13《运筹学》(第四版)非线性规划罚函数法介绍
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(7-12)
(7-13)
(7-14)
(8-12)式右端的第二项为二次型。如果该二次型正定(或半正定),则目 标函数为严格凸函数 (或凸函数 );此外,二次规划的可行域为凸集, 因而,上述规划属于凸规划。第7章已指出:凸规划的局部极值即为全 局极值。对于这种问题,库恩-塔克条件不但是极值点存在的必要条件 ,而且也是充分条件。
可行方向法
现考虑非线性规划(8-3)式,设X(k)是它的一个可行解
,但不是要求的极小点。为了求它的极小点或近似
极小点,根据以前所说,应在X(k)点的可行下降方向 中选取某一方向D(k) ,并确定步长λk,使
( k 1) (k ) (k ) X X λ D R k ( k 1) (k ) f ( X ) f ( X )
水电与数字化工程学院
莫 莉
前节回顾
3、库恩-塔克条件:
设X*是非线性规划(7-3)式的极小点,而且在X*点的各起作用
* T , , l* ),使下述条件成立: 约束的梯度线性无关,则存在向量 * ( 1* , 2
l * * * f ( X ) g ( X )0 j j j 1 * * j g j ( X ) 0, j 1, 2, ,l * j 1, 2, ,l j 0,
第二章 非线性规划(Nonlinear Programming)
主讲人:莫 莉
moli@hust.edu.cn
2015 年 6 月
水电与数字化工程学院 莫 莉
前节回顾
温
一般模型
故
求解
知
罚函数法
新
可行方向法
基本概念
最优性条件
水电与数字化工程学院
莫 莉
前节回顾
1、一般模型
大多数极值问题其变量的取值都会受到一定限制,这种限制由约束 条件来体现。带有约束条件的极值问题称为约束极值问题。非线性
(8-21)
水电与数字化工程学院
莫 莉
6.4 可行方向法
若满足精度要求,迭代停止,X(k+1)就是所要的点。否 则,从X(k+1)出发继续进行迭代,直到满足要求为止。
上述方法称为可行方向法,其特点是:
迭代过程中采用的搜索方向为可行方向,所产生的迭
代点列{X(k)}始终在可行域内,目标函数值单调下降
水电与数字化工程学院 莫 莉
前节回顾
温
一般模型
故
求解
知
罚函数法
新
可行方向法
基本概念
最优性条件
水电与数字化工程学院
莫 莉
第二章 非线性规划
1 基本概念 最优性条件 凸函数和凸规划 一维搜索方法
2
3 4
5
6
水电与数字化工程学院
无约束最优化方法
约束最优化方法★
莫 莉
6.4 可行方向法
水电与数字化工程学院 莫 莉
前节回顾
5、二次规划的转化:
对二次规划问题进行修正,从而得到如下线性规划问题:
min
(Z ) z j
j 1
n
a
i 1 n
m
ij
yn i y j c j k xk sgn(c j ) z j c j , j 1, 2,
(8-10)
条件(8-10)式常简称为K-T条件。满足这个条件的点(它当然也满足非线 性规划的所有约束条件)称为库恩-塔克点(或K-T点)。
水电与数字化工程学院 莫 莉
前节回顾
4、二次规划:
若非线性规划的目标函数为自变量X的二次函数,约束条件全是线性 的,称这种规划为二次规划。二次规划的数学模型为:
。
水电与数字化工程学院
莫 莉
6.4 可行方向法
设X(k)点的起作用约束集非空,为求X(k)点的可行下降方向,可由下述不等 式组确定向量D: (k ) T f ( X ) D 0 (8-22) (k ) T
g j ( X ) D 0, jJ
这等价于由下面的不等式组求向量D和实数η: f ( X ( k ) )T D (k ) T (8-23) g j ( X ) D , j J 0 (k ) T (k ) T 若使 f ( X ) D 和 gj ( X ) D (对所有 j J )的最大值极小化, 即可将上述选取搜索方向的工作,转换为求解下述线性规划问题:
j 1, 2,
水电与数字化工程学院
莫 莉
前节回顾
2、可行下降方向
如果方向D既是X(0)点的可行方向,又是这个点的下降方向,就称它 是该点的可行下降方向。 (1)假如X(0)点不是极小点,继续寻优时的搜索方向就应从该点的可 行下降方向中去找。若某点存在可行下降方向,它就不会是极小点。 (2)若某点为极小点,则在该点不存在可行下降方向。
n 1 n n min f ( X ) c j x j 2 c j k x j xk j 1 j 1 k 1 c j k ck j , k 1, 2, ,n n ai j x j bi 0, i 1, 2, ,m j 1 x j 0, j 1, 2, ,n
min
f ( X ( k ) ) T D , g j ( X
k 1
n
,n
a
j 1
(8-20)
,m
ij
x j xn i bi 0, i 1, 2, j 1, 2, j 1, 2, j 1, 2, ,n m ,n m ,n
ຫໍສະໝຸດ Baidu
x j 0, y j 0, z j 0,
该线性规划尚应满足(8-17)式。这相当于说,不能使xj和yj(对每一个j ) 同时为基变量。
min f ( X ) hi ( X ) 0, i 1, 2, , m g j ( X ) 0, j 1, 2, , l
规划的一般形式为
或
min f ( X ) g j ( X ) 0,
j 1, 2,
,l
,l
上述问题也常写成
min f ( X ), X R En R X g j ( X ) 0,