16−4√75×125=96−24√725;如(4)图,过A作AE⊥BC于E,过F作FH⊥AC于H,由旋转得:∠CAC′=∠DAD′,∠DAC=∠D′AC′,∵AC=AC′,AE⊥CC′,∴CE=C′E=95,∠ACC′=∠AC′C=∠D′AC′,∵∠AC′D′=∠AC′C+∠FC′D′=∠D′+∠D′AC′=90∘,∴∠D′=∠FC′D′,∴AF=FD′=C′F=52,∴CF=2CE−C′F=2×95−52=1110,∵S△ACF=12AC⋅FH=12CF⋅AE,∴12×3FH=12×1110×125,∴FH=1125,∴sin∠1=FHAF =112552=22125.【考点】四边形综合题【解析】(1)由旋转得:AC=AC′,由垂线段最短可得结论;(2)根据面积法计算AE的长,利用勾股定理得CE的长,从而得C′E的长,代入所求的比例式即可解答;(3)过A作AE⊥BC于E,由(2)知AE=125,由勾股定理计算BE和BC′的长,根据旋转的性质和角的和与差可得:∠EAF=∠BAC′,由三角函数定义列比例式可得EF的长,从而得BF的长,最后根据三角形面积公式可解答;(4)如(4)图,过A作AE⊥BC于E,过F作FH⊥AC于H,根据等腰三角形三线合一的性质得:CE=C′E=95,∠ACC′=∠AC′C=∠D′AC′,由等角的余角相等得∠D′=∠FC′D′,由等角对等边得AF=FD′=C′F=52,可得CF的长,根据面积法可得FH的长,最后根据正弦函数定义可得结论.【解答】如(1)图,延长AC交C′D′于M,∵AC⊥AB,∴∠CAB=90∘,在▱ABCD中,CD // AB,∴∠ACD=∠CAB=90∘,由旋转得:∠C′=∠ACD=90∘,AC=AC′,∴AM>AC′,∴线段C′D′不能经过原来点C的位置;故答案为:不能;如(2)图:∵C′D′ // BC,且∠C′=90∘,∴∠AEC=∠C′=90∘,在▱ABCD中,BC=AD=5,Rt△CAB中,AC=√52−42=3,∵S△ABC=12BC⋅AE=12AC⋅AB,∴12×5AE=12×3×4,∴AE=125,∴ CE =√AC 2−AE 2=√32−(125)2=95,∵ AC ′=AC =3, ∴ C ′E =3−125=35,∴C ′E AE=35125=14;故答案为:14;如(3)图,过A 作AE ⊥BC 于E ,∵ AD // BC , ∴ AE ⊥AD , ∴ ∠DAE =90∘, 由(2)知:AE =125,∵ AB =4,∴ BE =√AB 2−AE 2=√42−(125)2=165,由旋转得:∠DAF =∠CAC ′,∴ ∠DAF −∠DAE =∠CAC ′−∠CAB , 即∠EAF =∠BAC ′,Rt △ABC ′中,AB =4,AC ′=3, ∴ BC ′=√42−32=√7, ∵ tan ∠BAC ′=tan ∠EAF , ∴BC ′AC ′=EF AE,即√73=EF125,∴ EF =4√75,∴ BF =BE −EF =165−4√75=16−4√75, ∴ △ABF 的面积=12BF ⋅AE =12×16−4√75×125=96−24√725; 如(4)图,过A 作AE ⊥BC 于E ,过F 作FH ⊥AC 于H ,由旋转得:∠CAC′=∠DAD′,∠DAC=∠D′AC′,∵AC=AC′,AE⊥CC′,∴CE=C′E=95,∠ACC′=∠AC′C=∠D′AC′,∵∠AC′D′=∠AC′C+∠FC′D′=∠D′+∠D′AC′=90∘,∴∠D′=∠FC′D′,∴AF=FD′=C′F=52,∴CF=2CE−C′F=2×95−52=1110,∵S△ACF=12AC⋅FH=12CF⋅AE,∴12×3FH=12×1110×125,∴FH=1125,∴sin∠1=FHAF =112552=22125.。
【2021年】江苏省中考数学模拟试题含答案
江苏省中考数学精选真题预测(含答案)一、选择题(本大题共10题,每小题3分,共计30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的。
)1. 2017的相反数是……………………………………………………………………( ) A .2017B .-2017C .20171D .20171-2. 下列计算正确的是 ………………………………………………………………( ) A .a 2+a 2=a 4B .(a 2)3=a 5C .a +2=2aD .(ab )3=a 3b 33. 已知某种纸一张的厚度约为0.0089cm ,用科学计数法表示0.0089为…………( ) A .8.9×103B .8.9×10-4C .8.9×10-3D .89×10-24.若分式1xx +有意义,则x 的取值范围是……………………………………………( ) A .x ≠-1B .x ≠1C .x =-1D .x =15.下列说法正确的是 ……………………………………………………………………( )A .若甲组数据的方差s 2甲=0.39,乙组数据的方差s 2乙=0.25,则甲组数据比乙组数据大;B .从1,2,3,4,5中随机抽取一个数,是偶数的可能性比较大;C .数据3,5,4,1,-2的中位数是3;D .若某种游戏活动的中奖率是30%,则参加这种活动10次必有3次中奖.6. 如图所示,△ABC 中,点D 、E 分别是AC 、BC 边上的点,且DE ∥AB ,CD :CA ﹦2:3,△ABC 的面积是18,则四边形ABED 的面积是…………………………( ) A .6 B .8C .9D .107. 如图,若锐角△ABC 内接于⊙O,点D 在⊙O 外(与点C 在AB 同侧), 则下列三个结论:①D C ∠>∠sin sin ;②D C ∠>∠cos cos ; ③D C ∠>∠tan tan 中,正确的结论为……………………………………………………………………………………( ) A 、①② B 、②③ C 、①②③ D 、①③yxoC BA (第8题)(第6题)(第7题)8. 如图,平面直角坐标系中,△ABC 的顶点坐标分别是A (1,1),B (3,1),C (2,2),当直线b x y +=21与△ABC有公共点时,b 的取值范围是………………………………( ) A.-1≤b ≤1 B. -21≤b ≤1 C. -21≤b ≤21 D. -1≤b ≤21 9.一张圆心角为45°的扇形纸板和圆形纸板按如图方式分别剪成一个正方形,边长都为1,则扇形和圆形纸板的面积比是…………………………………………………( ) A . 5:4 B . 5:2C . :2D . :10. 如图,正方形ABCD 的边长为4,点P 、Q 分别是CD 、AD 的中点,动点E 从点A 向点B运动,到点B 时停止运动;同时,动点F 从点P 出发,沿P→D→Q 运动,点E 、F 的运动速度相同.设点E 的运动路程为x ,△AEF 的面积为y ,能大致刻画y 与x 的函数关系的图象是…………………………………………………………( )A .B .C .D .二、填空题(本大题共8小题,每小题2分,共计16分.) 11. 已知m n mn +=,则(1)(1)m n --= .12.一个零件的横截面是正六边形,这个六边形的内角和为 ︒. 13. 某校女子排球队队员的年龄分布如下表:年龄(岁) 13 14 15 人数(人)474则该校女子排球队队员的平均年龄是______岁.14. 已知一个正比例函数的图像与一个反比例函数的图像的一个(第9题) (第10题)交点坐标为(1,3),则另一个交点坐标是 . 15. 已知一个圆锥的侧面积是π22cm ,它的侧面展开图是一个半圆,则这个圆锥的高为 cm .16. 如图,△ABC 的三个顶点都在⊙O 上,AD 是直径,且∠CAD=56°,则∠B 的度数为 °. 17. 如图,在平行四边形ABCD 中,∠BCD=30°,BC=6,CD=63,M 是AD 边的中点,N 是 AB 边上的一动点,将△AMN 沿MN 所在直线 翻折得到△A ′MN ,连接A ′C ,则A ′C 长度的 最小值是___________.18. 正方形的A 1B 1P 1P 2顶点P 1、P 2在反比例函数y =x2(x >0)的图象上,顶点A 1、B 1分别在x 轴、y 轴的正半轴上,再在其右侧作正方形P 2P 3A 2B 2,顶点P 3在反比例函数y =x2(x >0)的图象上,顶点A 2在x 轴的正半轴上,则点P 3的坐标为 .三、解答题(本大题共10小题,共计84分.解答时应写出必要的文字说明、证明过程或演算步骤.) 19.(本小题满分8分)计算:(1)11272cos30232-⎛⎫-︒+-- ⎪⎝⎭(2)()()()111x x x x -+-+20.(本小题满分8分)(1)解方程:0112=+-xx . (2)解不等式组21514(2)x x x +>⎧⎨+>-⎩,.(第18题)MDAA'第17题21.(本小题满分10分)如图,在△ABC中,AB=AC.(1)作△ABC的角平分线AD;(尺规作图,保留痕迹)(2)在AD的延长线上任取一点E,连接BE、CE.①求证:△BDE≌△CDE;②当AE=2AD时,四边形ABEC是什么图形?请说明理由.22.(本小题满分7分)某校为了了解九年级学生的体能情况,抽调了一部分学生进行一分钟跳绳测试,将测试成绩整理后作出如下统计图(注:每组含最小值,不含最大值).甲同学计算出第二组的频率是0.06,乙同学计算出从左至右第一、二、三、四组的频数比为2:4:17:15.结合统计图回答下列问题:(1)这次共抽调了多少人?(2)若跳绳次数不少于130次为优秀,则这次测试成绩的优秀率是多少?(3)若该校九年级有800名学生,请估计该校九年级达到优秀的人数是多少.23.(本小题满分7分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是;(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用“画树状图”或“列表”等方法求两次都摸到红球的概率.24.(本题满分6分)如图,小明在大楼30 m高(即PH=30 m)的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚B处的俯角为60°,已知该山坡的坡度i为13,点P、H、B、C、A在同一个平面上,点H、B、C在同一条直线上,且PH⊥HC.(1)山坡坡角(即∠ABC)的度数等于_______°;(2)求A、B两点间的距离.25.(本小题满分10分)如图,某个体户购进一批时令水果,20天销售完毕,他将本次销售情况进行了跟踪记录,根据所记录的数据可绘制函数图像,其中日销售量y(kg)与销售时间x(天)之间的函数关系如图①所示,销售单价p(元/kg)与销售时间x (天)之间的函数关系如图②所示.(1)直接写出y 与x 之间的函数关系式; (2)分别求出第10天和第15天的销售金额;(3)若日销售量不低于24 kg 的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售单价最高为多少元?26. (本题满分8分)小明遇到这样一个问题:“如图1,在边长为a (a >2)的正方形ABCD各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠CHN=∠DEP=45°时,求正方形MNPQ 的面积.”分析时,小明发现,分别延长QE 、MF 、NG 、PH 交FA 、GB 、HC 、ED 的延长线于点R 、S 、T 、W ,可得△RQF 、△SMG 、△TNH 、△WPE 是四个全等的等腰直角三角形(如图2) 请回答:(1)若将上述四个等腰直角三角形拼成一个正方形(无缝隙不重叠),则这个正方形的边长为 ; (2)求正方形MNPQ 的面积;(3)参考小明思考问题的方法,解决问题:如图3,在等边△ABC 各边上分别截取AD=BE=CF ,再分别过点D 、E 、F 作BC 、AC 、AB 的垂线,得到等边△RPQ .若S △RPQ=33,则AD 的长为 .27.(本小题满分10分)如图,在直角坐标系中,⊙M 的圆心M 在y 轴上,⊙M 与x 轴交于点A 、B ,与y 轴交于点C 、D ,过点A 作⊙M 的切线AP 交y 轴于点P ,若⊙M 的半径为5,点A 的坐标为(﹣4,0), (1)求证:∠PAC =∠CAO ; (2)求直线PA 的解析式;(3)若点Q 为⊙M 上任意一点,连接OQ 、PQ ,问PQOQ的比值是否发生变化?若不变求出此值;若变化,说明变化规律.28. (本小题满分10分)如图,已知一条直线过点(0,4),且与抛物线y=x2交于A,B两点,其中点A的横坐标是﹣2.(1)求这条直线的函数关系式及点B的坐标.(2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在,请说明理由.(3)过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?参考答案一、选择题1—5:B DCAC ,6—10:DDBAA 二、填空题11. 1 12. 720 13.14 14.(-1,-3) 15.3 16.34 17.3193- 18.(13,13-+) 三、解答题19.(1)原式=)32(223233--+⨯-………………2 =322333+-+-…………………………3 =33……………………………………4 (2)原式=221x x x -+-…………………………2 =1+-x ……………………………………4 20.(1)0112=+-xx 解:去分母,得0)1(2=-+x x (1)去括号,得022=-+x x移项、合并同类项,得2-=x ……………………3 经检验,2-=x 是原方程的解.……………………4 (2) 解不等式组21514(2)x x x +>⎧⎨+>-⎩,.解:由①得:x 2>4x >2 …………………………1 由②得:1+x >84-x x 3->-9x <3 ....................................3 ∴不等式组的解集为2<x <3 (4)21.(1)作图略 (2)(2)①∵AB=AC, AD 平分∠BAC,∴BD=CD ,AD ⊥BC.∴∠BDE=∠CDE=90° . (4)在△BDE 和△CDE 中,∴△BDE ≌△CDE.……………………6 ②∵AE=2AD, ∴AE=DE. ∵BD=CD,∴四边形ABEC 是平行四边形.……………………8 ∵AD ⊥BC,∴平行四边形ABEC 是菱形...............................10 22. (1)12÷0.06=200(人). (2)(2)第一、二、三、四组的总人数为:12÷4×(2+4+17+15)=114(人) (3)∴这次测试成绩的优秀率为:100200114200⨯-%=43%. (5)(3)800×43%=344(人).……………………7 23. (1)21………………2 (2)列表如下:(树状图也可)红1红2白黑红1 ﹣﹣﹣(红2,红1) (白,红1) (黑,红1)红2 (红1,红2)﹣﹣﹣(白,红2) (黑,红2) 白 (红1,白) (红2,白)﹣﹣﹣(黑,白) 黑(红1,黑) (红2,黑) (白,黑)﹣﹣﹣..........................................................................................5 共有12种等可能的情况,其中两次都摸到红球有2种, (6)∴P(两次都摸到红球)==. (7)24.解:(1)30 (1)(2)在中,,∵,∴ (3)在中,,,∴是等腰直角三角形, (5)20(米).∴AB=PB=320米. (6)答:A、B两点间的距离为325.(1) (2)(2)∵第10天和第15天在第10天和第20天之间,∴当10≤x≤20时,设销售单价p(元/千克)与销售时间x(天)之间的函数解析式为p=mx+n,∵点(10,10),(20,8)在p=mx+n的图象上,∴,解得:.∴. (4)当x=10时,p=10,y=2×10=20,销售金额为:10×20=200(元); (5)当x=15时,,y=2×15=30,销售金额为:9×30=270(元).故第10天和第15天的销售金额分别为200元,270元.……………………………6 (3)若日销售量不低于24千克,则y≥24. 当0≤x≤15时,y=2x , 解不等式2x≥24,得x≥12; 当15<x≤20时,y=﹣6x+120, 解不等式﹣6x+120≥24,得x≤16. ∴12≤x≤16。
江苏省2021年中考预测数学试题(含解析)
江苏省中考数学精选真题预测(含答案)一、选择题(本大题共10小题,每小题3分,共30分。
在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑)1.(3分)下列等式正确的是()A.()2=3 B.=﹣3 C.=3 D.(﹣)2=﹣32.(3分)函数y=中自变量x的取值范围是()A.x≠﹣4 B.x≠4 C.x≤﹣4 D.x≤43.(3分)下列运算正确的是()A.a2+a3=a5B.(a2)3=a5C.a4﹣a3=a D.a4÷a3=a4.(3分)下面每个图形都是由6个边长相同的正方形拼成的图形,其中能折叠成正方体的是()A.B.C.D.5.(3分)下列图形中的五边形ABCDE都是正五边形,则这些图形中的轴对称图形有()A.1个B.2个C.3个D.4个6.(3分)已知点P(a,m),Q(b,n)都在反比例函数y=的图象上,且a<0<b,则下列结论一定正确的是()A.m+n<0 B.m+n>0 C.m<n D.m>n7.(3分)某商场为了解产品A的销售情况,在上个月的销售记录中,随机抽取了5天A产品的销售记录,其售价x(元/件)与对应销量y(件)的全部数据如下表:售价x(元/件)90 95 100 105 110销量y(件)110 100 80 60 50则这5天中,A产品平均每件的售价为()A.100元B.95元C.98元D.97.5元8.(3分)如图,矩形ABCD中,G是BC的中点,过A、D、G三点的圆O与边AB、CD分别交于点E、点F,给出下列说法:(1)AC与BD的交点是圆O的圆心;(2)AF与DE的交点是圆O的圆心;(3)BC与圆O相切,其中正确说法的个数是()A.0 B.1 C.2 D.39.(3分)如图,已知点E是矩形ABCD的对角线AC上的一动点,正方形EFGH的顶点G、H 都在边AD上,若AB=3,BC=4,则tan∠AFE的值()A.等于B.等于C.等于D.随点E位置的变化而变化10.(3分)如图是一个沿3×3正方形方格纸的对角线AB剪下的图形,一质点P由A点出发,沿格点线每次向右或向上运动1个单位长度,则点P由A点运动到B点的不同路径共有()A.4条B.5条C.6条D.7条二、填空题(本大题共8小题,每小题2分,共16分。
江苏省2021年中考数学预测模拟试卷2套(含答案)
江苏省中考数学精选真题预测(含答案)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)的值是()A.4 B.2 C.±2 D.﹣22.(3分)下列计算中,正确的是()A.a2•a3=a5B.(a2)3=a8C.a3+a2=a5D.a8÷a4=a23.(3分)若在实数范围内有意义,则x的取值范围是()A.x≥3 B.x<3 C.x≤3 D.x>34.(3分)函数y=﹣x的图象与函数y=x+1的图象的交点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.(3分)下列说法中,正确的是()A.一个游戏中奖的概率是,则做10次这样的游戏一定会中奖B.为了了解一批炮弹的杀伤半径,应采用全面调查的方式C.一组数据8,8,7,10,6,8,9的众数是8D.若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小6.(3分)篮球比赛规定:胜一场得3分,负一场得1分,某篮球队共进行了6场比赛,得了12分,该队获胜的场数是()A.2 B.3 C.4 D.57.(3分)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于点E、F,再分别以E、F为圆心,大于EF的同样长为半径作圆弧,两弧交于点P,作射线AP,交CD于点M,若∠ACD=110°,则∠CMA的度数为()A.30° B.35° C.70° D.45°8.(3分)一个空间几何体的主视图和左视图都是边长为2cm的正三角形,俯视图是一个圆,那么这个几何体的表面积是()A.πcm2B.3πcm2C.πcm2D.5πcm29.(3分)如图,等边△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C 的方向运动,到达点C时停止,设运动时间为x(s),y=PC2,则y关于x的函数的图象大致为()A.B.C.D.10.(3分)正方形ABCD的边长AB=2,E为AB的中点,F为BC的中点,AF分别与DE、BD 相交于点M,N,则MN的长为()A.B.﹣1 C.D.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把最终结果直接填写在答题卡相应位置上)11.(3分)“辽宁舰“最大排水量为67500吨,将67500用科学记数法表示为.12.(3分)分解因式:a3﹣2a2b+ab2= .13.(3分)已知正n边形的每一个内角为135°,则n= .14.(3分)某厂一月份生产某机器100台,计划三月份生产160台.设二、三月份每月的平均增长率为x,根据题意列出的方程是.15.(3分)如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=3,AB=5,OD⊥BC于点D,则OD的长为.16.(3分)下面是“作一个30°角”的尺规作图过程.已知:平面内一点A.求作:∠A,使得∠A=30°.作图:如图,(1)作射线AB;(2)在射线AB上取一点O,以O为圆心,OA为半径作圆,与射线AB相交于点C;(3)以C为圆心,OC为半径作弧,与⊙O交于点D,作射线AD,∠DAB即为所求的角.请回答:该尺规作图的依据是.17.(3分)如图,在△ABC中,∠C=90°,AC=3,BC=4,点O是BC中点,将△ABC绕点O 旋转得△A′B'C,则在旋转过程中点A、C′两点间的最大距离是.18.(3分)在平面直角坐标系xOy中,过点A(3,0)作垂直于x轴的直线AB,直线y=﹣x+b与双曲线y=交于点P(x1,y1),Q(x2,y2),与直线AB交于点R(x3,y3),若y1>y2>y3时,则b的取值范围是.三、解答题(本大题共10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)(1)计算:|﹣2|+20130﹣(﹣)﹣1+3tan30°;(2)解方程:=﹣3.20.(8分)解不等式组,并写出x的所有整数解.21.(8分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“了解”部分所对应扇形的圆心角为度;(2)请补全条形统计;(3)若该中学共有学生1200人,估计该中学学生对校园安全知识达到“了解”和“基本了解”程度的总人数.22.(8分)四张扑克牌的点数分别是2,3,4,8,除点数不同外,其余都相同,将它们洗匀后背面朝上放在桌上.(1)从中随机抽取一张牌,求这张牌的点数是偶数的概率;(2)随机抽取一张牌不放回,接着再抽取一张牌,求这两张牌的点数都是偶数的概率.23.(8分)如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶12千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C 恰好在A地的正北方向,求B,C两地的距离.(结果保留根号)24.(8分)如图,▱ABCD中,点E是BC的中点,连接AE并延长交DC延长线于点F.(1)求证:CF=AB;(2)连接BD、BF,当∠BCD=90°时,求证:BD=BF.25.(8分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系,根据图象解决以下问题:(1)慢车的速度为km/h,快车的速度为km/h;(2)解释图中点C的实际意义并求出点C的坐标;(3)求当x为多少时,两车之间的距离为500km.26.(12分)如图,△ABC中,AB=6cm,AC=4cm,BC=2cm,点P以1cm/s的速度从点B出发沿边BA→AC运动到点C停止,运动时间为t s,点Q是线段BP的中点.(1)若CP⊥AB时,求t的值;(2)若△BCQ是直角三角形时,求t的值;(3)设△CPQ的面积为S,求S与t的关系式,并写出t的取值范围.27.(12分)已知,正方形ABCD,A(0,﹣4),B(l,﹣4),C(1,﹣5),D(0,﹣5),抛物线y=x2+mx﹣2m﹣4(m为常数),顶点为M.(1)抛物线经过定点坐标是,顶点M的坐标(用m的代数式表示)是;(2)若抛物线y=x2+mx﹣2m﹣4(m为常数)与正方形ABCD的边有交点,求m的取值范围;(3)若∠ABM=45°时,求m的值.28.(14分)如图,⊙O的直径AB=26,P是AB上(不与点A、B重合)的任一点,点C、D 为⊙O上的两点,若∠APD=∠BPC,则称∠CPD为直径AB的“回旋角”.(1)若∠BPC=∠DPC=60°,则∠CPD是直径AB的“回旋角”吗?并说明理由;(2)若的长为π,求“回旋角”∠CPD的度数;(3)若直径AB的“回旋角”为120°,且△PCD的周长为24+13,直接写出AP的长.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)的值是()A.4 B.2 C.±2 D.﹣2【分析】根据算术平方根解答即可.【解答】解:=2,故选:B.【点评】此题考查算术平方根问题,关键是根据4的算术平方根是2解答.2.(3分)下列计算中,正确的是()A.a2•a3=a5B.(a2)3=a8C.a3+a2=a5D.a8÷a4=a2【分析】根据同底数幂的乘法、幂的乘方、合并同类项法则及同底数幂的除法逐一计算可得.【解答】解:A、a2•a3=a5,此选项正确;B、(a2)3=a6,此选项错误;C、a3、a2不能合并,此选项错误;D、a8÷a4=a4,此选项错误;故选:A.【点评】本题主要考查整式的运算,解题的关键是掌握同底数幂的乘法、幂的乘方、合并同类项法则及同底数幂的除法.3.(3分)若在实数范围内有意义,则x的取值范围是()A.x≥3 B.x<3 C.x≤3 D.x>3【分析】根据二次根式有意义的条件;列出关于x的不等式,求出x的取值范围即可.【解答】解:∵在实数范围内有意义,∴x﹣3≥0,解得x≥3.故选:A.【点评】本题考查的是二次根式有意义的条件,熟知二次根式具有非负性是解答此题的关键.4.(3分)函数y=﹣x的图象与函数y=x+1的图象的交点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【分析】根据题目中的函数解析式可以求得这两个函数的交点坐标,从而可以解答本题.【解答】解:,解得,,∴函数y=﹣x的图象与函数y=x+1的图象的交点是(,),故函数y=﹣x的图象与函数y=x+1的图象的交点在第二象限,故选:B.【点评】本题考查两条直线相交或平行问题,解答本题的关键是明确题意,求出两个函数的交点坐标,利用函数的思想解答.5.(3分)下列说法中,正确的是()A.一个游戏中奖的概率是,则做10次这样的游戏一定会中奖B.为了了解一批炮弹的杀伤半径,应采用全面调查的方式C.一组数据8,8,7,10,6,8,9的众数是8D.若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小【分析】根据概率的意义可判断出A的正误;根据抽样调查与全面调查意义可判断出B的正误;根据众数和中位数的定义可判断出C的正误;根据方差的意义可判断出D的正误.【解答】解:A、一个游戏中奖的概率是,做10次这样的游戏也不一定会中奖,故此选项错误;B、为了了解一批炮弹的杀伤半径,应采用抽样调查的方式,故此选项错误;C、一组数据8,8,7,10,6,8,9的众数和中位数都是8,故此选项正确;D、若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动大;故选:C.【点评】此题主要考查了概率、抽样调查与全面调查、众数和中位数、方差,关键是注意再找中位数时要把数据从小到大排列再找出位置处于中间的数.6.(3分)篮球比赛规定:胜一场得3分,负一场得1分,某篮球队共进行了6场比赛,得了12分,该队获胜的场数是()A.2 B.3 C.4 D.5【分析】设该队获胜x场,则负了(6﹣x)场,根据总分=3×获胜场数+1×负了的场数,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设该队获胜x场,则负了(6﹣x)场,根据题意得:3x+(6﹣x)=12,解得:x=3.答:该队获胜3场.故选:B.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.7.(3分)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于点E、F,再分别以E、F为圆心,大于EF的同样长为半径作圆弧,两弧交于点P,作射线AP,交CD于点M,若∠ACD=110°,则∠CMA的度数为()A.30° B.35° C.70° D.45°【分析】直接利用平行线的性质结合角平分线的作法得出∠CAM=∠BAM=35°,即可得出答案.【解答】解:∵AB∥CD,∠ACD=110°,∴∠CAB=70°,∵以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于点E、F,再分别以E、F为圆心,大于EF的同样长为半径作圆弧,两弧交于点P,作射线AP,交CD于点M,∴AP平分∠CAB,∴∠CAM=∠BAM=35°,∵AB∥CD,∴∠CMA=∠MAB=35°.故选:B.【点评】此题主要考查了基本作图以及平行线的性质,正确得出∠CAM=∠BAM是解题关键.8.(3分)一个空间几何体的主视图和左视图都是边长为2cm的正三角形,俯视图是一个圆,那么这个几何体的表面积是()A.πcm2B.3πcm2C.πcm2D.5πcm2【分析】根据三视图的知识可知该几何体为一个圆锥.又已知底面半径可求出母线长以及侧面积、底面积后即可求得其表面积.【解答】解:综合主视图,俯视图,左视图可以看出这个几何体应该是圆锥,且底面圆的半径为1,母线长为2,因此侧面面积为1×π×2=2π,底面积为π×(1)2=π.表面积为2π+π=3π;故选:B.【点评】此题考查由三视图判定几何体,本题中要先确定出几何体的面积,然后根据其侧面积的计算公式进行计算.本题要注意圆锥的侧面积的计算方法是圆锥的底面半径乘以圆周率再乘以母线长.9.(3分)如图,等边△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C 的方向运动,到达点C时停止,设运动时间为x(s),y=PC2,则y关于x的函数的图象大致为()A.B.C.D.【分析】需要分类讨论:①当0≤x≤3,即点P在线段AB上时,根据余弦定理知cosA=,所以将相关线段的长度代入该等式,即可求得y与x的函数关系式,然后根据函数关系式确定该函数的图象.②当3<x≤6,即点P在线段BC上时,y与x的函数关系式是y=(6﹣x)2=(x﹣6)2(3<x≤6),根据该函数关系式可以确定该函数的图象.【解答】解:∵正△ABC的边长为3cm,∴∠A=∠B=∠C=60°,AC=3cm.①当0≤x≤3时,即点P在线段AB上时,AP=xcm(0≤x≤3);根据余弦定理知cosA=,即=,解得,y=x2﹣3x+9(0≤x≤3);该函数图象是开口向上的抛物线;解法二:过C作CD⊥AB,则AD=1.5cm,CD=cm,点P在AB上时,AP=x cm,PD=|1.5﹣x|cm,∴y=PC2=()2+(1.5﹣x)2=x2﹣3x+9(0≤x≤3)该函数图象是开口向上的抛物线;②当3<x≤6时,即点P在线段BC上时,PC=(6﹣x)cm(3<x≤6);则y=(6﹣x)2=(x﹣6)2(3<x≤6),∴该函数的图象是在3<x≤6上的抛物线;故选:C.【点评】本题考查了动点问题的函数图象.解答该题时,需要对点P的位置进行分类讨论,以防错选.10.(3分)正方形ABCD的边长AB=2,E为AB的中点,F为BC的中点,AF分别与DE、BD 相交于点M,N,则MN的长为()A.B.﹣1 C.D.【分析】首先过F作FH⊥AD于H,交ED于O,于是得到FH=AB=2,根据勾股定理求得AF,根据平行线分线段成比例定理求得OH,由相似三角形的性质求得AM与AF的长,根据相似三角形的性质,求得AN的长,即可得到结论.【解答】解:过F作FH⊥AD于H,交ED于O,则FH=AB=2,∵BF=FC,BC=AD=2,∴BF=AH=1,FC=HD=1,∴AF===,∵OH∥AE,∴==,∴OH=AE=,∴OF=FH﹣OH=2﹣=,∵AE∥FO,∴△AME∽FMO,∴==,∴AM=AF=,∵AD∥BF,∴△AND∽△FNB,∴==2,∴AN=2AF=,∴MN=AN﹣AM=﹣=.故选:C.【点评】本题考查了相似三角形的判定与性质,矩形的性质,勾股定理,比例的性质,准确作出辅助线,求出AN与AM的长是解题的关键.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把最终结果直接填写在答题卡相应位置上)11.(3分)“辽宁舰“最大排水量为67500吨,将67500用科学记数法表示为 6.75×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:67500=6.75×104,故答案为:6.75×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)分解因式:a3﹣2a2b+ab2= a(a﹣b)2.【分析】先提取公因式a,再对余下的多项式利用完全平方公式继续分解.【解答】解:a3﹣2a2b+ab2,=a(a2﹣2ab+b2),=a(a﹣b)2.【点评】本题考查提公因式法分解因式和完全平方公式分解因式,熟记公式结构是解题的关键,分解因式一定要彻底.13.(3分)已知正n边形的每一个内角为135°,则n= 8 .【分析】根据多边形的内角就可求得外角,根据多边形的外角和是360°,即可求得外角和中外角的个数,即多边形的边数.【解答】解:多边形的外角是:180﹣135=45°,∴n==8.【点评】任何任何多边形的外角和是360°,不随边数的变化而变化.根据这个性质把多边形的角的计算转化为外角的计算,可以使计算简化.14.(3分)某厂一月份生产某机器100台,计划三月份生产160台.设二、三月份每月的平均增长率为x,根据题意列出的方程是100(1+x)2=160 .【分析】设二,三月份每月平均增长率为x,根据一月份生产机器100台,三月份生产机器160台,可列出方程.【解答】解:设二,三月份每月平均增长率为x,100(1+x)2=160.故答案为:100(1+x)2=160.【点评】本题考查理解题意的能力,本题是个增长率问题,发生了两次变化,先找出一月份的产量和三月份的产量,从而可列出方程.15.(3分)如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=3,AB=5,OD⊥BC于点D,则OD的长为 2 .【分析】先利用圆周角定理得到∠ACB=90°,则可根据勾股定理计算出AC=4,再根据垂径定理得到BD=CD,则可判断OD为△ABC的中位线,然后根据三角形中位线性质求解.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∴AC==4,∵OD⊥BC,∴BD=CD,而OB=OA,∴OD为△ABC的中位线,∴OD=AC=×4=2.故答案为2.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理.16.(3分)下面是“作一个30°角”的尺规作图过程.已知:平面内一点A.求作:∠A,使得∠A=30°.作图:如图,(1)作射线AB;(2)在射线AB上取一点O,以O为圆心,OA为半径作圆,与射线AB相交于点C;(3)以C为圆心,OC为半径作弧,与⊙O交于点D,作射线AD,∠DAB即为所求的角.请回答:该尺规作图的依据是直径所对的圆周角的直角,等边三角形的时故内角为60°,直角三角形两锐角互余等.【分析】连接OD、CD.只要证明△ODC是等边三角形即可解决问题;【解答】解:连接OD、CD.由作图可知:OD=OC=CD,∴△ODC是等边三角形,∴∠DCO=60°,∵AC是⊙O直径,∴∠ADC=90°,∴∠DAB=90°﹣60°=30°.∴作图的依据是:直径所对的圆周角的直角,等边三角形的时故内角为60°,直角三角形两锐角互余等,故答案为直径所对的圆周角的直角,等边三角形的时故内角为60°,直角三角形两锐角互余等.【点评】本题考查作图﹣复杂作图,圆的有关性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.(3分)如图,在△ABC中,∠C=90°,AC=3,BC=4,点O是BC中点,将△ABC绕点O 旋转得△A′B'C,则在旋转过程中点A、C′两点间的最大距离是2+.【分析】连接OA,AC′,如图,易得OC=2,再利用勾股定理计算出OA=,接着利用旋转的性质得OC′=OC=2,根据三角形三边的关系得到AC′≤OA+OC′(当且仅当点A、O、C′共线时,取等号),从而得到AC′的最大值.【解答】解:连接OA,AC′,如图,∵点O是BC中点,∴OC=BC=2,在Rt△AOC中,OA==,∵△ABC绕点O旋转得△A′B'C′,∴OC′=OC=2,∵AC′≤OA+OC′(当且仅当点A、O、C′共线时,取等号),∴AC′的最大值为2+,即在旋转过程中点A、C′两点间的最大距离是2+.故答案为2+.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.18.(3分)在平面直角坐标系xOy中,过点A(3,0)作垂直于x轴的直线AB,直线y=﹣x+b与双曲线y=交于点P(x1,y1),Q(x2,y2),与直线AB交于点R(x3,y3),若y1>y2>y3时,则b的取值范围是2<b<.【分析】根据y2大于y3,说明x=3时,﹣x+b<,再根据y1大于y2,说明直线l和抛物线有两个交点,即可得出结论.【解答】解:如图,当x=3时,y2=,y3=﹣3+b,∵y3<y2,∴﹣3+b<,∴b<,∵y1>y2,∴直线l:y=﹣x+b①与双曲线y=②有两个交点,联立①②化简得,x2﹣bx+1=0有两个不相等的实数根,∴△=b2﹣4>0,∴b<﹣2(舍)或b>2,∴2<b<,故答案为:2<b<.【点评】此题主要考查了反比例函数和一次函数的交点问题,一元二次方程根的判别式,熟练掌握一次函数和双曲线的性质是解本题的关键.三、解答题(本大题共10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)(1)计算:|﹣2|+20130﹣(﹣)﹣1+3tan30°;(2)解方程:=﹣3.【分析】(1)原式利用绝对值的代数意义,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=2﹣+1+3+=6;(2)去分母得:1=x﹣1﹣3x+6,解得:x=2,经检验x=2是增根,分式方程无解.【点评】此题考查了解分式方程,以及实数的运算,熟练掌握运算法则是解本题的关键.20.(8分)解不等式组,并写出x的所有整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式①,得:x≥﹣,解不等式②,得:x<3,则不等式组的解集为﹣≤x<3,∴不等式组的整数解为:﹣1、0、1、2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(8分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有60 人,扇形统计图中“了解”部分所对应扇形的圆心角为90 度;(2)请补全条形统计;(3)若该中学共有学生1200人,估计该中学学生对校园安全知识达到“了解”和“基本了解”程度的总人数.【分析】(1)由基本了解的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“了解”部分所对应扇形的圆心角;(2)由(1)可求得了解很少的人数,继而补全条形统计图;(3)利用样本估计总体的方法,即可求得答案.【解答】解:(1)接受问卷调查的学生共有30÷50%=60人,扇形统计图中“了解”部分所对应扇形的圆心角为360°×=90°,故答案为:60、90.(2)“了解很少”的人数为60﹣(15+30+5)=10人,补全图形如下:(3)估计该中学学生对校园安全知识达到“了解”和“基本了解”程度的总人数为1200×=900人.【点评】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.关键是根据列表法或树状图法求概率以及条形统计图与扇形统计图.22.(8分)四张扑克牌的点数分别是2,3,4,8,除点数不同外,其余都相同,将它们洗匀后背面朝上放在桌上.(1)从中随机抽取一张牌,求这张牌的点数是偶数的概率;(2)随机抽取一张牌不放回,接着再抽取一张牌,求这两张牌的点数都是偶数的概率.【分析】(1)利用数字2,3,4,8中一共有3个偶数,总数为4,即可得出点数偶数的概率;(2)列表得出所有情况,让点数都是偶数的情况数除以总情况数即为所求的概率.【解答】解:(1)因为共有4张牌,其中点数是偶数的有3张,所以这张牌的点数是偶数的概率是;(2)列表如下:2 3 4 82 (2,3)(2,4)(2,8)3 (3,2)(3,4)(3,8)4 (4,2)(4,3)(4,8)8 (8,2)(8,3)(8,4)从上面的表格可以看出,总共有12种结果,每种结果出现的可能性相同,其中恰好两张牌的点数都是偶数有6种,所以这两张牌的点数都是偶数的概率为=.【点评】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.23.(8分)如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶12千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C 恰好在A地的正北方向,求B,C两地的距离.(结果保留根号)【分析】作BH⊥AC于H,根据正弦的定义求出BH,根据余弦的定义计算即可.【解答】解:作BH⊥AC于H,由题意得,∠CBH=45°,∠BAH=60°,在Rt△BAH中,BH=AB×sin∠BAH=6,在Rt△BCH中,∠CBH=45°,∴BC==6(千米),答:B,C两地的距离为6千米.【点评】本题考查的是解直角三角形的应用﹣方向角问题,掌握锐角三角函数的定义、正确标出方向角是解题的关键.24.(8分)如图,▱ABCD中,点E是BC的中点,连接AE并延长交DC延长线于点F.(1)求证:CF=AB;(2)连接BD、BF,当∠BCD=90°时,求证:BD=BF.【分析】(1)欲证明AB=CF,只要证明△AEB≌△FEC即可;(2)想办法证明AC=BD,BF=AC即可解决问题;【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥DF,∴∠BAE=∠CFE∵AE=EF,∠AEB=∠CEF,∴△AEB≌△FEC,∴AB=CF.(2)连接AC.∵四边形ABCD是平行四边形,∠BCD=90°,∴四边形ABCD是矩形,∴BD=AC,∵AB=CF,AB∥CF,∴四边形ACFB是平行四边形,∴BF=AC,∴BD=BF.【点评】本题考查平行四边形的判定和性质、矩形的判定和性质、全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.(8分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系,根据图象解决以下问题:(1)慢车的速度为80 km/h,快车的速度为120 km/h;(2)解释图中点C的实际意义并求出点C的坐标;(3)求当x为多少时,两车之间的距离为500km.【分析】(1)由图象可知,两车同时出发.等量关系有两个:3.6×(慢车的速度+快车的速度)=720,(9﹣3.6)×慢车的速度=3.6×快车的速度,设慢车的速度为akm/h,快车的速度为bkm/h,依此列出方程组,求解即可;(2)点C表示快车到达乙地,然后求出快车行驶完全程的时间从而求出点C的横坐标,再求出相遇后两辆车行驶的路程得到点C的纵坐标,从而得解;(3)分相遇前相距500km和相遇后相遇500km两种情况求解即可.【解答】解:(1)设慢车的速度为akm/h,快车的速度为bkm/h,根据题意,得,解得,故答案为80,120;(2)图中点C的实际意义是:快车到达乙地;∵快车走完全程所需时间为720÷120=6(h),∴点C的横坐标为6,纵坐标为(80+120)×(6﹣3.6)=480,即点C(6,480);(3)由题意,可知两车行驶的过程中有2次两车之间的距离为500km.即相遇前:(80+120)x=720﹣500,解得x=1.1,相遇后:∵点C(6,480),∴慢车行驶20km两车之间的距离为500km,∵慢车行驶20km需要的时间是=0.25(h),∴x=6+0.25=6.25(h),故x=1.1 h或6.25 h,两车之间的距离为500km.【点评】本题考查了一次函数的应用,主要利用了路程、时间、速度三者之间的关系,(3)要分相遇前与相遇后两种情况讨论,这也是本题容易出错的地方.26.(12分)如图,△ABC中,AB=6cm,AC=4cm,BC=2cm,点P以1cm/s的速度从点B出发沿边BA→AC运动到点C停止,运动时间为t s,点Q是线段BP的中点.(1)若CP⊥AB时,求t的值;(2)若△BCQ是直角三角形时,求t的值;(3)设△CPQ的面积为S,求S与t的关系式,并写出t的取值范围.【分析】(1)如图1中,作CH⊥AB于H.设BH=x,利用勾股定理构建方程求出x,当点P 与H重合时,CP⊥AB,此时t=2;(2)分两种情形求解即可解决问题;(3)分两种情形:①如图4中,当0<t≤6时,S=×PQ×CH;②如图5中,当6<t<6+4时,作BG⊥AC于G,QM⊥AC于M.求出QM即可解决问题;【解答】解:(1)如图1中,作CH⊥AB于H.设BH=x,∵CH⊥AB,∴∠CHB=∠CHB=90°,∴AC2﹣AH2=BC2﹣BH2,∴(4)2﹣(6﹣x)2=(2)2﹣x2,解得x=2,∴当点P与H重合时,CP⊥AB,此时t=2.(2)如图2中,当点Q与H重合时,BP=2BQ=4,此时t=4.如图3中,当CP=CB=2时,CQ⊥PB,此时t=6+(4﹣2)=6+4﹣2.(3)①如图4中,当0<t≤6时,S=×PQ×CH=×t×4=t.②如图5中,当6<t<6+4时,作BG⊥AC于G,QM⊥AC于M.易知BG=AG=3,CG=.MQ=BG=.∴S=×PC×QM=••(6+4﹣t)=+6﹣t.综上所述,s=.【点评】本题考查三角形综合题、勾股定理、等腰三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.27.(12分)已知,正方形ABCD,A(0,﹣4),B(l,﹣4),C(1,﹣5),D(0,﹣5),抛物线y=x2+mx﹣2m﹣4(m为常数),顶点为M.(1)抛物线经过定点坐标是(2,0),顶点M的坐标(用m的代数式表示)是(﹣,﹣);(2)若抛物线y=x2+mx﹣2m﹣4(m为常数)与正方形ABCD的边有交点,求m的取值范围;(3)若∠ABM=45°时,求m的值.。
江苏省2021年中考数学预测模拟试题2套(含答案)
江苏省中考数学精选真题预测(含答案)一、选择题(每小题2分,共20分.在每小题给出的四个选项中,有且只有一个是正确的)1.(2.00分)4的平方根是()A.±2 B.2 C.﹣2 D.162.(2.00分)一方有难、八方支援,截至5月26日12时,徐州巿累计为汶川地震灾区捐款约为11 180万元,该笔善款可用科学记数法表示为()A.11.18×103万元B.1.118×104万元C.1.118×105万元D.1.118×108万元3.(2.00分)函数y=中自变量x的取值范围是()A.x≥﹣1 B.x≤﹣1 C.x≠﹣1 D.x=﹣14.(2.00分)下列运算中,正确的是()A.x3+x3=x6B.x3•x9=x27C.(x2)3=x5D.x÷x2=x﹣15.(2.00分)如果点(3,﹣4)在反比例函数y=的图象上,那么下列各点中,在此图象上的是()A.(3,4)B.(﹣2,﹣6)C.(﹣2,6)D.(﹣3,﹣4)6.(2.00分)下列平面展开图是由5个大小相同的正方形组成,其中沿正方形的边不能折成无盖小方盒的是()A.B.C.D.7.(2.00分)⊙O1和⊙O2的半径分别为5和2,O1O2=3,则⊙O1和⊙O2的位置关系是()A.内含 B.内切 C.相交 D.外切8.(2.00分)下列图形中,是轴对称图形但不是中心对称图形的是()A.正三角形 B.菱形 C.直角梯形 D.正六边形9.(2.00分)下列事件中,必然事件是()A.抛掷1个均匀的骰子,出现6点向上B.两直线被第三条直线所截,同位角相等C.366人中至少有2人的生日相同D.实数的绝对值是非负数10.(2.00分)如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为()A.B.C.D.二、填空题(每小题3分,共18分.请将答案填写在第Ⅱ卷相应的位置上)11.(3.00分)因式分解:2x2﹣8= .12.(3.00分)徐州巿部分医保定点医院2008年第一季度的人均住院费用(单位:元)约为:12320,11880,10370,8570,10640,10240.这组数据的极差是元.13.(3.00分)若x1、x2为方程x2+x﹣1=0的两个实数根,则x1+x2= .14.(3.00分)边长为a的正三角形的面积等于.15.(3.00分)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D.若∠C=18°,则∠CDA= 度.16.(3.00分)如图,Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,将△ABC折叠,使点C与A 重合,得折痕DE,则△ABE的周长等于cm.三、解答题(每小题5分,共20分)17.(5.00分)计算:(﹣1)2008+π0﹣()﹣1+.18.(5.00分)已知x=+1,求x2﹣2x﹣3的值.19.(5.00分)解不等式组,并写出它的所有整数解.20.(5.00分)如图,一座堤坝的横截面是梯形,根据图中给出的数据,求坝高和坝底宽(精确到0.1m)参考数据:≈1.414,≈1.732四、解答题(本题有A、B两类题,A类题4分,B类题6分,你可以根据自己的学习情况,在两类题中任意选做一题,如果两类题都做,则以A类题计分)21.(7.00分)(A类)已知如图,四边形ABCD中,AB=BC,AD=CD,求证:∠A=∠C.(B类)已知如图,四边形ABCD中,AB=BC,∠A=∠C,求证:AD=CD.五、解答题(每小题7分,共21分)22.(7.00分)从徐州到南京可乘列车A与列车B,已知徐州至南京里程约为350km,A与B 车的平均速度之比为10:7,A车的行驶时间比B车的少1h,那么两车的平均速度分别为多少?23.(7.00分)小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成下列各题:项目月功能费基本话费长途话费短信费金额/元 5(1)该月小王手机话费共有多少元?(2)扇形统计图中,表示短信费的扇形的圆心角为多少度?(3)请将表格补充完整;(4)请将条形统计图补充完整.24.(7.00分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0)①画出△ABC关于x轴对称的△A1B1C1;②画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2;③△A1B1C1与△A2B2C2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;④△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.六、解答题(每小题8分,共16分)25.(8.00分)为缓解油价上涨给出租车待业带来的成本压力,某巿自2018年11月17日起,调整出租车运价,调整方案见下列表格及图象(其中a,b,c为常数)行驶路程收费标准调价前调价后不超过3km的部分起步价6元起步价a 元超过3km不超出6km的部分每公里2.1元每公里b元超出6km的部分每公里c元设行驶路程xkm时,调价前的运价y1(元),调价后的运价为y2(元)如图,折线ABCD表示y2与x之间的函数关系式,线段EF表示当0≤x≤3时,y1与x的函数关系式,根据图表信息,完成下列各题:①填空:a= ,b= ,c= .②写出当x>3时,y1与x的关系,并在上图中画出该函数的图象.③函数y1与y2的图象是否存在交点?若存在,求出交点的坐标,并说明该点的实际意义,若不存在请说明理由.26.(8.00分)已知四边形ABCD的对角线AC与BD交于点O,给出下列四个论断:①OA=OC,②AB=CD,③∠BAD=∠DCB,④AD∥BC.请你从中选择两个论断作为条件,以“四边形ABCD为平行四边形”作为结论,完成下列各题:①构造一个真命题,画图并给出证明;②构造一个假命题,举反例加以说明.七、解答题(第27题8分,第28题10分,共18分)27.(8.00分)已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)①求该函数的关系式;②求该函数图象与坐标轴的交点坐标;③将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.28.(10.00分)如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°操作:将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板DEF绕点E 旋转,并使边DE与边AB交于点P,边EF与边BC于点Q.探究一:在旋转过程中,(1)如图2,当时,EP与EQ满足怎样的数量关系?并给出证明;(2)如图3,当时,EP与EQ满足怎样的数量关系?并说明理由;(3)根据你对(1)、(2)的探究结果,试写出当时,EP与EQ满足的数量关系式为,其中m的取值范围是.(直接写出结论,不必证明)探究二:若且AC=30cm,连接PQ,设△EPQ的面积为S(cm2),在旋转过程中:(1)S是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,说明理由.(2)随着S取不同的值,对应△EPQ的个数有哪些变化,求出相应S的值或取值范围.参考答案与试题解析一、选择题(每小题2分,共20分.在每小题给出的四个选项中,有且只有一个是正确的)1.(2.00分)4的平方根是()A.±2 B.2 C.﹣2 D.16【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a 的一个平方根.【解答】解:∵(±2 )2=4,∴4的平方根是±2.故选:A.【点评】本题主要考查平方根的定义,解题时利用平方根的定义即可解决问题.2.(2.00分)一方有难、八方支援,截至5月26日12时,徐州巿累计为汶川地震灾区捐款约为11 180万元,该笔善款可用科学记数法表示为()A.11.18×103万元B.1.118×104万元C.1.118×105万元D.1.118×108万元【分析】科学记数法的形式a×10n(1≤a<10,n为自然数):确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.直接进行形式的变换即可.【解答】解:11 180万元=1.118×104万元.故选:B.【点评】本题要注意的是单位是“万元”,所以结果是 1.118×104万元,数字部分小数点向左移动了4位.3.(2.00分)函数y=中自变量x的取值范围是()A.x≥﹣1 B.x≤﹣1 C.x≠﹣1 D.x=﹣1【分析】根据分母不能为零,可得答案.【解答】解:由题意,得x+1≠0,解得x≠﹣1,故选:C.【点评】本题考查了函数自变量的取值范围,利用分母不能为零得出不等式是解题关键.4.(2.00分)下列运算中,正确的是()A.x3+x3=x6B.x3•x9=x27C.(x2)3=x5D.x÷x2=x﹣1【分析】根据合并同类项的法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项计算后利用排除法求解.【解答】解:A、应为x3+x3=2x3,故本选项错误;B、应为x3•x9=x12,故本选项错误;C、应为(x2)3=x6,故本选项错误;D、x÷x2=x1﹣2=x﹣1,正确.故选:D.【点评】本题主要考查了合并同类项的法则,同底数幂的乘法,同底数幂的除法,幂的乘方,熟练掌握运算性质和法则是解题的关键.5.(2.00分)如果点(3,﹣4)在反比例函数y=的图象上,那么下列各点中,在此图象上的是()A.(3,4)B.(﹣2,﹣6)C.(﹣2,6)D.(﹣3,﹣4)【分析】将(3,﹣4)代入y=即可求出k的值,再根据k=xy解答即可.【解答】解:因为点(3,﹣4)在反比例函数y=的图象上,k=3×(﹣4)=﹣12;符合此条件的只有C:k=﹣2×6=﹣12.故选:C.【点评】本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.6.(2.00分)下列平面展开图是由5个大小相同的正方形组成,其中沿正方形的边不能折成无盖小方盒的是()A.B.C.D.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:由四棱柱四个侧面和上下两个底面的特征可知,A,C,D选项可以拼成一个正方体,而B选项,上底面不可能有两个,故不是正方体的展开图.故选:B.【点评】解题时勿忘记四棱柱的特征及正方体展开图的各种情形.7.(2.00分)⊙O1和⊙O2的半径分别为5和2,O1O2=3,则⊙O1和⊙O2的位置关系是()A.内含 B.内切 C.相交 D.外切【分析】根据两圆圆心距与半径之间的数量关系判断⊙O1与⊙O2的位置关系.【解答】解:∵⊙O1和⊙O2的半径分别为5和2,O1O2=3,则5﹣2=3,∴⊙O1和⊙O2内切.故选:B.【点评】本题考查了由数量关系来判断两圆位置关系的方法.设两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R﹣r<P<R+r;内切P=R﹣r;内含P<R﹣r.8.(2.00分)下列图形中,是轴对称图形但不是中心对称图形的是()A.正三角形 B.菱形 C.直角梯形 D.正六边形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.正确;B、是轴对称图形,也是中心对称图形.错误;C、不是轴对称图形,也不是中心对称图形.错误;D、是轴对称图形,也是中心对称图形.错误.故选:A.【点评】掌握中心对称图形与轴对称图形的概念.轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.9.(2.00分)下列事件中,必然事件是()A.抛掷1个均匀的骰子,出现6点向上B.两直线被第三条直线所截,同位角相等C.366人中至少有2人的生日相同D.实数的绝对值是非负数【分析】根据概率、平行线的性质、负数的性质进行填空即可.【解答】解:A、抛掷1个均匀的骰子,出现6点向上的概率为,故A错误;B、两条平行线被第三条直线所截,同位角相等,故B错误;C、366人中平年至少有2人的生日相同,闰年可能每个人的生日都不相同,故C错误;D、实数的绝对值是非负数,故D正确;故选:D.【点评】本题考查了必然事件、不可能事件、随机事件的概念.理解概念是解决这类基础题的主要方法.10.(2.00分)如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为()A.B.C.D.【分析】算出阴影部分的面积及大正方形的面积,这个比值就是所求的概率.【解答】解:设小正方形的边长为1,则其面积为1.∵圆的直径正好是大正方形边长,∴根据勾股定理,其小正方形对角线为,即圆的直径为,∴大正方形的边长为,则大正方形的面积为×=2,则小球停在小正方形内部(阴影)区域的概率为.故选:C.【点评】用到的知识点为:概率=相应的面积与总面积之比;难点是得到两个正方形的边长的关系.二、填空题(每小题3分,共18分.请将答案填写在第Ⅱ卷相应的位置上)11.(3.00分)因式分解:2x2﹣8= 2(x+2)(x﹣2).【分析】观察原式,找到公因式2,提出即可得出答案.【解答】解:2x2﹣8=2(x+2)(x﹣2).【点评】本题考查提公因式法和公式法分解因式,是基础题.12.(3.00分)徐州巿部分医保定点医院2008年第一季度的人均住院费用(单位:元)约为:12320,11880,10370,8570,10640,10240.这组数据的极差是3750 元.【分析】根据极差的定义求解.用12320减去8570即可.【解答】解:这组数据的极差=12320﹣8570=3750(元).故填3750.【点评】极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.13.(3.00分)若x1、x2为方程x2+x﹣1=0的两个实数根,则x1+x2= ﹣1 .【分析】直接根据根与系数的关系求解.【解答】解:根据题意得x1+x2=﹣1.故答案为﹣1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.14.(3.00分)边长为a的正三角形的面积等于.【分析】根据正三角形的性质求解.【解答】解:过点A作AD⊥BC于点D,∵AD⊥BC∴BD=CD=a,∴AD==a,面积则是:a•a=a2.【点评】此题主要考查了正三角形的高和面积的求法,比较简单.15.(3.00分)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D.若∠C=18°,则∠CDA= 126 度.【分析】连接OD,构造直角三角形,利用OA=OD,可求得∠ODA=36°,从而根据∠CDA=∠CDO+∠ODA计算求解.【解答】解:连接OD,则∠ODC=90°,∠COD=72°;∵OA=OD,∴∠ODA=∠A=∠COD=36°,∴∠CDA=∠CDO+∠ODA=90°+36°=126°.【点评】本题利用了切线的性质,三角形的外角与内角的关系,等边对等角求解.16.(3.00分)如图,Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,将△ABC折叠,使点C与A 重合,得折痕DE,则△ABE的周长等于7 cm.【分析】根据勾股定理,可得BC的长,根据翻折的性质,可得AE与CE的关系,根据三角形的周长公式,可得答案.【解答】解:在Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,由勾股定理,得BC==4.由翻折的性质,得CE=AE.△ABE的周长=AB+BE+AE=AB+BE+CE=AB+BC=3+4=7.故答案为:7.【点评】本题考查了翻折的性质,利用了勾股定理,利用翻折的性质得出CE与AE的关系是阶梯关键,又利用了等量代换.三、解答题(每小题5分,共20分)17.(5.00分)计算:(﹣1)2008+π0﹣()﹣1+.【分析】接利用负指数幂的性质以及零指数幂的性质以及立方根的性质分别化简得出答案.【解答】解:原式=1+1﹣3+2=1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(5.00分)已知x=+1,求x2﹣2x﹣3的值.【分析】将x=变形为x﹣1=,通过平方凑出x2+2x的值,整体代入即可.【解答】解:∵x=+1∴x﹣1=两边平方得(x﹣1)2=3∴x2﹣2x=2∴x2﹣2x﹣3=2﹣3=﹣1【点评】本题考查整式运算,运用的整体代入的方法可以简化运算.19.(5.00分)解不等式组,并写出它的所有整数解.【分析】先求出不等式的解集,再求出不等式组的解集,即可得出答案.【解答】解:解不等式>﹣1,得:x>﹣2,解不等式2x+1≥5(x﹣1),得:x≤2,所以不等式组的解集为﹣2<x≤2,则不等式组的整数解哟﹣1、0、1、2.【点评】本题考查了解一元一次不等式,解一元一次不等式组,不等式组的整数解的应用,能求出不等式组的解集是解此题的关键.20.(5.00分)如图,一座堤坝的横截面是梯形,根据图中给出的数据,求坝高和坝底宽(精确到0.1m)参考数据:≈1.414,≈1.732【分析】利用锐角三角函数,在Rt△CDE中计算出坝高DE及CE的长,通过矩形ADEF.利用等腰直角三角形的边角关系,求出BF的长,得到坝底的宽.【解答】解:在Rt△CDE中,∵sin∠C=,cos∠C=∴DE=sin30°×DC=×14=7(m),CE=cos30°×DC=×14=7≈12.124≈12.12,∵四边形AFED是矩形,∴EF=AD=6m,AF=DE=7m在Rt△ABF中,∵∠B=45°∴DE=AF=7m,∴BC=BF+EF+EC≈7+6+12.12=25.12≈25.1(m)答:该坝的坝高和坝底宽分别为7m和25.1m.【点评】本题考查了解直角三角形的应用.题目难度不大,求BF的长即可利用直角等腰三角形的性质,也可利用锐角三角函数.四、解答题(本题有A、B两类题,A类题4分,B类题6分,你可以根据自己的学习情况,在两类题中任意选做一题,如果两类题都做,则以A类题计分)21.(7.00分)(A类)已知如图,四边形ABCD中,AB=BC,AD=CD,求证:∠A=∠C.(B类)已知如图,四边形ABCD中,AB=BC,∠A=∠C,求证:AD=CD.【分析】(A类)连接AC,由AB=AC、AD=CD知∠BAC=∠BCA、∠DAC=∠DCA,两等式相加即可得;(B类)由以上过程反之即可得.【解答】证明:(A类)连接AC,∵AB=AC,AD=CD,∴∠BAC=∠BCA,∠DAC=∠DCA,∴∠BAC+∠DAC=∠BCA+∠DCA,即∠A=∠C;(B类)∵AB=AC,∴∠BAC=∠BCA,又∵∠A=∠C,即∠BAC+∠DAC=∠BCA+∠DCA,∴∠DAC=∠DCA,∴AD=CD.【点评】本题主要考查等腰三角形的判定与性质,解题的关键是掌握等角对等边、等边对等角的性质.五、解答题(每小题7分,共21分)22.(7.00分)从徐州到南京可乘列车A与列车B,已知徐州至南京里程约为350km,A与B 车的平均速度之比为10:7,A车的行驶时间比B车的少1h,那么两车的平均速度分别为多少?【分析】设A车的平均速度为10xkm/h,则B车的平均速度为7xkm/h,根据时间=路程÷速度结合A车的行驶时间比B车的少1h,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设A车的平均速度为10xkm/h,则B车的平均速度为7xkm/h,根据题意得:﹣=1,解得:x=15,经检验,x=15是分式方程的根,∴10x=150,7x=105.答:A车的平均速度为150km/h,B车的平均速度为105km/h.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.23.(7.00分)小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成下列各题:项目月功能费基本话费长途话费短信费金额/元 5(1)该月小王手机话费共有多少元?(2)扇形统计图中,表示短信费的扇形的圆心角为多少度?(3)请将表格补充完整;(4)请将条形统计图补充完整.【分析】(1)由于月功能费为5元,占的比例为4%,所以小王手机话费=5÷4%=125元;(2)根据扇形所对圆心角的度数与百分比的关系是:圆心角的度数=百分比×360度知,表示短信费的扇形的圆心角=(1﹣36%﹣40%﹣4%)×360°=72°;(3)基本话费=125×40%=50元,长途话费=125×36%=45元,短信费=125×(1﹣36%﹣40%﹣4%)=25元.【解答】解:(1)小王手机总话费=5÷4%=125元.(2)表示短信费的扇形的圆心角=(1﹣36%﹣40%﹣4%)×360°=72°.(3)50、45、25项目月功能费基本话费长途话费短信费金额/元 5 50 45 25(4)基本话费=125×40%=50元,长途话费=125×36%=45元,短信费=125×(1﹣36%﹣40%﹣4%)=25元.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(7.00分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0)①画出△ABC关于x轴对称的△A1B1C1;②画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2;③△A1B1C1与△A2B2C2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;④△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.【分析】(1)将三角形的各顶点,向x轴作垂线并延长相同长度得到三点的对应点,顺次连接;(2)将三角形的各顶点,绕原点O按逆时针旋转90°得到三点的对应点.顺次连接各对应点得△A2B2C2;(3)从图中可发现成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,做它的垂直平分线;(4)成中心对称图形,画出两条对应点的连线,交点就是对称中心.【解答】解:如下图所示:(3)成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,作它的垂直平分线,或连接A1C1,A2C2的中点的连线为对称轴.(4)成中心对称,对称中心为线段BB2的中点P,坐标是(,).【点评】本题综合考查了图形的变换,在图形的变换中,关键是找到图形的对应点.六、解答题(每小题8分,共16分)25.(8.00分)为缓解油价上涨给出租车待业带来的成本压力,某巿自2018年11月17日起,调整出租车运价,调整方案见下列表格及图象(其中a,b,c为常数)行驶路程收费标准调价前调价后不超过3km的部分起步价6元起步价a 元超过3km不超出6km的部分每公里2.1元每公里b元超出6km的部分每公里c元设行驶路程xkm时,调价前的运价y1(元),调价后的运价为y2(元)如图,折线ABCD表示y2与x之间的函数关系式,线段EF表示当0≤x≤3时,y1与x的函数关系式,根据图表信息,完成下列各题:①填空:a= 7 ,b= 1.4 ,c= 2.1 .②写出当x>3时,y1与x的关系,并在上图中画出该函数的图象.③函数y1与y2的图象是否存在交点?若存在,求出交点的坐标,并说明该点的实际意义,若不存在请说明理由.【分析】①a由图可直接得出;b、c根据:运价÷路程=单价,代入数值,求出即可;②当x>3时,y1与x的关系,有两部分组成,第一部分为6,第二部分为(x﹣3)×2.1,所以,两部分相加,就可得到函数式,并可画出图象;③当y1=y2时,交点存在,求出x的值,再代入其中一个式子中,就能得到y值;y值的意义就是指运价;【解答】解:①由图可知,a=7元,b=(11.2﹣7)÷(6﹣3)=1.4元,c=(13.3﹣11.2)÷(7﹣6)=2.1元;故答案为7,1.4,2.1;②由图得,当x>3时,y1与x的关系式是:y1=6+(x﹣3)×2.1,整理得,y1=2.1x﹣0.3;函数图象如图所示:③由图得,当3<x<6时,y2与x的关系式是:y2=7+(x﹣3)×1.4,整理得,y2=1.4x+2.8;所以,当y1=y2时,交点存在,即,2.1x﹣0.3=1.4x+2.8,解得,x=,y=9;所以,函数y1与y2的图象存在交点(,9);其意义为当 x时是方案调价前合算,当 x时方案调价后合算.【点评】本题主要考查了一次函数在实际问题中的应用,能够根据题意中的等量关系建立函数关系式;能够根据函数解析式求得对应的x的值;作图关键是确定交点;体现了数形结合思想.26.(8.00分)已知四边形ABCD的对角线AC与BD交于点O,给出下列四个论断:①OA=OC,②AB=CD,③∠BAD=∠DCB,④AD∥BC.请你从中选择两个论断作为条件,以“四边形ABCD为平行四边形”作为结论,完成下列各题:①构造一个真命题,画图并给出证明;②构造一个假命题,举反例加以说明.【分析】如果①②结合,那么这些线段所在的两个三角形是SSA,不一定全等,那么就不能得到相等的对边平行;如果②③结合,和①②结合的情况相同;如果①④结合,由对边平行可得到两对内错角相等,那么AD,BC所在的三角形全等,也得到平行的对边也相等,那么是平行四边形;最易举出反例的是②④,它有可能是等腰梯形.【解答】解:(1)①④为论断时:∵AD∥BC,∴∠DAC=∠BCA,∠ADB=∠DBC.又∵OA=OC,∴△AOD≌△COB.∴AD=BC.∴四边形ABCD为平行四边形.(2)②④为论断时,此时一组对边平行,另一组对边相等,可以构成等腰梯形.【点评】本题主要考查平行四边形的判定,学生注意常用等腰梯形做反例来推翻不是平行四边形的判断.七、解答题(第27题8分,第28题10分,共18分)27.(8.00分)已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)①求该函数的关系式;②求该函数图象与坐标轴的交点坐标;③将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B点坐标代入,即可求出二次函数的解析式.(2)根据的函数解析式,令x=0,可求得抛物线与y轴的交点坐标;令y=0,可求得抛物线与x轴交点坐标.(3)由(2)可知:抛物线与x轴的交点分别在原点两侧,由此可求出当抛物线与x轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A′、B′的坐标.由于△OA′B′不规则,可用面积割补法求出△OA′B′的面积.【解答】解:(1)设抛物线顶点式y=a(x+1)2+4将B(2,﹣5)代入得:a=﹣1∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3)令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,即抛物线与x轴的交点为:(﹣3,0),(1,0)(3)设抛物线与x轴的交点为M、N(M在N的左侧),由(2)知:M(﹣3,0),N(1,0)当函数图象向右平移经过原点时,M与O重合,因此抛物线向右平移了3个单位故A'(2,4),B'(5,﹣5)∴S△OA′B′=×(2+5)×9﹣×2×4﹣×5×5=15.【点评】本题考查了用待定系数法求抛物线解析式、函数图象交点、图形面积的求法等知识.不规则图形的面积通常转化为规则图形的面积的和差.28.(10.00分)如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°操作:将三角板DEF的直角顶点E放置于三角板AB C的斜边AC上,再将三角板DEF绕点E旋转,并使边DE与边AB交于点P,边EF与边BC于点Q.探究一:在旋转过程中,(1)如图2,当时,EP与EQ满足怎样的数量关系?并给出证明;(2)如图3,当时,EP与EQ满足怎样的数量关系?并说明理由;(3)根据你对(1)、(2)的探究结果,试写出当时,EP与EQ满足的数量关系式为EP:EQ=1:m ,其中m的取值范围是0<m≤2+.(直接写出结论,不必证明)探究二:若且AC=30cm,连接PQ,设△EPQ的面积为S(cm2),在旋转过程中:(1)S是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,说明理由.(2)随着S取不同的值,对应△EPQ的个数有哪些变化,求出相应S的值或取值范围.【分析】探究一:(1)连接BE,根据已知条件得到E是AC的中点,根据等腰直角三角形的性质可以证明BE=CE,∠PBE=∠C.根据等角的余角相等可以证明∠BEP=∠CEQ.即可得到全等三角形,从而证明结论;(2)作EM⊥AB,EN⊥BC于M、N,根据两个角对应相等证明△MEP∽△NWQ,发现EP:EQ=EM:EN,再根据等腰直角三角形的性质得到EM:EN=AE:CE;(3)根据(2)中求解的过程,可以直接写出结果;要求m的取值范围,根据交点的位置的限制进行分析.探究二:(1)设EQ=x,结合上述结论,用x表示出三角形的面积,根据x的最值求得面积的最值;(2)首先求得EQ和EB重合时的三角形的面积的值,再进一步分情况讨论.【解答】解:探究一:(1)连接BE,根据E是AC的中点和等腰直角三角形的性质,得BE=CE,∠PBE=∠C,又∠BEP=∠CEQ,则△BEP≌△CEQ,得EP=EQ;(2)作EM⊥AB,EN⊥BC于M,N,∴∠EMP=∠ENC,∵∠MEP+∠PEN=∠PEN+∠NEF=90°,∴∠MEP=∠NEF,∴△MEP∽△NEQ,∴EP:EQ=EM:EN=AE:CE=1:2;(3)过E点作EM⊥AB于点M,作EN⊥BC于点N,∵在四边形PEQB中,∠B=∠PEQ=90°,∴∠EPB+∠EQB=180°(四边形的内角和是360°),又∵∠EPB+∠MPE=180°(平角是180°),∴∠MPE=∠EQN(等量代换),∴Rt△MEP∽Rt△NEQ(AA),∴(两个相似三角形的对应边成比例);在Rt△AME∽Rt△ENC∴=m=∴=1:m=,EP与EQ满足的数量关系式为EP:EQ=1:m,∴0<m≤2+;(当m>2+时,EF与BC不会相交).探究二:若AC=30cm,(1)设EQ=x,则S=x2,所以当x=10时,面积最小,是50cm2;当x=10时,面积最大,是75cm2.(2)当x=EB=5时,S=62.5cm2,。
2021年江苏省扬州市中考数学真题模拟试卷附解析
2021年江苏省扬州市中考数学真题模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.抛物线y =(x -1)2+3的对称轴是( )A .直线x =1B .直线x =3C .直线x =-1D .直线x =-3 2.抛物线2y ax =和22y x =的形状相同,则 a 的值是( )A .2B .-2C .2±D . 不确定3. 如果a<b<0,下列不等式中错误..的是( ) A . ab >0 B . a+b<0 C . b a <1 D . a-b<04.如图所示,把直线1l 沿箭头方向平移2.5 cm ,得直线2l , 则这两条直线之间的距离是( )A .等于 2.5 cmB .小于2.5 cmC .大于2.5 cmD . 以上都不对5.如图所示,下列说法中错误的是 ( )A .∠C 和∠3是同位角B .∠A 和∠3是内错角C .∠A 和∠B 是同旁内角D .∠l 和∠3是内错角6.如果2(1)(3)x x x mx n -+=++,那么m ,n 的值分别是( )A .1m =,3n =B .4m =,5n =C .2m =,3n =-D .2m =-,3n = 7.AD 是△ABC 中BC 边上的中线,若AB =4,AC =6,则AD 的取值范围是( ) A .AD >1B .AD <5C .1<AD <5 D .2<AD <10 8.不改变分式y x x 7.0213.1--的值,把它的分子、分母的系数化为整数,其结果正确的是( )A .y x x 72113--B .y x x 721013--C .y x x 7201013--D .yx x 720113-- 9.已知a 、b 两数在数轴上的对应点如图所示,则下列结论正确的是( )A . a b <B . 0ab <C . 0b a -<D . 0a b +>10. 过一个钝角的顶点作这个角两边的垂线,若这两条垂线的夹角为 40°,则此钝角为( )A .140°B .160°C .120°D .110° 11.下列方程中属于一元一次方程的是( ) A .x-y=3 B .-x+1=1 C .11x x += D .2210x x -+= 二、填空题12.已知3x=4y ,则yx =________. 13.若△ABC ∽△A ′B ′C ′,且∠A =450,∠B =300,则∠C ′= .14.当三角形面积是8cm 2时,它的底边上的高h (cm )与底边长x(cm)之间的函数解析式是 .h=16x15. 如图,△ABC 中,∠C=90°,∠ABC=60°,BD 平分∠ABC ,若AD=6,则CD= .16.已知P 为□ABCD 内一点,100ABCD S =,则PAB PCD S S ∆∆+= .17.判断线段相等的定理(写出2个)如: .18.判断下列各方程后面的两个数是不是都是它的解(是的打“√”,不是的打“×”)(1)2670x x --=;(-1,7) ( )(2)23520x x +-=;(53,23-) ( )(3)22310x x -+=;(3, 1) ( )(4)2410x x -+=;(23-,23- ( )19.在△ABC 中,AB=AC ,∠A=50°,BD 为∠ABC 的平分线,则∠BDC= .20.为了了解某小区居民的用水情况,随机抽查了l0户家庭的用水量,结果如下表所示月用水量(t) 4 5 6 9 户数 3 4 2 1 则关于这l0户家庭的用水量的众数是 t 21.相似变换后得△DEF ,若对应边AB=3DE ,则△ABC 的周长是△DEF 的周长的 倍.22.不改变分式的值. 使分子、分母都不含不含负号:(1)23x -= ;(2)x yz -- = ;(3)2ab ---;(4)5y x--- = .23.71()4的底数是 ,指数是 ,表示的意义是 . 三、解答题24.有一个抛物线的拱形隧道,隧道的最大高度为 6m ,跨度为 8m ,把它放在如图所示的平面直角坐标系中.(1)求这条抛物线所对应的函数解析式;(2)若要在隧道壁上 P 点处 (如图 )安装一盏照明灯,灯离地面高 4.5 m ,求灯与点B 的距离.25.推动信息技术的发展,举行了电脑设计作品比赛,各班派学生代表参加,现将所有比赛成绩(得分取整数,满分为100分)进行处理然后分成五组,并绘制了频数分布直方图,请结合图中提供的信息,解答下列问题:(1)参加比赛学生的总人数是多少?(2)80.5~90.5这一分数段的频数、频率是多少?(3) 根据统计图,请你也提出一个问题,并做出回答.26.如图所示,架在消防车上的云梯 AB 的坡比为 1:0.8,已知云梯 AB 的长为 l6m ,云梯底部离地面 1.5m(即 BC= 1.5 m). 求云梯顶端离地面的距离. (精确到 1 m)27.代数式1324x xx x++÷++有意义,求x的取值范围.28.如图,若∠l与∠2互补,且∠l=60°,求∠3、∠4、∠5、∠6、∠7、∠8的度数.29.“五一”期间,两家商场都在对某品牌电脑实行打折销售.已知电脑原价为a元,甲商场的打折方案是:先打八折,再降m元;乙商场的打折方案是:先降m元,再打八折.如果去甲商场买来回要付20元车费,如果去乙商场买来回要付10元车费.现在王阿姨想买一台该品牌的电脑,你会对她提些什么建议呢?30.某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费:月用水量不超过20 m3时,按2元/m3计费;月用水量超过20 m3时,其中的20 m3仍按2元/m3收费,超过部分按2.6元/m3计费.设每户家庭月用水量为x(m3)时,应交水费y元.(1)分别求出0≤x≤20和x>20时,y与x的函数表达式;(2)小明家第二季度交纳水费的情况如下:月份四月份五月份六月份交费金额30元34元42.6元【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.C3.C4.B5.B6.C7.C8.C9.C10.A11.B二、填空题12.4313. 105°14.15.316.5017.略18.(1)√(2)×(3)× (4)×19.82.5°20.521.322. (1)23x -;(2)x yz ;(3)2ab -;(4)5y x+ 23.14-,7,7 个(14-)相乘三、解答题24.(1)由题意,设26(0)y ax a =+<,∵ 点 A(—4,0)和点 B(4,0)在抛物线上,∴20(4)6a =⋅-+,得38a =-. 所求函数解析式是2368y x =-+ (2)将y=4. 5 代入2368y x =-+中,得2x =±,∴P(-2,4. 5). 作 PQ ⊥AB ,连接 PB ,则 Q(—2,0),∴ PQ= 4.5 , BQ= 6.∴7.5PB ==,即灯与B 的距离是7. 5 m .25.⑴52人;(2)80.5~90.5这一分数段的频数为10,频率是265 ;(3)答案不唯一,提问题举例: 90.5~100.5分数段内的学生与50.5~60.5分数段内的学生哪一个多?答:在90.5~100.5分数段内的学生多.26.l4m27.2x ≠-,3x ≠-且4x ≠-28.∠3=∠4=∠2=∠7=120°,∠1=∠5=∠6=∠8=60°29.甲:0.8a-m+20 乙:0.8(a-m)+10,甲与乙之差为-O .2m+10,∴m=50时,甲、乙商场一样;m<50时,去乙商场;m>50时,去甲商场30.(1)y=2x ,y=2.6x-12;(2)53 m 3。
2021年江苏省中考数学二模名师精编试题附解析
2021年江苏省中考数学二模名师精编试题 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.样本容量为140,最大、最小值的差为23,确定组距为4,某小组的频数为42,则组数和这个小组的频率是( )A .6,3B .6,0.3C .6,0.5D .5.5,0.22.△ABC 和△A ′B ′C ′中,条件①AB=A ′B ′; ②BC=B ′C ′;③AC=A ′C ′;④∠A=∠A ′; ⑤∠B=∠8′;⑥∠C=∠C ′,则下列各组中不能保证△ABC ≌△A ′B ′C ′的是 ( )A .①②③B .①②⑤C .①③⑤D .②⑤⑥3. 某造纸厂一月份生产纸 1200 t ,采用新技术后,每月比上个月提高相同的百分数, 且三月份比二月份多生产 207 t. 设每月提高的百分数为x ,根据题意列出下列方程,正确的是( )A .21200(1)1200(1)207x x +-+=B .21200(1)1200207x x +-=C .21200(1)1200207x x +-=D . 221200(1)1200207x x +-= 4.一组数据共40个,分为6组,第一组到第四组的频数分别为l0,5,7,6,第五组的频 率为0.1,则第六组的频数为( )A .4B .5C .8D .10 5.下列说法中正确的是( )A .直四棱柱是四面体B .直棱柱的侧棱长不一定相等C 直五棱柱有五个侧面D .正方体是直四棱柱,长方体不是直四棱柱6.由132x y -=可以得到用x 表示y 的式子的是( ) A .223x y -= B .2133x y =- C . 223x y =- D .223x y =- 7.若22916x my y ++是一个完全平方式,那么m 的值是( )A . 24B .12C .12±D .24±二、填空题8.已知α为锐角,且tan α= .9.给出四个特征:①两条对角线相等;②任一组对角互补:③任一组邻角互补;④是轴对称图形但不是中心对称图形.其中属于矩形和等腰梯形共同具有的特征是 .10.某村共有银行储户110户,存款在2~3万元之间的银行储户的频率是0.2,则该村存款在2~3万元的银行储户有户.11.市场上出售一种大豆,大豆的总售价与所售大豆的数量之间的关系如下表:所售大豆数O1 1.52 2.53量(kg)总售价(元)03 4.567.59(1)上表中所反映的变量是;(2)如果出售2.5 kg大豆,那么总售价应为元;(3)出售 kg大豆,可得总售价为45元.12.若A=3x-2,B=1-2x,C=-5x,则A·B+A·C=________.13.在△ABC中,∠A=∠B,∠C=50°,则∠A= 度.14.已知2253++= .x xx x+-=,那么代数式224815.比较数的大小:0 -0.4,5-- -3,0.00l -1000.16.为了了解某所初级中学学生对2008年6月1日起实施的“限塑令”是否知道,从该校全体学生1200名中,随机抽查了80名学生,结果显示有2名学生“不知道”.由此,估计该校全体学生中对“限塑令”约有名学生“不知道”.三、解答题17.如图,两幅图片中竹竿的影子是在太阳光线下还是在灯泡光线下形成的?请你画出两图中小松树的影子.18.下图中的两个三角形相似吗?请说明理由. 然后在图中以网格的交点为顶点,画出一个和小三角形相似的三角形,要求所画的三角形大小与小三角形不同.19.1.已知三角形的面积为定值,当底边长 a=8㎝时,底边上的高线长h=5㎝.(1)求h关于a 的函数解析式和自变量a 的取值范围;(2)h 关于a 的函数是不是反比例函数?如果是,请说出它的比例系数;(3)求当三角形底边长为 12.5 cm 时,这条边上的高.20.如图,矩形ABCD中,对角线AC,BD交于点0,DE平分∠ADC,交BC于点E,∠BDE的度数为15°.求∠COD的度数.21.某学校要印刷一批资料,甲印刷公司提出收制版费900元,另外每份材料收印刷费0.5元;乙印刷公司提出不收制版费,每从头材料收印刷费0.8元.(1)分别写出两家印刷公司的收费y(元)与印刷材料x(份)之间的函数解析式;(2)若学校预计要印刷2500份宣传材料,请问学校应选择哪一家印刷公司更合算?22.用总长为20 m的篱笆围成一长方形场地.(1)写出长方形面积S(m2)与一边x(m)之间的函数解析式和自变量X的取值范围;(2)分别求当x=2,5,8时,函数S的值.23.将图中的点(-3,1)、(-1,3)、(-1,5)、 (1,5)、(1,3)、(3,1)、,(3,-3)、(-3,-3)作如下变化:(1)纵坐标不变,横坐标减2;(2)横坐标不变,纵坐标乘以-l .画出变化后的图案,并说明变化后的图案与原图案的关系.24.已知:△ABC 为等边三角形,D 为AC 上任意一点,连结BD .(1)在BD 左边,以BD 为一边作等边△BDE (尺规作图,保留作图痕迹,不写作法); (2)连结AE ,求证:CD =AE25.如图.(1)指出DC 、AB 被AC 所截的内错角;(2)指出AD 、BC 被AE 所截的同位角;(3)∠4与∠7,∠2与∠6,∠ADC 与∠DAB 是什么关系?是哪两条直线被哪条直线所截而成的?26.已知23325(2)m n m n n m n x y x y +-+-÷-的商与322x y -是同类项,求m n +的值.27.一轮船以18 km/h的速度从甲地航行到乙地,而原路返回时速度为12 km/h,若此次航行共用40 h,求甲、乙两地间的距离.28.国家卫生部信息统计中心根据国务院新闻办公室授权发布的全国内地5月21日至5月25日非典型性肺炎发病情况,按年龄段进行统计分析中,各年龄段发病的总人数如图所示(发病的病人年龄在0~80岁之间),请你观察图形,回答下面的问题:(1)全国内地5月21日至5月25日平均每天有人患非典型性肺炎;(2)年龄在29.5~39.5这一组的频数是;频率是;(3)根据统计图,年龄在范围内的人发病最多.29.某商场计划投入一笔资金采购一批紧俏商品,经过市场调查发现,如果月初出售,可获利l5%,并可用本和利再投资其它商品,到月底又可获利l0%;如果月末出售可获利30%,但要付仓储费700元,请问根据商场的资金状况,如何购销才能获利最多?30.如图,线段BC是线段AD经过向右平行移动l格,再向下平行移动5格后得到的线段,线段AB向右平行移动3格,再向上平行移动l格后得到线段DC,将方格中的图形向右平行移动2格,再向上平行移动1格,在方格中画出平移后的图形.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.A4.D5.C6.C7.D二、填空题8.60°9.①②10.22(1)总售价、所售大豆的数量;(2)7.5;(3)1512.217212-+-x x 13.6514.2415.>,<,>16.30三、解答题17.如图.图①:是在灯泡下,AB 是小松树的影子;图②:是在阳光下,AB 是小松树的影子.18.5不相似,对应边不成比例,所画图形如图中△ABC19.(1)85202l S x =⨯=,又∵12ah S ⋅=,∴240S h a a ==,自变量的取值范围是a>0. (2)∵40h a=,∴h 关于a 的函数是反比例函数,比例系数是 40; (3)当 a= 12.5 cm 时,40=3=3.212.5h =㎝ 20.60°21.(1)0.5900y x =+甲,0.8y x =乙;(2)选择乙印刷公司(1)210S x x =-+(0<x<10);(2)16,25,1623.画图略24.(1)略(2)只要证明:△ABE ≌△CBD (SAS )25.(1)∠1与∠5; (2)∠DAB 与∠9 ;(3)∠4与∠7是DC 、AB 被DB 所截而成的内错角;∠2与∠6是AD 、BC 被AC 所截而成的内错角;∠ADC 与∠DAB 是D ℃、AB 被AD 所截而成的同旁内角26.由已知得商为252m n m n x y --,可得322m n m n -=⎧⎨-=⎩,∴41m n =⎧⎨=⎩,∴5m n += 27.288 km28.⑴20; ⑵ 25,0.25; ⑶19.5~29.5.29.设投入资金为a 元,月初售出可获利:a(1+15%)(1+10%)-a=0.265a月末售出可获利:[a(1+30%)-700]-a=0.3a-700∴当a=20000元时,获利一样多;当a>20000元时,月末售出获利多;当a<20000元时,月初售出获利30.略。
江苏省南京市2021年中考数学预测真题(含答案解析)
江苏省中考数学模拟检测试题(含答案)一、单选题1.下列计算正确的是()A.2a+3a=6a B.(﹣3a)2=6a2C.(a﹣b)2=a2﹣b2D.2a2﹣3a2=﹣a22.已知三角形的两边分别为1和4,第三边长为整数,则该三角形的周长为()A.7B.8C.9D.103.﹣3的绝对值是()A.﹣3B.3C.-13D.134.据统计,南京市2020年参加中考人数共有11.8万人,11.8万用科学记数法表示为()A.11.8x103B.1.18x104C.1.18x105D.0.118x1065.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.6.一家鞋店在一段时间内销售了某种女鞋30双,各种尺码的销售量如下表所示,你认为商家更应该关注鞋子尺码的()A.平均数B.中位数C.众数D.方差7.在平面直角坐标系中,点A,B的坐标分别是(4,2),B(5,0),以O为位似中心,相似比为12,把ABO缩小,得到A1B1O,则点A的对应点A1的坐标为()A.(2,1)B.(2,﹣1)C.(﹣2,﹣1)D.(2,1)或(﹣2,﹣1)8.如图,已知直线y =k 1x+b 与x 轴、y 轴相交于P 、Q 两点,与y =2k x的图象相交于A(﹣2,m)、B(1,n)两点,连接OA 、OB ,给出下列结论:①k 1k 2<0;①m+12n =0;①AOP BOQ S S △△=;①不等式k 1x+b >2k x的解集是x <﹣2或0<x <1,其中正确的结论的序号是( )A .①①①B .①①①C .①①①D .①①①二、填空题9.4的平方根是 .10.函数y =中的自变量x 的取值范围是__________. 11.若关于x 的一元二次方程2310ax x +-=有两个不相等的实数根,则a 的取值范围是__________________. 12.若a+2b =4,则12a+b+4=_____. 13.2018年徐州又拿下了一个奖项“2018年联合国人居奖”,从2017年起徐州常住人口开始停止减少,2018年末徐州常住人口约为880万,预计2020年末将打到900万,设人口平均增长率为x ,可列出的方程为_____.14.一个多边形的各内角都等于120︒,则这个多边形的边数为______.15.用一个圆心角为90°,半径为4的扇形围成一个圆锥的侧面,该圆锥底面圆的半径___________.16.2019年,徐州马拉松成为世界马拉松大满贯联盟的候选赛事,这大幅度提升了徐州市的国际影响力,如图,在一场马拉松比赛中,某人在大楼A 处,测得起点拱门CD 的顶部C 的俯角为35°,底部D 的俯角为45°,如果A 处离地面的高度AB =20米,求起点拱门CD 的高度_____m .(结果精确到1米;参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70).17.如图,在平面直角坐标系中,2,0,()()0,1A B ,AC 由AB 绕点A 顺时针旋转90︒而得,则AC 所在直线的解析式是___.18.如图,正方形ABCD 的边长为9,将正方形折叠,使D 点落在BC 边上的点E 处,折痕为GH .若BE :EC =2:1,则线段CH 的长是_____.三、解答题19.(1)计算:(2020﹣π)0﹣1|﹣2sin45°+(13)﹣1. (2)化简:(24a a +﹣4)÷242a a-.20.(1)解方程:1x x -﹣1=231x -. (2)解不等式组:3232(1)4x x x x +⎧⎨--<⎩.21.小明参加某网店的“翻牌抽奖”活动,如图,4张牌分别对应价值5,10,15,20(单位:元)的4件奖品.(1)如果随机翻1张牌,那么抽中20元奖品的概率为__________;(2)如果随机翻2张牌,且第一次翻过的牌不再参加下次翻牌,则所获奖品总值不低于30元的概率为多少?22.随着科技的进步和网络资源的丰富,在线学习已成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数.23.已知,如图,在①ABCD中,E是AB的中点,连接CE井延长交DA的延长线于点F.()1求证:AEF①BEC;()2若DE平分ADC∠,求证:DC DF=.24.如图,已知①O 的直径AB=10,弦AC=6,①BAC 的平分线交①O 于点D ,过点D 作DE①AC 交AC 的延长线于点E (1)求证:DE 是①O 的切线. (2)求DE 的长.25.如图是宽为20m ,长为32m 的矩形耕地,要修筑同样宽的三条道路(互相垂直),把耕地分成六块大小相等的试验地,要使试验地的面积为570m 2,问:道路宽为多少米?26.如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y (千瓦时)关于已行驶路程x (千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程,当0150x ≤≤时,求1千瓦时的电量汽车能行驶的路程;(2)当150200x ≤≤时求y 关于x 的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.27.如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD 中,AB AD =,CB CD =,问四边形ABCD 是垂美四边形吗?请说明理由;(2)性质探究:如图1,四边形ABCD 的对角线AC 、BD 交于点O ,AC BD ⊥.试证明:2222AB CD AD BC +=+;(3)解决问题:如图3,分别以Rt ACB 的直角边AC 和斜边AB 为边向外作正方形ACFG 和正方形ABDE ,连结CE 、BG 、GE .已知4AC =,5AB =,求GE 的长. 28.如图,已知抛物线l 1:y =x 2﹣4的图象与x 有交于A 、C 两点, (1)若抛物线l 2与l 1关于x 轴对称,求l 2的解析式;(2)若点B 是抛物线l 1上的一动点(B 不与A 、C 重合),以AC 为对角线,A 、B 、C 三点为顶点的平行四边形的第四个顶点定为D ,求证:点D 在l 2上;(3)探索:当点B 分别位于l 1在x 轴上、下两部分的图象上时,平行四边形ABCD 的面积是否存在最大值和最小值?若存在,判断它是何种特殊平行四边形,并求出它的面积;若不存在,请说明理由.答案1.D解:A、结果是5a,故本选项不符合题意;B、结果是9a2,故本选项不符合题意;C、结果是a2﹣2ab+b2,故本选项不符合题意;D、结果是﹣a2,故本选项符合题意;故选:D.2.C【详解】设第三边为x,根据三角形的三边关系,得:4-1<x<4+1,即3<x<5,∵x为整数,∴x的值为4.三角形的周长为1+4+4=9.故选C.3.B【详解】根据绝对值的性质得:|-3|=3.故选B..4.C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:11.8万=118000=1.18×105故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 5.B 【解析】解:A 、不是轴对称图形,是中心对称图形,故此选项不合题意; B 、是轴对称图形,是中心对称图形,故此选项符合题意; C 、是轴对称图形,不是中心对称图形,故此选项不合题意; D 、是轴对称图形,不是中心对称图形,故此选项不合题意; 故选:B . 6.C 【分析】此题主要考查了统计的有关知识,主要是众数的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.根据平均数、中位数、众数、方差的意义分析判断即可,得出鞋店老板最关心的数据. 【详解】解:∵众数体现数据的最集中的一点,这样可以确定进货的数量, ∴鞋店最喜欢的是众数. 故选C . 7.D 【详解】解:点A 为(4,2),以O 为位似中心,相似比为12,把△ABO 缩小,得到△A 1B 1O , 则点A 的对应点A 1的坐标为(4×12,2×12)或(﹣4×12,﹣2×12),即(2,1)或(﹣2,﹣1), 故选:D . 8.D 【分析】根据一次函数和反比例函数的性质得到k 1k 2>0,故①错误;把A (﹣2,m )、B (1,n )代入y =2k x中得到﹣2m =n 故②正确;把A (﹣2,m )、B (1,n )代入y =k 1x+b 得到y =﹣mx ﹣m ,求得P (﹣1,0),Q (0,﹣m ),根据三角形的面积公式即可得到S △AOP =S △BOQ ;故③正确;根据图象得到不等式k 1x+b >2k x的解集是x <﹣2或0<x <1,故④正确. 【详解】解:①由图象知,k 1<0,k 2<0, ∴k 1k 2>0,故①错误;②把A (﹣2,m )、B (1,n )代入y =2k x中得﹣2m =n , ∴m+12n =0,故②正确; ③把A (﹣2,m )、B (1,n )代入y =k 1x+b 得112m k b n k b =-+⎧⎨=+⎩,解得1n m k 32n m b 3-⎧=⎪⎪⎨+⎪=⎪⎩,∵﹣2m =n , ∴y =﹣mx ﹣m ,∵已知直线y =k 1x+b 与x 轴、y 轴相交于P 、Q 两点, ∴P (﹣1,0),Q (0,﹣m ), ∴OP =1,OQ =m , ∴S △AOP =12m ,S △BOQ =12m , ∴S △AOP =S △BOQ ,故③正确; ④由图象知不等式k 1x+b >2k x的解集是x <﹣2或0<x <1,故④正确; 故选:D . 9.±2. 【解析】试题分析:∵2(2)4±=,∴4的平方根是±2.故答案为±2. 考点:平方根. 10.2x ≥-且4x ≠ 【解析】由题意得2040x x +≥⎧⎨-≠⎩,解得:2x ≥-且4x ≠,故答案为2x ≥-且4x ≠.11.94a >-且0a ≠. 【解析】试题分析:∵关于x 的一元二次方程2310ax x +-=有两个不相等的实数根,∴0a ≠且△=234(1)940a a -⨯⨯-=+>,解得:94a >-且0a ≠.故答案为94a >-且0a ≠.考点:1.根的判别式;2.一元二次方程的定义. 12.6 【分析】 先把12a+b+4变形为12(a+2b )+4,再把a+2b =4代入求值即可. 【详解】 解:12a+b+4=12(a+2b )+4, ∵a+2b =4, ∴原式=1442⨯+=6, 故答案为:6. 13.880(1+x )2=900 【详解】解:依题意,得:880(1+x )2=900. 故答案为:880(1+x )2=900. 【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键. 14.6 【分析】由题意,这个多边形的各内角都等于120︒,则其每个外角都是60︒,再由多边形外角和是360︒求出即可.【详解】解:∵这个多边形的各内角都等于120︒,∴其每个外角都是60︒,∴多边形的边数为360606=,故答案为6.15.1.【解析】试题分析:根据扇形的弧长公式l=904180180n rππ⨯==2π,设底面圆的半径是r,则2π=2πr,∴r=1.故答案为1.考点:圆锥的计算.16.6【分析】作CE⊥AB于E,根据矩形的性质得到CE=DB=20,CD=BE,根据正切的定义求出AE,结合图形计算即可.【详解】解:作CE⊥AB于E,则四边形CDBE为矩形,∴CE=DB,CD=BE,在Rt△ADB中,∠ADB=45°,∴AB=DB=20,∴CE=20,在Rt△ACE中,tan∠ACE=AE CE,∴AE=CE·tan∠ACE≈20×0.70=14,∴CD=BE=AB﹣AE=6m,故答案为:6.【点睛】本题主要考查利用三角函数解决实际问题,同时涉及矩形有关性质,解题关键在于作出辅助线构造直角三角形进而即可求解.17.24y x =-.【分析】过点C 作CD ⊥x 轴于点D ,易知△ACD ≌△BAO (AAS ),已知A (2,0),B (0,1),从而求得点C 坐标,设直线AC 的解析式为y=kx+b ,将点A ,点C 坐标代入求得k 和b ,从而得解.【详解】解:∵2,0,()()0,1A B∴2,1OA OB ==过点C 作CD x ⊥轴于点D ,∴∠BOA=∠ADC=90°.∵∠BAC=90°,∴∠BAO+∠CAD=90°.∵∠ABO+∠BAO=90°,∴∠CAD=∠ABO.∵AB=AC ,∴()ACD BAO AAS ∆∆≌.∴1,2AD OB CD OA ====∴()3,2C设直线AC 的解析式为y kx b =+,将点A ,点C 坐标代入得0223k b k b =+⎧⎨=+⎩∴24k b =⎧⎨=-⎩∴直线AC 的解析式为24y x =-.故答案为24y x =-.18.4【分析】根据折叠可得DH =EH ,在直角△CEH 中,设CH =x ,则DH =EH =9﹣x ,根据BE :EC =2:1可得CE =3,可以根据勾股定理列出方程,从而解出CH 的长.【详解】解:∵正方形ABCD 的边长为9,故可设CH =x ,则DH =EH =9﹣x ,∵BE :EC =2:1,BC =9,∴CE =13BC =3, 在Rt △ECH 中,EH 2=EC 2+CH 2,即(9﹣x )2=32+x 2,解得:x =4,即CH =4.故答案为:4.19.(1)3;(2)242a a -+ 【分析】(1)先计算零指数幂、去绝对值符号、代入三角函数值、负整数指数幂,再计算乘法,最后计算加减可得;(2)根据分式的混合运算顺序和运算法则计算可得.【详解】解:(1)(2020﹣π)0﹣1|﹣2sin45°+(13)﹣1=﹣1﹣2×2+3=﹣1+3=3;(2)(24a a +﹣4)÷242a a- =(244a a a a+-)÷(2)(2)2a a a +- =2(2)2(2)(2)a a a a a -+- =24+2a a -. 【点睛】本题主要考查了分式的混合运算与实数的运算,解答此题的关键是掌握分式的混合运算顺序和运算法则.20.(1)x =2;(2)﹣1≤x <2【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【详解】 解:(1)分式方程整理得:1x x --1=3(1)(1)x x , 等式左右两边同时乘以(x+1)(x ﹣1)得:x (x+1)﹣(x+1)(x ﹣1)=3, 整理得:x 2+x ﹣x 2+1=3,解得:x =2,经检验x =2时(x+1)(x ﹣1)≠0,∴x =2是分式方程的解.(2)3232(1)4x x x x +⎧⎨--<⎩, 分别解两个一元一次不等式得:x≥﹣1,x <2,∴不等式组的解集为﹣1≤x <2.【点睛】本题主要考查解分式方程以及解一元一次不等式组,易错点在于分式方程的验根.21.(1)14;(2)所获奖品总值不低于30元的概率为13.【分析】(1)随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用1除以4,求出抽中20元奖品的概率为多少即可.(2)首先应用树状图法,列举出随机翻2张牌,所获奖品的总值一共有多少种情况;然后用所获奖品总值不低于30元的情况的数量除以所有情况的数量,求出所获奖品总值不低于30元的概率为多少即可.【详解】(1)∵1÷4=14,∴抽中20元奖品的概率为14.故答案为:14.(2)画树状图如图:.∵所获奖品总值不低于30元有4种情况:30元、35元、30元、35元,∴所获奖品总值不低于30元的概率为:4÷1241 123 ==.【点睛】(1)此题主要考查了概率公式,要熟练掌握,解答此题的关键是要明确:随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.(2)此题还考查了列举法与树状图法求概率问题,解答此类问题的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.22.(1)90人,补全条形统计图见解析;.(2)48︒;(3)560人.【分析】(1)根据在线答题的人数与占比即可求出本次调查的学生总人数,即可计算补全统计图;(2)先求出“在线讨论”的占比再乘以360°即可求解;(3)根据在线阅读的占比乘以全校人数即可求解.【详解】(1)总人数=1820%90÷=(人),如图(2)在线讨论所占圆心角123604890=⨯︒=︒ (3)本校对在线阅读最感兴趣的人24210056090=⨯=(人) 【点睛】此题主要考查统计调查的应用,解题的关键是根据统计图求出本次调查的学生总人数. 23.()1证明见解析;()2证明见解析.【分析】()1根据AAS 即可证明:AEF ≌BEC ;()2首先证明AE AE =,再证明2DF AD =,2CD AE =即可解决问题;【详解】()1证明:四边形ABCD 是平行四边形,AD //BC ∴,F BCE ∠∠∴=, E 是AB 中点,AE EB ∴=,AEF BEC ∠∠=,AEF ∴≌BEC .()2证明:DE 平分ADC ∠,EDA EDC ∠∠∴=,AE //CD ,CDE AED ∠∠∴=,EDA AED ∠∠∴=,AD AE ∴=, AEF ≌BEC ,AF BC AB ∴==,DF 2AD ∴=,DC AB 2AE ==,DC DF ∴=.【点睛】考查平行四边形的性质、全等三角形的判定和性质、角平分线的定义、等腰三角形的判定和性质等知识,解题的关键是准确寻找全等三角形解决问题,属于中考常考题型. 24.(1)详见解析;(2)4.【解析】试题分析:(1)连结OD ,由AD 平分∠BAC,OA=OD ,可证得∠ODA=∠DAE,由平行线的性质可得OD ∥AE,再由DE ⊥AC 即可得OE ⊥DE ,即DE 是⊙O 的切线;(2)过点O 作OF ⊥AC 于点F ,由垂径定理可得AF=CF=3,再由勾股定理求得OF=4,再判定四边形OFED 是矩形,即可得DE=OF=4.试题解析:(1)连结OD ,∵AD 平分∠BAC,∴∠DAE=∠DAB ,∵OA=OD ,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD ∥AE,∵DE ⊥AC∴OE ⊥DE∴DE 是⊙O 的切线;(2)过点O 作OF ⊥AC 于点F ,∴AF=CF=3,∴OF=,∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED 是矩形,∴DE=OF=4.考点:切线的判定;垂径定理;勾股定理;矩形的判定及性质.25.1米【分析】设道路宽为x 米,根据题意列出一元二次方程即可求出结论.【详解】解:设道路宽为x 米,依题意得: (322)(20)570x x --=解得12=1,=35x x (不合题意,舍去)答:道路宽为1米.【点睛】此题考查的是一元二次方程的应用,掌握实际问题中的等量关系是解题关键.26.(1)1千瓦时可行驶6千米;(2)当150200x ≤≤时,函数表达式为0.5110y x =-+,当汽车行驶180千米时,蓄电池剩余电量为20千瓦时.【分析】(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米,据此即可求出1千瓦时的电量汽车能行驶的路程;(2)运用待定系数法求出y 关于x 的函数表达式,再把x=180代入即可求出当汽车已行驶180千米时,蓄电池的剩余电量.【详解】(1)由图像可知,蓄电池剩余电量为35千瓦时时汽车行驶了150千米.1千瓦时可行驶15066035=-千米. (2)设(0)y kx b k =+≠,把点(150,35),(200,10)代入,得1503520010k b k b +=⎧⎨+=⎩,∴0.5110k b =-⎧⎨=⎩,∴0.5110y x =-+. 当180x =时,0.518011020y =-⨯+=.答:当150200x ≤≤时,函数表达式为0.5110y x =-+,当汽车行驶180千米时,蓄电池剩余电量为20千瓦时.【点睛】本题考查了一次函数的应用,解题的关键:(1)熟练运用待定系数法就解析式;(2)找出剩余油量相同时行驶的距离.本题属于基础题,难度不大,解决该类问题应结合图形,理解图形中点的坐标代表的意义.27.(1) 四边形ABCD 是垂美四边形,理由见解析;(2)证明见解析;(3) GE =【分析】(1)根据垂直平分线的判定定理,可证直线AC 是线段BD 的垂直平分线,结合“垂美四边形”的定义证明即可;(2)根据垂直的定义和勾股定理解答即可;(3)连接CG 、BE ,先证明GAB CAE ≌,得到∴ABG AEC ∠=∠,可证90ABG AME ∠+∠=︒,即CE BG ⊥,从而四边形CGEB 是垂美四边形,根据垂美四边形的性质、勾股定理、结合(2)的结论计算即可.【详解】(1)四边形ABCD 是垂美四边形.证明:连接AC ,BD ,∵AB AD =,∴点A 在线段BD 的垂直平分线上,∵CB CD =,∴点C 在线段BD 的垂直平分线上,∴直线AC 是线段BD 的垂直平分线,∴AC BD ⊥,即四边形ABCD 是垂美四边形;(2)猜想结论:垂美四边形的两组对边的平方和相等. 如图2,已知四边形ABCD 中,AC BD ⊥,垂足为E , 求证:2222AD BC AB CD +=+证明:∵AC BD ⊥,∴90AED AEB BEC CED ∠=∠=∠=∠=︒,由勾股定理得,222222AD BC AE DE BE CE +=+++, 222222AB CD AE BE CE DE +=+++,∴2222AD BC AB CD +=+;故答案为2222AD BC AB CD +=+.(3)连接CG 、BE ,∵90CAG BAE ∠=∠=︒,∴CAG BAC BAE BAC ∠+∠=∠+∠,即GAB CAE ∠=∠,在GAB △和CAE 中,AG AC GAB CAE AB AE =⎧⎪∠=∠⎨⎪=⎩,∴()GAB CAE SAS △≌△, ∴ABG AEC ∠=∠,又90AEC AME ∠+∠=︒,∴90ABG AME ∠+∠=︒,即CE BG ⊥,∴四边形CGEB 是垂美四边形,由(2)得,2222CG BE CB GE +=+,∵4AC =,5AB =,∴3BC =,CG =BE =∴222273GE CG BE CB =+-=,∴GE =【点睛】本题考查的是正方形的性质、全等三角形的判定和性质、垂直的定义、勾股定理的应用,正确理解垂美四边形的定义、灵活运用勾股定理是解题的关键.28.(1)y =﹣x 2+4;(2)见解析;(3)存在,菱形,16【分析】(1)因为关于x 轴对称的点的特点是横坐标不变,纵坐标互为相反数,所以可得l 2的解析式;(2)设点B 的坐标为(x 1,x 12﹣4),根据题意求的点D 的坐标,代入解析式即可证明:点D 在l 2上;(3)首先表示出S 的值,根据函数值的范围即可得当点B 在x 轴上方时,y 1>0, S =4y 1,它是关于y 1的正比例函数且S 随y 1的增大而增大,∴S 既无最大值也无最小值; 当点B 在x 轴下方时,﹣4≤y 1<0,S 最大=16.【详解】(1)解:设l 2的解析式为y =a (x ﹣h )2+k∵l 1与x 轴的交点A (﹣2,0),C (2,0),顶点坐标是(0,﹣4),l 1与l 2关于x 轴对称,∴l 2过A (﹣2,0),C (2,0),顶点坐标是(0,4)∴y =ax 2+4∴0=4a+4得a =﹣1∴l 2的解析式为y =﹣x 2+4(2)证明:设B(x1,y1)∵点B在l1上∴B(x1,x12﹣4)∵四边形ABCD是平行四边形,A、C关于O对称∴B、D关于O对称∴D(﹣x1,﹣x12+4).将D(﹣x1,﹣x12+4)的坐标代入l2:y=﹣x2+4∴左边=右边∴点D在l2上.(3)解:设平行四边形ABCD的面积为S,则S=2S△ABC=AC×|y1|=4|y1|a.当点B在x轴上方时,y1>0∴S=4y1,它是关于y1的正比例函数且S随y1的增大而增大,∴S既无最大值也无最小值b.当点B在x轴下方时,﹣4≤y1<0∴S=﹣4y1,它是关于y1的正比例函数且S随y1的增大而减小,∴当y1=﹣4时,S有最大值16,但它没有最小值此时B(0,﹣4)在y轴上,它的对称点D也在y轴上.∴AC⊥BD.∴平行四边形ABCD是菱形此时S最大=16。
【2021年】江苏省苏州市中考数学模拟试题汇编(含答案)
江苏省中考数学精选真题预测(含答案)(考试时间:120分钟 分值:120分一、选择题(本大题共8小题.每小题3分,共24分.在每小题给出的四个选项中,只有一个是符合题目要求的,请将答案序号填在答题卡相应的位置上.................) 1. 在下列实数:2π、3、4、722、 010010001.1-中,无理数有 ( ▲ ) A .1个 B .2个 C .3个 D .4个 2. 下列计算中,正确的是( ▲ )A. 633a a a =+B. 532)(a a =C. 842a a a =⋅D. a a a =÷343. 不等式组2030x x -<⎧⎨-≥⎩的正整数解的个数是( ▲ )A .1个B .2个C .3个D .4个4.若关于x 的一元二次方程2690kx x -+=有两个不相等的实数根,则k 的取值范围是( ▲ )A .k > 1B .0k ≠C .k < 1D . k < 1且0k ≠5.某部队一位新兵进行射击训练,连续射靶5次,命中的环数分别是0,2,5,2,7.这组数据的中位数与众数分别是( ▲ )A .2, 5B . 2,2C .5,7D .2,7 6.若菱形两条对角线的长分别为6和8,则这个菱形的周长为( ▲ )A .20B .16C .12D . 107.已知二次函数b x a y +-=2)1(有最小值 –1,则a 与b 之间的大小关系是 ( ▲ )A .a <bB .a=bC .a >bD .不能确定 8.如图,点P (3a ,a )是反比例函y =kx(k >0)与⊙O 的一个交点, 图中阴影部分的面积为10π,则反比例函数的解析式为( ▲ )A .y =3xB .y =5xC .y =10xD .y =12x第8题图二、填空题(本大题共10小题.每小题3分,共30分.请将答案填在答题卡相应的位置上...............) 9. 3 的相反数是 ▲ .10.银原子的直径为0.0003微米,用科学记数法表示为 ▲ 微米11.已知=+=yyx y x 则,52 ▲ . 12.已知3x -+│2x-y │=0,那么x - y 的值为 ▲ . 第17题图 13.在同一直角坐标平面内,直线y x =与双曲线2m y x-=没有交点,那么m 的取值范围是 ▲ .14.四张完全相同的卡片上,分别画有等边三角形、平行四边形、矩形、等腰梯形,现从中随机抽取一张,卡片上画的恰好是中心对称图形的概率为 ▲ .15.等腰三角形的两边长分别是3和5,则此三角形的周长为 ▲ . 16.如图,⊙O 中,弦AD ∥BC ,DA =DC ,∠AOC =160°,则∠BCO 等于 ▲ °. 17.在Rt △ABC 中,斜边AB =5厘米,BC =a 厘米,AC =b 厘米,a >b ,且a 、b 是方程2(1)40x m x m --++=的两根,Rt △ABC 的面积为 ▲ 平方厘米.18.如图,△ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),∠ADE=∠B=α,D E交AC于点E,且cosα=.下列结论:①△ADE∽△ACD;②当BD=6时,△ABD≌△DCE; ③△DCE为直角三角形时,BD为8;④0<CE≤6.4.其中正确的结论是 ▲ (把正确结论的序号都填上). 第18题图 三、解答题(本大题共9大题,共66分.请将答案....写在答题卡相应的位置上..........,解答时应写出必要的计算过程,推演步骤或文字说明.作图时用铅笔) 19. (4分) 计算:10014()260(2)2cos π-+-+-20. (5分) 求值:23111x x x x x x -⎛⎫-• ⎪-+⎝⎭, 其中x = -2.21.(5分)如图,在平面直角坐标系中,∠AOB=60°,点B 坐标为(2,0),线段OA 的长为6. 将△AOB 绕点O 逆时针旋转60°后,点A 落在点C 处,点B 落在点D 处.⑴请在图中画出△COD ;⑵求点A 旋转过程中所经过的路程(精确到0.1).22. (6分) 如图是不倒翁的正视图,不倒翁的圆形脸恰好与帽子边沿PA 、PB 分别相切于点A 、B ,不倒翁的鼻尖正好是圆心O ,若∠OAB=25°,求∠A PB 的度数.第21题图 第22题图 第23题图 第24题图23. ( 7分)某中学为了解学生的课余生活情况,学校决定围绕“在欣赏音乐、读课外书、体育运动、其他活动中,你最喜欢的课余生活种类是什么?(只写一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查问卷适当整理后绘制成如图所示的不完整的条形统计图,其中最喜欢欣赏音乐的学生占被抽取人数的12%,请你根据以上信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)最喜欢读课外书的学生占被抽取人数的百分数是多少?(3)如果全校有1 000名学生,请你估计全校最喜欢体育运动的学生约有多少名?24. (8分)张师傅驾车运送草莓到某地出售,汽车出发前油箱有油50升,行驶若干小时后,途中在加油站加油若干升,油箱中剩余油量y (升)与行驶时间t (小时)之间的关系如图所示.请根据图象回答下列问题:· PA B OGNMHFECBA(1)汽车行驶 ▲ 小时后加油,中途加油 ▲ 升; (2)求加油前油箱剩余油量y 与行驶时间t 的函数关系式;(3)已知加油前、后汽车都以70千米/小时匀速行驶,如果加油站距目的地210千米,要到达目的地,问油箱中的油是否够用?请说明理由.25.(8分)某商场为做好“家电下乡”的惠民服务,决定从厂家购进甲、乙、丙三种不同型号的电视机108台,其中甲种电视机的台数是丙种的4倍,购进三种电视机的总金额不超过147 000元,已知甲、乙、丙三种型号的电视机的出厂价格分别为1 000元/台,1 500元/台,2 000元/台.(1)求该商场至少购买丙种电视机多少台? (2)若要求甲种电视机的台数不超过乙种电视机的台数,问有哪些购买方案? 26. (10分) 【问题引入】已知:如图BE 、CF 是ΔABC 的中线,BE 、CF 相交于G 。
2021年江苏省扬州市中考数学模拟试卷(二)(有答案)
2021年江苏省扬州市中考数学模拟试卷(二)一、选择题1.的相反数是()A.B. C.D.2.据有关资料,当前我国的道路交通安全形势十分严峻,去年我国交通事故的死亡人数约为10.4万人,居世界第一,这个数用科学记数法表示是()A.1.04×104B.1.04×105C.1.04×106D.10.4×1043.点P(1,﹣2)关于y轴对称的点的坐标是()A.(﹣1,﹣2)B.(1,2)C.(﹣1,2)D.(﹣2,1)4.不等式组的最小整数解为()A.﹣1 B.0 C.1 D.45.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM长的最小值为()A.2 B.3 C.4 D.56.把一个正方形三次对折后沿虚线剪下,如图所示,则所得的图形是()A.B.C. D.7.如图,▱ABCD的周长为16cm,AC与BD相交于点O,OE⊥AC交AD于E,则△DCE的周长为()A.4cm B.6cm C.8cm D.10cm8.如图,△ABC中,∠A=30°,,AC=,则AB的长为()A.B.C.5 D.9.已知实数x满足x2+=0,那么x+的值是()A.1或﹣2 B.﹣1或2 C.1 D.﹣210.如图是三个反比例函数y=,y=,y=在x轴上方的图象,由此观察得到k1,k2,k3的大小关系为()A.k1>k2>k3B.k3>k2>k1C.k2>k3>k1D.k3>k1>k211.我们知道,溶液的酸碱度由PH确定.当PH>7时,溶液呈碱性;当PH<7时,溶液呈酸性.若将给定的HCl溶液加水稀释,那么在下列图象中,能反映HCl溶液的PH与所加水的体积(V)的变化关系的是()A.B.C. D.12.在矩形ABCD中,AB=3,AD=4,P是AD上的动点,PE⊥AC于E,PF⊥BD于F,则PE+PF的值为()A.B.2 C.D.1二、填空:本大题共8小题;每小题4分,共32分.把答案填写在题中横线上.13.(4分)函数y=中,自变量x的取值范围是.14.(4分)已知二次函数:(1)图象不经过第三象限;(2)图象经过点(2,﹣5),请你写出一个同时满足(1)和(2)的函数关系式:.15.(4分)某校去年对实验器材的投资为2万元,预计今明两年的投资总额为8万元,若设该校这两年在实验器材投资上的平均增长率为x,则可列方程:.16.(4分)如图所示,一张矩形纸片,要折叠出一个最大的正方形,小明把矩形上的一个角沿折痕AE翻折上去,使AB与AD边上的AF重合,则四边形ABEF就是一个大的正方形,他判定的方法是.17.(4分)如图是2003年11月份的日历,现用一矩形在日历中任意框出4个数,请用一个等式表示,a、b、c、d之间的关系.18.(4分)为了测量一个圆铁环的半径,某同学用了如下方法,将铁环平放在水平桌面上,用有一个角为30°的直角三角板和刻度尺按如图所示的方法得到相关数据,进而求出铁环半径,若测得PA=5cm,则铁环的半径是cm.19.(4分)正方形网格中,小格的顶点叫做格点.小华按下列要求作图:①在正方形网格的三条不同的实线上各取一个格点,使其中任意两点不在同一条实线上;②连接三个格点,使之构成直角三角形.小华在左边的正方形网格中作出了Rt△ABC.请你按照同样的要求,在右边的两个正方形网格中各画出一个直角三角形,并使三个网格中的直角三角形互不全等.20.(4分)小王同学想利用树影测量校园内的树高.他在某一时刻测得小树高为1.5米时,其影长为1.2米,当他测量教学楼旁的一棵大树的影长时,因大树靠近教学楼,有一部分影子在墙上.经测量,地面部分影长为6.4米,墙上影长为1.4米,那么这棵大树高约为米.三、解答题:(本题共8个小题,共82分)21.(8分)计算:﹣sin60°+(﹣)0﹣.22.(8分)如图所示,在菱形ABCD中,点E,F分别在CD,BC上,且CE=CF,求证:AE=AF.23.(8分)某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:(2)假设销售负责人把每位营销员的月销售额定为320件,你认为是否合理,为什么?如不合理,请你制定一个较合理的销售定额,并说明理由.24.(10分)已知关于x的一元二次方程ax2+x﹣a=0(a≠0).(1)求证:对于任意非零实数a,该方程恒有两个异号的实数根;(2)设x1、x2是该方程的两个根,若|x1|+|x2|=4,求a的值.25.(10分)某学习小组在探索“各内角都相等的圆内接多边形是否为正多边形”时,进行如下讨论:甲同学:这种多边形不一定是正多边形,如圆内接矩形.乙同学:我发现边数是6时,它也不一定是正多边形,如图1,△ABC是正三角形,,证明六边形ADBECF的各内角相等,但它未必是正六边形.丙同学:我能证明,边数是5时,它是正多边形,我想…,边数是7时,它可能也是正多边形.(1)请你说明乙同学构造的六边形各内角相等;(2)请你证明,各内角都相等的圆内接七边形ABCDEFG(如图2)是正七边形;(不必写已知,求证)(3)根据以上探索过程,提出你的猜想.(不必证明)26.(12分)某中学为筹备校庆活动,准备印制一批校庆纪念册.该纪念册每册需要10张8K 大小的纸,其中4张为彩页,6张为黑白页.印制该纪念册的总费用由制版费和印刷费两部分组成,制版费与印数无关,价格为:彩页300元/张,黑白页50元/张;印刷费与印数的关系见下表.元;(2)若印制2千册,则共需多少费用?(3)如果该校希望印数至少为4千册,总费用至多为60000元,求印数的取值范围.(精确到0.01千册)27.(12分)如图,平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(6,0),(6,8).动点M、N分别从O、B同时出发,以每秒1个单位的速度运动.其中,点M沿OA向终点A运动,点N沿BC向终点C运动.过点N作NP⊥BC,交AC于P,连接MP.已知动点运动了x秒.(1)P点的坐标为多少;(用含x的代数式表示)(2)试求△MPA面积的最大值,并求此时x的值;(3)请你探索:当x为何值时,△MPA是一个等腰三角形?你发现了几种情况?写出你的研究成果.28.(14分)已知:如图,点A在y轴上,⊙A与x轴交于B、C两点,与y轴交于点D(0,3)和点E(0,﹣1)(1)求经过B、E、C三点的二次函数的解析式;(2)若经过第一、二、三象限的一动直线切⊙A于点P(s,t),与x轴交于点M,连接PA并延长与⊙A交于点Q,设Q点的纵坐标为y,求y关于t的函数关系式,并观察图形写出自变量t的取值范围;(3)在(2)的条件下,当y=0时,求切线PM的解析式,并借助函数图象,求出(1)中抛物线在切线PM下方的点的横坐标x的取值范围.参考答案与试题解析一、选择题:本大题共12小题;每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.的相反数是()A.B. C.D.【解答】解:根据相反数的定义,得的相反数是.故选A.2.据有关资料,当前我国的道路交通安全形势十分严峻,去年我国交通事故的死亡人数约为10.4万人,居世界第一,这个数用科学记数法表示是()A.1.04×104B.1.04×105C.1.04×106D.10.4×104【解答】解:10.4万=104 000=1.04×105.故选B.3.点P(1,﹣2)关于y轴对称的点的坐标是()A.(﹣1,﹣2)B.(1,2)C.(﹣1,2)D.(﹣2,1)【解答】解:∵点P(1,﹣2)关于y轴对称,∴点P(1,﹣2)关于y轴对称的点的坐标是(﹣1,﹣2).故选A.4.不等式组的最小整数解为()A.﹣1 B.0 C.1 D.4【解答】解:化简不等式组得,所以不等式组的解集为﹣<x≤4,则符合条件的最小整数解为0.故选B.5.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM长的最小值为()A.2 B.3 C.4 D.5【解答】解:根据垂线段最短知,当OM⊥AB时,OM有最小值,此时,由垂径定理知,点M是AB的中点,连接OA,AM=AB=4,由勾股定理知,OM=3.故选:B.6.把一个正方形三次对折后沿虚线剪下,如图所示,则所得的图形是()A.B.C. D.【解答】解:从折叠的图形中剪去8个等腰直角三角形,易得将从正方形纸片中剪去4个小正方形,故选C.7.如图,▱ABCD的周长为16cm,AC与BD相交于点O,OE⊥AC交AD于E,则△DCE的周长为()A.4cm B.6cm C.8cm D.10cm【解答】解:∵四边形ABCD为平行四边形,∴OA=OC;∵OE⊥AC,∴AE=EC;∵▱ABCD的周长为16cm,∴CD+AD=8cm;∴△DCE的周长=CD+CE+DE=CD+AD=8cm.故选:C.8.如图,△ABC中,∠A=30°,,AC=,则AB的长为()A.B.C.5 D.【解答】解:作CD⊥AB于D.在直角三角形ACD中,∠A=30°,AC=,∴CD=,AD=3.在直角三角形BCD中,,∴BD==2.∴AB=AD+BD=5.故选C.9.已知实数x满足x2+=0,那么x+的值是()A.1或﹣2 B.﹣1或2 C.1 D.﹣2【解答】解:∵x2+=0∴∴[(x+)+2][(x+)﹣1]=0∴x+=1或﹣2.∵x+=1无解,∴x+=﹣2.故选D.10.如图是三个反比例函数y=,y=,y=在x轴上方的图象,由此观察得到k1,k2,k3的大小关系为()A.k1>k2>k3B.k3>k2>k1C.k2>k3>k1D.k3>k1>k2【解答】解:由图知,y=的图象在第二象限,y=,y=的图象在第一象限,∴k1<0,k2>0,k3>0,又当x=1时,有k2<k3,∴k3>k2>k1.故选B.11.我们知道,溶液的酸碱度由PH确定.当PH>7时,溶液呈碱性;当PH<7时,溶液呈酸性.若将给定的HCl溶液加水稀释,那么在下列图象中,能反映HCl溶液的PH与所加水的体积(V)的变化关系的是()A.B.C. D.【解答】解:根据题意:若将给定的HCl溶液加水稀释,那么开始PH<7,随着慢慢加水,溶液的酸性越来越弱,且PH值逐渐增大.故选C.12.在矩形ABCD中,AB=3,AD=4,P是AD上的动点,PE⊥AC于E,PF⊥BD于F,则PE+PF的值为()A.B.2 C.D.1【解答】解:设AP=x,PD=4﹣x.∵∠EAP=∠EAP,∠AEP=∠ADC;∴△AEP∽△ADC,故=①;同理可得△DFP∽△DAB,故=②.①+②得=,∴PE+PF=.故选A.二、填空:本大题共8小题;每小题4分,共32分.把答案填写在题中横线上.13.(4分)函数y=中,自变量x的取值范围是x>﹣2 .【解答】解:根据题意得:x+2>0,解得x>﹣2.14.(4分)已知二次函数:(1)图象不经过第三象限;(2)图象经过点(2,﹣5),请你写出一个同时满足(1)和(2)的函数关系式:y=x2﹣5x+1(答案不唯一).【解答】解:此题答案不唯一,如:y=x2﹣5x+1.15.(4分)某校去年对实验器材的投资为2万元,预计今明两年的投资总额为8万元,若设该校这两年在实验器材投资上的平均增长率为x,则可列方程:2(1+x)+2(1+x)2=8 .【解答】解:∵去年对实验器材的投资为2万元,该校这两年在实验器材投资上的平均增长率为x,∴今年的投资总额为2(1+x);明年的投资总额为2(1+x)2;∵预计今明两年的投资总额为8万元,∴2(1+x)+2(1+x)2=8.16.(4分)如图所示,一张矩形纸片,要折叠出一个最大的正方形,小明把矩形上的一个角沿折痕AE翻折上去,使AB与AD边上的AF重合,则四边形ABEF就是一个大的正方形,他判定的方法是有一组邻边相等的矩形是正方形.【解答】解:根据题意可得,其判定方法是:有一组邻边相等的矩形是正方形.17.(4分)如图是2003年11月份的日历,现用一矩形在日历中任意框出4个数,请用一个等式表示,a、b、c、d之间的关系a+d=b+c .【解答】解:a+d=b+c(形式不唯一).18.(4分)为了测量一个圆铁环的半径,某同学用了如下方法,将铁环平放在水平桌面上,用有一个角为30°的直角三角板和刻度尺按如图所示的方法得到相关数据,进而求出铁环半径,若测得PA=5cm,则铁环的半径是5cm.【解答】解:连接FA,FE,FP,∴∠APE=120°,∠FAP=∠FEP=90°.∵PA=PE,∴△FAP≌△FEP.∴∠APF=60°,∴AF=AP•tan60°=5.19.(4分)正方形网格中,小格的顶点叫做格点.小华按下列要求作图:①在正方形网格的三条不同的实线上各取一个格点,使其中任意两点不在同一条实线上;②连接三个格点,使之构成直角三角形.小华在左边的正方形网格中作出了Rt△ABC.请你按照同样的要求,在右边的两个正方形网格中各画出一个直角三角形,并使三个网格中的直角三角形互不全等如图.【解答】解:如图所示:20.(4分)小王同学想利用树影测量校园内的树高.他在某一时刻测得小树高为1.5米时,其影长为1.2米,当他测量教学楼旁的一棵大树的影长时,因大树靠近教学楼,有一部分影子在墙上.经测量,地面部分影长为6.4米,墙上影长为1.4米,那么这棵大树高约为9.4 米.【解答】解:设这棵大树高为x,根据平行投影特点:在同一时刻,不同物体的物高和影长成比例.可得树高比影长为=1.25,则有==0.8,解可得:x=9.4米.三、解答题:(本题共8个小题,共82分)21.(8分)计算:﹣sin60°+(﹣)0﹣.【解答】解:原式==2.22.(8分)如图所示,在菱形ABCD中,点E,F分别在CD,BC上,且CE=CF,求证:AE=AF.【解答】证明:∵四边形ABCD为菱形,∴AD=AB=CD=CB,∠B=∠D.又∵CE=CF,∴CD﹣CE=CB﹣CF,即DE=BF.∴△ADE≌△ABF.∴AE=AF.23.(8分)某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:(2)假设销售负责人把每位营销员的月销售额定为320件,你认为是否合理,为什么?如不合理,请你制定一个较合理的销售定额,并说明理由.【解答】解:(1)平均数是: =320(件),表中的数据是按从大到小的顺序排列的,处于中间位置的是210,因而中位数是210(件),210出现了5次最多,所以众数是210;(2)不合理.因为15人中有13人的销售额不到320件,320件虽是所给一组数据的平均数,它却不能很好地反映销售人员的一般水平.销售额定为210件合适些,因为210件既是中位数,又是众数,是大部分人能达到的定额.24.(10分)已知关于x的一元二次方程ax2+x﹣a=0(a≠0).(1)求证:对于任意非零实数a,该方程恒有两个异号的实数根;(2)设x1、x2是该方程的两个根,若|x1|+|x2|=4,求a的值.【解答】证明:(1)∵△=1+4a2.∴△>0.∴方程恒有两个实数根.设方程的两根为x1,x2.∵a≠0.∴x1•x2=﹣1<0.∴方程恒有两个异号的实数根;解:(2)∵x1•x2<0.∴|x1|+|x2|=|x1﹣x2|=4.则(x1+x2)2﹣4x1x2=16.又∵x1+x2=﹣.∴+4=16.∴a=±.25.(10分)某学习小组在探索“各内角都相等的圆内接多边形是否为正多边形”时,进行如下讨论:甲同学:这种多边形不一定是正多边形,如圆内接矩形.乙同学:我发现边数是6时,它也不一定是正多边形,如图1,△ABC是正三角形,,证明六边形ADBECF的各内角相等,但它未必是正六边形.丙同学:我能证明,边数是5时,它是正多边形,我想…,边数是7时,它可能也是正多边形.(1)请你说明乙同学构造的六边形各内角相等;(2)请你证明,各内角都相等的圆内接七边形ABCDEFG(如图2)是正七边形;(不必写已知,求证)(3)根据以上探索过程,提出你的猜想.(不必证明)【解答】解:(1)由图知∠AFC对,∵,而∠DAF对的,∴∠AFC=∠DAF.同理可证,其余各角都等于∠AFC,故图(1)中六边形各角相等;(2)∵∠A对,∠B对,又∵∠A=∠B,∴,∴,同理,.(3)猜想:当边数是奇数时(或当边数是3,5,7,9,时),各内角相等的圆内接多边形是正多边形.26.(12分)某中学为筹备校庆活动,准备印制一批校庆纪念册.该纪念册每册需要10张8K 大小的纸,其中4张为彩页,6张为黑白页.印制该纪念册的总费用由制版费和印刷费两部分组成,制版费与印数无关,价格为:彩页300元/张,黑白页50元/张;印刷费与印数的关系见下表.1500 元;(2)若印制2千册,则共需多少费用?(3)如果该校希望印数至少为4千册,总费用至多为60000元,求印数的取值范围.(精确到0.01千册)【解答】解:(1)4×300+6×50=1500元;(2)若印制2千册,则印刷费为(2.2×4+0.7×6)×2000=26000(元)所以总费用为26000+1500=27500(元);(3)设印数为x千册,①若4≤x<5,由题意得1000×(2.2×4+0.7×6)x+1500≤60000解得x≤4.5∴4≤x≤4.5②若x≥5,由题意得1000×(2.0×4+0.6×6)x+1500≤60000解得x≤5.04∴5≤x≤5.04综上所述,符合要求的印数x(千册)的取值范围为4≤x≤4.5或5≤x≤5.04.27.(12分)如图,平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(6,0),(6,8).动点M、N分别从O、B同时出发,以每秒1个单位的速度运动.其中,点M沿OA向终点A运动,点N沿BC向终点C运动.过点N作NP⊥BC,交AC于P,连接MP.已知动点运动了x秒.(1)P点的坐标为多少;(用含x的代数式表示)(2)试求△MPA面积的最大值,并求此时x的值;(3)请你探索:当x为何值时,△MPA是一个等腰三角形?你发现了几种情况?写出你的研究成果.【解答】解:(1)由题意可知C(0,8),又A(6,0),所以直线AC解析式为:y=﹣x+8,因为P点的横坐标与N点的横坐标相同为6﹣x,代入直线AC中得y=,所以P点坐标为(6﹣x, x);(2)设△MPA的面积为S,在△MPA中,MA=6﹣x,MA边上的高为x,其中,0≤x<6,∴S=(6﹣x)×x=(﹣x2+6x)=﹣(x﹣3)2+6,∴S的最大值为6,此时x=3;(3)延长NP交x轴于Q,则有PQ⊥OA①若MP=PA,∵PQ⊥MA,∴MQ=QA=x,∴3x=6,∴x=2;②若MP=MA,则MQ=6﹣2x,PQ=x,PM=MA=6﹣x,在Rt△PMQ中,∵PM2=MQ2+PQ2,∴(6﹣x)2=(6﹣2x)2+(x)2,∴x=;③若PA=AM,∵PA=x,AM=6﹣x,∴x=6﹣x,∴x=,综上所述,x=2,或x=,或x=.28.(14分)已知:如图,点A在y轴上,⊙A与x轴交于B、C两点,与y轴交于点D(0,3)和点E(0,﹣1)(1)求经过B、E、C三点的二次函数的解析式;(2)若经过第一、二、三象限的一动直线切⊙A于点P(s,t),与x轴交于点M,连接PA并延长与⊙A交于点Q,设Q点的纵坐标为y,求y关于t的函数关系式,并观察图形写出自变量t的取值范围;(3)在(2)的条件下,当y=0时,求切线PM的解析式,并借助函数图象,求出(1)中抛物线在切线PM下方的点的横坐标x的取值范围.【解答】解:(1)解法一:连接AC∵DE为⊙A的直径,DE⊥BC∴BO=CO∵D(0,3),E(0,﹣1)∴DE=|3﹣(﹣1)|=4,OE=1∴AO=1,AC=DE=2在Rt△AOC中,AC2=AO2+OC2∴OC=∴C (,0),B (,0)设经过B 、E 、C 三点的抛物线的解析式为,则﹣1=a (0﹣)(0+)解得a=∴y=(x ﹣)(x+)=x 2﹣1(2分).解法二:∵DE 为⊙A 的直径,DE ⊥BC ∴BO=CO ∴OC 2=OD •OE∵D (0,3),E (0,﹣1) ∴DO=3,OE=1 ∴OC2=3×1=3∴OC=∴C (,0),B (﹣,0)以下同解法一;(2)解法一:过点P 作PF ⊥y 轴于F ,过点Q 作QN ⊥y 轴于N ∴∠PFA=∠QNA=90°,F 点的纵坐标为t N 点的纵坐标为y ∵∠PAF=∠QAN ,PA=QA ∴△PFA ≌△QNA ∴FA=NA ∵AO=1 ∴A (0,1) ∴|t ﹣1|=|1﹣y|∵动切线PM 经过第一、二、三象限 观察图形可得1<t <3,﹣1<y <1. ∴t ﹣1=1﹣y . 即y=﹣t+2.∴y 关于t 的函数关系式为y=﹣t+2(1<t <3)(5分)解法二:(i )当经过一、二、三象限的切线PM 运动到使得Q 点与C 点重合时,y=0∵PC是直径∴∠PBC=90°∴PB⊥x轴,∴PB=t.∵PA=AC,BO=OC,AO=1,∴PB=2AO=2,∴t=2.即t=2时,y=0.(ii)当经过一、二、三象限的切线PM运动使得Q点在x轴上方时,y>0观察图形可得1<t<2过P作PS⊥x轴于S,过Q作QT⊥x轴于T则PS∥AO∥QT∵点A为线段PQ的中点∴点O为线段ST的中点∴AO为梯形QTSP的中位线∴AO=∴1=∴y=﹣t+2.∴y=﹣t+2(1<t<2).(iii)当经过一、二、三象限的切线PM运动使得Q点在x轴下方时,y<0,观察图形可得2<t<3过P作PS⊥x轴于S,过Q作QT⊥x轴于T,设PQ交x轴于R则QT∥PS∴△QRT∽△PRS∴设AR=m,则&&(1)又∵AO⊥x轴,∴△ROA∽△RSP∴∴&&(2)由(1)、(2)得y=﹣t+2∴y=﹣t+2(2<t<3)综上所述:y与t的函数关系式为y=﹣t+2(1<t<3)(5分)(3)解法一:当y=0时,Q点与C点重合,连接PB∵PC为⊙A的直径∴∠PBC=90°即PB⊥x轴∴s=﹣将y=0代入y=﹣t+2(1<t<3),得0=﹣t+2∴t=2∴P(﹣,2)设切线PM与y轴交于点I,则AP⊥PI∴∠API=90°在△API与△AOC中∵∠API=∠AOC=90°,∠PAI=∠OAC∴△API∽△AOC∴∴I点坐标为(0,5)设切线PM的解析式为y=kx+5(k≠0),∵P点的坐标为,∴2=﹣ 3 k+5.解得k=,∴切线PM的解析式为y=x+5(7分)设切线PM与抛物线y=x2﹣1交于G、H两点由=可得x1因此,G、H的横坐标分别为根据图象可得抛物线在切线PM下方的点的横坐标x的取值范围是(9分)解法二:同(3)解法一可得P(﹣,2)∵直线PM为⊙A的切线,PC为⊙A的直径∴PC⊥PM在Rt△CPM与Rt△CBP中cos∠PCM=∵CB=2,PC=4∴CM=设M点的坐标为(m,0),则CM=﹣m=∴m=﹣.即M(﹣,0).设切线PM的解析式为y=kx+b(k≠0),得k+b2=﹣k+b.解得∴切线PM的解析式为y=x+5(7分)以下同解法一.。
2021年江苏省连云港市中考数学精编试题附解析
2021年江苏省连云港市中考数学精编试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.若半径为 7 和 9 的两圆相切,则这两圆的圆心距长一定为( ) A . 16 B .2 C .2 或 16 D . 以上答案都不对 2.两个相似三角形对应高的长分别为 8 和 6则它们的面积比是( )A .4:3B .16:9C .2:3D .3:23.如图,圆心角都是90°的扇形OAB 与扇形OCD 叠放在一起,OA =3,OC =1,分别连结AC 、BD ,则图中阴影部分的面积为( ) A .12π B .π C .2π D .4π4.如图,AB 为⊙O 的直径,CD 是弦,AB 与 CD 交于点 E ,若要得到 CE =DE ,还需要添加的条件是(不要添加其它辅助线)( )A .AB ⊥CDB .⌒AC =⌒BC C .CD 平分OB D .以上答案都不对5.21|3|0x y ++=2()x y +的值为( )A .52B .52-C .72D .72-6. 一家鞋店在一段时间内销售了某种女鞋30双,各种尺码的销售量如下表:尺码/厘米 22 22.5 23 23.5 24 24.5 25 销售量/双12512631.合适..的是( ) A .20双 B .30双C .50双D .80双7.如图是由一些相同的小正方体构成的几何体的三视图,这些相同的小正方体的个数是 ( ) A .4个B .5个C .6个D .7个8.用科学记数法表示0.00038得( ) A .53810-⨯B .43.810-⨯C .43.810⨯D .30.3810-⨯9.下列叙述正确的是 ( )①线段AB 可表示为线段BA ;②射线AB 可表示为射线BA ;③直线AB 可表示为直线BA . A .①②B .①③C .②③D .①②③二、填空题10.在平面直角坐标系中,已知()24A ,,()22B -,,()62C -,,则过A ,B ,C 三点的圆的圆心坐标为______________. 11.已知:若432zy x ==,则=+--+z y x z y x 22 . 12.若一条弧长等于l ,它的圆心角等于n °,则这条弧的半径R= .13.如图,⊙O 的直径为10,弦AB=8,P 是弦AB 上的一个动点,那么OP•的取值范围是________.14.在四边形ABCD 中,顺次连接四边中点E ,F ,G ,H ,构成一个新的四边形,请你对四边形ABCD 填加一个条件,使四边形EFGH 成为一个菱形.这个条件是 .15.某村共有银行储户110户,存款在2~3万元之间的银行储户的频率是0.2,则该村存款在2~3万元的银行储户有 户.16.若x x x x -⋅-=--32)3)(2(成立,则x 的取值范围为 .17. 等腰三角形△ABC 中,AB=AC ,∠BAC=70°,D 是BC 的中点,则∠ADC= ,∠BAD= .18.写出一个二元一次方程,使它的一个解为21x y =-⎧⎨=⎩, . 19.a 、b 是不同的有理数,若0ab =,则 ;若0ab=,则 . 20.数轴上有一点到原点的距离为 6.03,那么这个点表示的数是 .三、解答题21.如图所示,在梯形ABCD中,AD∥BC,AE⊥BC于E,若AE=12,BD=15,AC=20,求梯形ABCD的面积.150,提示:过点D作DF⊥BC于F.22.如图,已知盒子的长,宽,高分别是30m, 24 m,18 m,则盒内最多可放多长的棍子?23.某城市在1990年为了尽快改善职工住房条件,积极鼓励个人购买和积累住房基金,决定住公房的职工按基本工资的高低交纳住房公积金,办法如下表:每月基本工资交纳公积金比率(%)100元以下(含100元)不交纳100元至200元(含200元)交纳超过l00元部分的5%200元至300元(含300元)100元至200元部分交纳5%,超过200元以上部分交纳10%300元以上100元至200元部分交纳5%,200元至300元部分交纳10%,超过300元以上部分交纳15%’(1)设每月基本工资为x元,交纳公积金的金额为y元.试写出当l00<x≤200时,y与x之间的关系式;(2)若小军的妈妈每月基本工资为200元,问她每月交纳公积金为多少元?(3)若小明的妈妈每月交纳公积金为4元,问她每月基本工资为多少元?0个红球10个白球2个红球8个白球5个红球5个白球9个红球1个白球10个红球0个白球24.甲以 5 km/h 的速度跑步前进 2 h 后,乙骑自行车从同地出发沿同一条路线追赶甲.根据他们两人的约定,乙最快不早于 lh 追上甲,最慢不晚于 75 min 追上甲,问乙骑车的速度应控制在什么范围.25.一次实习作业课中,甲、乙两组学生各自对学校旗杆进行了5次测量,所得数据如下表所示:所测得的旗杆高度(单位:m)11.9011.9512.O12.O5甲组测得的次数1O22乙组测得的次数0212现已算得乙组所测得数据的平均数为12.00x=乙,,方差20.002S=乙.(1)求甲组所测得数据的平均数;(2)问哪一组学生所测得的旗杆高度比较一致?26.下面第一排表示了各盒子中球的情况,请你用第二排的语言来描述摸到红球的可能性大小,并用线连起来.27.如图所示,△ABC中,∠A=40°,∠ABC和∠ACB的外角平分线交于P.求∠P的度数.28.某县教育局专门对该县2004年初中毕业生毕业去向做了详细调查,将数据整理后,绘制成统计图,根据图中信息回答:(1)已知上非达标高中的毕业生有2328人,求该县2004年共有初中毕业生多少人?(2)上职业高中和赋闲在家的毕业生各有多少人?(3)今年被该县政府确定为教育发展年,比较各组的百分率,你对该县教育发展有何积极建议?请写出一条建议.29.画一条数轴,把-2、3、和它们的相反数表示在数轴上,并比较这些数的大小.30.2006年某市全年完成生产总值264亿元,比2005年增长23%,问:(1)2005年该市全年生产总值是多少亿元?(精确到1亿元)(2)预计该市2008年生产总值可达到386.5224亿元,则2006 ~2008年该市生产总值的年平均=)= 1.488 1.221.4641 1.21【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.C4.A5.C6.B7.C8.B9.B二、填空题10.()41,11.7412. 180ln π13. 3≤OP ≤514.AC BD =或四边形ABCD 是等腰梯形(符合要求的其它答案也可以)15.2216.32≤≤x 17.90°,35°18.不唯一,如1x y +=-19.a=0或b= 0,a=020.6.03±三、解答题 21.150,提示:过点D 作DF ⊥BC 于F .22.23.(1)y=0.05x-5(100<x ≤200);(2)5元;(3)180元24.13 km /h 到15 kmn /h25.(1)12.00x =乙;(2)20003S =乙.,20002S =乙.,乙组测得高度比较一致26.略.27.∠P=70°28.(1)7760人 (2)1017人;923人 (3)如“赋闲在家的学生比例大,而职高发展不足,建议发展职高以吸纳赋闲在家的学生.”又如“普通高中之中,达标高中所占比例偏低,建议把更多的非达标高中发展为达标高中.”29.-2,3,5的相反数分别是2,-3,5-,它们在数轴上表示如图所示:观察数轴可知:352253-<--<<30.(1)2005年该市生产总值为264(123%)215÷+≈(亿元);(2)该市2006~2008年生产总值平均年增长率为386.52241.2110.2121%264=-==。
2021年江苏省无锡市中考数学考前预测卷有答案
2021年江苏省无锡市中考数学考前预测卷学校:__________ 班级:__________ 姓名:__________ 考号:__________ 1. 下列各数中,属于无理数的是()A.(π2)0 B.√33C.√4D.√−832. 下列四个图形中,可以由图通过平移得到的是()A. B. C. D.3. 函数y=2x4−x中自变量x的取值范围是()A.x≠−4B.x≠4C.x≤−4D.x≤44. 下列运算正确的是()A.(ab)2=ab2B.a2⋅a3=a6C.(−√2)2=4D.√2×√3=√65. 如图,直线l1 // l2,将一直角三角尺按如图所示放置,使得直角顶点在直线l1上,两直角边分别与直线l1、l2相交形成锐角∠1、∠2且∠1=25∘,则∠2的度数为()A.25∘B.75∘C.65∘D.55∘6. 某地一家庭记录了去年12个月的月用水量如下表,下列关于用水量的中位数、众数描述正确的是()A.中位数为5,众数为4B.中位数为5,众数为5C.中位数为4.5,众数为4D.中位数、众数均无法确定7. 如图,⊙O与正五边形ABCDE的边AB,DE分别相切于点B,D,则劣弧BD所对的圆心角∠BOD的大小为()A.108∘B.118∘C.144∘D.120∘8. 某数学研究性学习小组制作了如图的三角函数计算图尺:在半径为1的半圆形量角器中,画一个直径为1的圆,把刻度尺CA的0刻度固定在半圆的圆心O处,刻度尺可以绕点O旋转.图中所示的图尺可读出sin∠AOB的值是()A.4 5B.58C.78D.7109. 如图,A,B两点在反比例函数y=k1x 的图象上,C,D两点在反比例函数y=k2x的图象上,AC⊥y轴于点E,BD⊥y轴于点F,AC=6,BD=3,EF=8,则k1−k2的值是()A.10B.18C.12D.1610. 在矩形ABCD中,AB=4,BC=2,E为BC中点,H,G分别是边AB,CD上的动点,且始终保持GH⊥AE,则EH+AG最小值为()A.2√3B.√852C.3√152D.√732+111. 因式分解:18−2x2=________.12. 已知x=2是关于x的方程x2−4x+m=0的一个根,则m=________.13. 截止2月28日17时,中国红十字会共接收到用于新型冠状病毒肺炎疫情防控的社会捐赠款逾15.7亿元,将数据15.7亿用科学记数法表示为________.14. 已知点P(x, y)位于第四象限,且x≤y+4(x,y为整数),写一个符合条件P的坐标________.15. 如图所示的电路中,当随机闭合开关S1,S2,S3中的两个时,能够让灯泡发光的概率为________.16. 如图,抛物线y=ax2+c与直线y=mx+n交于A(−1, p),B(3, q)两点,则不等式ax2−mx+c>n的解集是________.17. 如图,在△ABC 中,AB =AC =6,∠B =30∘,边BC 上一个动点M 从B 运动到C ,连AM ,将射线AM 绕M 顺时针旋转30∘交AC 于N ,则N 的路径长________.18. 如图,在四边形CABD 中,BD =AB =8,AC =2,点M 为AB 的中点,若∠CMD =120∘,则CD 的最大值是________.19. 计算题(1)(π−3.14)0−(12)−2+√273;(2)(2x −y)2−(x +y)(x −y).20. 先化简,再求值:(x x 2+x −1)÷x 2−1x 2+2x+1,其中x 的值从不等式组{−x ≤12x −1<4 的整数解中选取.21. 如图,矩形ABCD 中,E 是AD 的中点,延长CE ,BA 交于点F ,连接AC ,DF .(1)求证:四边形ACDF 是平行四边形;(2)当CF 平分∠BCD 时,写出BC 与CD 的数量关系,并说明理由.22. 某市在一次九年级数学做了检测中,有一道满分8分的解答题,按老师为了了解学生的得分情况与题目的难易情况,从全市8000名考生的试卷中随机抽取一部分,通过分析与整理,绘制了如图两幅图不完整的统计图.请根据以上信息解答下列问题:(1)填空:a=________,b=________,并把条形统计图补全;(2)请估计该地区此题得满分(即的学生人数;,其中L为难度系数,X为样本平均得分,W为(3)已知难度系数的计算公式为L=XW试题满分值.一般来说,根据试题的难度系数可将试题分为以下三类:当0<L≤0.4时,此题为难题;当0.4<L≤0.7时,此题为中等难度试题;当0.7<L<1时,此题为容易题.试问此题对于该地区的九年级学生来说属于哪一类?并说明理由?23. 汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜.假如甲,乙两队每局获胜的机会相同.(1)若前四局双方战成2:2,那么甲队最终获胜的概率是________;(2)现甲队在前两局比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?24. 如图,在△ABC中,∠ACB=90∘,O是边AC上一点,以O为圆心,OA为半径的圆分别交AB,AC于点E,D,在BC的延长线上取点F,使得BF=EF,EF与AC交于点G.(1)试判断直线EF与⊙O的位置关系,并说明理由;(2)若OA=2,∠A=30∘,求图中阴影部分的面积.25. 某校为了在九月份迎接高一年级的新生,决定将学生公寓楼重新装修.现学校招用了甲、乙两个工程队.若两队合作,8天就可以完成该项工程;若由甲队先单独做3天后,剩余部分由乙队单独做需要18天才能完成.(1)求甲、乙两队工作效率分别是多少?(2)甲队每天工资3000元,乙队每天工资1400元.学校要求在12天内将学生公寓楼装修完成.若完成该工程甲队工作m天,乙队工作n天.求学校需支付的总工资w(元)与甲队工作天数m(天)的函数关系式,并求出m的取值范围及w的最小值.26. 二次函数y=−x2+(m−1)x+m(m>0)图象与x轴交于A,B(A在B左侧),与y轴交于C,顶点为D,连接AC,tan∠OAC=3.(1)求抛物线的解析式和D点坐标;(2)有一点Q在直线BC上,当Q,C,D三点构成的三角形和△AOC相似,直接写出Q点坐标;(3)P点坐标为(0, t)(t>0),G (3, t),连结PG,在线段PG上是否存在一点M,连结MO,MB,使∠OMB=30∘,如果存在,求出t的取值范围,如果不存在,说明理由.27.(1)①发现:如图1,G是△ABC的重心,连结BG,CG,并分别延长BG,CG,交AC,BA于D,E连结DE,则DE与BC的位置关系是________.②证明:如图2,AF是△ABC的中线,P是AF上任一点,连结BP,CP,并分别延长交AC,BA于D,E,连结DE,①中的结论还成立吗?如果成立,请证明你的结论,如果不成立,请说明理由.(2)应用:用无刻度直尺根据要求作图:如图3,M是▱ABCD边CD上一定点.(i)在AB边上作一点N,使AN=CM;(ii)如图4中,BA的延长线上作一点Q,使AQ=CM.28. 如图:在▱ABCD中,AC⊥AB,且AD=5,AB=4,如果将△ACD绕着点A顺时针方向旋转一个角度(小于180∘),如(1)图得到△AC′D′,则在旋转过程中.(1)线段C′D′________经过原来点C的位置(填“能”或“不能”);=________;(2)如(2)图,当C′D′ // BC时,AC′与BC相交于点E,则C′EAE(3)如(3)图,当C′D′经过点B时,AD′与BC相交于点F,求△ABF的面积;(4)如(4)图,当C′落在BC上时,记∠CAF=∠1,求sin∠1的值.参考答案与试题解析2021年江苏省无锡市中考数学考前预测卷一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】B【考点】无理数的判定无理数的识别二次根式的乘除法【解析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】)0=1,是有理数,选项错误;A、(π2B、是无理数,选项正确;C、√4=2,是有理数,选项错误;3=−2,是有理数,选项错误.D、√−82.【答案】D【考点】平移的性质【解析】根据平移的性质解答即可.【解答】解:图形平移后所得图形与原图形全等,只有D选项的图形的形状和大小没有变化,符合平移的性质,属于平移得到.故选D.3.【答案】B【考点】函数自变量的取值范围【解析】根据分母不等于0列式计算即可得解.【解答】解:由题意得,4−x≠0,解得x≠4.故选B.4.【考点】同底数幂的乘法算术平方根【解析】根据同底数幂的乘法,幂的乘方和积的乘方,算术平方根法则分别求出每个式子的值,再判断即可.【解答】A、结果是a2b2,故本选项不符合题意;B、结果是a5,故本选项不符合题意;C、结果是2,故本选项不符合题意;D、结果是√6,故本选项符合题意;5.【答案】C【考点】平行线的性质【解析】依据∠1=25∘,∠BAC=90∘,即可得到∠3=65∘,再根据平行线的性质,即可得到∠2=∠3=65∘.【解答】如图,∵∠1=25∘,∠BAC=90∘,∴∠3=65∘,又∵l1 // l2,∴∠2=∠3=65∘,6.【答案】C【考点】频数与频率众数中位数【解析】根据去年记录了12个月的月用水量,求出m+n的值,再根据中位数、众数的概念进行求解即可.【解答】∵共12个月,∴m+n=12−2−4−3=3,把这些数从小到大排列,最中间的数是第6和第7个数的平均数,∴用水量的中位数是4+5=4.5吨;2∵4吨出现的次数最多,出现了4次,∴众数为4吨;7.【考点】多边形的外角和多边形的内角和切线的性质【解析】根据正多边形内角和公式可求出∠E、∠D,根据切线的性质可求出∠OAE、∠OCD,从而可求出∠AOC,然后根据圆弧长公式即可解决问题.【解答】解:∵五边形ABCDE是正五边形,∴∠E=∠A=180∘−360∘5=108∘.∵AB、DE与⊙O相切,∴∠OBA=∠ODE=90∘,∴∠BOD=(5−2)×180∘−90∘−108∘−108∘−90∘=144∘.故选C.8.【答案】A【考点】旋转的性质解直角三角形圆周角定理【解析】如图,连接AD.只要证明∠AOB=∠ADO,可得sin∠AOB=sin∠ADO=810=45.【解答】如图,把刻度尺与圆的另一个交点记作D,连接AD.∵OD是直径,∴∠OAD=90∘,∵∠AOB+∠AOD=90∘,∠AOD+∠ADO=90∘,∴∠AOB=∠ADO,由刻度尺可知,OA=0.8,∴sin∠AOB=sin∠ADO=810=45.9.【答案】D【考点】反比例函数图象上点的坐标特征【解析】由反比例函数的性质可知S△AOE=S△BOF=12k1,S△COE=S△DOF=−12k2,结合S△AOC=S△AOE+S△COE和S△BOD=S△DOF+S△BOF可求得k1−k2的值.【解答】连接OA、OC、OD、OB,如图:由反比例函数的性质可知S△AOE=S△BOF=12|k1|=12k1,S△COE=S△DOF=12|k2|=−12k2,∵S△AOC=S△AOE+S△COE,∴12AC⋅OE=12×6×OE=3OE=12(k1−k2)…①,∵S△BOD=S△DOF+S△BOF,∴12BD⋅OF=12×3×(EF−OE)=12×3(8−OE)=12−32OE=12(k1−k2)…②,由①②两式得:12−32OE=3OE,解得OE=83,则k1−k2=16,10.【答案】B【考点】勾股定理相似三角形的性质与判定矩形的性质【解析】过G作GN⊥AB于N,依据△ABE∽△GNH,即可得到GH的长;以AG,AH为邻边作平行四边形AEMG,可得AG+HE=ME+HE,当H,E,M在同一直线上时,AG+HE 的最小值等于HM的长,再根据勾股定理求得HM的长,即可得到EH+AG的最小值.【解答】如图所示,过G作GN⊥AB于N,则∠ANG=90∘,GH=AD=2,∵GH⊥AE,∴∠ANG=∠AFG=90∘,∴ ∠BAE =∠NGH ,∴ △ABE ∽△GNH ,∴ AE GH =AB GN ,∵ Rt △ABE 中,AE =√AB 2+BE 2=√42+12=√17,∴ √17GH =42,∴ GH =√172, 如图所示,以AG ,AH 为邻边作平行四边形AEMG ,则AG =ME ,GM =AE =√17,∠HGM =∠AFG =90∘,∴ AG +HE =ME +HE ,当H ,E ,M 在同一直线上时,AG +HE 的最小值等于HM 的长,此时,Rt △GHM 中,HM =√HG 2+GM 2=√(√172)2+(√17)2=√852, ∴ EH +AG 的最小值为√852, 二、 填空题 (本题共计 8 小题 ,每题 3 分 ,共计24分 )11.【答案】2(x +3)(3−x)【考点】提公因式法与公式法的综合运用因式分解-提公因式法因式分解【解析】原式提取2,再利用平方差公式分解即可.【解答】原式=2(9−x 2)=2(x +3)(3−x),12.【答案】4【考点】一元二次方程的解【解析】把x =2代入已知方程,列出关于m 的新方程,通过解新方程来求m 的值.【解答】∵ x =2是关于x 的方程x 2−4x +m =0的一个根,∴ 22−4×2+m =0,解得,m =4.13.【答案】1.57×109【考点】科学记数法--表示较大的数【解析】首先把15.7亿写成15 7000 0000,再表示成a×10n的形式,其中a是整数数位只有一位的数,n是正整数.【解答】15.7亿=15 7000 0000=1.57×109,14.【答案】(2, −1)【考点】点的坐标【解析】首先确定x、y的取值范围,然后再结合不等式x≤y+4(x,y为整数)确定x、y的值,进而可得答案.【解答】∵P(x, y)位于第四象限,∴x>0,y<0,∵x≤y+4(x,y为整数),∴P(2, −1),15.【答案】23【考点】概率公式【解析】根据题意可得:随机闭合开关S1,S2,S3中的两个,有3种方法,其中有两种能够让灯泡发光,故其概率为2.3【解答】解:因为随机闭合开关S1,S2,S3中的两个,有3种方法,其中有2种能够让灯泡发光,.所以P(灯泡发光)=23.故答案为:2316.【答案】x<−1或x>3【考点】二次函数与不等式(组)【解析】根据题意和函数图象中的数据,可以得到不等式ax2−mx+c>n的解集,本题得以解决.【解答】解:∵抛物线y=ax2+c与直线y=mx+n交于A(−1, p),B(3, q)两点,∴ax2+c−mx−n>0的解集是x<−1或x>3,故答案为:x<−1或x>3.17.【答案】9【考点】旋转的性质轨迹等腰三角形的性质【解析】先求出AM′=3,∠M′AC=60∘,进而求出CN′,再判断出点M从点B运动到点C时,点N 从点C运动到点N′,再从N′运动到点C,即可得出结论.【解答】如图,过点A作AM′⊥BC于M′,将射线AM′绕点M′顺时针旋转30∘交AC于N′,∴∠AMC=90∘,在△ABC中,AB=AC=6,∠B=30∘,∴AM′=12AB=3,∠C=∠B=30∘,∴∠BAC=180∘−∠B−∠C=120∘,∴∠CAM′=12∠BAC=60∘,∴∠AN′M′=90∘,在Rt△AN′M′中,AN′=12AM′=32,∴CN′=AC−AN′=92,当点M和点B重合时,点N和点C重合,点M从点B向点M′运动时,点C向点N′运动,当点M和点M′重合时,点N和点N′重合,当点M从点M′向点C运动时,点N从点N′向点C运动,当点M和点C重合时,点N和点C重合,即点M从点B运动到点C时,点N从点C运动到点N′,再由点N′运动到点C,∴点N的路径长为2CN′=9,18.【答案】14【考点】线段的性质:两点之间线段最短轴对称的性质【解析】如图,作点A关于CM的对称点A′,点B关于DM的对称点B′,证明△A′MB′为等边三角形,即可解决问题.【解答】如图,作点A关于CM的对称点A′,点B关于DM的对称点B′.∵∠CMD=120∘,∴∠AMC+∠DMB=60∘,∴∠CMA′+∠DMB′=60∘,∴∠A′MB′=60∘,∵MA′=MB′,∴△A′MB′为等边三角形∵CD≤CA′+A′B′+B′D=CA+AM+BD=2+4+8=14,∴CD的最大值为14,三、解答题(本题共计 10 小题,每题 10 分,共计100分)19.【答案】(π−3.14)0−(12)−2+√273=1−4+3=0;(2x−y)2−(x+y)(x−y)=4x2−4xy+y2−(x2−y2)=4x2−4xy+y2−x2+y2=3x2−4xy+2y2.【考点】负整数指数幂实数的运算完全平方公式零指数幂平方差公式【解析】(1)直接利用零指数幂的性质以及负整数指数幂的性质、立方根的性质分别化简得出答案;(2)直接利用乘法公式化简,再合并同类项得出答案.【解答】(π−3.14)0−(12)−2+√273=1−4+3=0;(2x−y)2−(x+y)(x−y)=4x2−4xy+y2−(x2−y2)=4x2−4xy+y2−x2+y2=3x2−4xy+2y2.20.【答案】解:=−x 2x(x+1)÷(x+1)(x−1)(x+1)2=−xx+1⋅x+1x−1=−xx−1.解{−x≤12x−1<4得:−1≤x<52,∴不等式组的整数解为−1,0,1,2.若使分式有意义,只能取x=2,∴原式=−22−1=−2.【考点】分式的化简求值一元一次不等式组的整数解分式的混合运算一元一次不等式的整数解【解析】此题主要考查了分式的混合运算以及不等式组的解法.【解答】解:=−x 2x(x+1)÷(x+1)(x−1)(x+1)2=−xx+1⋅x+1x−1=−xx−1.解{−x≤12x−1<4得:−1≤x<52,∴不等式组的整数解为−1,0,1,2.若使分式有意义,只能取x=2,∴原式=−22−1=−2.21.【答案】(1)证明:∵四边形ABCD是矩形,∴AB // CD,∴∠FAE=∠CDE,∵E是AD的中点,∴AE=DE,又∵∠FEA=∠CED,∴△FAE≅△CDE(ASA),∴CD=FA,又∵CD // AF,∴四边形ACDF是平行四边形;(2)解:BC=2CD.理由:∵CF平分∠BCD,∴∠DCE=45∘,∵∠CDE=90∘,∴△CDE是等腰直角三角形,∴CD=DE,∵E是AD的中点,∴AD=2CD,∵AD=BC,∴BC=2CD.【考点】全等三角形的性质与判定平行四边形的判定角平分线的性质【解析】(1)利用矩形的性质,即可判定△FAE≅△CDE,即可得到CD=FA,再根据CD // AF,即可得出四边形ACDF是平行四边形;(2)先判定△CDE是等腰直角三角形,可得CD=DE,再根据E是AD的中点,可得AD =2CD,依据AD=BC,即可得到BC=2CD.【解答】(1)证明:∵四边形ABCD是矩形,∴AB // CD,∴∠FAE=∠CDE,∵E是AD的中点,∴AE=DE,又∵∠FEA=∠CED,∴△FAE≅△CDE(ASA),∴CD=FA,又∵CD // AF,∴四边形ACDF是平行四边形;(2)解:BC=2CD.理由:∵CF平分∠BCD,∴∠DCE=45∘,∵∠CDE=90∘,∴△CDE是等腰直角三角形,∴CD=DE,∵E是AD的中点,∴AD=2CD,∵AD=BC,∴BC=2CD.22.【答案】25,208000×20%=1600(人),即该地区此题得满分(即的学生有1600人;此题对于该地区的九年级学生来说属于中等难度的题目,理由:X=0×10%+3×25%+5×45%+8×20%=4.6,L=4.6=0.575,8∵当0.4<L≤0.7时,此题为中等难度试题,0.4<0.575≤0.7,∴此题对于该地区的九年级学生来说属于中等难度的题目.【考点】用样本估计总体频数(率)分布直方图扇形统计图条形统计图【解析】(1)根据得分为0分的人数和所占的百分比,可以求得本次调查的人数,然后即可得到a、b的值;(2)根据统计图中的数据,可以计算出该地区此题得满分(即8分)的学生人数;(3)根据题意,可以计算出对应的L的值,然后即可判断该题属于那种类型.【解答】本次调查的学生有:24÷10%=240(人),×100%=20%,b%=48240a%=1−10%−45%−20%=25%,得分3分的学生有:240×25%=60(人),补全的条形统计图如右图所示,故答案为:25,20;8000×20%=1600(人),即该地区此题得满分(即的学生有1600人;此题对于该地区的九年级学生来说属于中等难度的题目,理由:X=0×10%+3×25%+5×45%+8×20%=4.6,=0.575,L=4.68∵当0.4<L≤0.7时,此题为中等难度试题,0.4<0.575≤0.7,∴此题对于该地区的九年级学生来说属于中等难度的题目.23.【答案】12(2)解:画树状图为:共有8种等可能的结果数,其中甲至少胜一局的结果数为7,.所以甲队最终获胜的概率为78【考点】列表法与树状图法概率公式【解析】(1)直接利用概率公式求解;(2)画树状图展示所有8种等可能的结果数,再找出甲至少胜一局的结果数,然后根据概率公式求.【解答】解:∵甲、乙两队每局获胜的机会相同,,所以甲队在第五局获胜的概率为12即甲队最终获胜的概率是1.2.故答案为:12(2)解:画树状图为:共有8种等可能的结果数,其中甲至少胜一局的结果数为7,所以甲队最终获胜的概率为7.824.【答案】连接OE,∵OA=OE,∴∠A=∠AEO,∵BF=EF,∴∠B=∠BEF,∵∠ACB=90∘,∴∠A+∠B=90∘,∴∠AEO+∠BEF=90∘,∴∠OEG=90∘,∴EF是⊙O的切线;∵AD是⊙O的直径,∴∠AED=90∘,∵∠A=30∘,∴∠EOD=60∘,∴∠EGO=30∘,∵AO=2,∴OE=2,∴EG=2√3,∴阴影部分的面积=12×2×2√3−60⋅π×22360=2√3−23π.【考点】直线与圆的位置关系【解析】(1)连接OE,根据等腰三角形的性质得到∠A=∠AEO,∠B=∠BEF,于是得到∠OEG =90∘,即可得到结论;(2)由AD是⊙O的直径,得到∠AED=90∘,根据三角形的内角和得到∠EOD=60∘,求得∠EGO=30∘,根据三角形和扇形的面积公式即可得到结论.【解答】连接OE,∵OA=OE,∴∠A=∠AEO,∵BF=EF,∴∠B=∠BEF,∵∠ACB=90∘,∴∠A+∠B=90∘,∴∠AEO+∠BEF=90∘,∴∠OEG=90∘,∴EF是⊙O的切线;∵AD是⊙O的直径,∴∠AED=90∘,∵∠A=30∘,∴∠EOD=60∘,∴∠EGO=30∘,∵AO=2,∴ OE =2, ∴ EG =2√3,∴ 阴影部分的面积=12×2×2√3−60⋅π×22360=2√3−23π.25.【答案】设甲队单独完成需要x 天,乙队单独完成需要y 天. 由题意{1x +1y =183x+18y=1,解得{x =12y =24 ,经检验{x =12y =24 是分式方程组的解,∴ 甲、乙两队工作效率分别是112和124. 设乙先工作x 天,再与甲合作正好如期完成. 则1224+12−x 12=1,解得x =6.∴ 甲工作6天,∵ 甲12天完成任务, ∴ 6≤m ≤12.∵ 完成该工程甲队工作m 天,乙队工作n 天, ∴ m12+n24=1,∴ n =24−2m , m ≤12,n ≤12, ∴ 24−2m ≤12, ∴ m ≥6,∴ 6≤m ≤12,∴ w =3000m +1400(24−2m)=200m +33600, ∵ 200>0,∴ m =6时,此时费用最小,∴ w 的最小值为200×6+33600=34800元.【考点】分式方程的应用 【解析】(1)设甲队单独完成需要x 天,乙队单独完成需要y 天.列出分式方程组即可解决问题; (2)设乙先工作x 天,再与甲合作正好如期完成.则1224+12−x 12=1,解得x =6.由此【解答】设甲队单独完成需要x 天,乙队单独完成需要y 天.由题意{1x+1y =183x+18y=1,解得{x =12y =24 ,经检验{x =12y =24 是分式方程组的解,∴ 甲、乙两队工作效率分别是112和124. 设乙先工作x 天,再与甲合作正好如期完成. 则1224+12−x 12=1,解得x =6.∴ 甲工作6天,∵ 甲12天完成任务, ∴ 6≤m ≤12.∵ 完成该工程甲队工作m 天,乙队工作n 天, ∴m 12+n 24=1,∴ n =24−2m , m ≤12,n ≤12, ∴ 24−2m ≤12, ∴ m ≥6,∴ 6≤m ≤12,∴ w =3000m +1400(24−2m)=200m +33600, ∵ 200>0,∴ m =6时,此时费用最小,∴ w 的最小值为200×6+33600=34800元. 26. 【答案】 如图1中,对于抛物线y =−x 2+(m −1)x +m ,令y =0,可得x 2+(1−m)x −m =0, ∴ (x +1)(x −m)=0 ∴ x =−1或m ,在Rt △AOC 中,∵ tan ∠OAC =OC OA=3,∴ OA =OB =3,即m =3,∴ y =−x 2+2x +3=−(x −1)2+4, ∴ D(1, 4).由(1)可知,A(−1, 0),C(0, 3),B(3, 0),D(1, 4),∴ OA =1,OC =OB =3,AC =√10,CD =√2,BC =3√2BD =2√5, ∴ BD 2=CD 2+BC 2, ∴ ∠DCB =90∘, ∵OA OC=CD BC =13,∴ OACD =OCBC ,∵ ∠AOC =∠BCD =90∘, ∴ △BCD ∽△COA ,∴ 当Q 1与B 重合时,Q ,C ,D 三点构成的三角形和△AOC 相似,此时Q 1(3, 0), 根据对称性可知,当Q 4(−3, 6)时,也满足条件, 当CQ 2=CQ 3且CQ 2=CQ 3=13CD =√23时,也满足条件,此时Q 2(13, 83),Q 3(−13, 103), 综上所述,满足条件的点Q 的坐标为(3, 0)或(−3, 6)或(13, 83)或(−13, 103).如图3中,以OB 为边向上作等边△OBT ,以T 为圆心,TO 为半径作⊙T ,交y 轴于M ,则M(0, 3√3),观察图象可知,当线段与⊙T 有交点时,在线段PG 上是否存在一点M ,使∠OMB =30∘, 过点T 作TH ⊥OB 于H ,交⊙T 于N .则OH =HB =32,TH =3√32,TN =3, ∴ N(32, 3+3√32), ∴ 满足条件的t 的值为3√3≤t ≤3+3√32. 【考点】二次函数综合题(2)首先证明∠DCB=90∘,证明△BCD∽△COA,推出当Q1与B重合时,Q,C,D三点构成的三角形和△AOC相似,此时Q1(3, 0),再根据对称性求出Q4,当CQ2=CQ3且CQ2=CQ3=13CD=√23时,也满足条件,求出Q2,Q3的坐标即可.(3)如图3中,以OB为边向上作等边△OBT,以T为圆心,TO为半径作⊙T,交y轴于M,则M(0, 3√3),观察图象可知,当线段与⊙T有交点时,在线段PG上是否存在一点M,使∠OMB=30∘,求出等N的坐标即可判断.【解答】如图1中,对于抛物线y=−x2+(m−1)x+m,令y=0,可得x2+(1−m)x−m=0,∴(x+1)(x−m)=0∴x=−1或m,∴A(−1, 0),B(m, 0),C(0, m),∴OA=1,OB=OC=m,在Rt△AOC中,∵tan∠OAC=OCOA=3,∴OA=OB=3,即m=3,∴y=−x2+2x+3=−(x−1)2+4,∴D(1, 4).由(1)可知,A(−1, 0),C(0, 3),B(3, 0),D(1, 4),∴OA=1,OC=OB=3,AC=√10,CD=√2,BC=3√2BD=2√5,∴BD2=CD2+BC2,∴∠DCB=90∘,∵OAOC =CDBC=13,∴OACD =OCBC,∵∠AOC=∠BCD=90∘,∴△BCD∽△COA,∴当Q1与B重合时,Q,C,D三点构成的三角形和△AOC相似,此时Q1(3, 0),根据对称性可知,当Q4(−3, 6)时,也满足条件,当CQ2=CQ3且CQ2=CQ3=13CD=√23时,也满足条件,此时Q2(13, 83),Q3(−13, 103),如图3中,以OB 为边向上作等边△OBT ,以T 为圆心,TO 为半径作⊙T ,交y 轴于M ,则M(0, 3√3),观察图象可知,当线段与⊙T 有交点时,在线段PG 上是否存在一点M ,使∠OMB =30∘, 过点T 作TH ⊥OB 于H ,交⊙T 于N .则OH =HB =32,TH =3√32,TN =3, ∴ N(32, 3+3√32), ∴ 满足条件的t 的值为3√3≤t ≤3+3√32. 27.【答案】DE // BC可知EM // AC ,且AB // CD , ∴ 四边形ACMQ 是平行四边形, ∴ AQ =CM 【考点】作图—复杂作图 三角形的重心平行四边形的性质与判定【解析】(1)①由平行线的判定可得结论;②延长PF 到M ,使FM =PF ,连接BM 、CM ,可证四边形BPCM 是平行四边形,由平行线分线段成比例可得AD:AC =AP:AM ,AE:AB =AP:AM ,可得结论; (2)(i)连接AC ,BD 交于点O ,连接OM ,延长MO 交AB 于N ,可得AN =CM ;(ii)连接AM 于BD 交于点F ,连接CF 并延长交AD 于E ,连接ME 并延长交BA 的延长线于点Q ,可得AQ =CM . 【解答】(1)①∵ G 是△ABC 的重心, ∴ BG =2DG ,CG =2EG , ∵ BGDG =CGEG =2,【答案】 不能 14如(3)图,过A 作AE ⊥BC 于E ,∵ AD // BC , ∴ AE ⊥AD , ∴ ∠DAE =90∘, 由(2)知:AE =125,∵ AB =4,∴ BE =√AB 2−AE 2=√42−(125)2=165,由旋转得:∠DAF =∠CAC ′,∴ ∠DAF −∠DAE =∠CAC ′−∠CAB , 即∠EAF =∠BAC ′,Rt △ABC ′中,AB =4,AC ′=3, ∴ BC ′=√42−32=√7, ∵ tan ∠BAC ′=tan ∠EAF , ∴BC ′AC ′=EF AE,即√73=EF125,∴ EF =4√75,∴ BF =BE −EF =165−4√75=16−4√75, ∴ △ABF 的面积=12BF ⋅AE =12×16−4√75×125=96−24√725; 如(4)图,过A 作AE ⊥BC 于E ,过F 作FH ⊥AC 于H ,由旋转得:∠CAC′=∠DAD′,∠DAC=∠D′AC′,∵AC=AC′,AE⊥CC′,∴CE=C′E=95,∠ACC′=∠AC′C=∠D′AC′,∵∠AC′D′=∠AC′C+∠FC′D′=∠D′+∠D′AC′=90∘,∴∠D′=∠FC′D′,∴AF=FD′=C′F=52,∴CF=2CE−C′F=2×95−52=1110,∵S△ACF=12AC⋅FH=12CF⋅AE,∴12×3FH=12×1110×125,∴FH=1125,∴sin∠1=FHAF =112552=22125.【考点】四边形综合题【解析】(1)由旋转得:AC=AC′,由垂线段最短可得结论;(2)根据面积法计算AE的长,利用勾股定理得CE的长,从而得C′E的长,代入所求的比例式即可解答;(3)过A作AE⊥BC于E,由(2)知AE=125,由勾股定理计算BE和BC′的长,根据旋转的性质和角的和与差可得:∠EAF=∠BAC′,由三角函数定义列比例式可得EF的长,从而得BF的长,最后根据三角形面积公式可解答;(4)如(4)图,过A作AE⊥BC于E,过F作FH⊥AC于H,根据等腰三角形三线合一的性质得:CE=C′E=95,∠ACC′=∠AC′C=∠D′AC′,由等角的余角相等得∠D′=∠FC′D′,由等角对等边得AF=FD′=C′F=52,可得CF的长,根据面积法可得FH的长,最后根据正弦函数定义可得结论.【解答】如(1)图,延长AC交C′D′于M,在▱ABCD 中,CD // AB , ∴ ∠ACD =∠CAB =90∘,由旋转得:∠C ′=∠ACD =90∘,AC =AC ′, ∴ AM >AC ′,∴ 线段C ′D ′不能经过原来点C 的位置; 故答案为:不能;如(2)图:∵ C ′D ′ // BC ,且∠C ′=90∘,∴ ∠AEC =∠C ′=90∘,在▱ABCD 中,BC =AD =5, Rt △CAB 中,AC =√52−42=3, ∵ S △ABC =12BC ⋅AE =12AC ⋅AB , ∴ 12×5AE =12×3×4, ∴ AE =125,∴ CE =√AC 2−AE 2=√32−(125)2=95,∵ AC ′=AC =3, ∴ C ′E =3−125=35,∴C ′E AE=35125=14;故答案为:14;如(3)图,过A 作AE ⊥BC 于E ,∵ AD // BC ,由(2)知:AE =125,∵ AB =4,∴ BE =√AB 2−AE 2=√42−(125)2=165,由旋转得:∠DAF =∠CAC ′,∴ ∠DAF −∠DAE =∠CAC ′−∠CAB , 即∠EAF =∠BAC ′,Rt △ABC ′中,AB =4,AC ′=3, ∴ BC ′=√42−32=√7, ∵ tan ∠BAC ′=tan ∠EAF , ∴BC ′AC ′=EF AE,即√73=EF125,∴ EF =4√75,∴ BF =BE −EF =165−4√75=16−4√75, ∴ △ABF 的面积=12BF ⋅AE =12×16−4√75×125=96−24√725; 如(4)图,过A 作AE ⊥BC 于E ,过F 作FH ⊥AC 于H ,由旋转得:∠CAC ′=∠DAD ′,∠DAC =∠D ′AC ′, ∵ AC =AC ′,AE ⊥CC ′,∴ CE =C ′E =95,∠ACC ′=∠AC ′C =∠D ′AC ′,∵ ∠AC ′D ′=∠AC ′C +∠FC ′D ′=∠D ′+∠D ′AC ′=90∘, ∴ ∠D ′=∠FC ′D ′, ∴ AF =FD ′=C ′F =52,∴ CF =2CE −C ′F =2×95−52=1110,∵ S △ACF =12AC ⋅FH =12CF ⋅AE , ∴ 12×3FH =12×1110×125,∴ FH =11,1125 5 2=22125.∴sin∠1=FHAF=。
【精品】2021江苏省苏州市中考数学精选真题预测2套(含答案)
江苏省中考数学精选真题预测(含答案)考试时间120分钟 试卷满分150一.选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题纸相应位置上 ) 1. ﹣5的相反数是( ) 【 ▲ 】 A.﹣5 B.5 C.﹣ D.2.下面运算正确的是 【 ▲ 】 A.7a 2b﹣5a 2b=2 B.x 8÷x 4=x 2 C.(a﹣b)2=a 2﹣b 2 D.(2x 2)3=8x 63. 某同学在“百度”搜索引擎中输入“魅力东台”,能搜索到与之相关的结果是3930000,这个数用科学记数法表示为【 ▲ 】 A.0.393×107B.393×104 C.3.93×106D.39.3×1054. 下列实数中,是无理数的为 【 ▲ 】 A.﹣3 B.0.303003 C. D.5.下列调查中,适合采用普查方式的是【 ▲ 】A .调查市场上婴幼儿奶粉的质量情况B .调查泰东河质情况C .对科学通信卫星上某种零部件的调查D .调查《东台新闻》栏目在东台市的收视率6. 如图1,已知a 、b 、c 、d 四条直线,a ∥b ,c ∥d ,∠1=112°,则∠2等于【 ▲ 】A.58° B.68° C.78° D.112°7. 如图2,点F 在平行四边形ABCD 的边CD 上,射线AF 交BC 的延长线于点E ,在不添加辅助线的情况下,图中相似的三角形有【 ▲ 】A.1对 B.2对 C.3对D.4对8.若a、b、c为△ABC的三边长,且满足|c ﹣3|+=0,则a 的值不可以为【▲】A.2 B.3C.4D.5二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题纸相应位置上)第6题图第7题图学校: 班级: 姓名: 座位号:装订线内请勿答题9. 分解因式:x 2﹣xy=____▲ __ ; 10. 当x=___▲___时,分式232-+x x 的值为0;11.向如图所示的正三角形区域扔沙包(区域中每一个小正三角形除颜色外完全相同),假设沙包击中每一个小三角形是等可能的,扔沙包1次击中阴影区域的概率等于___▲___; 12.如图,正六边形ABCDEF 内接于半径为4的圆,则劣弧AB 的长度为____▲____;13. 如图是由6个棱长均为1的正方体组成的几何体,它的左视图的面积为____▲____;14.已知圆锥的底面半径是2,母线长是4,则圆锥的侧面积是____▲__; 15.△ABC 中∠A=30°,tanB=,AC=,则AB=____▲___;16.李师傅加工1个甲种零件和1个乙种零件的时间分别是固定的,现知道李师傅加工3个甲种零件和5个乙种零件共需55分钟;加工4个甲种零件和9个乙种零件共需85分钟,则李师傅加工2个甲种零件和4个乙种零件共需______分钟. 17. 如果方程3)1(2=-x a 的解是x =5,则a = ▲ ;18. 如图,已知四边形PABN 在坐标系中位置如图,则四边形PABN 周长最小时,a= ▲ ;三、解答题(本大题共有10小题,共96分.请在答题纸指定区域内作答,解答时应写出文字说明、推理过程或演算步骤) 19.(本题满分12分)(1)计算:()01260cos 2214π-+︒-⎪⎪⎭⎫ ⎝⎛+- .(2)解不等式组:⎪⎩⎪⎨⎧≤>-4202x x . 20.(本题满分8分)先化简,再求值:41221122-+-÷⎪⎭⎫ ⎝⎛-+m m m m ,其中m = 4. 21.(本题满分9分)为了让更多的失学儿童重返校园,某社区组织“献爱心手拉手”捐款活动. 对社区部分捐款户数进行调查和分组统计后,将数据整理成如图所示的统计图(图中信息不完整). 已知A 、B 两组捐款户数的比为1 : 5.第11题图第12题图第13题图第18题图捐款户数分组统计图1 捐款户数分组统计图2组别捐款额(x)元户数A 1≤x<100 aB 100≤x<200 10C 200≤x<300D 300≤x<400E x≥400请结合以上信息解答下列问题.(1) a=,本次调查样本的容量是;(2)补全“捐款户数分组统计图1”,“捐款户数分组统计图2”中B组扇形圆心角度数为;(3)若该社区有500户住户,请根据以上信息,估计全社区捐款不少于300元的户数.22.(本题满分8分)在一个不透明的口袋里装有四个分别标有1、2、3、4的小球,它们的形状、大小等完全相同.小明先从口袋里随机取出一个小球,记下数字为x;小红在剩下的三个小球中随机取出一个小球,记下数字为y.小明、小红约定做一个游戏,其规则是:若x、y满足xy>6,则小明胜;若x、y满足xy<6,则小红胜.这个游戏规则公平吗?说明你的理由;若不公平,怎样修改游戏规则才对双方公平?23.(本题8分)如图,已知△ABC中,∠ACB=90°P是AC的中点.实践与操作:尺规作图:按下列要求完成作图(保留作图痕迹,请标明字母)①以BC为直径作⊙O,交AB于点D;②连接PD.推理与运用:求证:PD是⊙O的切线.24.(本题满分9分)实验数据显示:一般成人喝半斤低度白酒后,1.5小时内(包括1.5小时)其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=–200x2+400x表示;1.5小时后(包括1.5小时)y与x可近似地用反比例函数y=(k>0)表示(如图所示).(1) 喝酒后多长时间血液中的酒精含量达到最大值?最大值为多少?(2) 求k的值.(3)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.25.(本题满分8分)如果两个一次函数y=k1x+b1和y=k2x+b2满足k1=k2,b1≠b2,那么称这两个一次函数为“平行一次函数”.如图,已知函数y=﹣2x+4的图象与x轴、y轴分别交于A、B两点,一次函数y=kx+b与y=﹣2x+4是“平行一次函数”(1)若函数y=kx+b的图象过点(3,1),求b的值;(2)若函数y=kx+b的图象与两坐标轴围成的三角形和△AOB构成位似图形,位似中心为原点,位似比为1:2,求函数y=kx+b的表达式.26.(本题满分10分)如图,河流的两岸PQ、MN互相平行,河岸PQ上有一排小树,已知相邻两树之间的距离CD=50米,某人在河岸MN的A处测得∠DAN=35°,然后沿河岸走了120米到达B处,测得∠CBN=70°.求河流的宽度CE(结果保留两个有效数字).(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)27.(本题满分12分)【回归课本】我们曾学习过一个基本事实:两条直线被一组平行线所截,所得的对应线段成比例.【初步体验】(1)如图1,在△ABC中,点D、F在AB上,E、G在AC上,DE∥FC∥BC.若AD=2,AE=1,DF=6,则EG=, = .(2)如图2,在△ABC中,点D、F在AB上,E、G在AC上,且DE∥BC∥FG.以AD、DF、FB为边构造△ADM(即AM=BF ,MD=DF);以AE、EG、GC为边构造△AEN(即AN=GC,NE=EG).求证:∠M=∠N.【深入探究】上述基本事实启发我们可以用“平行线分线段成比例”解决下列问题:(3)如图3,已知△ABC和线段a,请用直尺与圆规作△A′B′C′.满足:①△A′B′C′∽△ABC;②△A′B′C′的周长等于线段a的长度.(保留作图痕迹,并写出作图步骤)图328.(本题满分12分)在平面直角坐标系xoy 中, 一块含60°角的三角板作如图摆放,斜边AB 在x 轴上,直角顶点C 在y 轴正半轴上,已知点A (-1,0),抛物线y=33-x 2+bx+c 经过点A 、B 、C .(1)请直接写出点B 、C 的坐标:B ( ▲ , ▲ )、C ( ▲ , ▲ ); (2)求经过A 、B 、C 三点的抛物线的函数表达式;(3)现有与上述三角板完全一样的三角板DEF (其中∠EDF =90°,∠DEF =60°),把顶点E 放在线段AB 上(点E 是不与A 、B 两点重合的动点),并使ED 所在直线经过点C . 此时,EF 所在直线与(1)中的抛物线交于第一象限的点M . ①设AE =x ,当x 为何值时,△OCE∽△OBC ; ②在①的条件下:抛物线的对称轴上是否存在点P 使△PEM 是等腰三角形,若存在,请求出点P的坐标;若不存在,请说明理由.数学参考答案 一.选择题y xCBA Oy x MFCBAO ED 一、选择题(每题3分,计24分)题号 1 2 3 4 5 6 7 8 答案 BDCDCBCD二.填空三.解答题19.(1) 4 (2) 2<x ≤820. 化简原式= 结果为2 21.22、 23.二、填空题(每题3分,计30分) 9. x(x-y) ; 10. _-2 ; 11. 3/8 ; 12. 4/3π ; 13. 4 __ ; 14. 8π__ ;15. 5 ; 16. 40 _______; 17. 1/6 ; 18. 7/4 ; 12-+m m 72°24.25.26. 解:过点C作CF∥DA交AB于点F.∵MN∥PQ,CF∥DA,∴四边形AFCD是平行四边形.∴A F=CD=50,∠CFB=35°.∴FB=AB﹣AF=120﹣50=70. 根据三角形外角性质可知,∠CBN=∠CFB+∠BCF,∴∠BCF=70°﹣35°=35°=∠CFB,∴BC=BF=70. 在Rt△BEC中,sin70°=,∴CE=BC•sin70°≈70×0.94=65.8≈66.答:河流的宽是66米.27.28.江苏省中考数学精选真题预测(含答案)注意事项:1.本试卷满分为120分,考试时间为120分钟.2.学生在答题过程中不能使用任何型号的计算器和其它计算工具;若试题计算没有要求取近似值,则计算结果取精确值(保留根号与π). 3.请将答案按对应的题号全部填写在答题纸上,在本试卷上答题无效.一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给的四个选项中,只有一个选项是正确的) 1.-2的相反数是 A .12-B .21 C .2 D .-22.下列各个数字中,是轴对称图形,但不是中心对称图形的是 A .B .C .D .3.要使分式52-x 有意义,则x 的取值范围是 A .x ≠5 B .x >5C .x =5D .x <54.下列计算正确的是 A.(a 2)3=a 5B.a 3+a 3=a 6 C.a 6÷a 2=a 4 D.a 3·a 4=a 125.若点P (a ,b )是第二象限内的点,则点Q (b ,a )在 A .第一象限B .第二象限C .第三象限D .第四象限6.如图,等边△ABC 中,点E 、F 分别是AB 、AC 的中点,则∠EFB 的度数为 A .25°B .30°C .35°D .40°第6题 第8题 7.二次函数y =-2x +2x +n 图像的顶点坐标是(m ,1),则m -n 的值为 A .-1B .0C .1D .2yxOBACDABC EF8.如上图,在平面直角坐标系中,四边形ABCD 是平行四边形,A (-1,3)、B (1,1)、C (5,1).规定“把□ABCD 先沿y 轴翻折,再向下平移1个单位”为一次变换.如此这样,连续经过2017次变换后,□ABCD 的顶点D 的坐标变为 A .(3,-2015)B .(-3,-2015)C .(3,-2014)D .(-3,-2014)二、填空题(本大题共10小题,每小题2分,共20分) 9.计算:121---= ▲ .10.一组数据:2、0、1、7、5、8,则这组数据的中位数是 ▲ . 11.分解因式:32a ab -= ▲ .12.据了解,常州轨道交通2号线一期工程全长约19700米,数字19700用科学记数法可表示为 ▲ .13.一个多边形的内角和为1080°,则这个多边形是 ▲ 边形.14.已知扇形A 的半径为3 cm ,圆心角为120°,则扇形A 的弧长为 ▲ cm . 15.已知点O 表示数轴的原点,点A 、B 分别表示实数23、5,若a 、b 分别表示线段OA 、AB 的长,则a ▲ b .(填“>”“=”或“<”)16.如图,⊙O 是四边形ABCD 的外接圆,CE ∥AD 交AB 于点E ,BE =BC ,∠BCD =122°,则∠ADC = ▲ °.OABDEOFEDCBA第16题 第18题17.已知反比例函数0ky k x=≠() 的图像经过点A (m ,2)和点B (1,m -1),则k = ▲ . 18.如图,正方形ABCD 的边长为2,点E 是BC 边上的一动点,点F 是CD 上一点,且CE =DF ,AF 、DE 相交于点O ,BO =BA ,则OC 的值为 ▲ .三、解答题(本大题共10小题,共84分)19.(本小题满分6分)先化简,再求值:2211x x x --+-()()(),其中2-=x .20.(本小题满分8分)解方程和不等式组⑴ 21122x x x=--- ⑵ 322(1)4x x x x ≥-⎧⎨-<-+⎩21.(本小题满分8分)某校在经典诵读活动中,对全校学生用A 、B 、C 、D 四个等级进行评价,现从中抽取若干个学生进行调查,绘制出了两幅不完整的统计图,请你根据图中信息解答下列问题:⑴ 被调查的学生共有 ▲ 人,图乙中B 等级所占圆心角为 ▲ 度. ⑵ 补全折线统计图.⑶ 若该校共有学生800人,请你估计全校评价A 等级的学生的人数.22.(本小题满分8分)一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同.从中任意摸出1个球,取出白球的概率为12. ⑴ 布袋里红球有多少个?⑵ 先从布袋中摸出1个球后不.再.放回..,再摸出1个球,求两次摸到的球都是白球的概率.23.(本小题满分8分)如图,四边形ABCD 中,AB =AD ,∠ABC =∠ADC .BADC20 %甲 乙⑴ 求证:CB =CD ;⑵ 若∠BCD =90°,AO =2CO ,求tan∠ADO .24.(本小题满分8分)某校计划购买甲、乙两种树苗共1000株用以绿化校园,甲种树苗每株25元,乙种树苗每株30元.通过调查了解,甲,乙两种树苗成活率分别是90%和95%. ⑴ 要使这批树苗的总成活率不低于92%,则甲种树苗最多购买多少株?⑵ 在⑴的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.25.(本小题满分8分)在平面直角坐标系中,若点P (x ,y )的坐标x 、y 均为整数,则称点P 为格点.若一个多边形的面积记为S ,其内部的格点数记为N ,边界上的格点数记为L .例如图中△ABC 是格点三角形,对应的S =1,N =0,L =4. ⑴ 写出图中格点四边形DEFG 对应的S ,N ,L .⑵ 已知任意格点多边形的面积公式为S =N +aL +b ,其中a ,b 为常数.当某格点多边形对应的N =82,L =38,求S 的值.OABCD26.(本小题满分8分)⑴ 如图1,线段AB =2n ,点P 是线段AB 上的动点(不包括端点).分别以AP 、BP 为斜边,在线段AB 两侧作等腰Rt△ACP 和等腰Rt△BDP ,则C 、D 两点之间的距离为 ▲ (用含n 的代数式表示).⑵如图2,线段AB =2n ,点P 是线段AB 上的动点(不包括端点).分别以AP 、BP 为底边,在线段AB 两侧作等腰△ACP 和等腰△BDP ,且∠APC =∠DPB =α,则C 、D 两点之间的距离为 ▲ (用含n 和α的代数式表示). ⑶如图3,线段AB =12,以AB 所在直线为x 轴建立如图所示的平面直角坐标系,点P 是x 轴上的动点.此时,过点A 的直线1l 的解析式为:221+=x y ,过点B 的直线2l 与y 轴交于点C (0,4).点E 、F 分别是直线1l 、 2l 上的动点,则PE +PF 的最小值是▲ ,此时,sin∠EPF = ▲ .A CBPD图2ACBDP图1CBADGE F 0x27.(本小题满分10分)如图,正方形ABCD 的边长为4,点E 、F 分别是边AD 、AB 的中点,点P 是BC 延长线上一点,且EP ⊥EB .过点F 作FH ∥BP ,分别交EB 、EP 于G 、H 两点.将△EGH 绕点E 逆时针旋转α(0︒<α<90︒),得到△EMN (M 、N 分别是G 、H 的对应点),使直线MN 恰好经过点B . ⑴ 求BP 的长;⑵ △EBM 与△EPN 相似吗?说明理由;⑶ 求旋转角α的大小.(只要求出α的某一个三角函数值即可)28.(本小题满分12分)如图,抛物线y =a 2x +bx +c 交x 轴于O (0,0),A (8,0)两点,顶点B 的纵坐标为4. ⑴ 直接写出抛物线的解析式;⑵ 若点C 是抛物线上异于原点O 的一点,且满足22BC =2OA +22OC ,试判断 △OBC 的形状,并说明理由.⑶ 在⑵的条件下,若抛物线上存在一点D ,使得∠OCD =∠AOC -∠OCA ,求点D 的坐标.CPFx图3答 案一.选择题(本题有8小题,每小题2分,共16分)题 号 12345678答 案 C B A C D B C D评分标准选对一题给2分,不选,多选,错选均不给分二.填空题 (每小题2分,共20分)9.﹣21 10.3.5 11.))((b a b a a -+ 12.1.97×10413.八 14.2π 15.> 16.116° 17.- 2 18.1052三、解答题(共84分) 19.化简求值:⑴ 原式=14422+-+-x x x ----------------------------------------- 2分=54+-x ------------------------------------------------- 4分当x =-2时原式=-4×(-2)+5 ----------------------------------------------- 5分= 13 ---------------------------------------------------------- 6分20.⑴ 解方程:xx x --=-21122 解: 1)2(2+-=x x ------------------------------------------ 1分1-=x -------------------------------------------------- 3分检验: 当x =-1时,左边=3221-1-2=-⨯)(,右边=321-211=--)(左边=右边∴ x =-1是原方程的解. ----------------------------------------- 4分⑵ 解不等式组:⎩⎨⎧+-<--≥②)(①41223x x x x解: 解不等式①得: 1-≥x ---------------------------------------- 1分解不等式②得: 2<x --------------------------------------- 2分∴ 原不等式组的解集是-1≤x <2. ----------------------------- 4分21.⑴ 50人,144° ------------------------------------------------- 4分⑵ -------------------------------------------------- 6分 ⑶ 2405015800=⨯人 -------------------------------------------------- 7分答:全校评价A 等级的学生约有240人. --------------------------------- 8分22.解:⑴ 设布袋里红球有x 个.由题意可得:21122=++x ---------------------------------------- 1分解得x =1,经检验x =1是原方程的解. -------------------------------- 2分∴ 布袋里红球有1个. --------------------------------------------- 3分⑵ 记两个白球分别为白1,白2画树状图如下: 或列表格如下:1白红白22白黑白11白黑红红黑白2黑红白21白开始2(白 ,黑 )2(黑,白 )2(红,白 )1(红,白 )1(黑,白 )(黑,红 )2(白 ,红 )(白 ,黑 )1(白 ,红 )1(红 ,黑 )(白 ,白 )2121(白 ,白 )红黑2白白1红黑2白白1--------- 5分由图可得,两次摸球共有12种等可能结果 ---------------------------- 6分其中,两次摸到的球都是白球的情况有2种 --------------------------- 7分∴ P (两次摸到的球都是白球)=61122=.---------------------------- 8分23.⑴ ∵ AB =AD ∴ ∠ABD =∠ADB ----------------------------------------- 1分又∵ ∠ABC =∠ADC ∴ ∠ABC -∠ABD =∠ADC -∠ADB即:∠CBD =∠CDB --------------------------------------------------- 2分∴ CB =CD ---------------------------------------------------------- 3分⑵ ∵ CB =CD ,AB =AD ∴ AC 垂直平分BD --------------------------------- 4分∴ ∠AOD =90°,BO =DO ---------------------------------------------- 5分∵ ∠BCD =90°,BO =DO ∴ OC=OD=BD 21------------------------------ 6分∵ AO=2OC ∴ AO=2OD 即:2=ODAO--------------------------------- 7分∴ Rt △AOD 中,tan ∠ADO =2=ODAO------------------------------------ 8分24.⑴ 设购买甲种树苗a 株,则购买乙种树苗(1000﹣a )株由题意,得:90%a +95%(1000﹣a )≥92%×1000 ----------------------- 2分解得:a ≤600 ------------------------------------------------------ 3分答:甲种树苗最多购买600株; --------------------------------------- 4分⑵ 设购买树苗的总费用为W 元,由题意,得W =25a +30(1000﹣a )=﹣5a +30000 ---------------------------------- 6分∴ k =﹣5<0, ∴ W 随a 的增大而减小∵ 0<a ≤600 ∴ a =600时,W 最小=27000元. ------------------------ 7分∴ 购买甲种树苗600株,乙种树苗400株时总费用最低,最低费用为27000元. --------------------------------------------- 8分25.解:⑴ 由图可得:S =4,N =2,L =6; --------------------------------------- 3分⑵ 根据格点三角形ABC 及格点四边形DEFG 中的S 、N 、L 的值可得解⎩⎨⎧=++=+46214b a b a ----------------------------------------------- 5分得:⎪⎩⎪⎨⎧-==121b a---------------------------------------------------- 6分∴ S =N +21L ﹣1 ------------------------------------------------- 7分将N =82,L =38代入可得S =82+21×38﹣1=100. --------------------- 8分26.⑴ n 2 --------------------------------------------------------------- 2分⑵ αcos nCD = -------------------------------------------------------- 4分⑶ 5512,54 --------------------------------------------------------- 8分27.解:⑴ BP =10 -------------------------------------------------------- 2分⑵ ∵ △EGH ∽△EBP ∽△AEB ∴ EH =2EG ,EP =2EB 画出示意图如下:则EN =2EM .又∠BEM =∠PEN 因此△EBM ∽△EPN . -------------------- 5分⑶ 作ER ⊥MN 于R ,则ER =AF =2,MR =1,RN =4又EB =25,∴ BR =4,∴ BN =3+1+4=8 -------------------------- 7分由△EBM ∽△EPN 得,∠EBM =∠EPN又EP 与BN 相交构成的对顶角相等,因此∠BNP =∠BEP =90° ------------ 9分因此cos ∠NBP =BP BN =108=54将△EGH 绕点E 逆时针旋转至△EMN 时,GH 与MN 是对应边,旋转角α(0°<α<90°)就是直线MN 与直线GH 构成的锐角,因此α=∠NBP . 即旋转角的大小为余弦值为54所对应的锐角. -------------------------- 10分28.解:⑴ y =-241x +2x-------------------------------------------------- 2分⑵ △OBC 是直角三角形.设C (x ,y ),由勾股定理得:2OB =24+24,2OC =2x +2y ,2BC =2)4(-x +2)4(-y ------ 3分∵ 22BC =2OA +22OC ∴ 化简得 x =-y 代入y =-241x +2x 解得x =12,y =-12,即点C (12,-12) -- 5分则∠AOB =∠AOC =45°,∠BOC =90°,因此△OBC 是直角三角形. ----- 6分yxOAC ByxOB'ADCBE⑶ 作CE ⊥x 轴于E ,则tan ∠ACE =31. ∵ ∠AOC =∠OCE =45°∴ ∠AOC -∠OCA =∠OCE -∠OCA =∠ACE ∵ ∠OCD =∠AOC -∠OCA ∴ tan ∠OCD =31 -------------------- 7分下面只要经过点C ,在CO 的上方与下方各作一条直线,使所作直线与CO 所成锐角的正切值为31,则直线与抛物线的交点即为所求点D . ∵ △OBC 中,ta n ∠OCB =21224=31 ∴ 直线上方的点D 即为点B (4,4) --------------------------- 9分∵ 点B 关于点O 的对称点B '(-4,-4),且OB ⊥OC∴ ∠OCB =∠OC B '∵ 直线B 'C 解析式为y =-21x -6∴ 代入抛物线y =-241x +2x 解得D (-2,-5)综上所述,点D 的坐标为(4,4)或(2-,5-).--------------- 12分。
江苏2021年苏州中考数学卷试题真题及答案详解(精校版)
2021年苏州市初中毕业暨升学考试试卷数学本试卷由选择题、填空题和解答题三大题组成,共28小题,满分130分,考试时间120分钟.注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;2.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题:3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共40小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上.1.计算2的结果是()AB .3C .D .92.如图所示的圆锥的主视图是()A .B .C .D .3.如图,在方格纸中,将Rt AOB △绕点B 按顺时针方向旋转90°后得到Rt A O B ''△,则下列四个图形中正确的是()A .B .C .D.4.已知两个不等于0的实数a 、b 满足0a b +=,则b a a b +等于()A .2-B .1-C .1D .25.为增强学生的环保意识,共建绿色文明校园.某学校组织“废纸宝宝旅行记”活动.经统计,七年级5个班级一周回收废纸情况如下表;班级一班二班三班四班五班废纸重量(kg ) 4.5 4.4 5.1 3.35.7则每个班级回收废纸的平均重量为()A .5kg B .4.8kg C .4.6kg D .4.5kg6.已知点)Am ,3,2B n ⎛⎫ ⎪⎝⎭在一次函数21y x =+的图像上,则m 与n 的大小关系是()A .m n >B .m n =C .m n <D .无法确定7.某公司上半年生产甲,乙两种型号的无人机若干架.已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x 架,乙种型号无人机y 架.根据题意可列出的方程组是()A .()()111,3122x x y y x y ⎧=+-⎪⎪⎨⎪=++⎪⎩B .()()111.3122x x y y x y ⎧=++⎪⎪⎨⎪=+-⎪⎩C .()()111,2123x x y y x y ⎧=+-⎪⎪⎨⎪=++⎪⎩D .()()111,2123x x y y x y ⎧=++⎪⎪⎨⎪=+-⎪⎩8.已知抛物线22y x kx k =+-的对称轴在y 轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则k 的值是()A .5-或2B .5-C .2D .2-9.如图,在平行四边形ABCD 中,将ABC 沿着AC 所在的直线翻折得到AB C 'V ,B C '交AD于点E ,连接B D ',若60B ∠=︒,45ACB ∠=︒,AC =B D '的长是()A .1B CD 10.如图,线段10AB =,点C 、D 在AB 上,1AC BD ==.已知点P 从点C 出发,以每秒1个单位长度的速度沿着AB 向点D 移动,到达点D 后停止移动,在点P 移动过程中作如下操作:先以点P 为圆心,PA 、PB 的长为半径分别作两个圆心角均为60°的扇形,再将两个扇形分别围成两个圆锥的侧面.设点P 的移动时间为(秒).两个圆锥的底面面积之和为S .则S 关于t 的函数图像大致是()A .B .C .D .二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上,11.全球平均每年发生雷电次数约为16000000次,将16000000用科学记数法表示是_____.12.因式分解221x x -+=______.13.一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上.每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是______.14.如图.在Rt ABC △中,90C ∠=︒,AF EF =.若72CFE ∠=︒,则B ∠=______.15.若21m n +=,则2366m mn n ++的值为______.16.若21x y +=,且01y <<,则x 的取值范围为______.17.如图,四边形ABCD 为菱形,70ABC ∠=︒,延长BC 到E ,在DCE ∠内作射线CM ,使得15ECM ∠=︒,过点D 作DF CM ⊥,垂足为F ,若DF =BD 的长为______.(结果保留根号)18.如图,射线OM 、ON 互相垂直,8OA =,点B 位于射线OM 的上方,且在线段OA 的垂直平分线l 上,连接AB ,5AB =.将线段AB 绕点O 按逆时针方向旋转得到对应线段A B '',若点B '恰好落在射线ON 上,则点A '到射线ON 的距离d ≈______.三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.19223--.20.解方程组:3423x y x y -=-⎧⎨-=-⎩.21.先化简再求值:21111x x x-⎛⎫+⋅ ⎪-⎝⎭,其中1x =.22.某学校计划在八年级开设“折扇”、“刺绣”、“剪纸”、“陶艺”四门校本课程,要求每人必须参加,并且只能选择其中一门课程.为了解学生对这四门课程的选择情况,学校从八年级全体学生中随机抽取部分学生进行问卷调查.并根据调查结果绘制成如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据以上信息解决下列问题:(1)参加问卷调查的学生人数为______名.补全条形统计图(画图并标注相应数据);(2)在扇形统计图中,选择“陶艺”课程的学生占______%;(3)若该校八年级一共有1000名学生,试估计选择“刺绣”课程的学生有多少名?23.4张相同的卡片上分别写有数字0、1、2-、3,将卡片的背面朝上,洗匀后从中任意抽取1张.将卡片上的数字记录下来;再从余下的3张卡片中任意抽取1张,同样将卡片上的数字记录下来.(1)第一次抽取的卡片上数字是负数的概率为______;(2)小敏设计了如下游戏规则:当第一次记录下来的数字减去第二次记录下来的数字所得结果为非负数时,甲获胜:否则,乙获胜.小敏设计的游戏规则公平吗?为什么?(请用画树状图或列表等方法说明理由).24.如图,在平面直角坐标系中.四边形OABC 为矩形,点C 、A 分别在x 轴和y 轴的正半轴上,点D 为AB 的中点已知实数0k ≠,一次函数3y x k =-+的图像经过点C 、D ,反比例函数()0ky x x=>的图像经过点B ,求k 的值.25.如图,四边形ABCD 内接于O ,12∠=∠,延长BC 到点E ,使得CE AB =,连接ED .(1)求证:BD ED =;(2)若4AB =,6BC =,60ABC ∠=︒,求tan DCB ∠的值.26.如图,二次函数()21y x m x m =-++(m 是实数,且10m -<<)的图像与x 轴交于A 、B 两点(点A 在点B 的左侧),其对称轴与x 轴交于点C ,已知点D 位于第一象限,且在对称轴上,OD BD ⊥,点E 在x 轴的正半轴上,OC EC =.连接ED 并延长交y 轴于点F ,连接AF .(1)求A 、B 、C 三点的坐标(用数字或含m 的式子表示);(2)已知点Q 在抛物线的对称轴上,当AFQ △的周长的最小值等于125,求m 的值.27.如图①,甲,乙都是高为6米的长方体容器,容器甲的底面ABCD 是正方形,容器乙的底面EFGH 是矩形.如图②,已知正方形ABCD 与矩形EFGH 满足如下条件:正方形ABCD外切于一个半径为5米的圆O ,矩形EFGH 内接于这个圆O ,2EF EH =.(1)求容器甲,乙的容积分别为多少立方米?(2)现在我们分别向容器甲,乙同时持续注水(注水前两个容器是空的),一开始注水流量均为25立方米/小时,4小时后.把容器甲的注水流量增加a 立方米/小时,同时保持容器乙的注水流量不变,继续注水2小时后,把容器甲的注水流量再一次增加50立方米/小时,同时容器乙的注水流量仍旧保持不变.直到两个容器的水位高度相同,停止注水.在整个注水过程中,当注水时间为t 时,我们把容器甲的水位高度记为h 甲,容器乙的水位高度记为h 乙,设h h h -=乙甲,已知h (米)关于注水时间t (小时)的函数图像如图③所示,其中MN 平行于横轴.根据图中所给信息,解决下列问题:①求a 的值;②求图③中线段PN 所在直线的解析式.28.如图,在矩形ABCD 中,线段EF 、GH 分别平行于AD 、AB ,它们相交于点P ,点1P 、2P 分别在线段PF 、PH 上,1PP PG =,2PP PE =,连接1PH 、2P F ,1PH 与2P F 交于点Q .已知::1:2AG GD AE EB ==.设AG a =,AE b =.(1)四边形EBHP 的面积______四边形GPFD 的面积(填“>”、“=”或“<”);(2)求证:12PFQ P HQ ∽△△;(3)设四边形12PPQP 的面积为1S ,四边形CFQH 的面积为2S ,求12S S的值.1.B【分析】直接根据二次根式的性质求解即可.【详解】解:2=3,故选B .【点睛】此题主要考查了二次根式的性质,熟练掌握2(0)a a =≥是解答此题的关键.2.A【详解】试题分析:主视图是从正面看所得到的图形,圆锥的主视图是等腰三角形,如图所示:,故选A.考点:三视图.3.B【分析】根据绕点B 按顺时针方向旋转90°逐项分析即可.【详解】A 、Rt A O B ''△是由Rt AOB △关于过B 点与OB 垂直的直线对称得到,故A 选项不符合题意;B 、Rt A O B ''△是由Rt AOB △绕点B 按顺时针方向旋转90°后得到,故B 选项符合题意;C 、Rt A O B ''△与Rt AOB △对应点发生了变化,故C 选项不符合题意;D 、Rt AOB △是由Rt AOB △绕点B 按逆时针方向旋转90°后得到,故D 选项不符合题意.故选:B .【点睛】本题考查旋转变换.解题的关键是弄清旋转的方向和旋转的度数.4.A【分析】先化简式子,再利用配方法变形即可得出结果.解:∵22=b a b a a b ab++,∴()2222==a b ab b a b a a b ab ab +-++,∵两个不等于0的实数a 、b 满足0a b +=,∴()22-2==-2a b ab b a ab a b ab ab+-+,故选:A .【点睛】本题考查分式的化简、配完全平方、灵活应用配方法是解题的关键.5.C【分析】根据平均数的定义求解即可.【详解】每个班级回收废纸的平均重量=4.5+4.4+5.1+3.3+5.7 4.65kg =.故选:C .【点睛】本题考查了平均数,理解平均数的定义是解题的关键.6.C【分析】根据一次函数的增减性加以判断即可.【详解】解:在一次函数y =2x +1中,∵k =2>0,∴y 随x 的增大而增大.∵2<94,32<.∴m <n .【点睛】本题考查了一次函数的性质、实数的大小比较等知识点,熟知一次函数的性质是解题的关键.7.D【分析】分析题意,找到两个等量关系,分别列出方程,联立即可.【详解】设甲种型号无人机x 架,乙种型号无人机y 架∵甲种型号无人机架数比总架数的一半多11架,∴()1112x x y =++∵乙种型号无人机架数比总架数的三分之一少2架∴()123y x y =+-联立可得:()()1112123x x y y x y ⎧=++⎪⎪⎨⎪=+-⎪⎩故选:D .【点睛】本题考查实际问题与二元一次方程组.关键在于找到题中所对应的等量关系式.8.B【分析】根据二次函数图象左加右减,上加下减的平移规律进行解答即可.【详解】解:函数22y x kx k =+-向右平移3个单位,得:22(3)(3)y x k x k =-+--;再向上平移1个单位,得:22(3)(3)y x k x k =-+--+1,∵得到的抛物线正好经过坐标原点∴220(03)(03)k k =-+--+1即20310k k +-=解得:5k =-或2k =∵抛物线22y x kx k =+-的对称轴在y 轴右侧∴2k x =->0∴k <0∴5k =-故选:B .【点睛】此题主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.9.B【分析】利用平行四边形的性质、翻折不变性可得△AEC 为等腰直角三角形,根据已知条件可得CE 得长,进而得出ED 的长,再根据勾股定理可得出B D ';【详解】解:∵四边形ABCD 是平行四边形∴AB =CD ∠B =∠ADC =60°,∠ACB =∠CAD由翻折可知:BA =AB ′=DC ,∠ACB =∠AC B ′=45°,∴△AEC 为等腰直角三角形∴AE =CE∴Rt △AE B ′≌Rt △CDE∴EB ′=DE∵在等腰Rt △AEC 中,AC =∴CE =∵在Rt △DEC 中,CE =ADC =60°∴∠DCE =30°∴DE =1在等腰Rt △DE B ′中,EB ′=DE =1∴B D '故选:B【点睛】本题考查翻折变换、等腰三角形的性质、勾股定理、平行四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.D【分析】由题意,先求出1PA t =+,9PB t =-,然后利用再求出圆锥的底面积进行计算,即可求出函数表达式,然后进行判断即可.【详解】解:根据题意,∵10AB =,1AC BD ==,且已知点P 从点C 出发,以每秒1个单位长度的速度沿着AB 向点D 移动,到达点D 后停止移动,则08t ≤≤,∴1PA t =+,∴10(1)9PB t t =-+=-,由PA 的长为半径的扇形的弧长为:60(1)(1)1803t t =ππ++∴用PA 的长为半径的扇形围成的圆锥的底面半径为16t +∴其底面的面积为()2136t π+由PB 的长为半径的扇形的弧长为:60(9)(9)1803-t t =ππ-∴用PB 的长为半径的扇形围成的圆锥的底面半径为96-t∴其底面的面积为()2936-t π∴两者的面积和()222(1)(9)1841363618t t S =t t πππ+-=+-+∴图像为开后向上的抛物线,且当4t =时有最小值;故选:D .【点睛】本题考查了扇形的面积公式,二次函数的最值,二次函数的性质,线段的动点问题,解题的关键是熟练掌握扇所学的知识,正确的求出函数的表达式.11.71.610⨯【详解】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.16000000=71.610⨯.12.()21x -【分析】直接利用乘法公式分解因式得出答案.【详解】解:221x x -+=(x ﹣1)2.故答案为:(x ﹣1)2.【点睛】此题主要考查了公式法分解因式,正确应用乘法公式是解题关键.13.29【分析】先判断黑色区域的面积,再利用概率公式计算即可【详解】解:因为正方形的两条对角线将正方形分成面积相等的四个三角形,即四个黑色三角形的面积等于一个小正方形的面积,所以黑色区域的面积为2个小正方形的面积,而共有9个小正方形则有小球停留在黑色区域的概率是29P =故答案为:29【点睛】本题考查概率的计算,正方形的性质、熟练掌握概率公式是关键14.54°【分析】首先根据等腰三角形的性质得出∠A =∠AEF ,再根据三角形的外角和定理得出∠A +∠AEF =∠CFE ,求出∠A 的度数,最后根据三角形的内角和定理求出∠B 的度数即可.【详解】∵AF =EF ,∴∠A =∠AEF ,∵∠A +∠AEF =∠CFE=72°,∴∠A =36°,∵∠C =90°,∠A +∠B +∠C =180°,∴∠B =180°-∠A -∠C =54°.故答案为:54°.【点睛】本题考查了三角形的外角和定理,等腰三角形的性质,掌握相关定理和性质是解题的关键.15.3【分析】根据21m n +=,将式子2366m mn n ++进行变形,然后代入求出值即可.【详解】∵21m n +=,∴2366m mn n ++=3m (m +2n )+6n =3m +6n =3(m +2n )=3.故答案为:3.【点睛】本题考查了代数式的求值,解题的关键是利用已知代数式求值.16.102x <<【分析】根据21x y +=可得y =﹣2x+1,k =﹣2<0进而得出,当y =0时,x 取得最大值,当y =1时,x 取得最小值,将y =0和y =1代入解析式,可得答案.【详解】解:根据21x y +=可得y =﹣2x+1,∴k =﹣2<0∵01y <<,∴当y =0时,x 取得最大值,且最大值为12,当y =1时,x 取得最小值,且最小值为0,∴102x <<故答案为:102x <<.【点睛】此题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.17.【分析】先由菱形的性质得出70DCE ∠=︒,求得55DCF ∠=︒,再根据直角三角形两锐角互余得35CDF ∠=︒,连接AC 交BD 于点O ,根据菱形的性质得90DOC ∠=︒,35BDC ∠=︒,根据AAS 证明CDO CDF ∆≅∆可得DO DF =BD =【详解】解:连接AC,如图,∵四边形ABCD 是菱形,∴AB //CD ,90DOC ∠=︒,BD =2DO∴70DCE ABC ∠=∠=︒∵15ECM ∠=︒∴55DCM ∠=︒∵DF CM⊥∴35CDF ∠=︒∵四边形ABCD 是菱形,∴113522CDB ADC ABC ∠=∠=∠=︒∴CDF CDO∠=∠在CDO ∆和CDF ∆中,90CDO CDF COD CFD CD CD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴CDO ∆≌CDF∆∴DO DF =∴2BD DO ==故答案为:【点睛】此题主要考查了菱形的性质以及全等三角形的判定与性质,连接AC 并证明CDO ∆≌CDF ∆是解答此题的关键.18.245【分析】添加辅助线,连接'OA OB 、,过'A 点作'A P ON ⊥交ON 与点P .根据旋转的性质,得到''A B O ABO ≅ ,在'Rt A PO ∆和中,'B OA BOA ∠=∠,根据三角函数和已知线段的长度求出点A '到射线ON 的距离=A'P d .【详解】如图所示,连接'OA OB 、,过'A 点作'A P ON ⊥交ON 与点P .∵线段AB 绕点O 按逆时针方向旋转得到对应线段A B ''∴'8OA OA ==,''B OB A OA∠=∠∴''''B OB BOA A OA BOA ∠-∠=∠-∠即''B OA BOA∠=∠∵点B 在线段OA 的垂直平分线l 上∴118422OC OA ==⨯=,5OB AB ==3BC ===∵''B OA BOA∠=∠∴'sin ''sin 'A P BC B OA BOA A O OB∠==∠=∴'3 85 A P=∴24'5 d A P==【点睛】本题主要考查旋转的性质和三角函数.对应点到旋转中心的距离相等,对应点与旋转中心所连的线段的夹角等于旋转角,旋转前、后的图形全等.19.-5【分析】分别化简算术平方根、绝对值和有理数的乘方,然后再进行加减运算即可得到答案.【详解】223+--229=+-5=-.【点睛】此题主要考查了实数的混合运算,熟练掌握运算法则是解答此题的关键.20.11xy=-⎧⎨=⎩.【分析】根据代入消元法,可得答案.【详解】解:3423x yx y-=-⎧⎨-=-⎩①②由②得:x=-3+2y③,把③代入①得,3(-3+2y)-y=-4,解得y=1,把y=1代入③得:x=-1,则原方程组的解为:11xy=-⎧⎨=⎩.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.1x +【分析】先算分式的加法,再算乘法运算,最后代入求值,即可求解.【详解】解:原式()()111111x x x x x x+--+=⋅=+-.当1x =时,原式=【点睛】本题主要考查分式的化简求值,熟练掌握分式的通分和约分,是解题的关键.22.(1)50,见解析;(2)10;(3)200名【分析】(1)根据参加“折扇”的人数除以所占的百分比即可求出参加问卷的学生人数,再用总人数减去参加“折扇”、“刺绣”和“陶艺”的人数即可得到参加“剪纸”的人数,从而可补全条形统计图;(2)用选择“陶艺”课程的学生人数除以总人数即可得到结果;(3)先求出样本中参加“刺绣”课程的百分比,再用八年级人数乘以这个百分比即可得到结论.【详解】解:(1)15÷30%=50(人),所以,参加问卷调查的学生人数为50名,参加“剪纸”课程的人数为:50-15-10-5=20(名)画图并标注相应数据,如下图所示.故答案为:50;(2)5÷50=0.1=10%故答案为10;(3)由题意得:10100020050⨯=(名).答:选择“刺绣”课程有200名学生.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.23.(1)14;(2)公平,见解析【分析】(1)列举出所有可能,进而求出概率;(2)利用树状图法列举出所有可能,再利用概率公式进而得出甲、乙获胜的概率即可得出答案.【详解】解:(1)共有4种等可能的结果,其中数字是负数情况占1种P(数字是负数)=1 4;(2)用树状图或表格列出所有等可能的结果:∵共有12种等可能的结果,两个数的差为非负数的情况有6种,∴P (结果为非负数)61122==,P (结果为负数)61122==.∴游戏规则公平.【点睛】本题考查的是概率以及游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.24.6k =【分析】先根据一次函数3y x k =-+求出点C 的坐标,进而可表示出点B 的横坐标,再代入反比例函数()0k y x x =>即可求得点B 的坐标,再结合点D 为AB 的中点可得点D 的坐标,最后将点D 坐标代入一次函数3y x k =-+即可求得答案.【详解】解:把0y =代入3y x k =-+,得3k x =.∴,03k C ⎛⎫ ⎪⎝⎭.∵BC x ⊥轴,∴点B 横坐标为3k .把3k x =代入k y x =,得3y =.∴,33k B ⎛⎫ ⎪⎝⎭.∵点D 为AB 的中点,∴AD BD =.∴,36k D ⎛⎫ ⎪⎝⎭.∵点,36k D ⎛⎫ ⎪⎝⎭在直线3y x k =-+上,∴336k k =-⨯+.∴6k =.【点睛】本题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法确定一次函数、反比例函数解析式,坐标与图形性质,矩形的性质,熟练掌握待定系数法是解本题的关键.25.(1)见解析;(2【分析】(1)由圆内接四边形的性质可知180A BCD ∠+∠=︒,再由180DCE BCD ∠+∠=︒,即可得出A DCE ∠=∠.根据圆周角定理结合题意可知 AD CD=,即得出AD CD =.由此易证()ABD CED SAS △≌△,即得出BD ED =.(2)过点D 作DM BE ⊥,垂足为M .根据题意可求出10BE =,结合(1)可知152BM EM BE ===,即可求出1CM =.根据题意又可求出230∠=︒,利用三角函数即可求出DM =,最后再利用三角函数即可求出最后结果.【详解】(1)证明:∵四边形ABCD 是圆的内接四边形,∴180A BCD ∠+∠=︒.∵180DCE BCD ∠+∠=︒,∴A DCE ∠=∠.∵12∠=∠,∴ AD CD=,∴AD CD =.在ABD △和CED 中,AB CE A DCE AD CD =⎧⎪∠=∠⎨⎪=⎩∴()ABD CED SAS △≌△,∴BD ED =.(2)解:如图,过点D 作DM BE ⊥,垂足为M .∵6BC =,4AB CE ==,∴10BE BC CE =+=.由(1)知BD ED =.∴152BM EM BE ===.∴1CM BC BM =-=.∵60ABC ∠=︒,12∠=∠,∴230∠=︒.∴tan 305DM BM =⋅︒=⨯.∴tan DM DCB CM ∠=【点睛】本题为圆的综合题.考查圆内接四边形的性质,圆周角定理,全等三角形的判定和性质,等腰三角形的判定和性质以及解直角三角形.利用数形结合的思想并正确作出辅助线是解答本题的关键.26.(1)(),0A m ,()1,0B ,1,02m C +⎛⎫ ⎪⎝⎭;(2)15m =-【分析】(1)把0y =代入函数解析式,可得()210x m x m -++=,再利用因式分解法解方程可得,A B的坐标,再求解函数的对称轴,可得C 的坐标;(2)先证明COD CDB ∽△△,利用相似三角形的性质求解2214m CD -=,利用三角形的中位线定理再求解22241OF CD m ==-.再利用勾股定理求解1AF =,如图,当点F 、Q 、B三点共线时,FQ AQ +的长最小,此时AFQ △的周长最小.可得75BF =.再利用勾股定理列方程,解方程可得答案.【详解】解:(1)令0,y =则()210x m x m -++=,()()10,x x m ∴--=∴12,1,x m x ==∴(),0A m ,()1,0B ,∴对称轴为直线12m x +=,∴1,02m C +⎛⎫ ⎪⎝⎭.(2)在Rt ODB △中,CD OB ⊥,,OD BD ⊥90,ODB OCD ∴∠=∠=︒,DOC BOD ∠=∠ ∴COD CDB ∽△△,,CD CO CB CD∴=()1,0,1,0,2m C B +⎛⎫ ⎪⎝⎭ ∴12m OC +=,11122m m BC +-=-=.∴22111224m m m CD OC CB +--=⋅=⋅=.∵CD x ⊥轴,OF x ⊥轴,∴//CD OF .∵OC EC =,∴2OF CD =.∴22241OF CD m ==-.在Rt AOF 中,222AF OA OF +=,∴22211AF m m =+-=,即1AF =.(负根舍去)∵点A 与点B 关于对称轴对称,∴QA QB =.∴如图,当点F 、Q 、B 三点共线时,FQ AQ +的长最小,此时AFQ △的周长最小.∴AFQ △的周长的最小值为125,∴FQ AQ +的长最小值为127155-=,即75BF =.∵222OF OB BF +=,∴2491125m -+=.∴15m =±.∵10m -<<,∴15m =-.【点睛】本题考查的求解二次函数与坐标轴的交点坐标以及对称轴方程,图形与坐标,二次函数的对称性,勾股定理的应用,相似三角形的判定与性质,灵活应用二次函数的性质是解题的关键.27.(1)甲600立方米,乙240立方米;(2)①37.5a =;②19(69)22h t t =-+≤≤.【分析】(1)根据题意画出图形即可直接得出正方形ABCD 的边长10AB =,即可求出容器甲的容积;连接FH ,由圆周角定理的推论可知FH 为直径,即10FH =,再在Rt EFH 中,根据勾股定理即可求出EF 和EH 的长,即可求出容器乙的容积.(2)根据题意可求出容器甲的底面积为100平方米,容器乙的底面积为40平方米.①当4t =时,根据题意即可求出此时h 的值,即得出M 点坐标.由MN 平行于横轴,即得出N 点坐标,即6小时后高度差仍为h 米,由此即可列出关于a 的等式,解出a 即可.②设注水b 小时后,0h h -=乙甲,根据题意可列出关于b 的等式,解出b 即得到P 点坐标.设线段PN 所在直线的解析式为h kt m =+,利用待定系数法即可求出其解析式.【详解】(1)由图知,正方形ABCD 的边长10AB =,∴容器甲的容积为2106600⨯=立方米.如图,连接FH ,∵90FEH ∠=︒,∴FH 为直径.在Rt EFH 中,2EF EH =,10FH =,根据勾股定理,得EF =EH =∴容器乙的容积为6240=立方米.(2)根据题意可求出容器甲的底面积为1010=100⨯平方米,容器乙的底面积为平方米.①当4t =时,425425 2.51 1.540100h ⨯⨯=-=-=.∵MN 平行于横轴,∴()41.5M ,,()61.5N ,.由上述结果,知6小时后高度差仍为1.5米,∴2562562 1.540100a ⨯⨯+-=.解得37.5a =.②设注水b 小时后,0h h -=乙甲,则有()()25437.565025040100b b b b +-⨯+-⨯-=.解得9b =,即()90P ,.设线段PN 所在直线的解析式为h kt m =+,∵()61.5N ,、()90P ,在直线PN 上,∴1.5609k m k m=+⎧⎨=+⎩,解得:1292k m ⎧=-⎪⎪⎨⎪=⎪⎩.∴线段PN 所在直线的解析式为19(69)22h t t =-+≤≤.【点睛】本题考查圆的内接和外切四边形的性质,圆周角定理,勾股定理以及一次函数的实际应用.根据题意画出图形求出两个容器的各边长和理解题意找出等量关系是解答本题的关键.28.(1)=;(2)见解析;(3)14【分析】(1)由四边形ABCD 为矩形及//GH AB ,//EF AD ,证明四边形PFCH 为矩形,四边形AGPE 、GDFP 、EPHB 均为矩形.再利用矩形的面积公式求解四边形EBHP 的面积与四边形GPFD 的面积,从而可得答案;(2)由1PP PG =,2PP PE =,结合2PE PH ab ⋅=,2PG PF ab ⋅=,结合21FPP HPP ∠=∠,证明21PP F PPH ∽△△.可得21PFP PHP ∠=∠.从而可得结论;(3)解法一:连接12PP ,FH ,证明12PPP CFH ∽△△.可得1221214PP P CFH S PP S FH ⎛⎫== ⎪⎝⎭ .再证明12PQP FQH ∽△△.可得1221214PQP FQH S PP S FH ⎛⎫== ⎪⎝⎭△△,从而可得答案;解法二:连接12PP 、FH .证明四边形12PPOP ∽的四边形CFQH .从而可得答案.【详解】解:(1)∵四边形ABCD 为矩形,∴90BAD B C Ð=Ð=Ð=°.∵//GH AB ,∴90B GHC ∠=∠=︒,90BAD PGD ∠=∠=︒.∵//EF AD ,∴90PGD HPF ∠=∠=︒.∴四边形PFCH 为矩形.同理可得:四边形AGPE 、GDFP 、EPHB 均为矩形.∵AG a =,AE b =,::1:2AG GD AE EB ==,∴PE a =,PG b =,2GD PF a ==,2EB PH b ==.∴四边形EBHP 的面积2PE PH ab =⋅=,四边形GPFD 的面积2PG PF ab =⋅=..四边形EBHP 的面积=四边形GPFD 的面积.(2)∵1PP PG =,2PP PE =,由(1)中2PE PH ab ⋅=,2PG PF ab ⋅=,∴21PP PH PP PF ⋅=⋅,即21PP PF PP PH =,∵21FPP HPP ∠=∠,∴21PP F PPH ∽△△.∴21PFP PHP ∠=∠.∵12PQF P QH ∠=∠,∴12PFQ P HQ ∽△△.(3)解法一:连接12PP ,FH,∵2122PP a CH a ==,1122PP b CF b ==,∴21PP PP CH CF=.∵1290PPP C ∠=∠=︒,∴12PPP CFH ∽△△.∴12112PP PP FH CF ==,1221214PP P CFH S PP S FH ⎛⎫== ⎪⎝⎭ .由(2)12PFQ P HQ ∽△△,得12PQ FQ P Q HQ =,∴12PQ P Q FQ HQ=.∵12PQP FQH ∠=∠,∴12PQP FQH ∽△△.∴1221214PQP FQH S PP S FH ⎛⎫== ⎪⎝⎭△△.∵12121PP P P P Q S S S =+△△,∴()1211114444CFH FQM CFH FQM S S S S S S =+=+=△△△△.∴1214S S =.解法二:连接12PP 、FH .∵2122PP a CH a ==,1122PP b CF b ==,∴21PP PP CH CF=.∵1290PPP C ∠=∠=︒,∴12PPP CFH ∽△△.∴12112PP PP FH CF ==,12PPP CFH ∠=∠,21PP P CHF ∠=∠.由(2)中12PFQ P HQ ∽△△,得12PQ FQ P Q HQ =,∴12PQ P Q FQ HQ=.∵12PQP FQH ∠=∠,∴12PQP FQH ∽△△.∴121212PQ P Q PP FQ QH FH ===,21P PQ HFQ ∠=∠,12PP Q FHQ ∠=∠.∴121212PQ P Q PP PP FQ HQ CF CH ====,1PPQ CFQ ∠=∠,2PP Q CHQ ∠=∠.又12PPP C ∠=∠,12PQPFQH ∠=∠,∴四边形12PPOP ∽的四边形CFQH .∴211214S PP S CF ⎛⎫== ⎪⎝⎭.【点睛】本题考查的是矩形的性质,矩形的判定,相似三角形的判定与性质,相似四边形的判定与性质,构建相似三角形的模型是解题的关键.。
2021年江苏省中考数学精编试题附解析
A B C E 2021年江苏省中考数学精编试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.一个不透明的袋中装有除颜色外均相同的5个红球和 3 个黄球,从中随机摸出一个,摸到黄球的概率是( )A .18B .13C .38D .35 2.把一个沙包丢在如图所示的某个方格中(每个方格除颜色外完全一样),那么沙包落在黑色格中的概率是( )A .21 B .31 C .41 D .51 3.下面四个判断中正确的是()A .过圆内一点的无数条弦中,有最长的弦,没有最短的弦B .过圆内一点的无数条弦中,有最短的弦,没有最长的弦C .过圆内一点的无数条弦中,有且只有一条最长的弦,也有且只有一条最短的弦D .过圆内一点的无数条弦中,既没有最长的弦,也没有最短的弦4. 若一个圆锥的底面半径为 3,母线长为5,则它的侧面展开图的圆心角是( )A .60°B .90°C .120°D .216° 5.下列说法正确的是( )A .弦是直径B .弧是半圆C .过圆心的线段是直径D .平分弦的直径平分弦所对的弧6.如图,在△ABC 中,∠B 的外角平分线和∠C 的外角平分线交于点E ,则∠BEC 等于( )A .12 (90°-∠A )B .90°-∠AC .12(180°-∠A ) D .180°-∠A 7.一元二次方程220x x -=的解是( )A .0x =B .12x =C .10x =,212x =-D .10x =,212x = 8. 把根号外的因式移入根号内,得( ) A B C .D . 9.若点A (m ,n )在第三象限,则点B (m -,n )在( )A . 第一象限B .第二象限C .第三象限D . 第四象限10.如果关于x 的方程2435x a x b ++=的解不是负值,那么a 与b 的关系是( ) A .35a b > B .53b a ≥ C .53a b = D .53a b ≥11.如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点0,过点O 作EF ∥BC ,交AB 于点E ,交AC 于点F ,△ABC 的周长是24cm ,BC=10cm ,则△AEF 的周长是( )A .10 cmB .12cmC .14 cmD .34 cm12.下列计算中,正确的是( )A .a 3÷a 3=a 3-3=a 0=1B .x 2m+3÷x 2m -3=x 0=1 C .(-a )3÷(-a )=-a 2 D .(-a )5÷(-a )3×(-a )2=113.某班买电影票 55 张,共用了 85 元,其中甲种票每张2元,乙种票每张1元,设甲、乙两种票分别买了 x 张和y 张,则可列出方程组为( )A . 55285x y x y +=⎧⎨+=⎩B . 55201085x y x y +=⎧⎨+=⎩C . 25585x y x y +=⎧⎨+=⎩D . 55285x y x y +=⎧⎨+=⎩ 14.计算23(2)a -的结果是( )A .56a -B .66a -C .58a -D .68a -二、填空题15.如果□ABCD 和□ABEF 有公共边AB ,那么四边形DCEF 是 .16.在△ABC 中,∠C=90°,∠A=2∠B ,则A= 度.17. 如图,一块等腰直角的三角板ABC ,在水平桌面上绕点 C 按顺时针方向旋转到A ′B ′C 的位置,使A ,C ,B ′三点共线,那么旋转角度的大小为 .18. 将方程527x y -=变形成用y 的代数式表示x ,则x = .19.在△ABC 中AB =3,BC =7则AC 的取值范围是 .4 <AC<1020.化简:6x -(-2x +7)= .21. 如图,已知 AB 、CD 相交于点0, OE ⊥AB. ∠EOC=28°, 则∠AOD= .22.若2(2)30a b ++-=,则b a = .三、解答题23.“失之毫厘,谬以千里”. 第 28 届奥运会上,在最后一枪之前拥有 3 环绝对优势的美国射击选手埃蒙斯,最后一枪竟脱靶,丢掉几乎到手的金牌,使中国选手贾占波夺得了金牌. 射击瞄准时,如图要求枪的标尺缺口上沿中央A 、准星尖B 和瞄准点C 在一条直线上,这样才能命中目标,若枪的基线AB 长 38.5 cm ,射击距离 AC= 100 m ,当准星尖在缺口内偏差 BB ′为 1mm 时,子弹偏差 CC ′是多少(BB ′∥CC ′)?24.计算:2781232;5142(精确卧0.1).25.写出“等腰三角形的顶角平分线垂直于底边”的逆命题,若逆命题为真,请给出证明, 若为假,请举反例说明理由.26.已知y 是z 的一次函数,z 是x 的正比例函数,问:(1)y 是x 的一次函数吗?(2)若当5x =时,2y =-;当3x =-时,6y =;当=1x 时,求y 的值.27.如图,沿长方体表面从A到C′有如下三条路线:.(1)A→B→B′→C,′它的长度记为a;(2)A→A′→D′→C′,它的长度记为b;(3)A→P→C′,它的长度记为c.试比较a、b、c的大小关系并说明理由.28.如图,∠A=36°,∠DBC=36°,∠C=72°,找出图中的一个等腰三角形,并给予证明.我找的等腰三角形是: .证明:29.如下图所示,∠1 = 75°,∠2 = 105°,试说明 AB∥CD.以下给出了本题的几种解法,你判断它们是否正确,如果正确,请说明它们分别运用了平行线哪种判定方法;如果不正确,请给予纠正.解法一:由平角的定义可知,∠1 +∠3 = 180°.因为∠1 = 75°,所以∠3 = 105°.又因为∠2= lO5°,所以∠2 = ∠3.所以 AB∥CD.解法二:由平角的定义可知,∠2 + ∠4 = 180°.已知∠2= 105°,则∠4= 75°.又因为∠1 = 75°,所以∠1 = ∠4.所以 AB∥CD.法三:由对顶角相等可知,∠5= ∠2 = 105°.因为∠1 = 75°,所以∠1 + ∠5 = 180°.所以 AB∥CD.30.小强和亮亮想利:用转盘游戏来决定谁今天值日. 如图是一个可以自由转动的转盘(转盘被等分成 8 个扇区),当转盘停止转动时,若指针指向阴影区域,则小强值日;若指针指向白色区域,则亮亮值日. 游戏对双方公平吗?为什么?如果不公平,请重新设计转盘,或重新设计游戏规则,使游戏对双方都公平.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.C4.D5.D6.C7.D8.D9.D10.D11.C12.A13.A14.D二、填空题15.平行四边形16.6017.135°18.527y +19. 20.78-x 21.62°22.-8三、解答题23. 由题意得B B AB C C AC'=',CC ′=259.7 mm 答:子弹偏差 259. 7 mm .24.(1)y =(2)0.625.逆命题:若一个三角形的一个角的平分线垂直于这个角的对边,则这个三角形是等腰三角形,命题为真命题,证略26.(1)y是x 的一次函数 (2)227.a=b>c,理由略28.我所找的等腰三角形是:△ABC(或△BDC或△DAB).证明:在△ABC中,∵∠A=36°,∠C=72°,∴∠ABC=180°-(72°+36°)=72°.∵∠C=∠ABC,∴AB=AC,∴△ABC是等腰三角形.29.以上方法都是正确的,其中解法一利用了“同位角相等,两直线平行”来判定.解法二利用了“内错角相等,两直线平行”来判定.解法三利用了‘‘同旁内角互补,两直线平行”来判定.30.不公平,白色区域的面积小于阴影区域的面积,因此小强值日的可能性大.可以重新设计转盘为以下类型(有多种):。
2021年江苏省中考数学考前必刷真题试卷附解析
2021年江苏省中考数学考前必刷真题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1. Rt△ABC中,∠C=900,a、b、c分别为∠A、∠B、∠C的对边,则有()A.b=atanA B.b=csinA C.a=ccosB D.c=asinA2.把抛物线y=x2+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式是y=x2-3x+5,则有()A.b=3,c=7 B.b=-9,c=-15 C.b=3,c=3 D.b=-9,c=213.如图,直角坐标系中,△ABC的三个顶点都在小正方形的顶点上,则△ABC的面积为()A.3 5 B.3 5 +5 C. 5 D.54.如图1所示,将长为20cm,宽为2cm的长方形白纸条,折成图2所示的图形并在其一面着色,则着色部分的面积为()A.34 cm2B.36 cm2C.38 cm2D.40 cm25.顺次连结菱形的各边中点所得到的四边形是()A.平行四边形 B.菱形 C.矩形 D.正方形6.下列各点在函数y=1-2x的图象上的是()A.(2.5,-l)B.(0,34)C.(0,12)D.(1,-l)7.下面四个图形中,经过折叠能围成如图所示的立方体纸盒的是()A. B. C.D.8.如图AB=AC,DE⊥AB,DF⊥AC,AD⊥BC,则图中的全等三角形有()A.1对B.2对C.3对D.4对9.如图,AB∥CD,∠1=110°, ∠ECD =70°,∠E 等于()A.30°B. 40°C. 50°D. 60°10.用科学记数法表示的数1.2×103,则这个数的原数是( ) A . 1200B .120C .12D .1200011.下列各组量中具有相反意义的量是( ) A .向东行 4km 与向南行4 km B .队伍前进与队伍后退 C .6 个小人与 5 个大人 D .增长3%与减少2%二、填空题12. 二次函数2(0)y ax bx c a =++≠的部分对应值如下表, 则不等式20ax bx c ++>的解集为 .13.sin60°= ,sin70°= , sin50°= , 并把它们用“<”号连结 .14.在半径为 1 的圆中,长度等于2的弦所对的圆心角是 .15.将50个数据分成5组列出频数分布表,其中第一组的频数6,•第二组与第五组的频数和为20,那么第三组与第四组的频数和为__ ____.16.等腰△ABC 中,BC =8,AB 、AC 的长是关于x 的方程0102=+-m x x 的两根,则m 的值是 .17.一元二次方程2(1)5x -=的根是 .18.如图.根据图中的程序,当输入3时,输出的结果y = .19.如图,已知函数y ax b =+和y kx =的图象交于点P, 则根据图象可得,关于y ax b y kx=+⎧⎨=⎩的二元一次方程组的解是 .x -3 -2 -1 0 1 2 3 4 y6-4-6-6-4620.两位同学在解方程组时,甲同学由278ax bycx y+=⎧⎨-=⎩正确地解出32xy=⎧⎨=-⎩,乙同学因把c写错而得解22xy=-⎧⎨=⎩,那么a= ,b= ,c= .21.如图,在△ABC 中,AB 的垂直平分线交 AC 于 D,如果AC= 7 cm,BC=4 cm,则△BDC 的周长为 cm.22.某段铁路长 392 km,某客运车的行车速度每小时比原来增加 40 km,使得行完这段铁路所需时间短了 1 小时. 如果设该列车提速前的速度为每小时 x(km),那么为求x所列出的方程为.23.合并同类项22224-25x xy x y x-+= .三、解答题24.如图,在半径等于5㎝的圆0内有长为53㎝的弦 AB,求此弦所对的圆周角的度数.25.如图,AB 是⊙O的弦,直径 CD⊥AB,垂足为 P,如果AB = 8,PD = 2,试求⊙O的半径R.26.如图所示,已知AB∥EF.求∠B+∠C+∠D+∠E的度数.27.汉字是世界上最古老的文字之一,字形结构体现人类追求均衡对称、和谐稳定的天性.如图,三个汉字可以分别看成是轴对称图形.(1)请再写出2个类似轴对称图形的汉字;(2)小敏和小慧利用“土”、“口”、“木”三个汉字设计一个游戏,规则如下:将这三个汉字分别写在背面都相同的三张卡片上,背面朝上洗匀后抽出一张,放回洗匀后再抽出一张,若两次抽出的汉字能构成上下结构的汉字(如“土”“土”构成“圭”)小敏获胜,否则小慧获胜. 你认为这个游戏对谁有利?请用列表或画树状图的方法进行分析,并对构成的汉字进行说明.28.在“五一”黄金周期间,小明、小亮等同学随家人一同到江郎山游玩. 下面是购买门票时,小明与他爸爸的对话:爸爸:大人门票35元,学生门票半价优惠,我们共有 12人,共需350元.小明:爸爸,等一下,让我算一算. 换一种方式买票是否可以更省钱.问题:(1)小明他们一共去了几个成人?几个学生?(2)请你帮小明算一算,用哪种方式买票更省钱?并说明理由.29.50 名学生搬桌椅,两人抬一张桌子,一人拿两把椅子,怎样分配人数,才能使一次搬运 的桌椅配套?(提示:1 张桌子配 1 把椅子)30.如图,某市有一块长为(3a b +)m ,宽为(2a b +)m 的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少m 2?并求出当3a =,2b =时的绿化面积.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.A3.D4.B5.C6.D7.B8.C9.B10.A11.D二、填空题 12. x<—2 或 x>313.2,0.9397,0. 7660, sin50°< sin60°< sin70° 14.90°15.2416.16或2517.1x =.219.42x y =-⎧⎨=-⎩20. 4,5,-221.1122.392392140x x -=+23. 2224x xy +三、解答题 24.连结 AO 、BO ,过0作 OC ⊥AB ,交 AB 于C ,∵OC ⊥AB 且平分AB ,∴,△AOC 为直角三角形,∴∠AOC= 60° ,∵∠AOC=∠BOC,∴∠AOB= 120° , ∴AB 所对圆周角为 60°或 120°.25.设⊙O的半径为R,则AO=R,OP=R- 2 ,AP=12AB=4,得22(2)16R R=-+,∴R= 5.答:⊙O的半径为5.26.540°27.(1)如:田、日等(2)这个游戏对小慧有利.每次游戏时,所有可能出现的结果如下:(列表法)土口木土(土,土)(土,口)(土,木)口(口,土)(口,口)(口,木)木(木,土)(木,口)(木,木)(树状图法)总共有 9种结果,每种结果出现的可能性相同,其中能组成上下结构的汉字的结果有 4种:(土,土)“圭”,(口,口)“吕”,(木,口)“杏”或“呆”,(口,木)“呆”或“杏” .所以P(小敏获胜)= 49, P(小慧获胜)= 59.∵P(小敏获胜)<P(小慧获胜),∴游戏对小慧有利.28.(1)成人8人,学生4人 (2)买团体票需252元,即买团体票省钱29.设x 人搬桌子,y 人搬椅子,则5022x y x y +=⎧⎪⎨=⎪⎩,∴4010x y =⎧⎨=⎩30.(253a ab +)m 2;当3a =,2b =时,25363a ab +=m 2。
江苏省2021年中考数学预测真题(含答案)
江苏省中考数学精选真题预测(含答案)一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂再答题卡相应位置上)1.(3分)﹣(﹣2)等于()A.﹣2 B.2 C.D.±22.(3分)下列运算正确的是()A. +=B. =2C.•=D.÷=23.(3分)下列几何体中,主视图与俯视图不相同的是()A.正方体B.四棱锥C.圆柱D.球4.(3分)小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛,下面几种说法正确的是()A.小亮明天的进球率为10%B.小亮明天每射球10次必进球1次C.小亮明天有可能进球D.小亮明天肯定进球5.(3分)已知x1、x2是关于x的方程x2﹣ax﹣2=0的两根,下列结论一定正确的是()A.x1≠x2B.x1+x2>0 C.x1•x2>0 D.x1<0,x2<06.(3分)如图,平面直角坐标系xOy中,点A的坐标为(9,6),AB⊥y轴,垂足为B,点P从原点O出发向x轴正方向运动,同时,点Q从点A出发向点B运动,当点Q到达点B 时,点P、Q同时停止运动,若点P与点Q的速度之比为1:2,则下列说法正确的是()A.线段PQ始终经过点(2,3)B.线段PQ始终经过点(3,2)C.线段PQ始终经过点(2,2)D.线段PQ不可能始终经过某一定点二、填空题(本大题共有10小题,每小题3分,共30分.请把答案直接填写再答题卡相应位置上)7.(3分)8的立方根等于.8.(3分)亚洲陆地面积约为4400万平方千米,将44000000用科学记数法表示为.9.(3分)计算:x•(﹣2x2)3= .10.(3分)分解因式:a3﹣a= .11.(3分)某鞋厂调查了商场一个月内不同尺码男鞋的销量,在平均数、中位数、众数和方差等数个统计量中,该鞋厂最关注的是.12.(3分)已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为.13.(3分)如图,▱ABCD中,AC、BD相交于点O,若AD=6,AC+BD=16,则△BOC的周长为.14.(3分)如图,四边形ABCD中,AC平分∠BAD,∠ACD=∠ABC=90°,E、F分别为AC、CD的中点,∠D=α,则∠BEF的度数为(用含α的式子表示).15.(3分)已知3x﹣y=3a2﹣6a+9,x+y=a2+6a﹣9,若x≤y,则实数a的值为.16.(3分)如图,△ABC中,∠ACB=90°,sinA=,AC=12,将△ABC绕点C顺时针旋转90°得到△A'B'C,P为线段A′B'上的动点,以点P为圆心,PA′长为半径作⊙P,当⊙P 与△ABC的边相切时,⊙P的半径为.三、解答题(本大题共有10题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)(1)计算:π0+2cos30°﹣|2﹣|﹣()﹣2;(2)化简:(2﹣)÷.18.(8分)某软件科技公司20人负责研发与维护游戏、网购、视频和送餐共4款软件.投入市场后,游戏软件的利润占这4款软件总利润的40%.如图是这4款软件研发与维护人数的扇形统计图和利润的条形统计图.根据以上信息,网答下列问题(1)直接写出图中a,m的值;(2)分别求网购与视频软件的人均利润;(3)在总人数和各款软件人均利润都保持不变的情况下,能否只调整网购与视频软件的研发与维护人数,使总利润增加60万元?如果能,写出调整方案;如果不能,请说明理由.19.(8分)泰州具有丰富的旅游资源,小明利用周日来泰州游玩,上午从A、B两个景点中任意选择一个游玩,下午从C、D、E三个景点中任意选择一个游玩.用列表或画树状图的方法列出所有等可能的结果,并求小明恰好选中景点B和C的概率.20.(8分)如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:OB=OC.21.(10分)为了改善生态环境,某乡村计划植树4000棵.由于志题者的支援,实际工作效率提高了20%,结果比原计划提前3天完成,并且多植树80棵,原计划植树多少天?22.(10分)如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE ⊥BC于点E.(1)试判断DE与⊙O的位置关系,并说明理由;(2)过点D作DF⊥AB于点F,若BE=3,DF=3,求图中阴影部分的面积.23.(10分)日照间距系数反映了房屋日照情况.如图①,当前后房屋都朝向正南时,日照间距系数=L:(H﹣H1),其中L为楼间水平距离,H为南侧楼房高度,H1为北侧楼房底层窗台至地面高度.如图②,山坡EF朝北,EF长为15m,坡度为i=1:0.75,山坡顶部平地EM上有一高为22.5m 的楼房AB,底部A到E点的距离为4m.(1)求山坡EF的水平宽度FH;(2)欲在AB楼正北侧山脚的平地FN上建一楼房CD,已知该楼底层窗台P处至地面C处的高度为0.9m,要使该楼的日照间距系数不低于1.25,底部C距F处至少多远?24.(10分)平面直角坐标系xOy中,二次函数y=x2﹣2mx+m2+2m+2的图象与x轴有两个交点.(1)当m=﹣2时,求二次函数的图象与x轴交点的坐标;(2)过点P(0,m﹣1)作直线1⊥y轴,二次函数图象的顶点A在直线l与x轴之间(不包含点A在直线l上),求m的范围;(3)在(2)的条件下,设二次函数图象的对称轴与直线l相交于点B,求△ABO的面积最大时m的值.25.(12分)对给定的一张矩形纸片ABCD进行如下操作:先沿CE折叠,使点B落在CD边上(如图①),再沿CH折叠,这时发现点E恰好与点D重合(如图②)(1)根据以上操作和发现,求的值;(2)将该矩形纸片展开.①如图③,折叠该矩形纸片,使点C与点H重合,折痕与AB相交于点P,再将该矩形纸片展开.求证:∠HPC=90°;②不借助工具,利用图④探索一种新的折叠方法,找出与图③中位置相同的P点,要求只有一条折痕,且点P在折痕上,请简要说明折叠方法.(不需说明理由)26.(14分)平面直角坐标系xOy中,横坐标为a的点A在反比例函数y1═(x>0)的图象上,点A′与点A关于点O对称,一次函数y2=mx+n的图象经过点A′.(1)设a=2,点B(4,2)在函数y1、y2的图象上.①分别求函数y1、y2的表达式;②直接写出使y1>y2>0成立的x的范围;(2)如图①,设函数y1、y2的图象相交于点B,点B的横坐标为3a,△AA'B的面积为16,求k的值;(3)设m=,如图②,过点A作AD⊥x轴,与函数y2的图象相交于点D,以AD为一边向右侧作正方形ADEF,试说明函数y2的图象与线段EF的交点P一定在函数y1的图象上.参考答案与试题解析一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂再答题卡相应位置上)1.(3分)﹣(﹣2)等于()A.﹣2 B.2 C.D.±2【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣(﹣2)=2,故选:B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)下列运算正确的是()A. +=B. =2C.•=D.÷=2【分析】利用二次根式的加减法对A进行判断;根据二次根式的性质对B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式=3,所以B选项错误;C、原式==,所以C选项错误;D、原式==2,所以D选项正确.故选:D.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.3.(3分)下列几何体中,主视图与俯视图不相同的是()A.正方体B.四棱锥C.圆柱D.球【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析.【解答】解:四棱锥的主视图与俯视图不同.故选:B.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.(3分)小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛,下面几种说法正确的是()A.小亮明天的进球率为10%B.小亮明天每射球10次必进球1次C.小亮明天有可能进球D.小亮明天肯定进球【分析】直接利用概率的意义分析得出答案.【解答】解:根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛小亮明天有可能进球.故选:C.【点评】此题主要考查了概率的意义,正确理解概率的意义是解题关键.5.(3分)已知x1、x2是关于x的方程x2﹣ax﹣2=0的两根,下列结论一定正确的是()A.x1≠x2B.x1+x2>0 C.x1•x2>0 D.x1<0,x2<0【分析】A、根据方程的系数结合根的判别式,可得出△>0,由此即可得出x1≠x2,结论A 正确;B、根据根与系数的关系可得出x1+x2=a,结合a的值不确定,可得出B结论不一定正确;C、根据根与系数的关系可得出x1•x2=﹣2,结论C错误;D、由x1•x2=﹣2,可得出x1<0,x2>0,结论D错误.综上即可得出结论.【解答】解:A∵△=(﹣a)2﹣4×1×(﹣2)=a2+8>0,∴x1≠x2,结论A正确;B、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,∴x1+x2=a,∵a的值不确定,∴B结论不一定正确;C、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,∴x1•x2=﹣2,结论C错误;D、∵x1•x2=﹣2,∴x1<0,x2>0,结论D错误.故选:A.【点评】本题考查了根的判别式以及根与系数的关系,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.6.(3分)如图,平面直角坐标系xOy中,点A的坐标为(9,6),AB⊥y轴,垂足为B,点P从原点O出发向x轴正方向运动,同时,点Q从点A出发向点B运动,当点Q到达点B 时,点P、Q同时停止运动,若点P与点Q的速度之比为1:2,则下列说法正确的是()A.线段PQ始终经过点(2,3)B.线段PQ始终经过点(3,2)C.线段PQ始终经过点(2,2)D.线段PQ不可能始终经过某一定点【分析】当OP=t时,点P的坐标为(t,0),点Q的坐标为(9﹣2t,6).设直线PQ的解析式为y=kx+b(k≠0),利用待定系数法求出PQ的解析式即可判断;【解答】解:当OP=t时,点P的坐标为(t,0),点Q的坐标为(9﹣2t,6).设直线PQ的解析式为y=kx+b(k≠0),将P(t,0)、Q(9﹣2t,6)代入y=kx+b,,解得:,∴直线PQ的解析式为y=x+.∵x=3时,y=2,∴直线PQ始终经过(3,2),故选:B.【点评】本题考查一次函数图象上的点的特征、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二、填空题(本大题共有10小题,每小题3分,共30分.请把答案直接填写再答题卡相应位置上)7.(3分)8的立方根等于 2 .【分析】根据立方根的定义得出,求出即可.【解答】解:8的立方根是=2,故答案为:2.【点评】本题考查了对立方根的应用,注意:a的立方根是,其中a可以为正数、负数和0.8.(3分)亚洲陆地面积约为4400万平方千米,将44000000用科学记数法表示为 4.4×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:44000000=4.4×107,故答案为:4.4×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.(3分)计算:x•(﹣2x2)3= ﹣4x7.【分析】直接利用积的乘方运算法则化简,再利用单项式乘以单项式计算得出答案.【解答】解:x•(﹣2x2)3=x•(﹣8x6)=﹣4x7.故答案为:﹣4x7.【点评】此题主要考查了积的乘方运算、单项式乘以单项式,正确掌握运算法则是解题关键.10.(3分)分解因式:a3﹣a= a(a+1)(a﹣1).【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:a3﹣a,=a(a2﹣1),=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意要分解彻底.11.(3分)某鞋厂调查了商场一个月内不同尺码男鞋的销量,在平均数、中位数、众数和方差等数个统计量中,该鞋厂最关注的是众数.【分析】鞋厂最感兴趣的是各种鞋号的鞋的销售量,特别是销售量最多的即这组数据的众数.【解答】解:由于众数是数据中出现最多的数,故鞋厂最感兴趣的销售量最多的鞋号即这组数据的众数.故答案为:众数.【点评】本题主要考查了学生对统计量的意义的理解与运用,要求学生对对统计量进行合理的选择和恰当的运用,比较简单.12.(3分)已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为 5 .【分析】根据三角形的三边关系“任意两边之和>第三边,任意两边之差<第三边”,求得第三边的取值范围,再进一步根据第三边是整数求解.【解答】解:根据三角形的三边关系,得第三边>4,而<6.又第三条边长为整数,则第三边是5.【点评】此题主要是考查了三角形的三边关系,同时注意整数这一条件.13.(3分)如图,▱ABCD中,AC、BD相交于点O,若AD=6,AC+BD=16,则△BOC的周长为14 .【分析】根据平行四边形的性质,三角形周长的定义即可解决问题;【解答】解:∵四边形ABCD是平行四边形,∴AD=BC=6,OA=OC,OB=OD,∵AC+BD=16,∴OB+OC=8,∴△BOC的周长=BC+OB+OC=6+8=14,故答案为14.【点评】本题考查平行四边形的性质.三角形的周长等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.14.(3分)如图,四边形ABCD中,AC平分∠BAD,∠ACD=∠ABC=90°,E、F分别为AC、CD的中点,∠D=α,则∠BEF的度数为270°﹣3α(用含α的式子表示).【分析】根据直角三角形的性质得到∠DAC=90°﹣α,根据角平分线的定义、三角形的外角的性质得到∠CEB=180°﹣2α,根据三角形中位线定理、平行线的性质得到∠CEF=∠D=α,结合图形计算即可.【解答】解:∵∠ACD=90°,∠D=α,∴∠DAC=90°﹣α,∵AC平分∠BAD,∴∠DAC=∠BAC=90°﹣α,∵∠ABC=90°,EAC的中点,∴BE=AE=EC,∴∠EAB=∠EBA=90°﹣α,∴∠CEB=180°﹣2α,∵E、F分别为AC、CD的中点,∴EF∥AD,∴∠CEF=∠D=α,∴∠BEF=180°﹣2α+90°﹣α=270°﹣3α,故答案为:270°﹣3α.【点评】本题考查的是三角形中位线定理、直角三角形的性质、角平分线的定义,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.15.(3分)已知3x﹣y=3a2﹣6a+9,x+y=a2+6a﹣9,若x≤y,则实数a的值为 3 .【分析】根据题意列出关于x、y的方程组,然后求得x、y的值,结合已知条件x≤y来求a的取值.【解答】解:依题意得:,解得∵x≤y,∴a2≤6a﹣9,整理,得(a﹣3)2≤0,故a﹣3=0,解得a=3.故答案是:3.【点评】考查了配方法的应用,非负数的性质以及解二元一次方程组.配方法的理论依据是公式a2±2ab+b2=(a±b)2.16.(3分)如图,△ABC中,∠ACB=90°,sinA=,AC=12,将△ABC绕点C顺时针旋转90°得到△A'B'C,P为线段A′B'上的动点,以点P为圆心,PA′长为半径作⊙P,当⊙P 与△ABC的边相切时,⊙P的半径为或.【分析】分两种情形分别求解:如图1中,当⊙P与直线AC相切于点Q时,如图2中,当⊙P与AB相切于点T时,【解答】解:如图1中,当⊙P与直线AC相切于点Q时,连接PQ.设PQ=PA′=r,∵PQ∥CA′,∴=,∴=,∴r=.如图2中,当⊙P与AB相切于点T时,易证A′、B′、T共线,∵△A′BT∽△ABC,∴=,∴=,∴A′T=,∴r=A′T=.综上所述,⊙P的半径为或.【点评】本题考查切线的性质、勾股定理、锐角三角函数、相似三角形的判定和性质、平行线分线段成比例定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.三、解答题(本大题共有10题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)(1)计算:π0+2cos30°﹣|2﹣|﹣()﹣2;(2)化简:(2﹣)÷.【分析】(1)先计算零指数幂、代入三角函数值,去绝对值符号、计算负整数指数幂,再计算乘法和加减可得;(2)根据分式的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=1+2×﹣(2﹣)﹣4=1+﹣2+﹣4=2﹣5;(2)原式=(﹣)÷=•=.【点评】本题主要考查分式和实数的混合运算,解题的关键是掌握零指数幂、三角函数值、绝对值性质、负整数指数幂及分式的混合运算顺序和运算法则.18.(8分)某软件科技公司20人负责研发与维护游戏、网购、视频和送餐共4款软件.投入市场后,游戏软件的利润占这4款软件总利润的40%.如图是这4款软件研发与维护人数的扇形统计图和利润的条形统计图.根据以上信息,网答下列问题(1)直接写出图中a,m的值;(2)分别求网购与视频软件的人均利润;(3)在总人数和各款软件人均利润都保持不变的情况下,能否只调整网购与视频软件的研发与维护人数,使总利润增加60万元?如果能,写出调整方案;如果不能,请说明理由.【分析】(1)根据各类别百分比之和为1可得a的值,由游戏的利润及其所占百分比可得总利润;(2)用网购与视频软件的利润除以其对应人数即可得;(3)设调整后网购的人数为x、视频的人数为(10﹣x)人,根据“调整后四个类别的利润相加=原总利润+60”列出方程,解之即可作出判断.【解答】解:(1)a=100﹣(10+40+30)=20,∵软件总利润为1200÷40%=3000,∴m=3000﹣(1200+560+280)=960;(2)网购软件的人均利润为=160元/人,视频软件的人均利润=140元/人;(3)设调整后网购的人数为x、视频的人数为(10﹣x)人,根据题意,得:1200+280+160x+140(10﹣x)=3000+60,解得:x=9,即安排9人负责网购、安排1人负责视频可以使总利润增加60万元.【点评】本题考查条形统计图、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件.19.(8分)泰州具有丰富的旅游资源,小明利用周日来泰州游玩,上午从A、B两个景点中任意选择一个游玩,下午从C、D、E三个景点中任意选择一个游玩.用列表或画树状图的方法列出所有等可能的结果,并求小明恰好选中景点B和C的概率.【分析】通过列表展示所有6种等可能的结果数,找出小名恰好选中B和C这两处的结果数,然后根据概率公式求解.【解答】解:列表如下:A BC AC BCD AD BDE AE BE由表可知共有6种等可能的结果数,其中小明恰好选中景点B和C的结果有1种,所以小明恰好选中景点B和C的概率为.【点评】此题主要考查了列表法与树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.20.(8分)如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:OB=OC.【分析】因为∠A=∠D=90°,AC=BD,BC=BC,知Rt△BAC≌Rt△CDB(HL),所以AB=CD,证明△ABO与△CDO全等,所以有OB=OC.【解答】证明:在Rt△ABC和Rt△DCB中,∴Rt△ABC≌Rt△DCB(HL),∴∠OBC=∠OCB,∴BO=CO.【点评】此题主要考查了全等三角形的判定,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.21.(10分)为了改善生态环境,某乡村计划植树4000棵.由于志题者的支援,实际工作效率提高了20%,结果比原计划提前3天完成,并且多植树80棵,原计划植树多少天?【分析】设原计划每天种x棵树,则实际每天种(1+20%)x棵,根据题意可得等量关系:原计划完成任务的天数﹣实际完成任务的天数=3,列方程即可.【解答】解:设原计划每天种x棵树,则实际每天种(1+20%)x棵,依题意得:﹣=3解得x=200,经检验得出:x=200是原方程的解.所以=20.答:原计划植树20天.【点评】此题主要考查了分式方程的应用,正确理解题意,找出题目中的等量关系,列出方程是解题关键.22.(10分)如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE ⊥BC于点E.(1)试判断DE与⊙O的位置关系,并说明理由;(2)过点D作DF⊥AB于点F,若BE=3,DF=3,求图中阴影部分的面积.【分析】(1)直接利用角平分线的定义结合平行线的判定与性质得出∠DEB=∠EDO=90°,进而得出答案;(2)利用勾股定理结合扇形面积求法分别分析得出答案.【解答】解:(1)DE与⊙O相切,理由:连接DO,∵DO=BO,∴∠ODB=∠OBD,∵∠ABC的平分线交⊙O于点D,∴∠EBD=∠DBO,∴∠EBD=∠BDO,∴DO∥BE,∵DE⊥BC,∴∠DEB=∠EDO=90°,∴DE与⊙O相切;(2)∵∠ABC的平分线交⊙O于点D,DE⊥BE,DF⊥AB,∴DE=DF=3,∵BE=3,∴BD==6,∵sin∠DBF==,∴∠DBA=30°,∴∠DOF=60°,∴sin60°===,∴DO=2,则FO=,故图中阴影部分的面积为:﹣××3=2π﹣.【点评】此题主要考查了切线的判定方法以及扇形面积求法等知识,正确得出DO的长是解题关键.23.(10分)日照间距系数反映了房屋日照情况.如图①,当前后房屋都朝向正南时,日照间距系数=L:(H﹣H1),其中L为楼间水平距离,H为南侧楼房高度,H1为北侧楼房底层窗台至地面高度.如图②,山坡EF朝北,EF长为15m,坡度为i=1:0.75,山坡顶部平地EM上有一高为22.5m 的楼房AB,底部A到E点的距离为4m.(1)求山坡EF的水平宽度FH;(2)欲在AB楼正北侧山脚的平地FN上建一楼房CD,已知该楼底层窗台P处至地面C处的高度为0.9m,要使该楼的日照间距系数不低于1.25,底部C距F处至少多远?【分析】(1)在Rt△EFH中,根据坡度的定义得出tan∠EFH=i=1:0.75==,设EH=4x,则FH=3x,由勾股定理求出EF==5x,那么5x=15,求出x=3,即可得到山坡EF 的水平宽度FH为9m;(2)根据该楼的日照间距系数不低于1.25,列出不等式≥1.25,解不等式即可.【解答】解:(1)在Rt△EFH中,∵∠H=90°,∴tan∠EFH=i=1:0.75==,设EH=4x,则FH=3x,∴EF==5x,∵EF=15,∴5x=15,x=3,∴FH=3x=9.即山坡EF的水平宽度FH为9m;(2)∵L=CF+FH+EA=CF+9+4=CF+13,H=AB+EH=22.5+12=34.5,H1=0.9,∴日照间距系数=L:(H﹣H1)==,∵该楼的日照间距系数不低于1.25,∴≥1.25,∴CF≥29.答:要使该楼的日照间距系数不低于1.25,底部C距F处29m远.【点评】本题考查了解直角三角形的应用﹣坡度坡角问题,勾股定理,将实际问题转化为数学问题是解题的关键.24.(10分)平面直角坐标系xOy中,二次函数y=x2﹣2mx+m2+2m+2的图象与x轴有两个交点.(1)当m=﹣2时,求二次函数的图象与x轴交点的坐标;(2)过点P(0,m﹣1)作直线1⊥y轴,二次函数图象的顶点A在直线l与x轴之间(不包含点A在直线l上),求m的范围;(3)在(2)的条件下,设二次函数图象的对称轴与直线l相交于点B,求△ABO的面积最大时m的值.【分析】(1)与x轴相交令y=0,解一元二次方程求解;(2)应用配方法得到顶点A坐标,讨论点A与直线l以及x轴之间位置关系,确定m取值范围.(3)在(2)的基础上表示△ABO的面积,根据二次函数性质求m.【解答】解:(1)当m=﹣2时,抛物线解析式为:y=x2+4x+2令y=0,则x2+4x+2=0解得x1=﹣2+,x2=﹣2﹣抛物线与x轴交点坐标为:(﹣2+,0)(﹣2﹣,0)(2)∵y=x2﹣2mx+m2+2m+2=(x﹣m)2+2m+2∴抛物线顶点坐标为A(m,2m+2)∵二次函数图象的顶点A在直线l与x轴之间(不包含点A在直线l上)∴当直线1在x轴上方时不等式无解当直线1在x轴下方时解得﹣3<m<﹣1(3)由(1)点A在点B上方,则AB=(2m+2)﹣(m﹣1)=m+3△ABO的面积S=(m+3)(﹣m)=﹣∵﹣∴当m=﹣时,S最大=【点评】本题以含有字母系数m的二次函数为背景,考查了二次函数图象性质以及分类讨论、数形结合的数学思想.25.(12分)对给定的一张矩形纸片ABCD进行如下操作:先沿CE折叠,使点B落在CD边上(如图①),再沿CH折叠,这时发现点E恰好与点D重合(如图②)(1)根据以上操作和发现,求的值;(2)将该矩形纸片展开.①如图③,折叠该矩形纸片,使点C与点H重合,折痕与AB相交于点P,再将该矩形纸片展开.求证:∠HPC=90°;②不借助工具,利用图④探索一种新的折叠方法,找出与图③中位置相同的P点,要求只有一条折痕,且点P在折痕上,请简要说明折叠方法.(不需说明理由)【分析】(1)依据△BCE是等腰直角三角形,即可得到CE=BC,由图②,可得CE=CD,而AD=BC,即可得到CD=AD,即=;(2)①由翻折可得,PH=PC,即PH2=PC2,依据勾股定理可得AH2+AP2=BP2+BC2,进而得出AP=BC,再根据PH=CP,∠A=∠B=90°,即可得到Rt△APH≌Rt△BCP(HL),进而得到∠CPH=90°;②由AP=BC=AD,可得△ADP是等腰直角三角形,PD平分∠ADC,故沿着过D的直线翻折,使点A落在CD边上,此时折痕与AB的交点即为P;由∠BCE=∠PCH=45°,可得∠BCP=∠ECH,由∠DCE=∠PCH=45°,可得∠PCE=∠DCH,进而得到CP平分∠BCE,故沿着过点C的直线折叠,使点B落在CE上,此时,折痕与AB的交点即为P.【解答】解:(1)由图①,可得∠BCE=∠BCD=45°,又∵∠B=90°,∴△BCE是等腰直角三角形,∴=cos45°=,即CE=BC,由图②,可得CE=CD,而AD=BC,∴CD=AD,∴=;(2)①设AD=BC=a,则AB=CD=a,BE=a,∴AE=(﹣1)a,如图③,连接EH,则∠CEH=∠CDH=90°,∵∠BEC=45°,∠A=90°,∴∠AEH=45°=∠AHE,∴AH=AE=(﹣1)a,设AP=x,则BP=a﹣x,由翻折可得,PH=PC,即PH2=PC2,∴AH2+AP2=BP2+BC2,即[(﹣1)a]2+x2=(a﹣x)2+a2,解得x=a,即AP=BC,又∵PH=CP,∠A=∠B=90°,∴Rt△APH≌Rt△BCP(HL),∴∠APH=∠BCP,又∵Rt△BCP中,∠BCP+∠BPC=90°,∴∠APH+∠BPC=90°,∴∠CPH=90°;②折法:如图,由AP=BC=AD,可得△ADP是等腰直角三角形,PD平分∠ADC,故沿着过D的直线翻折,使点A落在CD边上,此时折痕与AB的交点即为P;折法:如图,由∠BCE=∠PCH=45°,可得∠BCP=∠ECH,由∠DCE=∠PCH=45°,可得∠PCE=∠DCH,又∵∠DCH=∠ECH,∴∠BCP=∠PCE,即CP平分∠BCE,故沿着过点C的直线折叠,使点B落在CE上,此时,折痕与AB的交点即为P.【点评】本题属于折叠问题,主要考查了等腰直角三角形的性质,矩形的性质,全等三角形的判定与性质的综合运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.解题时常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.26.(14分)平面直角坐标系xOy中,横坐标为a的点A在反比例函数y1═(x>0)的图象上,点A′与点A关于点O对称,一次函数y2=mx+n的图象经过点A′.(1)设a=2,点B(4,2)在函数y1、y2的图象上.①分别求函数y1、y2的表达式;②直接写出使y1>y2>0成立的x的范围;(2)如图①,设函数y1、y2的图象相交于点B,点B的横坐标为3a,△AA'B的面积为16,求k的值;(3)设m=,如图②,过点A作AD⊥x轴,与函数y2的图象相交于点D,以AD为一边向右侧作正方形ADEF,试说明函数y2的图象与线段EF的交点P一定在函数y1的图象上.【分析】(1)由已知代入点坐标即可;(2)面积问题可以转化为△AOB面积,用a、k表示面积问题可解;(3)设出点A、A′坐标,依次表示AD、AF及点P坐标.【解答】解:(1)①由已知,点B(4,2)在y1═(x>0)的图象上∴k=8∴y1=∵a=2∴点A坐标为(2,4),A′坐标为(﹣2,﹣4)把B(4,2),A(﹣2,﹣4)代入y2=mx+n解得∴y2=x﹣2②当y1>y2>0时,y1=图象在y2=x﹣2图象上方,且两函数图象在x轴上方∴由图象得:2<x<4(2)分别过点A、B作AC⊥x轴于点C,BD⊥x轴于点D,连BO∵O为AA′中点S△AOB=S△AOA′=8∵点A、B在双曲线上∴S△AOC=S△BOD∴S△AOB=S四边形ACDB=8由已知点A、B坐标都表示为(a,)(3a,)。
江苏省2021年中考数学真题预测(含答案)
江苏省中考数学精选真题预测(含答案)一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,只有一项是正确的)1.(2.00分)﹣3的倒数是()A.﹣3 B.3 C.﹣ D.2.(2.00分)已知苹果每千克m元,则2千克苹果共多少元?()A.m﹣2 B.m+2 C.D.2m3.(2.00分)下列图形中,哪一个是圆锥的侧面展开图?()A. B.C.D.4.(2.00分)一个正比例函数的图象经过(2,﹣1),则它的表达式为()A.y=﹣2x B.y=2x C.D.5.(2.00分)下列命题中,假命题是()A.一组对边相等的四边形是平行四边形B.三个角是直角的四边形是矩形C.四边相等的四边形是菱形D.有一个角是直角的菱形是正方形6.(2.00分)已知a为整数,且,则a等于()A.1 B.2 C.3 D.47.(2.00分)如图,AB是⊙O的直径,MN是⊙O的切线,切点为N,如果∠MNB=52°,则∠NOA的度数为()A.76° B.56° C.54° D.52°8.(2.00分)某数学研究性学习小组制作了如下的三角函数计算图尺:在半径为1的半圆形量角器中,画一个直径为1的圆,把刻度尺CA的0刻度固定在半圆的圆心O处,刻度尺可以绕点O旋转.从图中所示的图尺可读出sin∠AOB的值是()A.B.C.D.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接写在答题卡相应位置上)9.(2.00分)计算:|﹣3|﹣1= .10.(2.00分)化简:= .11.(2.00分)分解因式:3x2﹣6x+3= .12.(2.00分)已知点P(﹣2,1),则点P关于x轴对称的点的坐标是.13.(2.00分)地球与月球的平均距离大约384000km,用科学计数法表示这个距离为km.14.(2.00分)中华文化源远流长,如图是中国古代文化符号的太极图,圆中的黑色部分和白色部分关于圆心中心对称.在圆内随机取一点,则此点取黑色部分的概率是.15.(2.00分)如图,在▱ABCD中,∠A=70°,DC=DB,则∠CDB= .16.(2.00分)如图,△ABC是⊙O的内接三角形,∠BA C=60°,的长是,则⊙O的半径是.(2.00分)下面是按一定规律排列的代数式:a2,3a4,5a6,7a8,…则第8个代数式是.17.18.(2.00分)如图,在△ABC纸板中,AC=4,BC=2,AB=5,P是AC上一点,过点P沿直线剪下一个与△ABC相似的小三角形纸板,如果有4种不同的剪法,那么AP长的取值范围是.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)19.(6.00分)计算:|﹣1|﹣﹣(1﹣)0+4sin30°.20.(8.00分)解方程组和不等式组:(1)(2)21.(8.00分)如图,把△ABC沿BC翻折得△DBC.(1)连接AD,则BC与AD的位置关系是.(2)不在原图中添加字母和线段,只加一个条件使四边形ABDC是平行四边形,写出添加的条件,并说明理由.22.(8.00分)为了解某市初中学生课外阅读情况,调查小组对该市这学期初中学生阅读课外书籍的册数进行了抽样调查,并根据调查结果绘制成如下统计图.根据统计图提供的信息,解答下列问题:(1)本次抽样调查的样本容量是;(2)补全条形统计图;(3)该市共有12000名初中生,估计该市初中学生这学期课外阅读超过2册的人数.23.(8.00分)将图中的A型、B型、C型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出1个盒子,求摸出的盒子中是A型矩形纸片的概率;(2)搅匀后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出一个盒子,求2次摸出的盒子的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).24.(8.00分)如图,已知点A在反比例函数y=(x>0)的图象上,过点A作AC⊥x轴,垂足是C,AC=OC.一次函数y=kx+b的图象经过点A,与y轴的正半轴交于点B.(1)求点A的坐标;(2)若四边形ABOC的面积是3,求一次函数y=kx+b的表达式.25.(8.00分)京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A、B和点C、D,先用卷尺量得AB=160m,CD=40m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH的长).26.(10.00分)阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2﹣2x=0,可以通过因式分解把它转化为x(x2+x﹣2)=0,解方程x=0和x2+x﹣2=0,可得方程x3+x2﹣2x=0的解.(1)问题:方程x3+x2﹣2x=0的解是x1=0,x2= ,x3= ;(2)拓展:用“转化”思想求方程=x的解;(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.27.(10.00分)(1)如图1,已知EK垂直平分BC,垂足为D,AB与EK相交于点F,连接CF.求证:∠AFE=∠CFD.(2)如图2,在Rt△GMN中,∠M=90°,P为MN的中点.①用直尺和圆规在GN边上求作点Q,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法);②在①的条件下,如果∠G=60°,那么Q是GN的中点吗?为什么?28.(10.00分)如图,二次函数y=﹣+bx+2的图象与x轴交于点A、B,与y轴交于点C,点A的坐标为(﹣4,0),P是抛物线上一点(点P与点A、B、C不重合).(1)b= ,点B的坐标是;(2)设直线PB与直线AC相交于点M,是否存在这样的点P,使得PM:MB=1:2?若存在求出点P的横坐标;若不存在,请说明理由;(3)连接AC、BC,判断∠CAB和∠CBA的数量关系,并说明理由.参考答案与试题解析一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,只有一项是正确的)1.(2.00分)﹣3的倒数是()A.﹣3 B.3 C.﹣ D.【分析】根据倒数的定义可得﹣3的倒数是﹣.【解答】解:﹣3的倒数是﹣.故选:C.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(2.00分)已知苹果每千克m元,则2千克苹果共多少元?()A.m﹣2 B.m+2 C.D.2m【分析】根据苹果每千克m元,可以用代数式表示出2千克苹果的价钱.【解答】解:∵苹果每千克m元,∴2千克苹果2m元,故选:D.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.3.(2.00分)下列图形中,哪一个是圆锥的侧面展开图?()A. B.C.D.【分析】根据圆锥的侧面展开图的特点作答.【解答】解:圆锥的侧面展开图是光滑的曲面,没有棱,只是扇形.故选:B.【点评】此题考查了几何体的展开图,注意圆锥的侧面展开图是扇形.4.(2.00分)一个正比例函数的图象经过(2,﹣1),则它的表达式为()A.y=﹣2x B.y=2x C.D.【分析】设该正比例函数的解析式为y=kx(k≠0),再把点(2,﹣1)代入求出k的值即可.【解答】解:设该正比例函数的解析式为y=kx(k≠0),∵正比例函数的图象经过点(2,﹣1),∴2=﹣k,解得k=﹣2,∴这个正比例函数的表达式是y=﹣2x.故选:A.【点评】本题考查的是待定系数法求正比例函数的解析式,熟知正比例函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.5.(2.00分)下列命题中,假命题是()A.一组对边相等的四边形是平行四边形B.三个角是直角的四边形是矩形C.四边相等的四边形是菱形D.有一个角是直角的菱形是正方形【分析】根据矩形、正方形、平行四边形、菱形的判定即可求出答案.【解答】解:A、一组对边平行且相等的四边形是平行四边形,是假命题;B、三个角是直角的四边形是矩形,是真命题;C、四边相等的四边形是菱形,是真命题;D、有一个角是直角的菱形是正方形,是真命题;故选:A.【点评】本题考查菱形、矩形和平行四边形的判定与命题的真假区别,关键是根据矩形、正方形、平行四边形、菱形的判定解答.6.(2.00分)已知a为整数,且,则a等于()A.1 B.2 C.3 D.4【分析】直接利用,接近的整数是2,进而得出答案.【解答】解:∵a为整数,且,∴a=2.故选:B.【点评】此题主要考查了估算无理数大小,正确得出无理数接近的有理数是解题关键.7.(2.00分)如图,AB是⊙O的直径,MN是⊙O的切线,切点为N,如果∠MNB=52°,则∠NOA的度数为()A.76° B.56° C.54° D.52°【分析】先利用切线的性质得∠ONM=90°,则可计算出∠ONB=38°,再利用等腰三角形的性质得到∠B=∠ONB=38°,然后根据圆周角定理得∠NOA的度数.【解答】解:∵MN是⊙O的切线,∴ON⊥NM,∴∠ONM=90°,∴∠ONB=90°﹣∠MNB=90°﹣52°=38°,∵ON=OB,∴∠B=∠ONB=38°,∴∠NOA=2∠B=76°.故选:A.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理.8.(2.00分)某数学研究性学习小组制作了如下的三角函数计算图尺:在半径为1的半圆形量角器中,画一个直径为1的圆,把刻度尺CA的0刻度固定在半圆的圆心O处,刻度尺可以绕点O旋转.从图中所示的图尺可读出sin∠AOB的值是()A.B.C.D.【分析】如图,连接AD.只要证明∠AOB=∠ADO,可得sin∠AOB=sin∠ADO==;【解答】解:如图,连接AD.∵OD是直径,∴∠OAD=90°,∵∠AOB+∠AOD=90°,∠AOD+∠ADO=90°,∴∠AOB=∠ADO,∴sin∠AOB=sin∠ADO==,故选:D.【点评】本题考查圆周角定理、直径的性质、锐角三角函数等知识,解题的关键是学会用转化的思想思考问题,属于中考创新题目.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接写在答题卡相应位置上)9.(2.00分)计算:|﹣3|﹣1= 2 .【分析】原式利用绝对值的代数意义,以及减法法则计算即可求出值.【解答】解:原式=3﹣1=2.故答案为:2【点评】此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.10.(2.00分)化简:= 1 .【分析】原式利用同分母分式的减法法则计算即可.【解答】解:原式==1,故答案为:1【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.11.(2.00分)分解因式:3x2﹣6x+3= 3(x﹣1)2.【分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【解答】解:3x2﹣6x+3,=3(x2﹣2x+1),=3(x﹣1)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.(2.00分)已知点P(﹣2,1),则点P关于x轴对称的点的坐标是(﹣2,﹣1).【分析】根据关于x轴对称的点的横坐标相等,纵坐标互为相反数,可得答案.【解答】解:点P(﹣2,1),则点P关于x轴对称的点的坐标是(﹣2,﹣1),故答案为:(﹣2,﹣1).【点评】本题考查了关于x轴对称的对称点,利用关于x轴对称的点的横坐标相等,纵坐标互为相反数是解题关键.13.(2.00分)地球与月球的平均距离大约384000km,用科学计数法表示这个距离为 3.84×105km.【分析】科学记数法的一般形式为:a×10n,在本题中a应为3.84,10的指数为6﹣1=5.【解答】解:384 000=3.84×105km.故答案为3.84×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(2.00分)中华文化源远流长,如图是中国古代文化符号的太极图,圆中的黑色部分和白色部分关于圆心中心对称.在圆内随机取一点,则此点取黑色部分的概率是.【分析】根据中心对称图形的性质得到圆中的黑色部分和白色部分面积相等,根据概率公式计算即可.【解答】解:∵圆中的黑色部分和白色部分关于圆心中心对称,∴圆中的黑色部分和白色部分面积相等,∴在圆内随机取一点,则此点取黑色部分的概率是,故答案为:.【点评】本题考查的是概率公式、中心对称图形,掌握概率公式是解题的关键.15.(2.00分)如图,在▱ABCD中,∠A=70°,DC=DB,则∠CDB= 40°.【分析】根据等腰三角形的性质,平行四边形的性质以及三角形内角和定理即可解决问题.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C=70°,∵DC=DB,∴∠C=∠DBC=70°,∴∠CDB=180°﹣70°﹣70°=40°,故答案为40°.【点评】本题考查平行四边形的性质、等腰三角形的性质、三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.(2.00分)如图,△ABC是⊙O的内接三角形,∠BAC=60°,的长是,则⊙O的半径是 2 .【分析】连接OB、OC,利用弧长公式转化为方程求解即可;【解答】解:连接OB、OC.∵∠BOC=2∠BAC=120°,的长是,∴=,∴r=2,故答案为2.【点评】本题考查三角形的外接圆与外心,圆周角定理,弧长的计算等知识,解题的关键是熟练掌握弧长公式,属于中考常考题型.17.(2.00分)下面是按一定规律排列的代数式:a2,3a4,5a6,7a8,…则第8个代数式是15a16.【分析】直接利用已知单项式的次数与系数特点得出答案.【解答】解:∵a2,3a4,5a6,7a8,…∴单项式的次数是连续的偶数,系数是连续的奇数,∴第8个代数式是:(2×8﹣1)a2×8=15a16.故答案为:15a16.【点评】此题主要考查了单项式,正确得出单项式次数与系数的变化规律是解题关键.18.(2.00分)如图,在△ABC纸板中,AC=4,BC=2,AB=5,P是AC上一点,过点P沿直线剪下一个与△ABC相似的小三角形纸板,如果有4种不同的剪法,那么AP长的取值范围是3≤AP<4 .【分析】分四种情况讨论,依据相似三角形的对应边成比例,即可得到AP的长的取值范围.【解答】解:如图所示,过P作PD∥AB交BC于D或PE∥BC交AB于E,则△PCD∽△ACB 或△APE∽△ACB,此时0<AP<4;如图所示,过P作∠APF=∠B交AB于F,则△APF∽△ABC,此时0<AP≤4;如图所示,过P作∠CPG=∠CBA交BC于G,则△CPG∽△CBA,此时,△CPG∽△CBA,当点G与点B重合时,CB2=CP×CA,即22=CP×4,∴CP=1,AP=3,∴此时,3≤AP<4;综上所述,AP长的取值范围是3≤AP<4.故答案为:3≤AP<4.【点评】本题主要考查了相似三角形的性质,相似三角形的对应角相等,对应边的比相等.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)19.(6.00分)计算:|﹣1|﹣﹣(1﹣)0+4sin30°.【分析】直接利用特殊角的三角函数值以及绝对值的性质、零指数幂的性质分别化简得出答案.【解答】解:原式=1﹣2﹣1+4×=1﹣2﹣1+2=0.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(8.00分)解方程组和不等式组:(1)(2)【分析】(1)方程组利用加减消元法求出解即可;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:(1),①+②得:x=2,把x=2代入②得:y=﹣1,所以方程组的解为:;(2),解不等式①得:x≥3;解不等式②得:x≥﹣1,所以不等式组的解集为:x≥3.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.21.(8.00分)如图,把△ABC沿BC翻折得△DBC.(1)连接AD,则BC与AD的位置关系是BC⊥AB .(2)不在原图中添加字母和线段,只加一个条件使四边形ABDC是平行四边形,写出添加的条件,并说明理由.【分析】(1)先由折叠知,AB=BD,∠ACB=∠DBC,进而判断出△AOB≌△DOB,最后用平角的定义即可得出结论;(2)由折叠得出∠ABC=∠DBC,∠ACB=∠DCB,再判断出∠ABC=∠ACB,进而得出∠ACB=∠DBC=∠ABC=∠DCB,最后用两边分别平行的四边形是平行四边形.【解答】解:(1)如图,连接AD交BC于O,由折叠知,AB=BD,∠ACB=∠DBC,∵BO=BO,∴△ABO≌△DBO(SAS),∴∠AOB=∠DOB,∵∠AOB+∠DOB=180°,∴∠AOB=∠DOB=90°,∴BC⊥AD,故答案为:BC⊥AD;(2)添加的条件是AB=AC,理由:由折叠知,∠ABC=∠DBC,∠ACB=∠DCB,∵AB=AC,∴∠ABC=∠ACB,∴∠ACB=∠DBC=∠ABC=∠DCB,∴AC∥BD,AB∥CD,∴四边形ABDC是平行四边形.【点评】此题主要考查了折叠的性质,平行四边形的判定,等腰三角形的性质,全等三角形的判定和性质,判断出△ABO≌△DBO(SAS)是解本题的关键.22.(8.00分)为了解某市初中学生课外阅读情况,调查小组对该市这学期初中学生阅读课外书籍的册数进行了抽样调查,并根据调查结果绘制成如下统计图.根据统计图提供的信息,解答下列问题:(1)本次抽样调查的样本容量是100 ;(2)补全条形统计图;(3)该市共有12000名初中生,估计该市初中学生这学期课外阅读超过2册的人数.【分析】(1)根据2册的人数除以占的百分比即可得到总人数;(2)求出1册的人数是100×30%=30人,4册的人数是100﹣30﹣40﹣20=10人,再画出即可;(3)先列出算式,再求出即可.【解答】解:(1)40÷40%=100(册),即本次抽样调查的样本容量是100,故答案为:100;(2)如图:;(3)12000×(1﹣30%)=8400(人),答:估计该市初中学生这学期课外阅读超过2册的人数是8400人.【点评】本题考查了条形统计图、扇形统计图,总体、个体、样本、样本容量,用样本估计总体等知识点,两图结合是解题的关键.23.(8.00分)将图中的A型、B型、C型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出1个盒子,求摸出的盒子中是A型矩形纸片的概率;(2)搅匀后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出一个盒子,求2次摸出的盒子的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).【分析】(1)直接利用概率公式计算可得;(2)画树状图得出所有等可能结果,从中找打2次摸出的盒子的纸片能拼成一个新矩形的结果数,利用概率公式计算可得.【解答】解:(1)搅匀后从中摸出1个盒子有3种等可能结果,所以摸出的盒子中是A型矩形纸片的概率为;(2)画树状图如下:由树状图知共有6种等可能结果,其中2次摸出的盒子的纸片能拼成一个新矩形的有4种结果,所以2次摸出的盒子的纸片能拼成一个新矩形的概率为=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.24.(8.00分)如图,已知点A在反比例函数y=(x>0)的图象上,过点A作AC⊥x轴,垂足是C,AC=OC.一次函数y=kx+b的图象经过点A,与y轴的正半轴交于点B.(1)求点A的坐标;(2)若四边形ABOC的面积是3,求一次函数y=kx+b的表达式.【分析】(1)根据反比例函数k值的几何意义可求点A的坐标;(2)根据梯形的面积公式可求点B的坐标,再根据待定系数法可求一次函数y=kx+b的表达式.【解答】解:(1)∵点A在反比例函数y=(x>0)的图象上,AC⊥x轴,AC=OC,∴AC•OC=4,∴AC=OC=2,∴点A的坐标为(2,2);(2)∵四边形ABOC的面积是3,∴(OB+2)×2÷2=3,解得OB=1,∴点B的坐标为(0,1),依题意有,解得.故一次函数y=kx+b的表达式为y=x+1.【点评】考查了反比例函数与一次函数的交点问题,关键是熟练掌握反比例函数k值的几何意义、梯形的面积、待定系数法求一次函数解析式.25.(8.00分)京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A、B和点C、D,先用卷尺量得AB=160m,CD=40m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH的长).【分析】过D作DE⊥AB,可得四边形CHED为矩形,由矩形的对边相等得到两对对边相等,分别在直角三角形ACH与直角三角形BDE中,设CH=DE=xm,利用锐角三角函数定义表示出AH与BE,由AH+HE+EB=AB列出方程,求出方程的解即可得到结果.【解答】解:过D作DE⊥AB,可得四边形CHED为矩形,∴HE=CD=40m,设CH=DE=xm,在Rt△BDE中,∠DBA=60°,∴BE=xm,在Rt△ACH中,∠BAC=30°,∴AH=xm,由AH+HE+EB=AB=160m,得到x+40+x=160,解得:x=30,即CH=30m,则该段运河的河宽为30m.【点评】此题考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键.26.(10.00分)阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2﹣2x=0,可以通过因式分解把它转化为x(x2+x﹣2)=0,解方程x=0和x2+x﹣2=0,可得方程x3+x2﹣2x=0的解.(1)问题:方程x3+x2﹣2x=0的解是x1=0,x2= ﹣2 ,x3= 1 ;(2)拓展:用“转化”思想求方程=x的解;(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.【分析】(1)因式分解多项式,然后得结论;(2)两边平方,把无理方程转化为整式方程,求解,注意验根;(3)设AP的长为xm,根据勾股定理和BP+CP=10,可列出方程,由于方程含有根号,两边平方,把无理方程转化为整式方程,求解,【解答】解:(1)x3+x2﹣2x=0,x(x2+x﹣2)=0,x(x+2)(x﹣1)=0所以x=0或x+2=0或x﹣1=0∴x1=0,x2=﹣2,x3=1;故答案为:﹣2,1;(2)=x,方程的两边平方,得2x+3=x2即x2﹣2x﹣3=0(x﹣3)(x+1)=0∴x﹣3=0或x+1=0∴x1=3,x2=﹣1,当x=﹣1时,==1≠﹣1,所以﹣1不是原方程的解.所以方程=x的解是x=3;(3)因为四边形ABCD是矩形,所以∠A=∠D=90°,AB=CD=3m设AP=xm,则PD=(8﹣x)m因为BP+CP=10,BP=,CP=∴+=10∴=10﹣两边平方,得(8﹣x)2+9=100﹣20+9+x2整理,得5=4x+9两边平方并整理,得x2﹣8x+16=0即(x﹣4)2=0所以x=4.经检验,x=4是方程的解.答:AP的长为4m.【点评】本题考查了转化的思想方法,一元二次方程的解法.解无理方程是注意到验根.解决(3)时,根据勾股定理和绳长,列出方程是关键.27.(10.00分)(1)如图1,已知EK垂直平分BC,垂足为D,AB与EK相交于点F,连接CF.求证:∠AFE=∠CFD.(2)如图2,在Rt△GMN中,∠M=90°,P为MN的中点.①用直尺和圆规在GN边上求作点Q,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法);②在①的条件下,如果∠G=60°,那么Q是GN的中点吗?为什么?【分析】(1)只要证明FC=FB即可解决问题;(2)①作点P关于GN的对称点P′,连接P′M交GN于Q,连接PQ,点Q即为所求.②结论:Q是GN的中点.想办法证明∠N=∠QMN=30°,∠G=∠GMQ=60°,可得QM=QN,QM=QG;【解答】(1)证明:如图1中,∵EK垂直平分线段BC,∴FC=FB,∴∠CFD=∠BFD,∵∠BFD=∠AFE,∴∠AFE=∠CFD.(2)①作点P关于GN的对称点P′,连接P′M交GN于Q,连接PQ,点Q即为所求.②结论:Q是GN的中点.理由:设PP′交GN于K.∵∠G=60°,∠GMN=90°,∴∠N=30°,∵PK⊥KN,∴PK=KP′=PN,∴PP′=PN=PM,∴∠P′=∠PMP′,∵∠NPK=∠P′+∠PMP′=60°,∴∠PMP′=30°,∴∠N=∠QMN=30°,∠G=∠GMQ=60°,∴QM=QN,QM=QG,∴QG=QN,∴Q是GN的中点.【点评】本题考查作图﹣复杂作图、线段的垂直平分线的性质、直角三角形斜边中线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.28.(10.00分)如图,二次函数y=﹣+bx+2的图象与x轴交于点A、B,与y轴交于点C,点A的坐标为(﹣4,0),P是抛物线上一点(点P与点A、B、C不重合).(1)b= ﹣,点B的坐标是(,0);(2)设直线PB与直线AC相交于点M,是否存在这样的点P,使得PM:MB=1:2?若存在求出点P的横坐标;若不存在,请说明理由;(3)连接AC、BC,判断∠CAB和∠CBA的数量关系,并说明理由.【分析】(1)由点A的坐标,利用二次函数图象上点的坐标特征可求出b的值,代入y=0求出x值,进而可得出点B的坐标;(2)代入x=0求出y值,进而可得出点C的坐标,由点A、C的坐标利用待定系数法可求出直线AC的解析式,假设存在,设点M的坐标为(m,m+2),分B、P在直线AC的同侧和异侧两种情况考虑,由点B、M的坐标结合PM:MB=1:2即可得出点P的坐标,再利用二次函数图象上点的坐标特征可得出关于m的一元二次方程,解之即可得出结论;(3)作∠CBA的角平分线,交y轴于点E,过点E作EF⊥BC于点F,设OE=n,则CE=2﹣n,EF=n,利用面积法可求出n值,进而可得出==,结合∠AOC=90°=∠BOE可证出△AOC∽△BOE,根据相似三角形的性质可得出∠CAO=∠EBO,再根据角平分线的性质可得出∠CBA=2∠EBO=2∠CAB,此题得解.【解答】解:(1)∵点A(﹣4,0)在二次函数y=﹣+bx+2的图象上,∴﹣﹣4b+2=0,∴b=﹣.当y=0时,有﹣x2﹣x+2=0,解得:x1=﹣4,x2=,∴点B的坐标为(,0).故答案为:﹣;(,0).(2)当x=0时,y=﹣x2﹣x+2=2,∴点C的坐标为(0,2).设直线AC的解析式为y=kx+c(k≠0),将A(﹣4,0)、C(0,2)代入y=kx+c中,得:,解得:,∴直线AC的解析式为y=x+2.假设存在,设点M的坐标为(m,m+2).①当点P、B在直线AC的异侧时,点P的坐标为(m﹣,m+3),∵点P在抛物线y=﹣x2﹣x+2上,∴m+3=﹣×(m﹣)2﹣×(m﹣)+2,整理,得:12m2+20m+9=0.∵△=202﹣4×12×9=﹣32<0,∴方程无解,即不存在符合题意得点P;②当点P、B在直线AC的同侧时,点P的坐标为(m+,m+1),∵点P在抛物线y=﹣x2﹣x+2上,∴m+1=﹣×(m+)2﹣×(m+)+2,整理,得:4m2+44m﹣9=0,解得:m1=﹣,m2=,∴点P的横坐标为﹣2﹣或﹣2+.综上所述:存在点P,使得PM:MB=1:2,点P的横坐标为﹣2﹣或﹣2+.(3)∠CBA=2∠CAB,理由如下:作∠CBA的角平分线,交y轴于点E,过点E作EF⊥BC于点F,如图2所示.∵点B(,0),点C(0,2),∴OB=,OC=2,BC=.设OE=n,则CE=2﹣n,EF=n,由面积法,可知:OB•CE=BC•EF,即(2﹣n)=n,解得:n=.∵==,∠AOC=90°=∠BOE,∴△AOC∽△BOE,∴∠CAO=∠EBO,∴∠CBA=2∠EBO=2∠CAB.【点评】题考查了二次函数图象上点的坐标特征、待定系数法求一次函数解析式、三角形的面积、勾股定理、一次函数图象上点的坐标特征以及相似三角形的判定与性质,解题的关键是:(1)由点A的坐标,利用二次函数图象上点的坐标特征求出b的值;(2)分B、P在直线AC的同侧和异侧两种情况找出点P的坐标;(3)构造相似三角形找出两角的数量关系.江苏省中考数学精选真题预测(含答案)一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3.00分)在下列四个实数中,最大的数是()A.﹣3 B.0 C.D.2.(3.00分)地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×1063.(3.00分)下列四个图案中,不是轴对称图案的是()A.B.C.D.4.(3.00分)若在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.5.(3.00分)计算(1+)÷的结果是()A.x+1 B. C. D.6.(3.00分)如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.B.C.D.(3.00分)如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠BOC=40°,7.则∠D的度数为()。
2021年江苏省中考数学全优模拟试卷附解析
2021年江苏省中考数学全优模拟试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图所示,CD 是平面镑,光线从A 点出发经 CD 上点E 反射后照射到B 点,若入射角为α(入射角等于反射角),AC ⊥CD ,BD ⊥CD ,垂足分别为 C .D ,且 AC= 3,BD=6,CD= 11,则tan α的值为( )A .113B .311C . 911D .1192.如果小强将镖随意投中如图所示的正方形木板,那么镖落在阴影部分的概率为( )A .61B .81C .91D .121 3.下列说法中,错误的是( )A .长方体、立方体都是棱柱B .竖放的直三棱柱的侧面是三角形C .竖放的直六棱柱有六个侧面,侧面为长方形C .球体的三种视图均为同样大小的图形4.如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( )A .k>0,b>OB .k>0,b<0C .k<0,b>0D .k<0,b<05.已知△ABC 在直角坐标系中的位置如图所示,若△A ′B ′ C ′与△ABC 关于y 轴对称,则点A 的对称点A ′的坐标为( )A .(-4,2)B .(-4,-2)C .(4,-2)D .(4,2)6.方程27x y +=在自然数范围内的解有( )A .1个B . 2个C .3个D .4个7.一次课堂练习,小敏同学做了如下4道因式分解题,你认为小敏做得不够完整的一题是()A.x3-x=x(x2-1)B.x2-2xy+y2=(x-y)2 C.x2y-xy2=xy(x-y) D.x2-y2=(x-y)(x+y)8.梯形的面积为 S,上底为 a,下底为 b,那么高h等于()A.1()2S a b+B.2Sa b+C.2S()a b+D.2()a bS+9.下列说法正确的个数为()①一个数的倒数一定小于这个数;②一个数的倒数一定大于这个数;③0 除以任何数都得0;④两个数的商为 0,只有被除数为 0.A.0 个B.1 个C.2 个D.3 个二、填空题10.如图,在高为 2m,坡角为 30°的楼梯上铺地毯,则地毯长度至少要 m.11.若等腰三角形的顶角为 120°,腰长2cm,则周长为 cm.12.两个相似三角形对应边的比为6,则它们周长的比为_____________.13.如图,已知M是平行四边形ABCD的AB边的中点,CM交BD于E,则图中阴影部分的面积与平行四边形ABCD的面积比为______.14.已知⊙O的半径OA=1,弦 AB、AC 的长分别是2、3,则∠BAC的度数为.15.如图,数轴上表示的关于x的一元一次不等式组的解集为.16.从某鱼塘里捕上l50条鱼做上标记,然后放回鱼塘里去,经过一段时间,待带标记的鱼完全混合于鱼群中后,再捕第二次样品鱼200条,若其中带标记的鱼有10条,可估计鱼塘里有条鱼.17.如图,AB∥CD,∠B=x,∠D=y,那么∠BCD可用含x、y的代数式表示为 .解答题18.已知∠AOB是由∠DEF经过平移变换得到的,且∠AOB+∠DEF=120°,则∠AOB= .解答题19.如果一个三角形的两个角都是80°,那么第三个角的度数是 .∠= .20.如图,图中的121.某商店销售一批色拉油,若按每瓶 40 元出售,则相对于进价来说,每瓶可获利 25%,这种色拉油每瓶的进价是元.22.由一个图形改变为另一个图形,在改变的过程中保持形状不变(大小可以改变).这样的图形改变叫做图形的;原图形和经过相似变换后得到的像.我们称它们为.23.合并同类项2222-+= .4-25x xy x y x三、解答题24.小明和小乐做摸球游戏,一只不透明的口袋里放有 3 个红球和 5 个绿球,每个球除颜色外都相同,每次摸球前都将袋中的球充分搅匀,从中任意摸出一个球,记录颜色后再放回,若是红球,小明得 3 分,若是绿球,小乐得 2 分,游戏结束时得分多者获胜.(1)你认为这个游戏对双方公平吗?(2)若你认为公平,请说明理由;:若你认为不公平,也请说明理由,并修改规则. 使该游戏对双方公平.25.如图,P是⊙O外的一点,PA、PB分别与⊙O相切于点A、B,C是弧AB上的任意一点,过点C的切线分别交PA、PB于点D、E.(1)若PA=4,求△PED的周长;(2)若∠P=40°,求∠DOE的度数.26.已如图,在△ABC 中,AB=AC, ∠ABC=2∠A, BM平分∠ABC 交外接圆于点M,ME∥BC交AB于点 E. 试判断四边形EBCM的形状,并加以证明.27.如图,已知直线l,求作一条直线m,使l与m的距离为 1.4 cm(只作一条).28.(不要求写作法):如图,在10×1O的方格纸中,有一个格点四边形ABCD(即四边形的顶点都在格点上).(1)在给出的方格纸中,画出四边形ABCD 向下平移5格后的四边形A1B1C2D1;(2)在给出的方格纸中,画出与四边形ABCD关于直线l对称的四边形A2B2C2D2.29.如图,已知∠AOB=90°,∠AOC为锐角,0D平分∠AOC,OE平分∠BOC.(1)求∠DOE的度数.(2)当∠AOB=m°时,∠DOE等于多少度?30.一个角的补角比它的余角的2倍还大18°,求这个角.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.C3.B4.B5.D6.D7.A8.B9.B二、填空题10.(2 11.4+.613.1:314.75°或15°15.13x-<≤16.300017.1800+x-y18.60°19.20°20.50°21.3222.相似变换,相似图形23.2224x xy+三、解答题24.(1)不公平;(2)()3 8P=摸出红球,()58 P=摸出绿球∵小明平均每次得分39388⨯=(分)小乐平均每次得分55284⨯=(分)∵9584<,∴游戏不公平.可修改为:①口袋里只放 2 个红球和 3 个绿球;或②摸出红球小明得 5 分,摸出绿球小乐得3分.25.(1)8;(2)70°.26.四边形 EBCM是菱形.∵∠ABM=∠MBC=12∠ABC,∠ABC= 2∠A , ∴∠A=∠ABM,∵∠A=∠BMC,∴∠ABM=∠BMC,∴BE∥CM,∵ME∥BC,∴四边形 EBCM 是平行四边形.∵∠A= ∠MBC, ∴⌒BC =⌒MC , ∴BC=MC,∴□EBCM 是菱形. 27.略28.如图:29.(1)45° (2)12 m°30.18°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省中考数学精选真题预测(含答案)一.选择题(本大题共10题,每小题3分,共计30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请用2B 铅笔把答题卡上相应的答案.........涂黑.) 1.﹣5的绝对值是---------------------------------------------( ▲ )A .5B.15C .﹣5D .﹣152.下列算式中,正确的是--------------------------------------( ▲ )A .2x+2y=4xyB .2a 2+2a 3=2a5C .4a 2﹣3a 2=1D .﹣2ba 2+a 2b=﹣a 2b3.以下图形中对称轴的数量小于3的是---------------------------( ▲ )A .B .C .D .4.如图,某工厂去年4~10月全勤人数的折线统计图,则图中统计数据的众数为( ▲ )A .46B .42C .32D .275.下列命题中,是假命题的是------------------------------( ▲ )A .平行四边形的两组对边分别相等B .两组对边分别相等的四边形是平行四边形C .矩形的对角线相等D .对角线相等的四边形是矩形 6.如图,在⊙O 中,弦AC ∥半径OB ,若∠BOC=50°,则∠B 的大小为----------( ▲ ) A .25° B .30° C .50°D .60°7.如图,□ABCD 的对角线交于坐标原点O .若点A 的坐标为(﹣4,2),则点C 坐标为--第6题图第4题第7题图( ▲ )A .(2,﹣4)B .(4,2)C .(4,﹣2)D .(﹣2,﹣4) 8. 某圆锥体的底面周长为4π,母线长为3,则该圆锥体的侧面积是--------------------( ▲ )A .4πB .6πC .10πD .12π 9.一食堂需要购买盒子存放食物,盒子有A 、B 两种型号,单个盒子的容量和价格如下表.现有15升食物需要存放且要求每个盒子要装满,由于A 型号盒子正做促销活动:购买三个及三个以上可一次性返还现金4元,则购买盒子所需最少费用是-------------------------------------------( ▲ )A .25元B .29元C .30元D .32元10. 已知四边形ABCD 中,AD+DB+BC=16,则四边形ABCD 的面积的最大值是------------( ▲ )A .16B .32C .163D .2569二、填空题(本大题共有8小题,每空2分,共16分) 11.在实数范围内分解因式:2x 2﹣8= ▲ .12.2017年无锡马拉松赛事在3月19日开跑,来自世界各地的30000名选手参加了这项国际赛事,将30000用科学记数法表示为 ▲ .13.若关于x 的一元二次方程x 2﹣x ﹣m=0的一个根是x=1,则m 的值是 ▲ . 14.用2、3、4三个数字排成一个三位数,则排出的数是偶数的概率为 ▲ . 15.说明命题“若x >-3,则x 2>9”是假命题的一个反例,可以取x= ▲ .16.如图,MN 是⊙O 的直径,矩形ABCD 的顶点A 、D 在MN 上,顶点B 、C 在⊙O 上,若⊙O 的半径为5,AB=4,则BC 边的长为 ▲ .型号 A B 单个盒子容量(升)2 3 单价(元)56第18题图第17题图第16题 图17.如图,在平面直角坐标系中,□ABCD 的顶点B ,C 在x 轴上,A ,D 两点分别在反比例函数y=x4-(x <0)与y=x 1(x >0)的图象上,则□ABCD 的面积为 ▲ .18.如图,等腰Rt △ABC 中,∠C=900,AC=BC=6,点M 在AB 上,且AM=22,点P 在射线AC 上,线段PM 绕着点P 旋转600得线段PQ ,且点Q 恰好在直线AB 上,则AP 的长为 ▲ .三、解答题(本大题共10小题,共计84分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤.) 19.(本题共有2小题,每小题4分,共8分) (1)计算:9-(π-3)0-(13)-1 (2)化简:(a ﹣b )2- b (2a+b ). 20.(本题共有2小题,每小题4分,共8分) (1)解不等式12x +≥3(x -1)-4. (2)解方程组321128x y x y -=⎧⎨-+=-⎩. 21. (本题满分6分)如图,已知BD 是△ABC 的角平分线,点E 、F 分别在边AB 、BC 上,ED ∥BC ,EF ∥AC .求证:BE=CF .22.(本题满分8分)为了解食品安全状况,质监部门抽查了甲、乙、丙、丁四个品牌饮料的质量,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,完成下列问题:(1)这次抽查了四个品牌的饮料共 ▲ 瓶; (2)请你在答题卡上补全两幅..统计图; (3)若四个品牌饮料的平均合格率是95%,四个品牌饮料月销售量约20万瓶,请你估计这四个品牌的不合格饮料.....有多少瓶? 第16题图23.(本题满分8分)在一个不透明的袋子中装有除颜色外其余均相同的5个小球,其中红球3个(记为A1,A2,A3),黑球2个(记为B1,B2).(1)若先从袋中取出m(m>0)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,填空:①若A为必然事件,则m的值为▲②若A为随机事件,则m的取值为▲(2)若从袋中随机摸出2个球,正好红球、黑球各1个,用树状图或列表法求这个事件的概率.24.(本题满分8分)如图,以矩形ABCD的边CD为直径作⊙O,交矩形的对角线BD于点E,点F是BC的中点,连接EF.(1)试判断EF与⊙O的位置关系,并说明理由.(2)若DC=2,3,点P是⊙O上不与E、C重合的任意一点,则∠EPC的度数为▲(直接写出答案)25. (本题满分8分)“共享单车”逐渐成为人们方便快捷的出行方式,这些单车投入市场后使用者通过扫描车上二维码注册,首次需对该品牌车辆一次性支付一定数额的押金,而后就可以多次使用该品牌的任意一辆单车,按照使用的次数进行付费。
2017年无锡市场上主要有“小鸣”单车、“摩拜”单车、hellobike和ofo小黄车。
某公司2017年负责运营“小鸣”单车和摩拜单车,在2017年年初一次性投入700万元购买两种单车投入市场,这些单车投入市场后平均每辆车能收到3位不同使用者支付的押金,共收取押金3585万元。
这两种单车的成本、每辆车押金、每辆车平均每天使用的次数、每次使用的价格和每种单车年平均使用率如下表所示:类型成本(元/辆)押金(元/辆)每辆车平均每天使用的次数每次使用的价格(元/次)单车年平均使用率“小鸣”单车120 199 4 1 60℅“摩拜”单车170 299 3 2 50℅(1)求2017年该公司投入市场的“小鸣”单车、“摩拜”单车各多少万辆?(2)若这些车投入市场后,该公司所收取的押金每年能稳定在3585万元,所收押金每年还能获取15℅的投资收益,但每辆车每年需要投入35元的维护费,公司每年还需要各项支出7 25万元,每辆单车按照实际使用200天计算,该公司至少几年后能获得不低于8411万元的利润?(利润=押金投资收益+单车运营收入-维护费-支出-单车成本)26. (本题满分10分)如图1,抛物线y=ax2﹣10ax+c经过△ABC的三个顶点,已知BC∥x轴,点A 在x 轴上,点C 在y 轴上,OA=BC 53且AC=BC .(1)求抛物线的解析式;(2)如图2,将△AOC 沿x 轴对折得到△AOC 1,再将△AOC 1绕平面内某点旋转180°后得△A 1O 1C 2(A ,O ,C 1分别与点A 1,O 1,C 2对应)使点A 1,C 2在抛物线上,求A 1,C 2的坐标. (3)如图3,若Q 为直线AB 上一点,直接写出|QC ﹣QD|的取值范围. 27.(本题满分10分)如图,已知△ABC,CO⊥AB于O,且CO=8,AB=22,sinA=54,点D为AC的中点,点E为射线OC上任意一点,连结DE ,以DE 为边在DE的右侧按顺时针方向作正方形DEFG ,设OE=x .(1)求A D 的长;(2)记正方形DEFG 的面积为y ,① 求y 关于x 的函数关系式; ② 当DF ∥AB 时,求y 的值;(3)是否存在x 的值,使正方形的顶点F 或G 落在△ABC 的边上?若存在,求出所有满足条件的x 的值;若不存在,说明理由。
图328.(本题满分10分)如图,已知直线y=kx+b与x轴交于A(8,0),与y轴交于B(0,6),点P 是x轴正半轴上的一动点,过点P作PC⊥x轴,交直线AB于点C,以OA,AC为边构造□OACD,设点P的横坐标为m.(1)求直线AB的函数表达式;(2)若四边形OACD恰是菱形,请求出m的值;(3)在(2)的条件下,y轴的上是否存在点Q,连结CQ,使得∠OQC+∠ODC=180°.若存在,直接写出....所有符合条件的点Q的坐标,若不存在,则说明理由.参考答案一、选择题(本大题共10题,每小题3分,共计30分. 题号 1 2 3 4 5 6 7 8 9 10 答案ADDCDACBBB二、填空题(本大题共有8小题,每空2分,共16分) 题号 11 12 13 14 15 16 17 18答案2(x+2)(x-2)3⨯10423-2(答案不唯一)6 5623±三、解答题(本大题共10小题,共计84分) 19.(每小题4分,共8分)(1)解: 原式=3-1-3……………………3分(注:零次方、根式、负指数运算的值各1分)=-1………………………4分(2) 解:原式=2222(2)a ab b ab b -+-+…………2分=24a ab -………………………………4分20.(每小题4分,共8分)(1)解: x+1≥6x-6-8……………………2分 x ≤3…………………………4分(2)解:得52x y =⎧⎨=⎩………………………4分(注:解对一个得2分)21.(本题满分6分)解:证得ED=FC…………………2分证得ED=BE…………………5分 得BE=FC……………………6分 22.(本题满分8分)解:(1)200……………………………………………………………………2分 (2)补条形统计图:30瓶………………………………………………3分;补扇形统计图:丁35%,丙15%……………………………………5分; (3)20×5%=1万瓶。