移相全桥为主电路的软开关电源设计详解
全桥移相开关电源设计
┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊摘要上世纪60年代开始起步的PWM功率变换技术出现了很大的发展,但由于其通常采用调频稳压控制方式,使得软开关的范围受到限制,且其设计复杂,不利于输出滤波器的优化设计。
本文介绍了由UC3875构成的相移式PWM 控制器的工作原理,并在此基础之上进一步设计了由UC3875构成的全桥移相零电压开关(ZVS)PWM 开关电源。
该电路能以隔离方式驱动功率MOSFET,从而提高了电路的稳定性;由于采用了ZVS 技术使电路在高频情况下能够大大减小开关损耗,提高了整个电路的工作效率。
阐述了零电压开关技术(ZVS)在移相全桥变换器电路中的应用。
分析了电路原理和各工作模态,着重分析了开关管的零电压开通和关断的过程实现条件,并且提出了相关的应用领域和今后的发展方向。
本文选择了全桥移相控制ZVS-PWM谐振电路拓扑,阐述了零电压开关技术(ZVS)在移相全桥变换器电路中的应用。
分析了电路原理和各工作模态。
关键词:零电压开关技术、全桥移相控制、谐振变换器┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊Abstract60s of last century to start the PWM power conversion technology had major development, but because of its frequency regulator control method commonly used to make soft-switching range is limited, and the complexity of its design is not conducive to optimal design of output filter. This article describes the composition of the UC3875 phase shift PWM controller works, and on this basis for further design composed by the UC3875 phase shift full-bridge zero voltage switching (ZVS) PWM switching power supply. To isolate the way the circuit can drive the power MOSFET, thereby enhancing the stability of the circuit; As a result of high-frequency ZVS technology to the circuit in case of switching losses can be greatly reduced, improving the efficiency of the entire circuit.Zero-voltage switching technology described (ZVS) phase shifted full bridge converter in the circuit application. Analysis of the circuit and the working mode. Analyzes the zero-voltage switch turn on and off conditions of the process of implementation. And put forward the relevant application areas and future development direction. This selected phase shift control full bridge ZVS-PWM resonant circuit topology, zero voltage switching technology described (ZVS) phase shifted full bridge converter in the circuit application. Analysis of the circuit and the working mode.Key words: zero-voltage switching technology,full-bridge phase-shifting control,resonant converter┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊目录摘要 (1)ABSTRACT (2)第一章引言 (5)1.1开关电源简介 (5)1.2开关电源的发展动向 (5)1.3本设计的主要内容 (6)第二章相关电力电子器件介绍 (7)2.1二极管 (7)2.2双极型晶体管 (8)2.3光电三极管 (9)2.4场效应管 (9)第三章 UC3875原理和应用 (11)3.1 UC3875简介 (11)3.1.1 uc3875各个管脚简要说明 (11)3.1.2 uc3875的特点 (13)3.2UC3875的应用 (13)第四章 PWM控制技术 (15)4.1PWM控制 (15)4.1.1 PWM控制的基本原理 (15)4.1.2 PWM控制具体过程 (16)4.1.3 PWM控制的优点 (16)4.1.4 几种PWM控制方法 (17)4.2PWM逆变电路及其控制方法 (19)4.2.1 计算法和调制法 (19)4.2.2 异步调制和同步调制 (21)第五章电力变换电路介绍 (23)5.1整流电路 (23)5.1.1 桥式不可控整流电路 (23)5.1.2 单相桥式全控整流电路 (24)5.2逆变电路 (25)5.2.1逆变电路的基本工作原理 (26)5.2.2电压型逆变电路 (26)第六章 ZVS-PWM全桥移相开关电源设计 (28)6.1电路图设计 (28)6.2电路图原理 (28)┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊总结 (33)致谢 (34)参考文献 (35)┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊第一章引言1.1开关电源简介开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC 和MOSFET构成。
第六章 软开关技术(移相全桥ZVS软开关电路分析)
td (lead ) 2CleadVin / I1
在这段时间里,原边电流等于折算到 原边的滤波电 ) / K
4.开关模态3 在 t2 时刻,关断 Q4,原边电流 i p 转 移到 C2和 C4中,一方面抽走 C2上的 电荷,另一方面又给 C4充电。 由于C2 和C4 的存在,Q4的电压是从零 慢慢上升的,因此 Q4是零电压关 断。这段时间里谐振电感 Lr 和C2 及 C4在谐振工作。原边电流 i p 和 C4 的电压分别为: 电容C2 ,
2.开关模态1 在 t 0 时刻关断Q 1,原边电流 i p 从 Q 1中转移到到 C3和 C1 支路中,给
C1充电,同时 C3被放电。 电容 C1 的电压从零开始线性上升
电容 C3 的电压从 Vin开始线性下降 Q 1是零电压关断。
i p (t ) I p (t0 ) I1
vC1 (t )
到 t4 时刻,原边电流从 I p (t3 )下降到 零,二极管 D2和 D3自然关断。 持续时间为: t L I (t ) / V
34 r P 3
Vin i p (t ) I p (t3 ) (t t3 ) Lr
in
6. 开关模态5 在 t 4 时刻,原边电流流经 Q2和 Q3。 由于原边电流仍不足以提供负载 电流,负载电流仍由两个整流管 提供回路,因此原边绕组电压仍 然为零,加在谐振电感两端电压 是电源电压Vin ,原边电流反向线 性增加。
到 t5 时刻,原边电流达到折算到原 I Lf (t5 ) / K 值,该开 边的负载电流 关模态结束。 持续时间为: L I (t ) / K
Vin i p (t ) (t t4 ) Lr
t45
移相全桥软开关工作原理解析
ZVZCS移相全桥软开关工作原理(1)主电路拓扑本设计采用zvzcs PWM移相全桥变换器,采用增加辅助电路得方法复位变压器原边电流,实现了超前桥臂得零电压开关(ZVS)与滞后桥臂得零电流开关(ZCS)。
电路拓扑如图3、6所示。
图3、6全桥ZVZCS电路拓扑当、导通时,电源对变压器初级绕组正向充电,将能量提供给负载,同时,输出端钳位电容充电。
当关断时,电源对充电,通过变压器初级绕组放电。
由于得存在,为零电压关断,此时变压器漏感与输岀滤波电感串联,共同提供能虽:,由于得存在使得变压器副边电压下降速度比原边慢,导致电位差并产生感应电动势作用于,加速了得放电,为得零电压开通提供条件。
当放电完全后,整流二极管全部导通续流,在续流期间原边电流已复位,此时关段,开通,由于漏感两边电流不能突变,所以为零电流关断,为零电流开通。
(2)主电路工作过程分析I?】半个周期内将全桥变换器得工作状态分为8种模式。
①模式1、导通,电源对变压器初级绕组正向充电,将能量提供给负载,同时,输出端箝位电容充电。
输岀滤波电感与漏感相比较大,视为恒流源,主电路简化图及等效电路图如图3、7所示。
(a)简化图(b)等效图图3、7模式1主电路简化图及等效电路图由上图可以得到如下方程:(3-3)(3-4)(3-5)由(3-3)式得:(3— 6 )将(3-6 )式代入(3-5)式得:(3-7)将(3-7)式代入(3-4)式得:(3-8)解微分方程:(3-9)其初始条件为:;(3-10)代入方程解得:(3-11)(3-12)(3-13)(其中)②模式2当时,达到最大值,此时〃;二极管关断,输岀侧电流流经、、、、与次级绕组,简化电路如图3、8所示。
此时满足一八③模式3S 1关断,原边电流从S1转移至C1与C 2 ,C1充电,C 2放电,简化电路如图3、9所示。
由于C1得存在,S1就是零电压关断。
变压器原边漏感与输出滤波电感串联,共同提供能量, 变压器原边电压与整流桥输出电压以相同得斜率线性下降,满足:。
学士学位毕业设计基于uc3875控制的移相全桥软开关电源的设计
学士学位毕业设计基于uc3875控制的移相全桥软开关电源的设计移相全桥软开关电源是一种常见的电源设计,通过使用uc3875控制器来实现对电源的控制和调节。
设计步骤如下:
1. 确定电源的输出需求:包括输出电压和电流要求。
根据实际应用需求确定。
2. 选择开关元件:根据输出电压和电流要求,选择合适的开关元件。
常用的开关元件包括IGBT和MOSFET等。
3. 选择变压器:根据输入电压和输出电压要求,选择合适的变压器。
变压器应具有足够的功率容量和高效率。
4. 设计控制电路:使用uc3875控制器来实现对开关元件的控制和调节。
uc3875是一种常用的PWM控制器,具有多种保护功能和调节特性。
5. 设计反馈电路:为了实现稳定的输出电压,需要设计合适的反馈电路。
反馈电路通常包括误差放大器和比较器等。
6. 进行仿真和优化:使用电路仿真软件进行电路仿真,并根据仿真结果对电路进行优化。
7. 制作电路原型:根据设计结果,制作电路原型进行测试和验证。
8. 进行性能测试:通过对电路原型进行性能测试,验证电源的输出性能和稳定性。
9. 进行安全测试:进行安全测试,确保电源符合相关的安全标
准和规定。
10. 进行系统集成:将电源集成到目标系统中,并进行系统测试和调试。
以上是基于uc3875控制的移相全桥软开关电源的设计步骤。
具体的设计过程中,还需要根据实际情况进行一些细节调整和优化。
全桥移相软开关逆变电源设计
全桥移相软开关逆变电源设计作者:周洁来源:《科学与财富》2016年第31期摘要:软开关电源是近年来电源技术发展的新方向。
本文提出了一种全桥移相软开关逆变电源的设计方案,它采用了全桥零电压零电流脉宽调制变换器(FB-ZVZCS-PWM)的工作模式,本文对系统各部件的设置进行了较为详细的说明。
关键词:逆变电源;软开关;脉宽调制;FB-ZVZCS-PWM0 引言自20世纪80年代以来,软开关技术取得了较大的进展。
在逆变器中,可以利用原有的电路,采用合适的控制模式,添加适当的电感和电容,从而实现功率器件的软开关。
软开关变换技术的实质是在主电路上增加储能元件L、C产生谐振,迫使功率器件上的电压或电流迅速降为零,从而提供理想的开关条件。
1 全桥移相软开关逆变电源主电路设计主电路分为三个部分(见图1):第一部分,输入整流滤波电路。
二极管D1-D4组成输入整流电路(实际电路选用整流模块替代);C1为高频滤波电容,隔离电网与逆变电路之间的谐波干扰;电阻R2、R3和电容器组C2、C3组成滤波电路;R1为限流电阻,限制启动时的合闸浪涌电流;继电器K控制限流电阻切换,启动后闭合,把R1从主电路去除;电阻R10、R11、稳压管D9与电容C11组成延时电路,控制R1切换时间。
第二部分,逆变器。
VT1-VT4为功率开关管IGBT(实际用两组半桥模块组成),与中频变压器TF1组成逆变器;电阻R4-R7、电容C4-C7与二极管D10-D13共同组成VT1-VT4的RCD吸收回路,减小IGBT开关过程电流、电压冲击。
第三部分,输出整流滤波电路。
快速整流二极管模块D7、D8和直流电抗器L1组成单相全波整流滤波输出电路;R8、C8与R9、C9组成D7、D8的吸收回路。
2 全桥移相零电压零电流脉宽调制(FB-ZVZCS-PWM)变换器全桥零电压零电流脉宽调制变换器使原边电流在箝位续流时间迅速衰减到零并保持,固定臂(VD3,VD4)的开关管是零电流开关,移相臂(VD1,VD2)的开关管是零电压开关。
移相软开关电源设计
11 0 . 1关断过程 t在 t 。 o , 时刻关断 Q , 1 原边电流从 Q 中转移 到 c 1 3和 Q 中 , 3 由 在 中大 功率 D — C 换器 中一般采 用全桥变换 的电路结构 . CD 变 全 于有 c 3和 c , 1 1Q 是零 电压关断。此 时 于 是串联的 , 可以近似认 桥变换 器有两种典型的控制方式 P WM控制 和移相控制 P WM控制 为原边电流不变 。C1 C 和 3上电压为 : \ 因为具有很多优 良性能应用十分普遍。但是 由于 P WM控制方式变换 T1
1 移 相 全 桥 零 电压 P M 的 工作 原 理 W
图 1 出移相全桥 型电路 。与普通全桥 电路相 比, 中增加了 示 电路 个谐振 电感 h 和与 四个 开关( I Q ) 联的电容( 1 C ) 它不仅 Q ~4并 C ~4 , 是独立的电容元件, 还包括开关 器件中寄生的结 电容 。 图 2 出移相全桥变换 器在半周期 中 Q ~ 4的控制波形 Q 和 示 1Q l Q 相对 于 Q 和 Q 3 2 4提前一个相位关 断。
0 前 言
l =- t 3 i 1 : = n - 器 中的开关器件工作在硬开关状态 .每个周期都在高 电压下开通 . 大 电流 关断 . 件承受 的开关应力 大 . 在高频 P 器 并 WM 中会产 生相 当可 I: 边 电流 , : 、 2的并联 电容 , 为输入 电压 t 电容充 - 原 C Q1Q V: : 观的开关损耗 . 而且 开关损耗 随着 开关频率提高 而增 大 . 使得开关 电 电 时 间
移相全桥ZVZC软开关DC_DC稳压电源分析与设计_吕春锋
(e)
4
(f)
5
图 3 换流过程模态
VDR2 流过负载电流。 要实现滞后桥臂零电流,原边电流需在滞后桥臂开通前
减小到零。由开关模态 2 可知,原边电流线性减小:
V (t ) − V (t ) ?V
(1)
i (t) − I ?V (t ? t ) / L
?V (t ) ? V (t ) ? 2 C V / C ?
V ? I ?t / C ? 2 C V / C ? ?V
(5)
一般 Cr垲Cb,式(5)可以简化为:
程中近似不变,而变压器原边电流近似线性减小。
V − I ?t / 2 C
(6)
如图 3(d)所示,开关模态 3 换流过程如下:[t2-t3]期间,阻
通常所说的硬开关,在开通和关断时会产生较大的开关 损耗,开关频率越高,损耗越大。软开关电源是在开关器件通 断条件下,加在其电压上电压为零,即零电压开关(ZVS),或者 通过开关器件的电流为零,即零电流开关(ZCS)。软开关技术 显著解决了元件开关时刻产生的损耗,可以更大幅度地提高 开关频率,这种软开关的方式为缩小电源体积和提高电源效 率创造了条件。移相全桥零电压零电流软开关(ZVZCS)DC-DC 变换器是在移相全桥 ZVS 的基础上发展而来的,其工作模式 基本上克服了 ZVS 和 ZCS 软开关模式的固有缺陷,使全桥变 换器的超前桥臂实现 ZVS,而滞后桥臂实现 ZCS,在中、大功 率开关电源中具有广泛的应用。其超前桥臂的零电压实现是 通过并联电容电压不能突变完成的,滞后桥臂的零电流是通 过串联隔直电容和漏感谐振,从而使电流能量转移到了电容 中,滞后桥臂串接的二极管阻止了关断后的反向电流,减弱了 环路损耗[1]。
移相全桥零电压PWM软开关电路的研究
略大于开关管自身的寄生电容可减小管子之间的差
异。 实际中,可根据实验波形对其进行调整。 计算得
Llk=7.2 μH,实际取10~20 μH。 由于 要 兼 顾 轻 载 和 重 载,同 时 电 感 在 超 前 臂 谐 振 和 续 流 时 有 能 量 损 失 ,故
实际中取值较计算值略大为宜。
5 整机最大占空比合理性计算
第 43 卷第 1 期 2009 年 1 月
电力电子技术 Power Electronics
移相全桥零电压 PWM 软开关电路的研究
胡红林, 李春华, 邵 波 (黑龙江科技学院, 黑龙江 哈尔滨 150027)
Vol.43 No.1 January,2009
摘要:介绍了移相全桥零电压 PWM 软开关电路的组成及工作原理,从时域上详细分析了软开关的工作过程,阐述了
在开关电源中具有谐振开关和 PWM 控制特点 的移相全桥零 电 压 PWM 变 换 器 得 到 了 广 泛 应 用 , 该 类 变 换 器 实 现 了 零 电 压 开 关 (ZVS),减 小 了 开 关 损耗,提高了电源系统的稳定性。 同时,电源可在较 高的开关频率下工作,因而大大减小了无源器件的 体积。 但移相全桥 ZVS 电路存在对谐振电感和电容 的合理选择及占空比丢失的问题,这就要求 ZVS 软 开关有一个合理的最大占空比。
实现 VQ1 零电压关断需要有:
uC1=
iCb 2C1
td1=
is 2nC1
td1≥Uin
(6)
式中:td1 为 VQ1,VQ3 死区时间;n 为变比。
要在全范围内实现超前臂的零电压开通, 必须
以 最 小 输 出 电 流 Iomin 和 最 大 输 入 电 压 Uinmax 来 选 取 C1,C3,即 C1=C3≤Iomintd1/(2nUinmax)。 4.2 串联电感的取值及滞后臂并联电容的选取
1kW大功率ZVS移相全桥开关电源设计电路图
1kW大功率ZVS移相全桥开关电源设计+电路图摘要结合目前开关电源的发展现状,本文设计了一种1kW,50V/20A的ZVS移相全桥开关电源。
论文首先介绍了开关电源的几种主要拓扑结构,并在半个周期内对移相全桥ZVS拓扑的工作状况进行了详细分析。
论文其次对开关电源的主电路、控制电路和驱动电路进行了设计。
主要工作包括主电路磁性元件的计算与选择;以UC3875为核心、双环控制模式下控制电路的设计;以及利用芯片IR2110驱动MOSFET 的驱动电路设计。
30292论文最后通过仿真对相关波形进行了采集。
采集的电流波形包括:给定范围内,不同直流输入下,四个MOSFET驱动信号波形、两桥臂中点间电压和原边电流波形;不同负载下开关管上电压电流波形;还有输出电压波形。
验证了本电源满足移相PWM以及ZVS条件,且各部分性能满足预期设计要求。
关键词大功率开关电源 ZVS移相全桥双环控制毕业论文设计说明书外文摘要Title The Research of High-Power Switching Power SupplyAbstractAccording to the current development condition of switching power supply, a 1kW, 50V/20A ZVS phase-shifted full-bridge switching power supply is proposed in this paper. It employs the research methods that combines theoretical analysis with simulation design. Several major topological structures of DC/DC converter are firstly introduced in this paper, and the working principle of ZVS PS-FB DC/DC converter in a half period is analyzed in details. Then the design process of its main circuit, control circuit and driving circuit is put forward, including the calculation and selection of the magnetic elements in the main circuit, and the design of peripheral circuit of chip UC3875 as the core part of control circuit, where a dual-loop control mode is used. On the basis of Saber software, relevant waveform is acquired, verifying the fact that this power supply is zero-voltage turn-on and zero-current turn-off. It has satisfied the design requirements of both its functions and performance. 源自Keywords high-power switching power supply ZVS PS-FB dual-loop control目次1 引言 11.1 开关电源的发展状况 11.2 开关电源DC/DC变换器常见拓扑结构 1 1.3 软开关技术 31.4 本课题主要工作 52 移相全桥ZVS PWM变换器 62.1 基本工作原理 62.2 工作过程分析 93 1kW开关电源的设计 173.1 主电路设计 173.1.1 主电路电路设计 173.1.2 高频变压器 183.1.3 输入滤波电容 203.1.4 主功率开关管 203.1.5 谐振电感 213.1.6 输出滤波电感 233.1.7 输出滤波电容 243.2 控制部分设计 243.2.1 控制保护电路设计 243.2.2 驱动电路设计 284 仿真结果及分析 30结论 37致谢 38参考文献 391 引言1.1 开关电源的发展状况开关电源目前在现代电力、电子、交通、通信系统、国防等相关方面取得了极为深远的影响[1,2]。
全桥移相软开关(好)
全桥移相软开关变换器结构分析作者:周志敏 上传时间:2004-12-9 8:45:13摘要摘要:: 文中分析了全桥移相控制ZVS 和ZVZCS 变换器存在的不足,针对全桥ZVZCS 软开关方案存在的问题,介绍了PS -FB -ZVZCS-PWM 电路。
Abstract : In this paper analyze PS -FB -ZVS-PWM and PS -FB -ZVZCS-PWM convertor exist issue ,be dead against issue ,introduce no-symmetry PS -FB -ZVZCS-PWM circuit 。
1 引言在DC/DC 变换器中,则以全桥移相控制软开关PWM 变换器的研究十分活跃,它是直流电源实现高频化的理想拓扑之一,尤其是在中、大功率的应用场合。
移相控制方式是全桥变换器特有的一种控制方式,它是指保持每个开关管的导通时间不变,同一桥臂两只管子相位相差1800。
对全桥变换器来说,只有对角线上两只开关管同时导通时变换器才输出功率,所以可通过调节对角线上的两只开关管导通重合角的宽度来实现稳压控制。
如果我们定义此导通重合角的脉宽为输出脉宽的话,实际上就成为PWM控制方式。
因此,人们也称此类变换器为移相全桥PWM (PS -FB -PWM )变换器。
通常定义首先开通的两只开关管为超前桥臂,后开通的两只开关管为滞后桥臂。
2 移相调宽零压变换器1.移相调宽变换器的基本工作原理移相调宽桥式变换器的主电路如图1所示。
图中S1、S2、S3、S4表示器件内部的开关管,VDs1、VDs2、VDs3、VDs4表示器件内部的反并联二极管,Cs1、Cs2、Cs3、Cs 4表示器件的输出电容与外接电容的总和,CP 表示变压器T 的各种杂散电容之和。
Lr 是为改善换流条件而接入的,称为换流电感。
与传统的PWM 桥式电路相比,除增加了Lr 及V D1、VD2之外,电路拓扑并无太大差别。
移相全桥大功率软开关电源的设计
移相全桥大功率软开关电源的设计1 引言在电镀行业里,一般要求工作电源的输出电压较低,而电流很大。
电源的功率要求也比较高,一般都是几千瓦到几十千瓦。
目前,如此大功率的电镀电源一般都采用晶闸管相控整流方式。
其缺点是体积大、效率低、噪音高、功率因数低、输出纹波大、动态响应慢、稳定性差等。
本文介绍的电镀用开关电源,输出电压从0~12V、电流从0~5000A 连续可调,满载输出功率为60kW.由于采用了ZVT软开关等技术,同时采用了较好的散热结构,该电源的各项指标都满足了用户的要求,现已小批量投入生产。
2 主电路的拓扑结构鉴于如此大功率的输出,高频逆变部分采用以IGBT为功率开关器件的全桥拓扑结构,整个主电路,包括:工频三相交流电输入、二极管整流桥、EMI 滤波器、滤波电感电容、高频全桥逆变器、高频变压器、输出整流环节、输出LC 滤波器等。
隔直电容Cb 是用来平衡变压器伏秒值,防止偏磁的。
考虑到效率的问题,谐振电感LS 只利用了变压器本身的漏感。
因为如果该电感太大,将会导致过高的关断电压尖峰,这对开关管极为不利,同时也会增大关断损耗。
另一方面,还会造成严重的占空比丢失,引起开关器件的电流峰值增高,使得系统的性能降低。
图1 主电路原理图3 零电压软开关高频全桥逆变器的控制方式为移相FB2ZVS 控制方式,控制芯片采用Unitrode 公司生产的UC3875N。
超前桥臂在全负载范围内实现了零电压软开关,滞后桥臂在75 %以上负载范围内实现了零电压软开关。
图2 为滞后桥臂IGBT 的驱动电压和集射极电压波形,可以看出实现了零电压开通。
开关频率选择20kHz ,这样设计一方面可以减小IGBT的关断损耗,另一方面又可以兼顾高频化,使功率变压器及输出滤波环节的体积减小。
图2 IGBT驱动电压和集射极电压波形图4 容性功率母排在最初的实验样机中,滤波电容C5 与IGBT 模块之间的连接母排为普通的功率母排。
在实验中发现IGBT上的电压及流过IGBT的电流均发生了高频震荡,图3 为满功率时采集的变压器初级的电压、电流波形图。
移相全桥开关电源的研制与软开关软件控制实现
北京邮电大学硕士学位论文移相全桥开关电源的研制与软开关软件控制实现姓名:王浛申请学位级别:硕士专业:电路与系统指导教师:谢沅清19990401文章摘要本文介绍了墅羞鱼塑中一些基本概念和热门的。
!!丛这。
盘并对开关电源中常用器件作了简要介绍。
然后对软开关技术和负载均流技术,进行了较详细的分析,并给出本人设计的两种主动均流方式的改进方案。
进而详细说明了2500Ⅵ/(50V/50A)开关电源样机的设计过程,本机采用移相控制软开关技术,主电路为全桥结构,主控芯片使用UC3875,UC3907为负载均流控制芯片,实现电压电流双环反馈。
并进一步从理论和实践探讨了FB-ZVS—PV/M在轻载条件下软开关技术的实现,分别采用磁饱和技术和附加辅助电路方法,在软开关控制方面做出了有益的尝试。
最后给出了软开关部分计算机仿真结果。
AbStractInthispaper,theprocessofdesigna2.5kwpower8upplyisdescribed,andtheimprovementofZVT—PWMtechniqueiSdiSCUSsed.Inthefirstsecti。
n,includes1,2and3chapter.introduceSomebasicconceptionofswitehingpower鲫ppliesinbrief.ThenanalysestheZVS/ZCS—PWMandtheloadsharetechnicalindetail.Intheendofthissect10n,91Vestwonewmethodstoimprovetheioadsharebythe1argeStCurrent.Inthemiddlesectien,includes4and5chapter,thistextelaborate0ntheprocessofdesigna2.5kwpowersuPplyandtheresearchonZVS-PWMmode.Inthere.proVidestwomethodsofUSingsaturationinductorandaddingaceessorialcirCUit,expatiatedtheprincipleoftheseandthereSUltinimplement.Attheend,emluatorofthebridgecircuitandtheresultsoftheZVS—PWMsimulationaregiven.北京邮电大学硕士研究生毕业论文第一章开关电源第1节开关电源综述(主要参考文献f4】【17】)电源是电子设备的动力能源,是一切电子设备不可或缺的组成部分。
移相全桥软开关工作原理解析
ZVZCS移相全桥软开关工作原理(1) 主电路拓扑本设计采用ZVZCS PWM移相全桥变换器,采用增加辅助电路的方法复位变压器原边电流,实现了超前桥臂的零电压开关(ZVS)和滞后桥臂的零电流开关(ZCS)。
电路拓扑如图3.6所示。
图3.6 全桥ZVZCS电路拓扑当1S、4S导通时,电源对变压器初级绕组正向充电,将能量提供给负载,同时,输出端钳位电容Cc充电。
当关断1S时,电源对1C充电,2C通过变压器初级绕组放电。
由于1C的存在,1S为零电压关断,此时变压器漏感k L和输出滤波电感o L串联,共同提供能量,由于Cc的存在使得变压器副边电压下降速度比原边慢,导致电位差并产生感应电动势作用于k L,加速了2C的放电,为2S的零电压开通提供条件。
当Cc放电完全后,整流二极管全部导通续流,在续流期间原边电流已复位,此时关段4S,开通3S,由于漏感k L两边电流不能突变,所以4S为零电流关断,3S为零电流开通。
(2) 主电路工作过程分析[7]半个周期内将全桥变换器的工作状态分为8种模式。
①模式1S、4S导通,电源对变压器初级绕组正向充电,将能量提供给负载,同时,输出端箝1位电容Cc充电。
输出滤波电感o L与漏感k L相比较大,视为恒流源,主电路简化图及等效电路图如图3.7所示。
图3.7 模式1主电路简化图及等效电路图由上图可以得到如下方程:p Cc os kdI V V V L n n dt=++ (3-3) p c o I nI nI += (3-4)Ccc cdV I C dt=- (3-5) 由(3-3)式得:2p Cckd I dV nL dt dt=- (3-6) 将(3-6)式代入(3-5)式得:22p c c kd I I nC L dt = (3-7)将(3-7)式代入(3-4)式得:222p p c ko d I I n C L nI dt+= (3-8)解微分方程:222p p oc kc kd I I I nC L dt n C L +=(3-9) 其初始条件为:(0)0Cc t V ==;(0)0c t I == (3-10)代入方程解得:()sin s o p o k V V nI t t nI L ωω-=+ (3-11) ()sin p s o c o k I V V nI t I t n nL ωω-=-=-(3-12)()()(1cos )Cc s o V t nV V t ω=-- (3-13)(其中ω=)② 模式2当cos 1t ω=-时,()Cc V t 达到最大值,此时sin 0t ω=,()0c I t =,()p o I t nI =;二极管c D 关断,输出侧电流流经1D 、o L 、o C 、L R 、4D 和次级绕组,简化电路如图3.8所示。
移相全桥软开关工作原理解析
ZVZCS移相全桥软开关工作原理(1) 主电路拓扑本设计采用ZVZCS PWM移相全桥变换器,采用增加辅助电路得方法复位变压器原边电流,实现了超前桥臂得零电压开关(ZVS)与滞后桥臂得零电流开关(ZCS)。
电路拓扑如图3、6所示。
图3、6 全桥ZVZCS电路拓扑当、导通时,电源对变压器初级绕组正向充电,将能量提供给负载,同时,输出端钳位电容充电。
当关断时,电源对充电,通过变压器初级绕组放电。
由于得存在,为零电压关断,此时变压器漏感与输出滤波电感串联,共同提供能量,由于得存在使得变压器副边电压下降速度比原边慢,导致电位差并产生感应电动势作用于,加速了得放电,为得零电压开通提供条件。
当放电完全后,整流二极管全部导通续流,在续流期间原边电流已复位,此时关段,开通,由于漏感两边电流不能突变,所以为零电流关断,为零电流开通。
(2)主电路工作过程分析[7]半个周期内将全桥变换器得工作状态分为8种模式。
①模式1、导通,电源对变压器初级绕组正向充电,将能量提供给负载,同时,输出端箝位电容充电。
输出滤波电感与漏感相比较大,视为恒流源,主电路简化图及等效电路图如图3、7所示。
图3、7模式1主电路简化图及等效电路图由上图可以得到如下方程:(3-3)(3-4)(3-5)由(3-3)式得:(3-6)将(3-6)式代入(3-5)式得:(3-7)将(3-7)式代入(3-4)式得:(3-8)解微分方程:(3-9)其初始条件为:; (3-10)代入方程解得:(3-11)(3-12)(3-13)(其中)②模式2当时,达到最大值,此时,,;二极管关断,输出侧电流流经、、、、与次级绕组,简化电路如图3、8所示。
此时满足:,,。
图3、8模式2简化电路图③模式3S1关断,原边电流从S1转移至C1与C2,C1充电,C2放电,简化电路如图3、9所示。
由于C1得存在,S1就是零电压关断。
变压器原边漏感与输出滤波电感串联,共同提供能量,变压器原边电压与整流桥输出电压以相同得斜率线性下降,满足:。
毕业论文移相全桥软开关变换器的设计说明
移相全桥软件开关变换器的设计电气工程与其自动化跃 089064117 指导教师:胡雪峰副教授摘要软开关技术和数字控制是电力电子领域的重要课题。
本文就是对两者进行有机结合所做的简单尝试。
软开关的形式诸多,其中移相全桥零电压软开关变换器(Phase-Shift Full-Bridge Zero-Voltage Switching Converter,简称PSFB-ZVS 变换器)由于结构简单,控制方便在功率电源中获得了广泛的应用。
本文针对经典的PSFB-ZVS变换器拓扑进行了细致的分析,推导出电路工作的相关状态方程。
并用MATLAB软件对主电路进行了仿真,仿真结果证明了理论分析的正确性。
在此基础上,根据既有实验条件,设计了一台小功率的样机,对主电路和测控电路的参数进行了计算和选取,并以ARM STM32F407VG控制器为核心,结合数字PID控制理论实现了对变换器的电压电流双闭环控制。
利用ARM强大的事务管理机制,设计了友好的的人机界面,提高了装置的易操作性和灵活性。
关键字:移相全桥,软开关,ARM,数字控制ABSTRACTSoft-switching technique along with digital control scheme plays very important role in the subject of power electronics.This paper gives a simple try to combine the two techniques.Among so many constructions of soft switch,Phase-Shift Full Bridge ZVS converter has been widely used for medium-high power DC powersupply due to it's good performance with simple topology and simple control.Based on detailed analysis of the classical PSFB-ZVS converter,parameter calculation equations are derived in this paper.The main circuit is simulated by MATLAB to prove the validity of the theoretical analysis.Restricted by the resources in the laboratory,a low power prototype is made to observe operating mode of the circuit.Both parameter and structure of the main circuit and auxiliary circuit are designed.Based on the lasted ARM STM32F407VG mcu,combined with digital PID control scheme,the converter is operated under the control of voltage-current dual loop. Thanks to the powerful task-managing ability of ARM,a friendly HMI is built which makes the apparatus easy to manipulate and much more flexible.Keywords: Phase-ShiftFullBridge, Soft-Switching, ARM, Digital Control第一章 绪论1.1 课题背景电源是一切电气设备的心脏,其重要性不言而喻。
移相式PWM软开关直流电源设计58
移相式PWM软开关直流电源设计摘要:软开关直流电源具有体积小、效率高、安全可靠等优点,被广泛应用于社会的各个领域中。
本文分析了移相式直流电源的原理,并对移相式PWM软开关直流电源的设计展开了介绍,以期能为类似电源设计提供参考。
关键词:PWN;软开关直流电源;设计引言随着现代电力电子技术的快速发展,社会对电源的要求越来越高,而传统的相控整流型电源也逐渐被开关电源取代。
其中,PWM控制技术具有经济、节约空间、控制简单、灵活等优点,能够使得电源的输出电压保持稳定,在开关电源设计中具有良好的应用价值。
基于此,笔者展开了相关介绍。
1.移相式直流电源的原理分析如图1所示,输入直流电压Udc,选择的功率开关器件N沟道MOSFET分别为VT1、VT2、VT3、VT4,VDl、VD2、VD3、VD4为反馈二极管,输出电容为C1、C2、C3、C4,漏电感为Lr,负载两端的电压由变压器二次侧电压通过带阻感负载的桥式整流电路来提供。
实现零电压开通(ZVS)条件工作原理:正常情况下,该器件启动时,开关管两端承受很大的电压,不利于导通;并联电容后,变压器漏感Lr与电容发生串联谐振,相当于一根导线,漏感储能,电容释放能量,这样可以让开关管承受的电压降为零,有利于其安全导通。
图1 移相控制全桥ZVS-PWM变换器主电路原理图在移相全桥ZVS-PWM DC-DC变换器中,因为采用的开关器件是VT1~VT4,并联电容为C1~C4,反馈二极管为VD1~VD4,所以在一个周期过程中,有12种不一样的工作流程,且该变换器的工作状态在12种工作过程中完全不相同。
这12种工作过程分别为:(1)功率输出过程:正半周功率输出、负半周功率输出;(2)钳位续流过程:正半周钳位续流、负半周钳位续流;(3)串联谐振过程:超前臂器件工作时的谐振,滞后臂器件工作时的谐振;(4)换流过程:超前臂器件工作时的换流,滞后臂器件工作时的换流;(5)反馈过程:一次侧电感储能并向电网反馈;(6)急变过程:变压器一次侧电流在过零结束时的上冲、下冲;(7)二次侧整流输出电流受一次侧的影响变化过程;(8)在二次侧的输出电压占空比缺失过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
移相全桥为主电路的软开关电源设计详解
2014-09-11 11:10 来源:电源网作者:铃铛
移相全桥变换器可以大大减少功率管的开关电压、电流应力和尖刺干扰,降低损耗,提高开关频率。
如何以UC3875为核心,设计一款基于PWM软开关模式的开关电源?请见下文详解。
主电路分析
这款软开关电源采用了全桥变换器结构,使用MOSFET作为开关管来使用,参数为1000V/24A。
采用移相ZVZCSPWM控制,即超前臂开关管实现ZVS、滞后臂开关管实现ZCS。
电路结构简图如图1,VT1~VT4是全桥变换器的四只MOSFET开关管,VD1、VD2分别是超前臂开关管VT1、VT2的反并超快恢复二极管,C1、C2分别是为了实现VTl、VT2的ZVS设置的高频电容,VD3、VD4是反向电流阻断二极管,用来实现滞后臂VT3、VT4的ZCS,Llk为变压器漏感,Cb为阻断电容,T 为主变压器,副边由VD5~VD8构成的高频整流电路以及Lf、C3、C4等滤波器件组成。
图1 1.2kw软开关直流电源电路结构简图
其基本工作原理如下:
当开关管VT1、VT4或VT2、VT3同时导通时,电路工作情况与全桥变换器的硬开关工作模式情况一样,主变压器原边向负载提供能量。
通过移相控制,在关断VT1时并不马上关断VT4,而是根据输出反馈信号决定移相角,经过一定时间后再关断VT4,在关断VT1之前,由于VT1导通,其并联电容C1上电压等于VT1的导通压降,理想状况下其值为零,当关断VT1时刻,C1开始充电,由于电容电压不能突变,因此,VT1即是零电压关断。
由于变压器漏感L1k以及副边整流滤波电感的作用,VT1关断后,原边电流不能突变,继续给Cb充电,同时C2也通过原边放电,当C2电压降到零后,VD2自然导通,这时开通VT2,则VT2即是零电压开通。
当C1充满电、C2放电完毕后,由于VD2是导通的,此时加在变压器原边绕组和漏感上的电压为阻断电容Cb两端电压,原边电流开始减小,但继续给Cb 充电,直到原边电流为零,这时由于VD4的阻断作用,电容Cb不能通过VT2、
VT4、VD4进行放电,Cb两端电压维持不变,这时流过VT4电流为零,关断VT4即是零电流关断。
关断VT4以后,经过预先设置的死区时间后开通VT3,由于电压器漏感的存在,原边电流不能突变,因此VT3即是零电流开通。
VT2、VT3同时导通后原边向负载提供能量,一定时间后关断VT2。
由于C2的存在,VT2是零电压关断,如同前面分析,原边电流这时不能突变,C1经过VD3、VT3。
Cb放电完毕后,VD1自然导通,此时开通VT1即是零电压开通,由于VD3的阻断,原边电流降为零以后,关断VT3,则VT3即是零电流关断,经过预选设置好的死区时间延迟后开通VT4,由于变压器漏感及副边滤波电感的作用,原边电流不能突变,VT4即是零电流开通。
ZVZCS PWM全桥变换器拓扑的理想工作波形如图2所示,其中Uab表示主电路图3中a、b两点之间的电压,ip为变压器T原边电流,Ucb为阻断电容Ub 上的电压,Urect是副边整流后的电压。
图2 理想工作波形
UC3875的主控制回路设计
为了实现主回路开关管ZVZCS软开关,采用UC3875为其设计了PWM移相控制电路,如图3所示。
考虑到所选MOSFET功率比较大,对芯片的四个输出驱动信号进行了功率放大,再经高频脉冲变压器T1、T2隔离,最后经过驱动电路驱动MOSFET开关管。
图3 PWM移相控制电路
整个控制系统所有供电均用同一个15V直流电源,实验中设置开关频率为70kHz,死区时间设置为1.5μs,采用简单的电压控制模式,电源输出直流电压通过采样电路、光电隔离电路后形成控制信号,输入到UC3875误差放大器的EA,控制UC3875误差放大器的输出,从而控制芯片四个输出之间的移相角大小,使电源能够稳定工作,图中R6、C5接在EA和E/AOUT之间构成PI控制。
在本设计中把CS+端用作故障保护电路,当发生输出过压、输出过流、高频变原边过流、开关管过热等故障时,通过一定的转换电路,把故障信号转换为高于2.5V的电压接到CS+端,使UC3875四个输出驱动信号全为低电平,对电路实现保护。
图4是开关管的驱动电路。
隔离变压器的设计采用AP法,变比为1:1.3的三绕组变压器。
UC3875输出的单极性脉冲经过放大电路、隔离电路和驱动电路后形成+12V/一5V的双极性驱动脉冲,保证开关管的稳定开通和关断。
图4 开关管的驱动电路
仿真与实验结果分析
PSpice是一款功能强大的电路分析软件,对开关频率70kHz的ZVZCS软开关电源的仿真是在PSpice9.1平台上进行的。
实验样机的主回路结构采用图1所示的电路拓扑,阻断二极管采用超快恢复大功率二极管RHRG30120,其反向恢复时间在100ns以内,满足70kHz开关频率的要求。
开关管MOSFET采用IXYS公司的IXFK24N100开关管,这种型号MOS管自身反并有超快恢复二极管,其反向恢复时间约250ns。
图5是超前桥臂开关管驱动电压与管压降波形图,(a)为仿真波形、(b)为实验波形,可见超前臂开关管完全实现了ZVS开通,VT1、VT2关断时是依赖其自身很小的结电容来实现的,从图中可以看出,关断时也基本实现了ZVS关断。
图5 超前桥臂开关管驱动电压与管压降波形图
图6 滞后桥臂开关管驱动电压与电流波形图
图6是滞后桥臂开关管驱动电压与电流波形图,(a)为仿真波形、(b)为实验波形;
图7是滞后桥臂开关管管压降与电流波形图,(a)为仿真波形、(b)为实验波形。
图7 滞后桥臂开关管VT3和VT4实现ZCS关断
从图6、图7可以看出滞后臂开关管VT3、VT4很好地实现了ZCS关断,关断时开关管电流已经为零。
滞后臂开关管完全开通之前,开关管电流也几乎为零,基本实现了ZCS开通。
而且滞后桥臂开关管VT3、VT4可以在很大负载范围内实现ZCS开关。
图8是两桥臂中点之间的电压Uab的波形图,(a)为仿真波形、(b)为实验波形。
图8 Uab的波形
图9是阻断电容Cb上的电压U曲波形,(a)为仿真波形、(b)为实验波形。
图9 Ucb的波形
从上图可以看出,由于有Ucb的存在,Uab不是一个方波。
当Uab=0时,阻断电容Cb上的电压Ucb使原边电流ip逐渐减小到零,由于阻断二极管的阻断作用,ip不能反向流动,从而实现了滞后桥臂的ZCS开关。
综上所述,我们能够发现,采用UC3875作为核心控制器件的好处是结构简单、性能可靠。
并且主电路的开关管全部实现了软开关,同时还避免了ZVS以及ZCS模式当中常见的一些错误。
能够显著的减少在开关过程当中开关管发生的损耗,进而提高开关频率,减少电源的体积并减轻重量。