工程力学 第6章 习题
工程力学课后习题答案(2-6章-版本2)
3.3 图3.3所示钢架的点B 作用一个水平力F ,钢架重量忽略不计。
求支座A 、D 的约束力。
解:由图3.3可以确定D 点受力的方向,这里将A 点的力分解为x 、y 方向,如图3.3.1 根据力与矩平衡有)2(:)(0:)(0:)(=-=-=-∑∑∑FL L F A M F F y F F F x F Dy Dx (1)解上面三个方程得到 )(2),(2),(↑=↓=←=F F F F F F D y x3.5如图3.5铰链四杆机构ABCD 的CD 边固定,在铰链A 、B 处有力F1、F2作用,如图所示。
该机构在图示位置平衡,杆重忽略不计。
求力F1和力F2的关系。
解:(1)对A 点分析,如图3.5.1,设AB 杆的内力为T ,则将力投影到垂直于AC 方向的AM 上有0)15cos()30cos(:)(1=︒-︒∑T F AM F ①图3.5(2)对B 点分析,如图3.5.2,将力投影到垂直于BD 方向的BN 有 0)30cos()60cos(:)B N (2=︒-︒∑T F F ②由①、②可得 22108593790.64395055332F F F ≈+=3.8如图3.8有5根杆件组成的结构在A 、B 点受力,且CA 平行于DB ,CA DE BE DB ===。
F=20kN,P=12kN 。
求BE 杆的受力。
解:(1)对A 点受力分析,将力投影到垂直于AC 方向的AN 上有060sin :)(=-︒∑F FAN F AB①(2)对B 点受力分析,如图3.8.2.将力投影到垂直于BD 方向的BM 上有060cos 60sin 30cos :)B M (=︒-︒-︒∑P F FF BE AB②由①、②可得373095kN 16.1658075kN 328≈=BE F (方向斜向上)3.9如图(见书上)所示3根杆均长2.5m ,其上端铰结于K 处,下端A 、B 、C 分别与地基铰结,且分布在半径r=1.5m 的圆周上,A 、B 、C 的相对位置如图所示。
工程力学试题题库
工程力学复习题库(张问还)一、判断题1-1在力的作用下变形的物体称为变形体。
(a)中1-2物体相对周围物体保持静止称为平衡。
(b)中1-3力是物体间的相互机械作用。
(a)易1-4力只能使物体的运动状态发生改变。
(b)难1-5力只能使物体产生变形。
(b)难1-6力对物体的作用效应取决于:力的大小、方向、力的作用点。
(a)易1-7力是矢量,所以需要表示其大小和方向。
(b)难1-8只要一个力系使物体保持静止,则称该力系为平衡力系。
(b)难1-9若两个力系分别作用于一个物体上,其效应相同,则该二力系为等效力系。
(a)难1-10一个物体受两个力大小相等、方向相反、且作用在同一直线上,则该物体一定平衡。
(a)易1-11如果一物体受两个力作用保持平衡时,这两个力一定是大小相等、方向相反,作用线在同一直线上。
(a)中1-12只受两个力作用而平衡的构件称为二力杆。
(a)中1-13在作用于刚体上的力系,加上或减去一个任意平衡力系,并不改变原力系对刚体的作用效应。
(a)中1-14作用在刚体上的力,可以沿其作用线任意移动而不改变其对刚体的作用效应。
(a)中1-15作用于物体同一点上的两个力,可以用平行四边形法合成为一个力。
(a)易1-16刚体在三个力作用下保持平衡,则此三力一定相交。
(b)难1-17作用力与反作用力同时存在且作用在同一物体上。
(b)难1-18凡是限制某物体运动的周围物体,便称为此物体的约束。
(a)难1-19柔性约束反力,作用在与物体连接点,作用线沿着柔索,指向物体。
(b)中1-20光滑接触面约束反力,只能是拉力。
(b)难1-21光滑接触面约束反力,作用于接触处,沿接触点法线方向,指向物体。
(a)中1-22圆柱铰链约束反力,用通过铰链中心相互垂直的两个分力表示。
(a)中1-23滚动铰链约束反力沿支撑面的法线,通过铰链中心并指向物体。
(a)中1-24分析分离体上有几个作用力及每个力大小、方向、作用线(点)的过程称为受力分析。
工程力学习题答案6廖明成
工程力学习题答案6廖明成第六章 杆类构件的内力分析习 题6.1 试求图示结构1-1和2-2截面上的内力,指出AB 和CD 两杆的变形属于哪类基本变形,并说明依据。
(a )(b )题6.1图解:(a )应用截面法:对题的图取截面2-2以下部分为研究对象,受力图如图一所示:BM图一图二由平衡条件得:0,AM=∑6320N F ⨯-⨯=解得:NF =9KNCD 杆的变形属于拉伸变形。
应用截面法,取题所示截面1-1以右及2-2以下部分作为研究对象,其受力图如图二所示,由平衡条件有: 0,OM =∑ 6210NF M ⨯-⨯-= (1)0,yF =∑ 60NSF F --=(2)将NF =9KN 代入(1)-(2)式,得:M=3 kN·mSF =3 KNAB 杆属于弯曲变形。
(b )应用截面法 ,取1-1以上部分作为研究对象,受力图如图三所示,由平衡条件有:0,Fx =∑20NF -=图三F NMNF =2KN0,DM =∑ 210M -⨯=M=2KNAB 杆属于弯曲变形6.2 求图示结构中拉杆AB 的轴力。
设由AB 连接的1和2两部分均为刚体。
题6.2图解:首先根据刚体系的平衡条件,求出AB杆的内力。
刚体1的受力图如图一所示D图一 图二平衡条件为:0,CM=∑104840D N F F ⨯-⨯-⨯=(1)刚体2受力图如图二所示,平衡条件为:0,EM =∑ 240NDF F ⨯-⨯=(2)解以上两式有AB 杆内的轴力为:NF =5KN6.3 试求图示各杆件1-1、2-2和3-3截面上的轴力,并做轴力图。
(a )C(b )(c )(d )题6.3图解:(a ) 如图所示,解除约束,代之以约束反力,做受力图,如图1a 所示。
利用静力平衡条件,确定约束反力的大小和方向,并标示在图1a 中,作杆左端面的外法线n ,将受力图中各力标以正负号,轴力图是平行于杆轴线的直线,轴力图线在有轴向力作用处要发生突变,突变量等于该处总用力的数值,对于正的外力,轴力图向上突变,对于负的外力,轴力图向下突变,轴力图如2a 所示,截面1和截面2上的轴力分别为1N F =-2KN2N F =-8KN ,(a )nkN(a 1)(2)C(b )CBkNb 1)(b 2)((b )解题步骤和(a )相同,杆的受力图和轴力图如(1b )(2b )所示,截面1和截面2上的轴力分别为1N F =4KN 2N F =6KN(c )解题步骤和(a )相同,杆的受力图和轴力图如(1c )(2c )所示,截面1,截面2和截面3上的轴力分别为1N F =3F 2N F =4F ,3NF =4FB C(c )4F(c 1)(c 2)(d)A D(d 1)(d 2)(d )解题步骤和(a )相同,杆的受力图和轴力图如(1d )(2d )所示,截面1和截面2上的轴力分别为1N F =2KN 2N F =2KN6.4 求图示各轴1-1、2-2截面上的扭矩,并做各轴的扭矩图。
工程力学课后习题答案
工程力学练习册学校学院专业学号教师姓名第一章静力学基础1-1 画出下列各图中物体A,构件AB,BC或ABC的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。
(a)(b)(c)(d)(e)(f)(g)1-2 试画出图示各题中AC杆(带销钉)和BC杆的受力图(a)(b)(c)(a)1-3 画出图中指定物体的受力图。
所有摩擦均不计,各物自重除图中已画出的外均不计。
(a)(b)(c)(d)(e)(f)(g)第二章 平面力系2-1 电动机重P=5000N ,放在水平梁AC 的中央,如图所示。
梁的A 端以铰链固定,另一端以撑杆BC 支持,撑杆与水平梁的夹角为30 0。
如忽略撑杆与梁的重量,求绞支座A 、B 处的约束反力。
题2-1图∑∑=︒+︒==︒-︒=PF F FF F F B A yA B x 30sin 30sin ,0030cos 30cos ,0解得: N P F F B A 5000===2-2 物体重P=20kN,用绳子挂在支架的滑轮B上,绳子的另一端接在绞车D上,如图所示。
转动绞车,物体便能升起。
设滑轮的大小及轴承的摩擦略去不计,杆重不计,A 、B 、C 三处均为铰链连接。
当物体处于平衡状态时,求拉杆AB 和支杆BC 所受的力。
题2-2图∑∑=-︒-︒-==︒-︒--=030cos 30sin ,0030sin 30cos ,0P P F FP F F F BC yBC AB x解得: PF P F AB BC 732.2732.3=-=2-3 如图所示,输电线ACB 架在两电线杆之间,形成一下垂线,下垂距离CD =f =1m ,两电线杆间距离AB =40m 。
电线ACB 段重P=400N ,可近视认为沿AB 直线均匀分布,求电线的中点和两端的拉力。
题2-3图以AC 段电线为研究对象,三力汇交NF N F F F FF F F C A GA yC A x 200020110/1tan sin ,0,cos ,0=======∑∑解得:ααα2-4 图示为一拔桩装置。
工程力学(第二版)习题册答案
一、填空题
1. 相 对 滑 动 相 对 滑 动 趋 势 接触面的切线 相反 2. 10N 20N 30N 30N 30N 3. 100N 竖直向上 平衡 4. 平稳无冲击 自锁
阻碍物体相对滑动
相对滑动趋势
二、选择题
1. A
三、简答题
1. ①问题中含有可能发生相对滑动的摩擦面,因此,存在摩擦力; ②受力图中要画出摩擦力,摩擦力总是沿着接触面的切线方向并与物体相对滑
7.
8.
9.
第二章 平面力系
第一节 共线力系的合成与平衡
一、填空题
1. 在同一条直线上
2. FR Fi FR 0
二、计算题
设向右为正方向。 则 FR=120+40-80-200=-120N 方向:水平向左
第二节 平面汇交力系的合成
一、填空题
1. 作用于同一平面内且各力作用线相交于一点的力系 共线力系 力的作用点 2. -F 或 F 0 0 -F 或 F 3. 合力在任一坐标轴上的投影 各分力在同一轴上投影的代数和 4. F4 F3 5. 自行封闭 6. 所有各力在 x 轴上投影的代数和为零 所有各力在 y 轴上投影的代数和为零 Fx 0 Fy 0
3. 后轮:摩擦力向前 前轮:摩擦力向后
4. 不下滑,处于自锁状态
四、计算题
FT 60 18 3N
五、应用题
1. (提示)从摩擦力与 F 对 B 点的力矩大小的比较进行考虑
第三章 空间力系 第一节 力在空间坐标轴上的投影与合成
一、填空题
1. 力的作用线不都在同一平面内呈空间分布的力系 2. 一次投影法 二次投影法
二、选择题
1. A 2.B
它所限制物体
三、简答题
1.柔性体约束只能承受拉力,不能承受压力。 2.被约束物体可以沿约束的水平方向自由滑动,也可以向离开约束的方向运动, 但不能向垂直指向约束的方向运动。 3.剪刀的两半部分可以绕销钉轴线相对转动,但不能在垂直销钉轴线的平面内沿 任意方向做相对移动。 4.木条不能沿圆柱销半径方向移动,但可以绕销轴做相对转动。 5.固定端约束既限制物体在约束处沿任何方向的移动,也限制物体在约束处的转 动。
工程力学课后习题答案(2-6章版本2)
工程力学课后习题答案-秦世伦2.10工程力学课后习题答案-秦世伦2.11工程力学课后习题答案-秦世伦3.3 图3.3所示钢架的点B 作用一个水平力F ,钢架重量忽略不计。
求支座A 、D 的约束力。
解:由图3.3可以确定D 点受力的方向,这里将A 点的力分解为x 、y 方向,如图3.3.1根据力与矩平衡有(1))2(:)(0:)(0:)(=-=-=-∑∑∑FL L F A M F F y F F F x F DyDx工程力学课后习题答案-秦世伦解上面三个方程得到)(2),(2),(↑=↓=←=F F F F F F D y x3.5如图3.5铰链四杆机构ABCD 的CD 边固定,在铰链A 、B 处有力F1、F2作用,如图所示。
该机构在图示位置平衡,杆重忽略不计。
求力F1和力F2的关系。
解:(1)对A 点分析,如图3.5.1,设AB 杆的内力为T ,则将力投影到垂直于AC 方向的AM 上有①0)15cos()30cos(:)(1=︒-︒∑T F AM F 图3.5(2)对B 点分析,如图3.5.2,将力投影到垂直于BD 方向的BN有②0)30cos()60cos(:)BN (2=︒-︒∑T F F 由①、②可得22108593790.64395055332F F F ≈+=3.8如图3.8有5根杆件组成的结构在A 、B 点受力,且CA 平行于DB ,。
F=20kN,P=12kN 。
求BE 杆的受力。
CA DE BE DB ===解:(1)对A 点受力分析,将力投影到垂直于AC 方向的AN 上有①060sin :)(=-︒∑F FAN F AB(2)对B 点受力分析,如图3.8.2.将力投影到垂直于BD 方向的BM 上有②060cos 60sin 30cos :)BM (=︒-︒-︒∑P F FF BE AB由①、②可得(方向斜向上)373095kN 16.1658075kN 328≈=BE F3.9如图(见书上)所示3根杆均长2.5m ,其上端铰结于K 处,下端A 、B 、C 分别与地基铰结,且分布在半径r=1.5m 的圆周上,A 、B 、C 的相对位置如图所示。
工程力学 第6章 弹性静力学基本概念
第6章 弹性静力学的基本概念 刚体静力学研究力系的等效、简化与力系的平衡,并且应用这些基本概念和理论,分析、确定物体的受力。
刚体静力学的模型是质点和质点系以及刚体和刚体系。
弹性静力学则主要研究变形体受力后发生的变形,以及由于变形而产生的附加内力。
分析方法上,弹性静力学与理论力学刚体静力学也不完全相同。
建立在实验基础上的假定、简化计算,是弹性静力学分析方法的主要特点。
本章介绍弹性静力学的基本概念、研究方法以及弹性静力学对于工程设计的重要意义。
§6-1 弹性静力学概述 §6-2 弹性体及其理想化 6-2-1 各向同性与各向异性弹性体 6-2-2 各向同性弹性体的均匀连续性 §6-3 弹性体受力与变形特征 §6-4 应力及其与内力分量之间的关系 6-4-1 分布内力集度-应力 6-4-2 应力与内力分量之间的关系 §6-5 正应变与切应变 §6-6 线弹性材料的物性关系 §6-7工程结构与构件 §6-8 杆件变形的基本形式 §6-9 结论与讨论 6-9-1 关于刚体静力学模型与弹性静力学模型 6-9-2 关于弹性体受力与变形特点 6-9-3 关于刚体静力学概念与原理在弹性静力学中的 可用性与限制性 习 题 本章正文 返回总目录第6章 弹性静力学的基本概念 §6—1 弹性静力学概述 弹性静力学(elastic statics)又称材料力学(strength of materials),其研究内容分属于两个学科。
第一个学科是固体力学(solid mechanics),即研究物体在外力作用下的应力、变形和能量,统称为应力分析(stress analysis)。
但是,弹性静力学所研究的仅限于杆、轴、梁等物体,其几何特征是纵向尺寸远大于横向尺寸,这类物体统称为杆或杆件(bars或rods)。
大多数工程结构的构件或机器的零部件都可以简化为杆件。
工程力学(静力学和材料力学)第2版课后习题答案 范钦珊主编 第6章 圆轴扭转
习题 6-6 图
τ 套 max =
Mx Wp 2
T2 ≤ 60 × 10 6 ×
∴
Tmax ≤ T2 = 2883 N·m = 2.88 ×10 3 N·m
4
6-7 由同一材料制成的实心和空心圆轴,二者长度和质量均相等。设实心轴半径为 R0,空心圆轴的内、外半径分别为 R1 和 R2,且 R1/R2 =n;二者所承受的外加扭转力偶矩分 别为 Mes 和 Meh。若二者横截面上的最大剪应力相等,试证明:
该轴的扭转强度是安全的。
上一章
返回总目录
下一章
8
3
习题 6-5 图
解:1. τ 1 max =
Mx T T 3 × 10 3 × 16 = = = = 70.7 MPa WP WP π π× 0.06 3 d3 16
A1
2. M r =
∫
ρ ⋅ τdA =
∫
r
0
ρ⋅
2πM x r 4 Mx ρ ⋅ 2πρ d ρ = ⋅ 4 Ip Ip
Mr r4 r4 1 2π 2π 16r 4 15 = = = = 16 × ( ) 4 = = 6.25% 4 4 Mx 16 4I p 60 d d π 4⋅ 32 Mx T = 3. τ 2 max = =75.4MPa Wp 1 4⎞ π d3 ⎛ ⎜1 − ( ) ⎟ 16 ⎝ 2 ⎠
eBook
工程力学
(静力学与材料力学)
习题详细解答
(教师用书) (第 6 章) 范钦珊 唐静静
2006-12-18
1
第 6 章 圆轴扭转
《工程力学》课后习题答案全集
工程力学习题答案第一章 静力学基础知识思考题:1. ×;2. √;3. √;4. √;5. ×;6. ×;7. √;8. √习题一1.根据三力汇交定理,画出下面各图中A 点的约束反力方向。
解:(a )杆AB 在A 、B 、C 三处受力作用。
由于力和的作用线交于点O 。
如图(a )所示,根据三力平衡汇交定理, 可以判断支座A 点的约束反力必沿 通过A 、O 两点的连线。
(b )同上。
由于力和的作用线 交于O 点,根据三力平衡汇交定理, 可判断A 点的约束反力方向如 下图(b )所示。
2.不计杆重,画出下列各图中AB 杆的受力图。
解:(a )取杆AB 为研究对象,杆除受力外,在B 处受绳索作用的拉力,在A 和E 两处还受光滑接触面约束。
约束力和的方向分别沿其接触表面的公法线,并指向杆。
其中力与杆垂直,力通过半圆槽的圆心O 。
AB 杆受力图见下图(a )。
(b)由于不计杆重,曲杆BC 只在两端受铰销B 和C 对它作用的约束力和,故曲杆BC 是二力构件或二力体,此两力的作用线必须通过B 、C 两点的连线,且=。
研究杆AB ,杆在A 、B 两点受到约束反力和,以及力偶m 的作用而平衡。
根据力偶的性质,和必组成一力偶。
(d)由于不计杆重,杆AB 在A 、C 两处受绳索作用的拉力和,在B 点受到支座反力。
和相交于O 点,根据三力平衡汇交定理,可以判断必沿通过pB RpB Rp B T A N E N E N A N B N C N BN CN A N B N A N B N A T C T B N A T C TB NB、O两点的连线。
见图(d).第二章 力系的简化与平衡思考题:1. √;2. ×;3. ×;4. ×;5. √;6. ×;7. ×;8. ×;9. √.1. 平面力系由三个力和两个力偶组成,它们的大小和作用位置如图示,长度单位为cm ,求此力系向O 点简化的结果,并确定其合力位置。
《工程力学》练习题
《工程力学》练习题第一章绪论1. 强度是指构件在外力作用下抵抗_破坏_的能力,刚度是指构件在外力作用下抵抗_变形_的能力,稳定性是指构件在外力作用下保持_平衡_的能力。
2. 静力学研究的对象是刚体,刚体可以看成是由质点系组成的不变形固体。
材料力学研究的对象是变形固体。
(√)3. 变形固体四种基本变形,即拉压变形、剪切与挤压变形、扭转变形及弯曲变形。
(√)4. 在材料力学对变形固体假设中,最小条件假设是指在外力的作用下,变形固体所产生的变形较小,在强度校核计算中采用初始状态的尺寸进行计算。
(√)5. 材料力学对变形固体的假设中,同向异性假设是指变形固体在不同方位显示出的力学性能的差异性。
但在实际中仍然按各向同性计算。
(√)第二章静力学的基本概念和受力分析1. 刚体是指在力的的作用下,大小和形状不变的物体。
2. 力使物体产生的两种效应是___内_____效应和_ _外___效应。
3、力是矢量,其三要要素是(大小)、方向及作用点的位置。
4、等效力系是指(作用效果)相同的两个力系。
5、非自由体必受空间物体的作用,空间物体对非自由体的作用称为约束。
约束是力的作用,空间物体对非自由体的作用力称为(约束反力),而产生运动或运动的趋势的力称为主动力。
6、物体的平衡状态是静止状态。
(X)7、物体的平衡状态是匀速直线运动态。
(X)8.作用力与反作用力是一组平衡力系。
(X )9、作用在刚体上的二力,若此两力大小相等、方向相反并同时作用在同一直线上,若此刚体为杆件则称为而二力杆件。
(√)10、作用在刚体上的力,可以沿其作用线滑移到刚体上的任意位置而不会改变力对刚体的作用效应。
(√)11、作用在刚体上的力,不能沿其作用线滑移到刚体上的任意位置。
主要是滑移后会改变力对刚体的作用效应。
(X )12、作用在刚体上的三个非平行力,若刚体处于平衡时,此三力必汇交。
(√)13、两物体间相互作用时相互间必存在一对力,该对力称为作用力与反作用力。
工程力学材料力学部分习题
工程力学——材料力学部分习题第六章变形体力学基础是非判断题1.材料力学是研究构件承载能力的一门学科。
()2.材料力学的任务是尽可能使构件安全地工作。
()3.材料力学主要研究弹性范围内的小变形情况。
()4.因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。
()5.外力就是构件所承受的载荷。
()6.材料力学研究的内力是构件各部分间的相互作用力。
()7.用截面法求内力时,可以保留截开后构件的任一部分进行平衡计算。
( )8.压强是构件表面的正应力。
()9.应力是横截面上的平均内力。
()10.材料力学只研究因构件变形引起的位移。
()11.线应变是构件中单位长度的变形量。
()12.构件内一点处各方向线应变均相等。
()13.切应变是变形后构件中任意两根微线段夹角角度的变化量。
()14.构件上的某一点,若任何方向都无应变,则该点无位移。
()15.材料力学只限于研究等截面直杆。
()16.杆件的基本变形只是拉(压)、剪、扭、和弯四种,如果还有另一种变形,必定是这四种变形的某种组合。
()填空题17.构件的承载能力包括____________、___________和____________三个方面;根据材料的主要性能作如下三个基本假设___________、___________、____________。
18.构件的强度是指___________________________________________________________;刚度是指_________________________________________________________________________;稳定性是指_______________________________________________________________________。
19.在材料力学中分析杆件内力的基本方法是__________,步骤是_____________________。
工程力学(天津大学)第6章答案
考虑微段的静力平衡,有 [A(x) + dA(x)]⋅[σ] = A(x)[σ] +ρA(x)dx dA(x)[σ] =ρA(x)dx 设桥墩顶端截面( x = 0)的面积为A0 ,对上式积分,得x 截面的面积为
F
F
F
5m
15m
5m
5m
(a)
(b)
(c)
习题 6 − 14 图
解:(1)采用等截面石柱
结构如图a 所示,设柱的横截面面积和长度分别为A 、l ,底部截面轴力最
大,为
强度条件为
于是有
所用石料体积为 2、采用三段等长度的阶梯石柱
结构如图b 所示,按从上到下顺序,设各段横截面面积和长度分别为A1 , l 1 , A2 , l 2 和 A3 , l 3 。显然,各阶梯段下端截面轴力最大,分别为
(2)由强度条件确定许用荷载
F A
B 60º
所以许用荷载为[F]=21.6kN。
C
60º
F
6 − 16 图示结构由刚性杆 AB 及两弹性 杆 EC 及 FD 组成,在 B 端受力 F 作用。两弹性
习题 6 − 15 图
杆由相同材料所组成,且长度相等、横截面面 积相同,试求杆 EC 和 FD 的内力。
FN1=FN2。
(2)根据题意,其位移条件为
其中,
分别为螺栓的伸长及套管的缩短,考虑 FN1=FN2,可计算出
将
代入得
(3) 螺栓横截面的应力为拉应力
工程力学习题册
专业 学号 姓名 日期 成绩第一章 静力学基础一、是非判断题1.1 在任何情况下,体内任意两点距离保持不变的物体称为刚体。
( ) 1.2 物体在两个力作用下平衡的必要与充分条件是这两个力大小相等、方向相反,沿同一直线。
( ) 1.3 加减平衡力系公理不但适用于刚体,而且也适用于变形体。
( ) 1.4 力的可传性只适用于刚体,不适用于变形体。
( ) 1.5 两点受力的构件都是二力杆。
( ) 1.6 只要作用于刚体上的三个力汇交于一点,该刚体一定平衡。
( ) 1.7 力的平行四边形法则只适用于刚体。
( ) 1.8 凡矢量都可以应用平行四边形法则合成。
( ) 1.9 只要物体平衡,都能应用加减平衡力系公理。
( ) 1.10 凡是平衡力系,它的作用效果都等于零。
( ) 1.11 合力总是比分力大。
( ) 1.12 只要两个力大小相等,方向相同,则它们对物体的作用效果相同。
( ) 1.13 若物体相对于地面保持静止或匀速直线运动状态,则物体处于平衡。
( ) 1.14 当软绳受两个等值反向的压力时,可以平衡。
( ) 1.15 静力学公理中,二力平衡公理和加减平衡力系公理适用于刚体。
( ) 1.16 静力学公理中,作用力与反作用力公理和力的平行四边形公理适用于任何物体。
( )1.17 凡是两端用铰链连接的直杆都是二力杆。
( ) 1.18 如图所示三铰拱,受力F ,F 1作用,其中F 作用于铰C 的销子上,则AC 、 BC 构件都不是二力构件。
( )二、填空题2.1如图所示,F 1在x 轴上的投影为 ;F 1在y 轴上的投影为 ;F 2在x 轴上的投影为 ;F 2在y 轴上的投影为 ;F 3在x 轴上的投影为 ;F 3在y 轴上的投影为 ;F 4在x 轴上的投影为 ;F 4在y 轴上的投影为 。
轴上的投影为 。
2.2将力F 沿x , y 方向分解,已知F = 100 N, F 在x 轴上的投影为86.6 N, 而沿x 方向的分力的大小为115.47 N , 则F 的y 方向分量与x 轴的夹角β为 ,F 在y 轴上的投影为 。
工程力学第4版(静力学)答案
第一章 习题下列习题中,凡未标出自重的物体,质量不计。
接触处都不计摩擦。
1-1试分别画出下列各物体的受力图。
1-2试分别画出下列各物体系统中的每个物体的受力图。
1-3试分别画出整个系统以及杆BD ,AD ,AB (带滑轮C ,重物E 和一段绳索)的受力图。
1-4构架如图所示,试分别画出杆HED ,杆BDC 及杆AEC 的受力图。
1-5构架如图所示,试分别画出杆BDH ,杆AB ,销钉A 及整个系统的受力图。
1-6构架如图所示,试分别画出杆AEB ,销钉A 及整个系统的受力图。
1-7构架如图所示,试分别画出杆AEB ,销钉C ,销钉A 及整个系统的受力图。
1-8结构如图所示,力P 作用在销钉C 上,试分别画出AC ,BCE 及DEH 部分的受力图。
参考答案1-1解:1-2解: 1-3解: 1-4解: 1-5解: 1-6解: 1-7解: 1-8解:第二章 习题参考答案2-1解:由解析法,23cos 80RX F X P P Nθ==+=∑故:161.2R F N==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有故:3R F KN==方向沿OB 。
2-3解:所有杆件均为二力杆件,受力沿直杆轴线。
(a ) 由平衡方程有:联立上二式,解得:0.577AB F W =(拉力) 1.155AC F W =(压力) (b ) 由平衡方程有:联立上二式,解得:1.064AB F W =(拉力) 0.364AC F W =(压力) (c ) 由平衡方程有:联立上二式,解得:0.5AB F W =(拉力) 0.866AC F W =(压力)(d ) 由平衡方程有:联立上二式,解得:0.577AB F W =(拉力) 0.577AC F W =(拉力)2-4解:(a )受力分析如图所示:由0x =∑ cos 450RA F P =由Y =∑sin 450RA RB F F P +-=(b)解:受力分析如图所示:由 联立上二式,得:2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以: 5RA F KN =(压力)5RB F KN =(与X 轴正向夹150度) 2-6解:受力如图所示:已知,1R F G = ,2AC F G =由x =∑ cos 0AC r F F α-=由0Y =∑ sin 0AC N F F W α+-=2-7解:受力分析如图所示,取左半部分为研究对象由cos45cos450RA CB P F F --=联立后,解得: 0.707RA F P =由二力平衡定理 0.707RB CB CB F F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑ cos60cos300AC AB F F W ⋅--=联立上二式,解得: 7.32AB F KN =-(受压)27.3AC F KN =(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑ sin cos 0DB T W αα-=(2)取B 点列平衡方程由0Y =∑ sin cos 0BD T T αα'-=2-10解:取B 为研究对象:由0Y =∑ sin 0BC F P α-=取C 为研究对象:由cos sin sin 0BC DC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BC BC F F '= 解得: 取E 为研究对象:由0Y =∑ cos 0NH CE F F α'-=CECE F F '=故有:2-11解:取A 点平衡:联立后可得:2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:由对称性及 AD AD F F '=2-12解:整体受力交于O 点,列O 点平衡由0x =∑cos cos300RADC FF P α+-=联立上二式得: 2.92RA F KN =1.33DC F KN =(压力) 列C 点平衡联立上二式得: 1.67AC F KN =(拉力)1.0BC F KN =-(压力) 2-13解:(1)取DEH 部分,对H 点列平衡联立方程后解得: RD F (2)取ABCE 部分,对C 点列平衡且 RE RE F F '=联立上面各式得: RA F =(3)取BCE 部分。
工程力学课后习题答案第六章 杆类构件的内力分析
第六章 杆类构件的内力分析6.1。
(a )(b )题6.1图解:(a )应用截面法:对题的图取截面2-2以下部分为研究对象,受力图如图一所示:BM图一图二由平衡条件得:0,AM=∑6320N F ⨯-⨯=解得: N F =9KN CD 杆的变形属于拉伸变形。
应用截面法,取题所示截面1-1以右及2-2以下部分作为研究对象,其受力图如图二所示,由平衡条件有:0,OM=∑6210N F M ⨯-⨯-=(1)0,yF=∑60N S F F --=(2)将N F =9KN 代入(1)-(2)式,得: M =3 kN·m S F =3 KN AB 杆属于弯曲变形。
(b )应用截面法 ,取1-1以上部分作为研究对象,受力图如图三所示,由平衡条件有:0,Fx =∑20NF-=图三MNF =2KN0,DM=∑210M -⨯= M =2KNAB 杆属于弯曲变形 6.2题6.2图解:首先根据刚体系的平衡条件,求出AB 杆的内力。
刚体1的受力图如图一所示D2m图一图二平衡条件为:0,CM=∑104840D N F F ⨯-⨯-⨯=(1) 刚体2受力图如图二所示,平衡条件为:0,EM=∑240N D F F ⨯-⨯= (2)解以上两式有AB 杆内的轴力为:N F =5KN6.3(a )(c )题6.3图解:(a ) 如图所示,解除约束,代之以约束反力,做受力图,如图1a 所示。
利用静力平衡条件,确定约束反力的大小和方向,并标示在图1a 中,作杆左端面的外法线n ,将受力图中各力标以正负号,轴力图是平行于杆轴线的直线,轴力图线在有轴向力作用处要发生突变,突变量等于该处总用力的数值,对于正的外力,轴力图向上突变,对于负的外力,轴力图向下突变,轴力图如2a 所示,截面1和截面2上的轴力分别为1N F =-2KN 2N F =-8KN ,n (b 2 (面N F题6.4图解(a )如图所示,分别沿1-1,2-2截面将杆截开,受力图如1a 所示,用右手螺旋法则,并用平衡条件可分别求得:1T =16 kN·m 2T =-20 kN·m ,根据杆各段扭矩值做出扭矩图如2a 所示。
工程力学习题 及最终答案
.1第一章 第二章第三章 绪论 思 考 题1) 现代力学有哪些重要的特征?2) 力是物体间的相互作用。
按其是否直接接触如何分类?试举例说明。
3) 工程静力学的基本研究内容和主线是什么? 4) 试述工程力学研究问题的一般方法。
第二章 刚体静力学基本概念与理论习 题2-1 求图中作用在托架上的合力F R 。
2-2 已知F 1=7kN ,F 2=5kN, 求图中作用在耳环上的合力F R 。
习题12030200N.22-3 求图中汇交力系的合力F R 。
2-4 求图中力F 2的大小和其方向角。
使 a )合力F R =1.5kN, 方向沿x 轴。
b)合力为零。
2-5 二力作用如图,F 1=500N 。
为提起木桩,欲使垂直向上的合力为F R =750N ,且F 2力尽量小,试求力F 2的大小和角。
F4560F1习题b)xy453F 1=30N F 2F 3=40N A xy456F 1=600NF 2=700N F 3=5A习题a )x 70F2F 1=1.25kNA习题3F 1=500NAF 2习题.32-6 画出图中各物体的受力图。
C(b)(a)C(c)C(d)FBEqDA CCD EBCAB DD.42-7 画出图中各物体的受力图。
2-8 试计算图中各种情况下F 力对o 点之矩。
习题b)Bc)d)习题B(a )a )ABCBABC.52-9 求图中力系的合力F R 及其作用位置。
习题P(d) c)Fb)(5kNM =6kN mxx.62-10 求图中作用在梁上的分布载荷的合力F R 及其作用位置。
(Bq 1=600N/m Bq=4kN(q A =3k q C =1C (习题2-(6kNx1=x.72-11 图示悬臂梁AB 上作用着分布载荷,q 1=400N/m ,q 2=900N/m, 若欲使作用在梁上的合力为零,求尺寸a 、b 的大小。
第三章 静力平衡问题 习 题3-1 图示液压夹紧装置中,油缸活塞直径D=120mm ,压力p =6N/mm 2,若3-2 图中为利用绳索拔桩的简易方法。
工程力学材料力学第四版习题答案解析
工程力学材料力学(北京科技大学与东北大学)第一章轴向拉伸和压缩1-1:用截面法求下列各杆指定截面的内力解:(a):N1=0,N2=N3=P(b):N1=N2=2kN(c):N1=P,N2=2P,N3= -P(d):N1=-2P,N2=P(e):N1= -50N,N2= -90N(f):N1=0.896P,N2=-0.732P注(轴向拉伸为正,压缩为负)1-2:高炉装料器中的大钟拉杆如图a所示,拉杆下端以连接楔与大钟连接,连接处拉杆的横截面如图b所示;拉杆上端螺纹的内径d=175mm。
以知作用于拉杆上的静拉力P=850kN,试计算大钟拉杆的最大静应力。
解:σ1=2118504P kNS dπ==35.3Mpaσ2=2228504P kNS dπ==30.4MPa∴σmax=35.3Mpa1-3:试计算图a所示钢水包吊杆的最大应力。
以知钢水包及其所盛钢水共重90kN,吊杆的尺寸如图b所示。
解:下端螺孔截面:σ1=19020.065*0.045P S=15.4Mpa上端单螺孔截面:σ2=2P S =8.72MPa 上端双螺孔截面:σ3= 3P S =9.15Mpa∴σmax =15.4Mpa1-4:一桅杆起重机如图所示,起重杆AB为一钢管,其外径D=20mm,内径d=18mm;钢绳CB 的横截面面积为0.1cm2。
已知起重量P=2000N,试计算起重机杆和钢丝绳的应力。
解:受力分析得:F1*sin15=F2*sin45F1*cos15=P+F2*sin45∴σAB=11FS=-47.7MPaσBC=22FS=103.5 MPa1-5:图a所示为一斗式提升机.斗与斗之间用链条连接,链条的计算简图如图b 所示,每个料斗连同物料的总重量P=2000N.钢链又两层钢板构成,如c所示.每个链板厚t=4.5mm,宽h=40mm,H=65mm,钉孔直径d=30mm.试求链板的最大应力.解:F=6PS 1=h*t=40*4.5=180mm 2S2=(H-d)*t=(65-30)*4.5=157.5mm 2∴σmax=2F S =38.1MPa1-6:一长为30cm 的钢杆,其受力情况如图所示.已知杆截面面积A=10cm2,材料的弹性模量E=200Gpa,试求;(1) AC. CD DB 各段的应力和变形.(2) AB 杆的总变形.解: (1)σAC =-20MPa,σCD =0,σDB =-20MPa;△ l AC =NL EA =AC LEA σ=-0.01mm△l CD =CD LEA σ=0△L DB =DB LEA σ=-0.01mm(2) ∴ABl∆=-0.02mm1-7:一圆截面阶梯杆受力如图所示,已知材料的弹性模量E=200Gpa,试求各段的应力和应变.解:31.8127ACACCBCBPMPaSPMPaSσσ====ACACACLNLEA EAσε===1.59*104,CBCBCBLNLEA EAσε===6.36*1041-8:为测定轧钢机的轧制力,在压下螺旋与上轧辊轴承之间装置一测压用的压头.压头是一个钢制的圆筒,其外径D=50mm,内径d=40mm,在压头的外表面上沿纵向贴有测变形的电阻丝片.若测得轧辊两端两个压头的纵向应变均为ε=0.9*10-2,试求轧机的总轧制压力.压头材料的弹性模量E=200Gpa.解:QNllEAllε∆=∆=∴NEAε=62.54*10N EA Nε∴==1-9:用一板状试样进行拉伸试验,在试样表面贴上纵向和横向的电阻丝来测定试样的改变。
工程力学练习题
工程力学——静力学部分习题 第一章 静力学公理与物体的受力分析一、判断题1.力是滑动矢量,可沿作用线移动。
( ) 2.凡矢量都可用平行四边形法则合成。
( ) 3.凡是在二力作用下的约束成为二力构件。
( ) 4.两端用光滑铰链连接的构件是二力构件。
( ) 5.凡是合力都比分力大。
( ) 6.刚体的平衡条件是变形体平衡的必要条件,而非充分条件。
( ) 7.若作用在刚体上的三个力的作用线汇交于一点,则该刚体必处于平衡状态。
( ) 二、填空题1.作用力与反作用力大小 ,方向 ,作用在 。
2.作用在同一刚体上的两个力使刚体平衡的充要条件是这两个力 , , 。
3.在力的平行四边形中,合力位于 。
三、选择题1.在下述公理、法则、定理中,只适用于刚体的有( )。
A .二力平衡公理B 力的平行四边形法则C .加减平衡力系原理D 力的可传性E 作用与反作用定律2.图示受力分析中,G 是地球对物体A 的引力,T 是绳子受到的拉力,则作用力与反作用力指的是( )。
A T ′与GB T 与GC G 与G ′D T ′与G ′3.作用在一个刚体上的两个力F A 、F B ,若满足F A =-F B 的条件,则该二力可能是( )。
A 作用力与反作用力或一对平衡力 B 一对平衡力或一个力偶 C 一对平衡力或一个力或一个力偶 D 作用力与反作用力或一个力偶 四、作图题1.试画出下列各物体的受力图。
各接触处都是光滑的。
(a ) (b)2. 试画出图示系统中系统及各构件的受力图。
假设各接触处都是光滑的,图中未画出重力的构件其自重均不考虑。
(c )ABPo30(d )(f )(e )(a )A BP 2P 1(b)第二章 平面汇交力系与平面力偶系一、判断题1. 两个力F 1、F 2在同一轴上的投影相等,则这两个力大小一定相等。
( )2. 两个力F 1、F 2大小相等,则它们在同一轴上的投影大小相同。
( )3. 力在某投影轴方向的分力总是与该力在该轴上的投影大小相同。
工程力学客观题及答案(复习题)
第一章质点、刚体的基本概念和受力分析一、填空题1、在力的作用下大小和形状都保持不变的物体,称之为____。
2、力使物体的机械运动状态发生改变,这一作用称为力的____。
3、力对物体的效应决定于力的大小,方向和三个因素。
4、力对物体的效应不仅决定于它的大小,而且还决定于它的方向,所以力是____。
5、作用于物体上同一点的两个力可以合成一个合力,这一个合力作用于该点,其大小和_____应以这两个力为邻边所构成的平行四边形的对角线来表示。
6、一个力可以公解为两个力,力的分解也按平行________法则进行。
7、受二力作用的刚体处于平衡的必要充分条件是:这二力等值、反向和_____。
8、在两个力作用下处于平衡的刚体称为_____构件。
9、在任一力系中加上或减去一个______,不会影响原力系对刚体的作用效果。
10、作用在______上的力,可沿力作用线在其上移动到任何位置,而不会改变此力对的作用效应。
二、判断题1、质点是这样一种物体:它具有一定的质量,但它的大小和形状在所讨论的问题中可忽略不计。
()2、所谓刚体,就是在力的作用下,其内部任意两点之间的距离始终保持不变的物体。
()3、在研究飞机的平衡、飞行规律以及机翼等零部件的变形时,都是把飞机看作刚体。
()4、力对物体的作用,是不会在产生外效应的同时产生内效应的。
()5、力学上完全可以在某一点上用一个带箭头的有向线段显示出力的三要素。
()6、若两个力大小相等,则这两个力就等效。
()7、凡是受二力作用的直杆就是二力杆。
()8、若刚体受到不平行的三力作用而平衡,则此三力的作用线必汇交于一点。
()9、在任意一个已知力系中加上或减去一个平衡力系,会改变原力系对变形体的作用效果。
()10、绳索在受到等值、反向、沿绳索的二力作用时,并非一定是平衡的。
()三、选择题1、由于工程构件的(),所以在研究它的平衡或运动时,将其看成是受力后形状、大小保持不变的刚体。
A、形状是圆体B、实际变形通常是微米量级的C、硬度相当大D、实际变形可忽略不计2、将这样一种说法,即()相等,用图表示出来,就是两个带箭头的线段长度相等,指向和作用点也相同。
工程力学习题 及最终答案
工程力学习题及最终答案(总63页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一章 绪论思 考 题1) 现代力学有哪些重要的特征2) 力是物体间的相互作用。
按其是否直接接触如何分类试举例说明。
3) 工程静力学的基本研究内容和主线是什么 4) 试述工程力学研究问题的一般方法。
第二章 刚体静力学基本概念与理论习 题2-1 求图中作用在托架上的合力F R 。
2-2 已知F 1=7kN ,F 2=5kN, 求图中作用在耳环上的合力F R 。
习题2-1图NN22-3 求图中汇交力系的合力F R 。
2-4 求图中力F 2的大小和其方向角?。
使 a )合力F R =, 方向沿x 轴。
b)合力为零。
2-5 二力作用如图,F 1=500N 。
为提起木桩,欲使垂直向上的合力为F R =750N ,且F 2力尽量小,试求力F 2的大小和?角。
2习题2-2图(b )F 1F 1F 2习题2-3图(a )F 1习题2-4图2-6 画出图中各物体的受力图。
F12习题2-5图(b) B(a)A(c)(d)(eA42-7 画出图中各物体的受力图。
) 习题2-6图(b ))(d(a ) A BC DB ABCB52-8 试计算图中各种情况下F 力对o 点之矩。
2-9 求图中力系的合力F R 及其作用位置。
习题2-7图习题2-8图P(d )(c ))) 1F 362-10 求图中作用在梁上的分布载荷的合力F R 及其作用位置。
q 1=600N/m2习题2-9图F 3F 2( c1F 4F 372-11 图示悬臂梁AB 上作用着分布载荷,q 1=400N/m ,q 2=900N/m, 若欲使作用在梁上的合力为零,求尺寸a 、b 的大小。
第三章 静力平衡问题q=4kN/m( b )q( c )习题2-10图B习题2-11图8习 题3-1 图示液压夹紧装置中,油缸活塞直径D=120mm ,压力p =6N/mm 2,若?=30?, 求工件D 所受到的夹紧力F D 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题6-1图习题6-2图习题6-3图习题6-4图第6章 杆件的内力分析6-1 平衡微分方程中的正负号由哪些因素所确定?简支梁受力及Ox 坐标取向如图所示。
试分析下列平衡微分方程中哪一个是正确的。
(A ))(d d Q x q x F =;Q d d F xM=; (B ))(d d Q x q x F -=,Q d d F x M-=; (C ))(d d Q x q x F -=,Q d d F xM=; (D ))(d d Q x q xF =,Q d d F xM-=。
正确答案是 B 。
6-2 对于图示承受均布载荷q 的简支梁,其弯矩图凸凹性与哪些因素相关?试判断下列四种答案中哪几种是正确的。
正确答案是 B 、C 、D 。
6-3 已知梁的剪力图以及a 、e 截面上的弯矩M a 和M e ,如图所示。
为确定b 、d 二截面上的弯矩M b 、M d ,现有下列四种答案,试分析哪一种是正确的。
(A ))(Q F b a a b A M M -+=,)(Q F d e e d A M M -+=; (B ))(Q F b a a b A M M --=,)(Q F d e e d A M M --=; (C ))(Q F b a a b A M M -+=,)(Q F d e e d A M M --=; (D ))(Q F b a a b A M M --=,)(Q F d e e d A M M -+=。
上述各式中)(Q F b a A -为截面a 、b 之间剪力图的面积,以此类推。
正确答案是 B 。
6-4 应用平衡微分方程,试画出图示各梁的剪力图和弯矩图,并确定 max Q ||F 。
解:(a )0=∑A M ,l MF B 2R =(↑) 0=∑y F ,lMF A 2R =(↓)(c) (d)lM F 2||max Q =M M 2||max =(b )0=∑A M ,22+⋅+⋅--l ql lql ql ql F B41R =(↑) 0=∑y F ,ql F A 41R =(↓), 2R 4141ql l ql l F M B C =⋅=⋅=(+) 2ql M A =ql F 45||max Q =2max ||ql M =(c )0=∑y F ,ql F A =R (↑) 0=∑A M ,2ql M A =0=∑D M ,022=-⋅-⋅+D M lql l ql ql223ql M D =ql F =max Q ||2max 23||ql M =(d )0=∑B M 02132R =⋅-⋅⋅-⋅l ql l q l F A ql F A45R =(↑) 0=∑y F ,ql F B 43R =(↑) 0=∑B M ,22l q M B = 0=∑D M ,23225ql M D = ql F 45||max Q =2max 3225||ql M = (e )0=∑y F ,F R C = 00=∑C M ,0223=+⋅+⋅-C M lql l ql2ql M C =(a) (b)(c) (d)0=∑B M ,221ql M B =0=∑y F ,ql F B =Q ql F =max Q || 2max ||ql M =(f )0=∑A M ,ql F B 21R =(↑) 0=∑y F ,ql F A 21R =(↓) 0=∑y F ,021Q =-+-B F ql ql ql F B21Q = 0=∑D M ,42221+⋅-⋅M ll q l ql 281ql M D -=281ql M E =∴ ql F 21||max Q = 2max 81||ql M =6-5 试作图示刚架的弯矩图,并确定max ||M 。
解:图(a ):0=∑A M ,02P P R =⋅-⋅-⋅l F l F l F B P R F F B =(↑)0=∑y F ,P F F Ay =(↓) 0=∑x F ,P F F Ax =(←) 弯距图如图(a-1),其中l F M P max 2||=,位于刚节点C 截面。
图(b ):0=∑y F ,ql F Ay =(↑) 0=∑A M ,ql F B21R =(→) 0=∑x F ,ql F Ax 21=弯距图如图(b-1),其中2max ||ql M = 图(c ):0=∑x F ,ql F Ax =(←) 0=∑A M02R 2=⋅-⋅-l F lql ql BB 2R 0=∑y F ,ql F Ay 21=(↑) 弯距图如图(c-1),其中2max ||ql M = 图(d ):0=∑x F ,ql F Ax = 0=∑A M02R 2=⋅+-⋅-l F ql lql Bql F B 23R =0=∑y F ,223ql F Ay =弯距图如图(d-1),其中2max ||ql M =。
6-6 梁的上表面承受均匀分布的切向力作用,其集度为。
梁的尺寸如图所示。
若已知p 、h 、l ,试导出轴力F N x 、弯矩M 与均匀分布切向力p 之间的平衡微分方程。
解:1.以自由端为x 坐标原点,受力图(a ) 0=∑x F ,0N =+x F x p x p F x -=N ∴p xF x-=d d N 0=∑C M ,02=⋅-hx p M hx p M 21=h p x M 21d d = 方法2.0=∑x F ,0d d N N N =-++x x x F x p F F ∴p xF x-=d d N 0=∑C M ,02d d =⋅--+hx p M M M∴ 2d d h p x M =6-7 试作6-6题中梁的轴力图和弯矩图,并确定max N ||x F max ||M 。
解:l p F x =max N ||(固定端)ACB15kN/m=q(d)AMm34340B C5.7mkN ⋅(c)习题6-8图习题6-9图ABkN/m2.0=q 2max6-8 静定梁承受平面载荷,但无集中力偶作用,其剪力图如图所示。
若已知A 端弯矩0)(=A M ,试确定梁上的载荷及梁的弯矩图,并指出梁在何处有约束,且为何种约束。
解:由F Q 图线性分布且斜率相同知,梁上有向下均布q 载荷,由A 、B 处F Q 向上突变知,A 、B 处有向上集中力;又因A 、B 处弯矩无突变,说明A 、B 处为简支约束,由A 、B 处F Q 值知 F R A = 20 kN (↑),F R B = 40 kN 由 0=∑y F ,04R R =⨯-+q F F B A q = 15 kN/m由F Q 图D 、B 处值知,M 在D 、B 处取极值 340)34(211534202=⨯-⨯=DM kN ·m5.71212-=⨯-=q M B kN ·m 梁上载荷及梁的弯矩图分别如图(d )、(c )所示。
6-9 已知静定梁的剪力图和弯矩图,如图所示,试确定梁上的载荷及梁的支承。
解:由图中A 、B 、C 处突变,知A 、B 、C 处有向上集中力,且F R A F R C F R B 2.04==q kN/m (↓) 由M A = M B = 0,可知A 、B 简支,由此得梁上载荷及梁的支承如图(a )或(b )所示。
习题6-10图QF6-10 静定梁承受平面载荷,但无集中力偶作用,其剪力图如图所示。
若已知截面E 上的弯矩为零,试:1.在Ox 坐标中写出弯矩的表达式; 2.画出梁的弯矩图; 3.确定梁上的载荷; 4.分析梁的支承状况。
解:由F Q 图知,全梁有向下均布q ;B 、D 处有相等的向上集中力4ql ;C 处有向下的集中力2ql ;结合M ,知A 、E 为自由端,由F Q 线性分布知,M 为二次抛物线,B 、C 、D 处F Q 变号,M 在B 、C 、D 处取极值。
221ql M M D B -==,F Q B = 4ql 222724)3(21ql l ql l q M C =⋅+-= 1.弯矩表达式: 2021)(>-<-=x q x M ,)0(l x ≤≤ >-<+>-<-=l x ql x q x M 4021)(2,)2(l x l ≤< >-<->-<+>-<-=l x ql l x ql x q x M 324021)(2 )53(l x l ≤<-<+>-<--<+>-<-=l x ql l x ql l x ql x q x M 54324021)(2 )65(l x l ≤<即 -<+>-<--<+>-<-=l x ql l x ql l x ql x q x M 54324021)(2 )60(l x ≤≤ 2.弯矩图如图(a ); 3.载荷图如图(b );4.梁的支承为B 、D 处简支(图b )。
6-11 图示传动轴传递功率P = 7.5kW ,轴的转速n = 200r/min 。
齿轮A 上的啮合力F R 与水平切线夹角20°,皮带轮B 上作用皮带拉力F 和F S2,二者均沿着水平方向,且F S1 = 2F S2(分轮B 重F Q = 0和F Q = 1800N 两种情况) 1.画出轴的受力简图; 2.画出轴的全部内力图。
解:1.轴之扭矩: 3582005.79549=⨯=x M N ·m 358===x B A M T T N ·m 238723.0τ==AT F N 86920tan τr =︒=F F N143225.02s ==B TF N轴的受力简图如图(a )。
2.① F Q = 0时, 0=∑Cz M06.04.02.0Q r =-+-F F F Dy 434=Dy F N 0=∑y F 1303-=Cy F N ② F Q = 1800 N 时, 0=∑Cz M 1254=Dy F N 0=∑y F 323-=Cy F N 0=∑Cy M033.04.02.0S2τ=⨯+--F F F Dz 5250=Dz F N0=∑z F ,1432=Cz F N 4772.0τ==F M Cy N ·m 8592.032s =⨯=F M Dy N ·m 1732.0r =⨯=F M Cz N ·m(h)F Q = 0时,0=Dz MF Q = 1800 N 时,360-=Dz M N ·m6-12 传动轴结构如图所示,其一的A 为斜齿轮,三方向的啮合力分别为F a = 650N ,F τ ,F r = 1730N ,方向如图所示。