可视化空间数据挖掘研究综述
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可视化空间数据挖掘研究综述
贾泽露1,2 刘耀林2
(1. 河南理工大学测绘与国土信息工程学院,焦作,454000;2. 武汉大学资源与环境科学学院,武汉,430079)摘要:空间数据挖掘针对的是更具有可视化要求的地理空间数据的知识发现过程,可视化能提供同用户对空间目标心理认知过程相适应的信息表现和分析环境,可视化与空间数据挖掘的结合是该领域研究发展的必然,并已成为一个研究热点。论文综述了空间数据挖掘和可视化的研究现状,重点阐述了空间数据挖掘中的可视化化技术及其应用,并对可视化空间数据挖掘的发展趋势进行了阐述。
关键词:数据挖掘;空间数据挖掘;数据可视化;信息可视化;GIS;
空间信息获取技术的飞速发展和各种应用的广泛深入,多分辨率、多时态空间信息大量涌现,以及与之紧密相关的非空间数据的日益丰富,对海量空间信息的综合应用和处理技术提出了新的挑战,要求越来越高。空间数据挖掘技术作为一种高效处理海量地学空间数据、提高地学分析自动化和智能化水平、解决地学领域“数据爆炸、知识贫乏”问题的有效手段,已发展成为空间信息处理的关键技术。然而,传统数据挖掘“黑箱”作业过程使得用户只能被动地接受挖掘结果。可视化技术能为数据挖掘提供直观的数据输入、输出和挖掘过程的交互探索分析手段,提供在人的感知力、洞察力、判断力参与下的数据挖掘手段,从而大大地弥补了传统数据挖掘过程“黑箱”作业的缺点,同时也大大弥补了GIS重“显示数据对象”轻“刻画信息结构”的弱点,有力地提高空间数据挖掘进程的效率和结果的可信度[1]。空间数据挖掘中可视化技术已由数据的空间展现逐步发展成为表现数据内在复杂结构、关系和规律的技术,由静态空间关系的可视化发展到表示系统演变过程的可视化。可视化方法不仅用于数据的理解,而且用于空间知识的呈现。可视化与空间数据挖掘的结合己成为必然,并已形成了当前空间数据挖掘1与知识发现的一个新的研究热点——可视化空间数据挖掘(Visual Spatial Data Mining,VSDM)。VSDM技术将打破传统数据挖掘算法的“封闭性”,充分利用各式各样的数据可视化技术,以一种完全开放、互动的方式支持用户结合自身专业背景参与到数据挖掘的全过程中,从而提高数据挖掘的有效性和可靠性。本文将对空间数据挖掘、可视化的研究概况,以及可视化在空间数据挖掘中的应用进行概括性回顾总结,并对未来发展趋势进行探讨。
一、空间数据挖掘研究概述
1.1 空间数据挖掘的诞生及发展
1989年8月,在美国底特律市召开的第一届国际联合人工智能学术会议上,从事数据库、人工智能、数理统计和可视化等技术的学者们,首次出现了从数据库中发现知识(knowledge
作者1简介:贾泽露(1977,6-),男,土家族,湖北巴东人,讲师,博士,主要从事空间数据挖掘、可视化、土地信息系统智能化及GIS理论、方法与应用的研究和教学工作。
作者2简介:刘耀林(1960,9- ),男,汉族,湖北黄冈人,教授,博士,博士生导师,武汉大学资源与环境科学学院院长,现从事地理信息系统的理论、方法和应用研究和教学工作。
discovery in database,KDD)的概念,标志着数据挖掘技术的诞生[1]。此时的数据挖掘针对的一般是非空间数据,其研究和应用的成果势必对空间数据的利用造成影响。在数据挖掘技术发展与海量空间数据积累的推动下,为了引导地球空间信息学向更深的层次发展,国内外对空间数据挖掘展开了积极的研究。加拿大西蒙法拉色大学计算机科学系的韩家炜教授领导的研究小组,较早对空间数据挖掘进行系统全面的研究[1]。1994年,在加拿大渥太华举行的GIS国际学术会议上,我国著名地球信息科学学者李德仁院士首次提出了从GIS数据库中发现知识(knowledge discovery from GIS,KDG)的概念,并系统分析了空间知识发现的特点和方法,认为它能够把GIS有限的数据变成无限的知识,并进一步用于精练和更新GIS数据,使GIS成为智能化的信息系统[2]。1995年,在加拿大召开的第一届知识发现和数据挖掘国际学术会议上,数据库中的数据被形象地喻为矿床,再次出现了崭新的数据挖掘(data mining, DM)学科。由于DM和KDD较为常用且难以分离,而且DM通常被认为是KDD中通过特定的算法在可接受的计算效率限制内生成特定模式的一个步骤,即数据挖掘和知识发现(data mining and knowledge discovery,DMKD)。同时,李德仁院士也把KDD进一步发展为空间数据挖掘和知识发现(SDMKD),系统地研究或提出了可用的理论、技术和方法,并取得了很多创新性成果[2~7],奠定了空间数据挖掘和知识发现在地球空间信息学中的学科地位和基础。经过10多年的发展,空间数据挖掘已经显示出在空间数据处理分析中具有越来越重要的作用,SDMKD目前已经成为国际研究和应用的热点,国内外对SDMKD的研究应用也正愈来愈引起人们的极大关注,并且取得了相当的理论和技术成就。如:李德仁院士最早开始关注空间数据挖掘和知识发现[2],不仅在国际上第一次提出了空间数据挖掘和知识发现的概念,而且率先研究了从GIS数据库中发现知识[4],构筑了空间数据挖掘和知识发现的理论框架[5],系统研究了粗集和云理论在空间数据挖掘中的理论和技术[2,6],提出了用于空间数据挖掘的地学粗空间理论。王树良博士在李德毅院士的云理论的基础上,完善了数据场的概念,提出了空间数据挖掘视觉的概念及实现方法,并成功地应用于滑坡监测数据挖掘,取得了较好的成果[8]。秦昆博士在对图像数据挖掘的理论与方法进行系统研究的基础上,针对图像(遥感图像)数据中蕴涵的内容,如光谱特征、纹理特征、形状特征、空间分布特征等来进行挖掘,挖掘出抽象层次更高的知识,并研究出了遥感图像数据挖掘软件原型系统的框架,设计和开发了遥感图像数据挖掘软件原型系统RSImageMiner[9]。Murray和Estivill_Castro[10]回顾了探测性空间数据分析的聚类发现技术,分析了基于统计学、数据挖掘和地理信息系统的空间模式识别和知识发现方法。Koperski,Adhikary和Han[11]总结了空间数据挖掘的发展,认为巨量的空间数据来自从遥感到GIS、计算机制图、环境评价和规划等各种领域,空间数据的累积已经远远超出人们的分析能力,数据挖掘已经从关系数据库和交易数据库扩展到空间数据库。他们就空间数据生成、空间数据聚类和挖掘空间数据关联规则等方面总结了空间数据挖掘的最近发展。Han和Kamber[12]在其数据挖掘专著中,系统讲述了空间数据挖掘的概念和技术。汪闽和周成虎[13]根据自己的认识讨论了空间数据挖掘的研究进展。总体上讲,经过十多年的发展,SDMKD无论是其理论研究还是相关软件原型的研制目前都已得到蓬勃发展并已逐渐走向成熟。
1.2 空间数据挖掘的概念、方法和理论
空间数据挖掘(Spatial Data Mining,SDM)指的是从空间数据库中抽取隐含的知识、空间