第四章 岩石是如何破坏的

合集下载

5.第四章变质岩PPT课件

5.第四章变质岩PPT课件
颜色黄、绿、浅红、蓝灰等。主要由细小的绢云母、 绿泥石、石英等组成,容易裂成薄片。具有较强的丝绢光 泽。
3.片岩 具有明显的片状构造的变质岩。 颜色有黑、灰黑、绿、浅褐等。富含云母、绿泥石、
滑石、角闪石等片状或柱状矿物,矿物结晶程度较高。
4.片麻岩 具有明显的片麻状构造
(暗色的片状、柱状矿物被浅色 粒状矿物隔开,呈现出黑白相间
等变质形成的。 细粒等粒变晶结构(粒度一般小于0.5mm)。
7.大理岩
是由石灰岩、白云岩等经重结晶变质而成的变质岩。
主要由方解石、白云石组成。一般为白色,因含杂质 也有灰、绿、黄色等。具粒状变晶结构、块状构造。
以云南大理盛产而得名。质地致密的大理岩称为“汉 白玉”。
8.混合岩
通常由2部分组成:一部分称为基体,一般暗色矿物 较多,代表原来的成分。另一部分称为脉体,主要由长石、 石英等浅色矿物组成,代表混合岩化过程中新生成的物质。
4.区域混合岩化作用:深部热 液或局部重熔熔浆的渗透、交代、
贯入导致的变质作用。(也称超变 质作用)
三.变质岩的特点
1.变质岩的矿物成分特点
A.能适应较大温度、压力变化范围,在变质中保存下 来的稳定矿物,如:石英、长石、云母、角闪石、辉石、方 解石等。
B.变质作用形成的新的变质矿物,如:硅灰石、绢云母、 红柱石、石榴子石、蓝闪石、绿泥石、绿帘石、滑石、蛇纹 石、石墨等。
混合岩的形 态结构多种多样: 条带状混合岩、 数枝状混合岩、 网状混合岩、眼 球状混合岩、肠 状混合岩、角砾 状混合岩、阴影 状混合岩等。
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More

第四章 岩石风化分解

第四章   岩石风化分解
岩石的工程性质恶化。如透水性增强,抗水性减弱,亲水性增加, 强度和弹性模量降低,变形量增大等。 总之,风化后的岩石在工程建筑上优良性质减弱了,不良性质 则增加了,使工程地质条件恶化。
总体上: 恶化了岩石的工程性质. 在工程选址、岩土体 稳定、地基处理、灾害防治、工程造价等方面 都有重要意义。基础建基面处置、确定矿坑边 坡角、洞室围岩支护、基坑开挖层支护、抗滑 工程设置等都要考虑到风化问题。
第四章 岩石风化工程地质
第一节 概述 第二节 影响岩石风化的因素 第三节 风化壳岩石的垂直分带 第四节 岩体风化速度的研究 第五节 防治岩石风化的措施第 Nhomakorabea节 概述
一、风化和风化作用的概念
风化:岩石在各种风化营力作用下,发生的物 理和化学变化过程。
风化壳:表层不同深度的岩石,遭受风化程度 的不同,形成不同成分和结构的多层残积物, 由其构成的复杂剖面称为风化壳。 不同岩石,不同地区,风化壳有很大差别。其 厚度很大差别,大则几百米。 地壳表层保留的主要为现代时期形成的风化壳 。当风化壳形成后,被后来的堆积物掩埋,被 保留下来成为古风化壳。
根据岩石风化程度和特性及场地工程地质条件,选择地下 洞室施工开挖的设备和方法,确定对已风化岩石的处理措 施;
根据岩石风化的速度、风化营力的大小和风化作用的类型 等因素,确定基坑、路堑敞开时的安全期限,选择防止岩 石风化的措施。
为此,必须注意研究以下问题:
1.加强不同气候带、不同地质地理地区,在不同风化营力 作用下,风化壳的形成、分布规律及其区域工程地质特 征的研究;
残积土
二、风化岩石的工程性状及工程意义
岩石风化后,发生了一系列不同程度的变化,从而改变了岩石的工 程特性,主要表现在:
岩石矿物成分和化学成分发生变化。原生矿物经受水解、水化、 氧化等作用后,逐渐转化生成新的次生矿物,特别是粘土矿物, 从而改变了岩石的性质。

A04-3第四章-节理-断层

A04-3第四章-节理-断层
镜面Polished surface, 擦痕 scratch and step, 阶步, 阶步, 镜面 牵引drag, 断层泥 断层泥fault gouge, 断层角砾岩 断层角砾岩fault 牵引 breccia, 碎裂岩 碎裂岩cataclasite, 糜棱岩 糜棱岩mylonite, etc.
依照它与枢纽的关系 According to its relation with the hinge
1-纵节理 longitudinal joint 纵节理 2-斜节理 diagonal joint 斜节理 3-横节理 cross joint 横节理
几种特殊的节理
• • • • 柱状节理 S或反 型张剪裂脉 或反S型张剪裂脉 或反 火炬状节理(张剪裂脉) 火炬状节理(张剪裂脉) 羽饰构造
断层构造岩、 断层构造岩、构造突变带等
4.4.4 断层形成时代 断层形成时代Time of fault formation
节理的频率 frequency of joints 节理的玫瑰花图 rose diagram of joint
节理等密图: 节理等密图:
①将所有数据投影到一张吴氏网上,是法线投影,得到极点图。 ②用密度计在极点图中统计,将统计结果标在图上 ③将统计数据中相同的数据点用平滑的曲线连接圆周上的线两端 具对称性,等值线百分比表示。 ④整饰:在相邻的等值线间用颜 色或花纹填上,写上图名,图例 和方位。 ⑤分析:节理等密图中密度最大 的区域代表节理的优选方位。
4.4.2 断层类型 Fault type (1)依照滑动方向分 According to displacement direction 依照滑动方向分,
正断层Normal fault 正断层 逆断层reverse fault 逆断层 左行, 平移断层 (左行 右行 Strike-slip fault 左行 右行)

第四章岩体的基本力学性质

第四章岩体的基本力学性质

结构面的状态对岩体的工程性质的影响是指结构面的产状、形 态、延展尺度、发育程度、密集程度。 结构面的产状:结构面的产状对岩体是否沿某一结构面滑动起控 制作用。 结构面的形态:结构面的形态决定结构面抗滑力的大小,当结构 面的起伏程度较大,粗糙度高时,其抗滑力就大。 结构面的延展尺度:在工程岩体范围内,延展尺度大的结构面, 完全控制岩体的强度。 结构面的密集程度:以岩体的裂隙度和切割度表征岩体结构面的 密集程度。
又A=h2,节理面的法向弹性变形量δ0=2δ,代入Boussnisq解,得 接触面为方形时,m=0.95,μ≅0.25,则上式变为
(二)节理的闭合变形 含啮合变形(配称实验)和压碎变形(非配称实验)。 下面介绍Goodman方法:
(1)结构面闭合试验(VmC的确定) 步骤: 1)备制试件; 2)作ζ-ε曲线(a); 3)将试件切开,并配 称接触再作曲线(b); 4)非配称接触,作曲线(c); 5)两种节理的可压缩性法向 Nhomakorabea切向
(1)有n个点接触,每个接触 面边长为h
(2)每个接触面受力相同
(3)每个接触面力学特性 相同
2、计算公式 半无限体上作用一个集中力的布辛涅斯克(Boussnisq)解
δ-变形量;Q-荷载;A-荷载作用面积;E、μ-弹性模量、泊 松比;m-与荷载面积形状因素有关的系数,方形面积m=0.95 设节理面的边长为d,作用于节理面上的应力为ζ,则作用 在每一个接触面上的荷载
统计结构面 实测结构面
V 级结构面--细小的结构面
• Ⅰ级 指大断层或区域性断层。控制工程建设地区的地壳稳 定性,直接影响工程岩体稳定性;
• Ⅱ级 指延伸长而宽度不大的区域性地质界面。 • Ⅲ级 指长度数十米至数百米的断层、区域性节理、延伸较 好的层面及层间错动等。 Ⅱ、Ⅲ级结构面控制着工程岩体力学作用的边界条件 和破坏方式,它们的组合往往构成可能滑移岩体的边界面 ,直接威胁工程安全稳定性

岩石破碎学

岩石破碎学

第四章压头静力侵入岩石利用工具来破碎岩石(如凿岩、钻眼、刨削、挖掘等等),大体上有两个过程。

先是将工具侵入岩石,然后才产生其周围岩石的大块崩落。

因此,工具或压头侵入岩石。

是机械方法破碎岩石的一个最基本过程。

研究这个过程的规律性,不亚于应力应变关系对于材料力学的意义。

本章从压头侵入岩石的基本现象出发,进行压头下方岩石受力的分析,然后阐述有关这方面的实际结果和应用情况。

第一节压头侵入岩石的基本现象压头下岩石的破碎和试块在材料力学意义下的破坏有着显著的区别,前者只是在全面夹制下的局部破碎,而后者通常是整个试件的破裂。

压头侵入岩石时,存在着下述的普通特征。

首先,压头侵入岩石时,在它的前方总要出现一个袋状或球状的核,它是物体在承受巨大压力作用下发生局部粉碎或显著塑性变形而形成的,我们称之为密实核(如图4-1)。

它的普遍性在于:不论什么样的工具(尖的、平的、圆的等)、载荷(静的、冲击的)、材料(从岩石到石蜡,从土壤到钢铁)无一例外,都在压头侵入的前方出现有密实核的现象。

其次,压头侵入岩石的一个普遍的明显特点是侵深不随载荷增长而均衡地增加,而是载荷增加之初,侵深按一定比例增加,当达到某一临界值时,便发生突然地跃进现象。

这时,密实核旁侧的岩石出现崩碎。

载荷暂时下跌,压头继续浸入到一个新的深度之后,载荷再度上升,侵深和载荷又恢复到某种比例关系(如图4-2 ) 。

如此循环不已,载荷—侵深曲线便呈现波浪形。

越是脆性的岩石,这种跃进式侵入特点越明显,塑性岩石则较缓和。

另外,载荷—浸深曲线各次上升段的斜率大体相同,也就是说增加单位载荷所增加的浸深近于常数。

曲线下降部分的情况和加载机构的刚性有关,不全取决于被侵入的岩石。

再次,是破碎角变化不大,即岩石在压头作用下发生跃进式侵入之后,崩碎的岩石坑作漏斗形状,这漏斗顶角的变化是不大的(见图4-3)。

不论压头形式、侵入方法、岩石种类如何,图中β角一般保持在60—75度之间,即漏斗顶角2β在120—150度之间。

第四章 岩石风化

第四章   岩石风化

2.岩性 软质岩石比硬质岩石更易风化。 岩石之成因及化学成分、结构和构造是影响岩石风化的重 要因素,通常成岩环境与地表环境差异愈大,岩石抗风化 能力愈弱,岩石中原来就是已风化搬运的物质,如沉积岩, 抗风化能力较强;岩浆岩中从超基性岩、基性岩、中性岩 到酸性岩,抗风化能力依次增加;变质岩中深变质岩比浅 变质岩更易风化。 就岩石结构而言,岩石的颗粒愈细,粒度愈均匀,则抗风 化能力愈高;斑晶、粗晶结构岩石的风化速度要比细晶、 隐晶结构快。


4)水解作用:矿物在溶于水的过程中,其自身离解出 的离子与水中部分离解的和离子间的交换反应,称为 水解。 5)碳酸化作用:溶于水中的CO2形成CO-3和HCO-3, 它们可以夺取盐类矿物中的一部分金属离子,结合成 易溶的碳酸盐而随水迁移,使原来的矿物分解,这种 变化称为碳酸化作用。在化学风化过程中,岩石和矿 物不仅会破碎,还会被分解,矿物的内部结构受到破 坏,直至形成在地表条件下稳定的新矿物,使岩石的 化学成分和物理性质都发生显著变化。



碳酸盐类: 其岩石风化特点是在轻度的酸性水中发生溶解。 岩石被水溶液从上向下溶解,可溶性物质带走而 不溶物质遗留下来。 由于岩石中不溶物质一般甚少,故很难形成残积 土。因此这类岩石一般不具有垂直分带的风化剖 面。而在地表出现石林、石芽或带溶隙溶沟的岩 石。向下沿裂隙、节理或层面而形成溶槽、溶洞 等,并堆积有松散的沉积物、石灰华等。 因此这类岩石的风化剖面极其复杂且发育不完全。


化学风化:是指在氧、水溶液及二氧化碳等作用下,所 发生的一系列复杂化学变化,引起岩石的结构构造、矿 物成分和化学成分发生变化的过程。其主要方式有: 1)氧化作用:是大气和水中的游离氧与矿物化合生成氧 化物的过程。 2)溶解作用:是指矿物溶于水的过程。 3)水化作用:有些矿物能够吸收一部分中性水分子参加 到矿物晶格中去,形成新的含水矿物。称为水化作用。 这种作用常使矿物体积膨胀,对周围岩石产生压力,促 使岩石破坏。

压缩岩石破坏形式

压缩岩石破坏形式

压缩岩石破坏形式
在压缩条件下,岩石的破坏形式主要有以下几种:
1.脆性破裂:在受到压缩时,岩石可能会发生脆性破裂,形成一系
列平行的破裂面。

这种破坏形式通常发生在岩石中存在弱面或者缺陷的情况下,例如层理、节理或者裂缝等。

脆性破裂的特点是破裂面比较平直,没有明显的塑性变形。

2.延性破裂:在受到压缩时,岩石也可能发生延性破裂,形成一系
列的剪切面。

这种破坏形式通常发生在岩石中不存在明显的弱面或者缺陷的情况下,例如密实的石英岩或者花岗岩等。

延性破裂的特点是破裂面比较粗糙,同时伴随着明显的塑性变形。

3.压缩屈服:在受到压缩时,岩石可能会发生压缩屈服,表现为岩
石的变形量突然增大,但是并不发生破坏。

这种破坏形式通常发生在岩石中存在大量的微裂纹或者孔洞的情况下,这些微裂纹或者孔洞在受到压缩时会被压缩变形,但是并不会贯通形成破裂面。

石油大学地质学基础——第四章 沉积岩

石油大学地质学基础——第四章 沉积岩

常用的碎屑颗粒粒度分级表
2的几何级数制 粒 巨 粗 中 细 粗 中 细 砾 砾 砾 砾 砂 砂 砂 粉砂 细粉砂 砂 级 划 分 巨 中 砾 卵 砾 砾 石 石 颗粒直径(毫米) >256 256~64 64~4 4~ 2
2~1 1~0.5 0.5~0.25 0.25~0.125 0.125~0.0625 0.0625~0.0312 0.0312~0.0156 0.0156~0.0078 0.0078~0.0039
包括发生变质作用以前或因构造运动重新抬升到
地表遭受风化作用以前所发生的一切作用。
成岩作用类型:
压实作用、压溶作用 胶结作用、交代作用
重结晶作用和矿物的多形转变作用
溶解作用
(1)压实作用 沉积物在上覆水层和沉积层的重荷(压力)下, 或在构造形变的作用下,发生水分排出、孔隙度降低、 体积缩小的作用。
粘土的孔隙度80%
20%
(2)压溶作用 随埋藏深度的增加,碎屑颗粒接触点上因压力增大, 发生晶格变形和溶解作用。 压实作用和压溶作用是持续进行的。
(3)胶结作用 从孔隙溶液中沉淀出矿物质(胶结物),将松散 的颗粒固结起来的作用。 是碎屑沉积物的主要成岩方式。
常见的胶结物有:硅质、钙质、铁质、粘土、石膏等。
2. 沉积岩的分类
根据沉积岩原始沉积物质成分的来源 1.母岩风化产物为主的沉积岩 碎屑岩 化学岩
砾岩 砂岩 粉砂岩 粘土岩 碳酸盐岩 硫酸盐岩 卤化物岩 硅岩 其它化学岩
3.生物遗体为主的沉积岩 2.火山碎屑物质为主的沉积岩
可燃有机岩 非可燃有机岩
火山碎屑岩
煤 油页岩
第二节 沉积岩的一般特征
1. 沉积岩的化学成分 与岩浆岩类似,相对富Fe 3+ 、Na2O、H2O、CO2。 2. 沉积岩的矿物成分 岩屑、矿屑、粘土、蒸发矿物、碳酸盐等。暗色矿物很少。 3. 沉积岩的颜色

04第四章 陆源碎屑岩

04第四章 陆源碎屑岩
杂基含量也是沉积速率的反映标志,一般地说, 沉积越快,杂基含量越高。
46
2.胶结物(cement)
胶结物是沉积期后以化学沉淀方式充填在碎屑颗 粒孔隙之中的物质(自生矿物)。常见结晶或非晶 质的自生矿物,在碎屑岩中含量<50%,对颗粒起胶 结作用,使之成为坚硬的岩石。胶结物有的形成于 沉积 - 同生期,但多数是成岩 - 后生期的沉淀产物。 碎屑岩中主要胶结物是硅质 ( 石英、玉髓和蛋白石 ) 、 碳酸盐(方解石、白云石)及一部分铁质(赤铁矿、褐 铁矿)。此外,硬石膏、石膏、黄铁矿以及高岭石、 水云母、蒙脱石、海绿石、绿泥石等粘土矿物都可 以作碎屑岩的胶结物。
52
钙质(方解石)胶结
53
54
3)其它胶结物
在碎屑岩中氧化铁也是一种较为常见的胶结物。 石膏和硬石膏也可以作为砂岩的胶结物。 磷灰石、沸石、海绿石及有机质等化学成因矿物也可出 现在碎屑岩中,它们可能作为孤立的自生矿物存在,也可以 作为碎屑岩的胶结物。另外,石英、长石、重晶石、天青石、 高岭石、水云母、蒙脱石、萤石、岩盐、钾盐、黄铁矿、绿 泥石等均可在碎屑岩中呈孤立星散状或结核状分布。它们常 表现得成分较单纯,结晶颗粒较小,但晶形完好。在碎屑岩 中,这类矿物一般只含很少的数量,但它们的出现对于分析 碎屑岩的沉积环境和解释成岩、后生作用都是很有意义的。
之成分成熟度就高。
58
成熟度指数——判别砂岩或其它碎屑岩在化学上及 在矿物学上成熟度高低的指数。SiO2/Al2O3、Q含量、
Q/(F+R)、ZTR指数。
Q= Quartz 石英 Z= zircon 锆石 F= Feldspar 长石 T=tourmaline 电气石 R= Rock fragments 岩屑 R=rutile金红石

工程地质学第四章节理-断层

工程地质学第四章节理-断层
断层湖、断层泉。
串珠状的湖泊或洼地,泉水的带状分布,常表明有 大断带存在。
正常延伸的山脊突然错断,正常流径的河流突然产生急转 弯。〈断层两盘相对平移〉
断层符号识别 在地质图上,断层一般用粗红线醒目地 标示出来,断层性质用相应符号表示。
70°
45°
正断层
逆断层
平移断层
四、研究断层在工程上的意义
6)统计节理的密度、间距、数量,确定节理发育程度(持续性)和节理的主
导方向。
节理壁的粗糙程度调查
3、调查资料的整理和统计
节理统计常采用的节理玫瑰花图。玫瑰花图有走向玫瑰花图和 倾向玫瑰花图。 ①节理走向玫瑰花图 在一半圆上分画0 º~90 º 度和270 º~ 360 º (0 º)的方位。 把所测得的节理走向按每5 º 或10 º 分组,并统计每一组内节理数和 平均走向。按各组平均走向,各圆心沿半径以一定长度代表每一组 节理的个数 ,然后用折线相连。 ②节理倾向玫瑰花图 把所测得的节理走向按5 º 或10 º 间隔进行分组,统计每一组节 理平均倾向和个数。在注有方位角的圆周图上,以节理个数为半径, 按各组平均倾向定出各组的点,用折线连接各点既得节理倾向玫瑰 图。
3) 节理比较发育,组系及其相互关系比较明确。
4) 观测点应选在构造的重要部位,并且在不同构造层、不同岩系和不同岩 性岩层中都应布点。
2、节理调查的内容
1)测量节理产状。 2)观察节理面张开程度和充填情况。 3)描述节理壁的粗糙程度。 4)观察节理充水情况。 5)确定节理成因。
节理持续性是指节理裂隙的延伸程度。 持续性越好对工程影响越大。 一般:<1m 及1-3m,差;3-10m, 中等;10-30m 及>30m,好及很好。

第四章 岩石得蠕变

第四章 岩石得蠕变

五、岩石得蠕变1、蠕变特征①岩石蠕变得概念在应力不变得情况下,岩石变形随时间t而增长得现象。

②岩石蠕变类型有两种类型:稳定型蠕变非稳定型蠕变a、稳定型蠕变:应力作用下,随时间递减,零,即,一般在较小应力或硬岩中。

b、非稳定型蠕变:岩石在恒定应力作用下,岩石变形随时间不断增长,直至破坏。

一般为软弱岩石或应力较大。

③蠕变曲线变化特征三个阶段:Ⅰ阶段:初期蠕变。

曲,属弹性变形。

Ⅱ阶段:等速蠕变。

应变-时间曲线近似直线,应变随时间呈近于等速增长。

出现塑性。

Ⅲ阶段:加速蠕变。

应变-时间曲线向上弯曲,其应变速率加快直至破坏。

应指出,并非所有得蠕变都能出现等速蠕变阶段,只有蠕变过程中结构得软化与硬化达到动平衡,蠕变速率才能保持不变。

在Ⅰ阶段,如果应力骤降到零,则-t曲线具有PQR形式,曲线从P点骤变到Q点,PQ=为瞬时弹性变形,而后随时间慢慢退到应变为零,这时无永久变形,材料仍保持弹性。

在Ⅱ阶段,如果把应力骤降到零,则会出现永久变形,其中TU=。

变速度变化缓慢,稳定。

应力增大时率增大。

高应力时速,蠕变速率越大,反之愈小。

岩石长期强度:指岩石由稳定蠕变转为非稳定蠕变时得应力分界值。

即,岩石在长期荷载作用下经蠕变破坏得最小应力值(或)岩石极限长期强度:指长期荷载作用下岩石得强度。

2、蠕变经验公式由于岩石蠕变包括瞬时弹性变形、初始蠕变、等速蠕变与加速蠕变,则在荷载长期作用下,岩石蠕变得变形可用经验公式表示为: =+++-瞬时变形;-初始蠕变;-等速蠕变;-加速蠕变。

对于前两个阶段,目前得经验公式主要有三种:①幂函数取第一阶段:;第二阶段:,>、就是试验常数,其值取决于应力水平、材料特性以及温度条件。

②对数函数:B、D就是与应力有关得常数。

③指数函数,或A为试验常数,就是时间t得函数伊文思(Evans)对花岗岩、砂岩与板岩得研究:,C为试验常数,n=0、4; 而哈迪(Hardy)给出经验方程,,A、C为试验常数。

3、蠕变理论模型(理论公式)(1)基本模型由于岩石材料具有弹性、刚性、粘性与塑性,目前采用简单得机械模型来模拟材料得某种性状。

岩石力学与工程课后习题与思考解答

岩石力学与工程课后习题与思考解答

第一章岩石物理力学性质3.常见岩石的结构连接类型有哪几种?各有什么特点?答:岩石中结构连接的类型主要有两种,分别是结晶连接和胶结连接。

结晶连接指矿物颗粒通过结晶相互嵌合在一起。

这类连接使晶体颗粒之间紧密接触,故岩石强度一般较大,抗风化能力强;胶结连接指岩石矿物颗粒与颗粒之间通过胶结物连接在一起,这种连接的岩石,其强度主要取决于胶结物及胶结类型。

7.岩石破坏有几种形式?对各种破坏的原因作出解释。

答:岩石在单轴压缩载荷作用下,破坏形式包含三种:X状共轭面剪切破坏、单斜面剪切破坏和拉9.答:力-10.答:(若A<(2;(4)从C(3并不断向破坏段应力-应变曲线靠近,在循环荷载加载到一定程度,岩石将发生疲劳破坏,通过全应力-应变图可看出,高应力状态下加载循环荷载,岩石在较短时间内发生破坏,在低应力状态下加载循环荷载则需要较长时间才发生破坏。

11.在三轴压缩试验条件下,岩石的力学性质会发生哪些变化?答:三轴压缩试验条件下,岩石的抗压强度显着增大;岩石的变形显着增大;岩石的弹性极限显着增大;岩石的应力-应变曲线形态发生明显变化,表明岩石由弹性向弹塑性变化。

14.简述岩石在单轴压缩条件下的变形特征。

答:单轴压缩条件下岩石变形特征分四个阶段:(1)空隙裂隙压密阶段(0A段):试件中原有张开结构面或微裂隙逐渐闭合,岩石被压密,试件(2)弹性变形至微弹性裂隙稳定发展阶段(AC段):岩石发生弹性形变,随着载荷加大岩石发生轴向压缩,横向膨胀,总体积缩小。

(3)非稳定破裂发展阶段(CD段):微破裂发生质的变化,破裂不断发展直至试件完全破坏,体积由压缩转为扩容,轴向应变和体积应变速率迅速增大。

(4)破裂后阶段(D点以后):岩块承载力达到峰值强度后,内部结构遭到破坏,试件保持整体状,随着继续施压,裂隙快速发展,出现宏观断裂面,此后表现为宏观断裂面的块体滑移。

第三章地应力及其测量3.简述地壳浅部地应力分布的基本规例。

答:(2(3(4(5(6(74.答:水力致、局部应5.θ=0为Ps=σ2,利用上述公式,在测算出岩石抗拉强度T后,就能计算出原岩应力σ1和σ2。

第四章 岩石爆破作用原理

第四章 岩石爆破作用原理
第四章
岩石爆破作用原理
在岩石的挖掘工程中,目前广泛利用炸药爆炸时所释放的能 量来破碎岩石。由于炸药在岩石中爆破时所释放的能量只有少 部分用于破碎岩石,而大部分能量都消耗在产生空气冲击波、 地震波、噪声和飞石等有害效应方面,炸药在岩石中爆破时的 能量利用率很低,大部分能量都浪费掉了。因此,提高炸药的 能量利用率并改善岩石的破碎效果,是工程爆破中最根本、最 重要的任务之一。为了达到这一目的,就必须搞清楚如下问题: 岩石的性质,地质条件;爆破器材的性能,炸药的爆轰机理及 其稳定爆轰;炸药在岩石中爆炸所释放的能量通过何种形式作 用于岩石;岩石在爆炸冲击能作用下处于何种应力状态;岩石 在此应力状态下如何产生变形和破坏,以及这种破坏和变形存 在什么规律等等。
3
V
r
3
2
W W
3
( n 1, r W )
, m3
(4-4)
因此,标准抛掷爆破的装药量为:
Q qW
3
, kg
(4-5)
根据相似定律,在保持岩石性质、炸药性质和药包埋置深度不 变的条件下,通过改变装药量就可以形成加强抛掷爆破漏斗或减 弱抛掷爆破漏斗。因而可以用以下公式来统一表示各种类型的抛 掷爆破装药量:
Q ( 0 . 33 ~ 0 . 55 ) qW
3
, kg
(4-8)
在确定以上各式中的q值时,应考虑以下几种情况: (1)查表、参考定额或有关资料的数据; (2)参照工程中爆破条件相似的实际单位炸药消耗量q值的 统计数据; (3)在需要进行爆破的岩石中作标准抛掷爆破漏斗试验。 在实际计算装药量时,应根据具体条件确定每一个药包所能 爆下的体积,分别求出每一个药包的装药量,然后进行累计, 最后得出总装药量。表4-2列出了爆破各种岩石的单位炸药消耗 量。

构造地质学-4应变与岩石变形

构造地质学-4应变与岩石变形

(C)形变
(D)体变
一、变形、位移和应变
2. 应变——变形的度量 物体在某一时刻的形态与早先的形态(一般指 初始状态或未变形的状态)之间的差别就是物 体在该时刻的应变。应变对非刚性变形而言。 应变可分为线应变和剪应变,线应变反映伸缩 变形,剪应变反映旋转变形。
P
l0 l
b b
0
P 初始长宽比较小的长方 形材料变形成为长宽比 较大的长方形材料
一、变形、位移和应变 2. 应变 (1)线应变
(1)线应变:用百分数表示的单位长度改变量。
设一原始长度为l0的杆件变形后长度为l,则其线应
变e为
l e
l0 l
,线应变用百分数表示。
伸长时的线应变 l0
l0
为正值,缩短时
的线应变为负值。 P
b b
0
P
正、负号与应力 分析的规定相反。
线应变反映材料 的伸缩变形
与旋转变形 五、递进变形 六、脆性和韧-脆性岩石的变形行为 七、岩石破裂准则 八、影响岩石力学性质的外部因素 九、应变测量 十、岩石变形的微观机制
二、应变椭球体
1.主应变和应变主方向 在均匀变形条件下,以变形物体内部任意点 为中心总是可以截取一个体积微小的立方体, 该立方体三对表面上只有线应变而无剪应变, 这三对相互垂直的截面就是该点的主应变面, 其上的线应变称为主应变,其方向称为应变 主方向或主应变轴,平行于最大伸长方向者 称为最大应变主方向1或最大主应变轴A, 平行于最大压缩方向者称为最小应变主方向 3或最小主应变轴C,介于其间的为中间应 变主方向2或中间主应变轴B。
应变椭球体方程
Z 圆截面
x2 y2 z2 1
1 2 3
Z
YZ面 XZ面

第4章 岩石的变形与强度特性1

第4章 岩石的变形与强度特性1
第4章 岩石的变形与强 度特性1
2020年4月22日星期三
本章内容:
§4-1 概述 §4-2 岩石的变形特性 §4-3 岩石的蠕变特性 §4-4 岩石的强度试验 §4-5 岩石的强度理论
重点:
1、岩石的单轴压缩变形特性,应力-应变全过程曲线 的工程意义;
2、岩石在三轴压缩条件下的力学特性; 3、岩石的流变性。 4、岩石的抗压强度、抗拉强度、抗剪强度及其实验室测 定方法 5、岩石在三轴压缩条件下的力学特性; 6、莫尔强度理论、格里菲斯断裂强度理论及判据;
变形性质
单轴压缩
云南腾冲 柱状节理
林县红旗渠
悬挂在山腰的 输水渠道
真是不简单!
试样 试验机
第三节 岩石的单轴抗压强度和破坏形式
圆柱试样单轴压缩强度是岩样达到破坏过程中承 载得的最大载荷与截面积的比值,是岩石材料的 特征参数
圆柱试样
圆 柱
正方形

六边形




Results of sandstone specimens in uniaxial compression
附加刚 性组件
二、 岩ቤተ መጻሕፍቲ ባይዱ的变形特性
(一) 连续加载
1、变形阶段 •空隙压密阶段(OA)
•弹性变形阶段(AB) B点:弹性极限
•微裂隙稳定发展阶段(BC) d
C点:屈服强度
•非稳定发展阶段(CD) D点:峰值强度
(-)
•破坏后阶段(DE) 全过程曲线前过程曲线
峰值 前变 形阶 段
峰值 后变 形阶 段
弹性型
弹-塑性型
塑-弹性型
塑-弹-塑性型1 塑-弹-塑性型2
弹性-蠕变型
4. 峰值后岩块的变形特征 塑性大 的岩石

第四章 岩石物理力学性质和可钻性

第四章   岩石物理力学性质和可钻性

六、岩石的硬度
1、岩石的硬度的基本概念:岩石的硬度反映岩石抵抗外部 更硬物体压入(侵入)其表面的能力。 2、硬度与抗压强度的区别与联系 (1)岩石的硬度与抗压强度一般存在正比例关系;
(2)抗压强度是固体抵抗整体破坏时的阻力,而硬度则是
固体表面对另一物体局部压入或侵入时的阻力。 (3)硬度指标更接近于钻掘过程的实际情况。
第二节 岩石在外载下的破碎机理
0、碎岩工具与岩石作用的主要方式
根据刃具与岩石作用的方式和碎岩机理,可把碎岩刃具分: 切削一剪切型、冲击型、冲击一剪切型三类。 1、切削一剪切型 钻头碎岩刃具以速度vθ 向前移
动而切削(剪切)岩石。工作参数是:
移动速度vθ 、轴向力Pz和切向力 Pθ 以及介质性质。
2、冲击型 冲击型刃具给孔底岩石以直接的冲击动载,碎岩的过程可 用工具动能Tk和岩石变形位能U 的方程式来表达( T=U ):
国家精品课程
第四章 岩土的物理力学 性质及岩石的可钻性
一、岩石的物理力学性质概述 ★ 二、岩石在外载作用下的的破碎机理 三、岩石的可钻性及可钻性指标及坚 固性系数 ★
第一节岩石的物理力学性质概述 ★
岩石的组成与分类
岩石是矿物的集合体。矿物是具有一定成分和物理性质的无 机物质。根据其成因,岩石可分为三类: 1、岩浆岩:岩浆岩是内力地质作用的产物,由地壳深处 的岩浆沿地壳裂隙上升冷凝而成。 2、沉积岩:沉积岩是在地表条件下母岩(岩浆岩、变质岩 或早先形成的沉积岩)风化剥蚀的产物,经搬运、沉积和硬结 等成岩作用而形成的岩石。。 3、变质岩:变质岩是岩浆岩、沉积岩甚至是变质岩本身 在地壳中受到高温、高压及活动性流体的影响而变质形成的 岩石。
3、影响岩石硬度的因素
(1)岩石中坚硬矿物愈多、胶结物的硬度越大、岩石的颗粒 越细、结构越致密,岩石的硬度越大。而孔隙度高、密度低、 裂隙发育的岩石硬度将会降低。 (2)岩石的硬度具有明显的各向异性。层理对岩石硬度的 影响与对岩石强度的影响相反。垂直于层理方向,硬度值 最小; 平行于层理方向,硬度最大;两者之间可相差1.05~1.8倍。

岩石力学第四章岩石本构关系与强度理论PPT课件

岩石力学第四章岩石本构关系与强度理论PPT课件

介绍了岩石本构关系的定义、分类和特点 ,以及不同类型本构关系的适用范围和局 限性。
介绍了岩石强度理论的定义、分类和特点 ,以及不同类型强度理论的适用范围和局 限性。
岩石本构关系与强度理论的实验 研究
介绍了实验研究在岩石本构关系与强度理 论中的重要性,以及实验研究的方法和步 骤。
岩石本构关系与强度理论的应用 实例
岩石力学第四章:岩石本构关系与 强度理论
目录
• 引言 • 岩石本构关系 • 岩石强度理论 • 岩石破坏准则 • 本章总结与展望
01 引言
课程背景
01
岩石力学是一门研究岩石材料在 各种力场作用下的行为和性能的 科学。
02
本章重点介绍岩石的本构关系和 强度理论,为后续章节的学习奠 定基础。
本章目标
探索新的应用领域
将岩石本构关系与强度理论应用到更广泛的领域,如环境工程、地质 工程和地震工程等,为解决实际问题提供更多帮助。
结合数值计算方法
将岩石本构关系与强度理论结合数值计算方法,实现更加高效、精确 的数值模拟和分析,为工程设计和优化提供更多支持。
THANKS FOR WATCHING
感谢您的观看
3
该准则适用于分析简单应力状态下的岩石破坏, 但在复杂应力状态下需要考虑其他因素。
应变能密度准则
应变能密度准则是基于岩石在受力过 程中储存的应变能密度来描述其应力 状态。
当应变能密度达到一定阈值时,岩石 会发生破坏。该准则适用于分析岩石 在复杂应力状态下的破坏机制。
莫尔-库仑强度理论
01
莫尔-库仑强度理论是岩石力学中最常用的强度理论之一。
弹性本构关系
描述
弹性本构关系描述了岩石在受力后立即发生的弹性变形阶段的应力应变关系。

岩石力学第四章重点

岩石力学第四章重点

(1)材料应力-应变关系与时间因素有关的性质,称为流变性。

材料变形过程中具有时间效应的现象,称为流变现象。

蠕变:应力不变,应变随时间而增加
松弛:应变不变,应力随时间而减少
弹性后效:加载或卸载时,弹性应变滞后于应力的现象
(2)瞬时强度:岩石单轴抗压强度长期强度:荷载作用时间t→∞的强度
岩石承受的荷载低于其瞬时强度的情况下,如持续作用较长时间,由于流变作用,岩石也可能发生破坏。

岩石强度随外载作用时间的延长而降低。

(3)三种基本元件:弹性、塑性、粘性;串并联机制;马克斯威尔(弹粘串);开尔文(弹粘并);伯格斯(马开串);三者的本构方程,蠕变方程,松弛方程,卸载方程;以及分析,略(4)强度理论的描述:
库伦准则:岩石的破坏主要是剪切破坏,岩石的强度,即抗摩擦强度等于岩石本身抗剪切摩擦的粘结力和剪切面上法向力产生的摩擦力
莫尔强度理论:把库仑准则推广到考虑三向应力状态,认识到材料性本身也是应力的函数。

格里菲斯强度理论:在不考虑摩擦对压缩下闭合裂纹的影响和假定椭圆裂纹将从最大拉应力集中点开始扩展的情况下,考虑裂纹随机排列的岩石中最不利方向上的裂缝周边应力最大处首先达到张裂状态而建立的岩石破裂理论。

(只适用于脆性的岩石材料)
MC准则:由库伦公式表示莫尔包线的土体抗剪强度理论
体现了岩石材料压剪破坏的实质,应用广泛
没有反映中间主应力的影响,不能解释岩石材料在静水压力下也能屈服或破坏的现象,只适用于剪破坏,不适用于膨胀或蠕变破坏。

(5)MC不同的表达方法,略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f
力圆上的某点与强度包络线相切,即表示在该应力状态下
莫尔强度包络线的意义:包络线上任意一点的坐标都
代表岩石沿某一剪切面剪切破坏所需的剪应力和正应力, 即任意一点都对应了一个与之相切的极限应力圆。
莫尔强度包络线的应用:运用强度曲线可以直接判断岩
石能否破坏。将应力圆与强度曲线放在同一个坐标系中,若 莫尔应力圆在包络线之内,则岩石不破坏;若莫尔应力圆与
0 0

3

3

1
(2)双向拉伸应力状态下
σ1<0,σ3<0,满足σ1+3σ3 < 0,
破裂条件为:

3

3

3

t
危险裂纹方位角:
sin 2 0 0

1
(3)单轴压缩应力状态下
σ1>0,σ3 = 0, 满足σ1+3σ3 >0 破裂条件为: 8 (
1

1
(
3)
2 2
3 ) (
2
3
1 ) 2K
2
或:
(
x
y ) (
2
y
z ) (
2
z
x ) 6 (
2
2 xy

2 yz

2 zx
) 2K
式中:K为与岩石性质有关的常数。其确定方法与 Tresca准则相同,可由单向应力状态试验求得。 Mises准则考虑了中间主应力的影响。

f
c tg
用主应力表示:

1

1 sin 1 sin

3

2 c cos 1 sin
上式也称为极限平衡方程。 莫尔-库仑强度理论不适合剪切 面上正应力为拉应力的情况。
3、莫尔-库仑强度理论
如图的几何关系,有:

t

2 c cos 1 sin
max
K 2
或:
(
1
3) K
式中:K为与岩石性质有关的常数。可由单向应力状态试 验求得。
在一般情况下,即σ 1,σ 2,σ 3大小无法确定排序, 则下列表示的最大剪应力的六个条件中任何一个成立时,
岩石就开始屈服,即
1
2
K
3


2

K
3
1 K
或写成:

τ
f
c tg
式中:
f
——材料剪切面上的抗剪强度;
c——材料的粘结力;
σ ——剪切面上的正应力。
四、莫尔强度理论
1、莫尔强度理论的基本思想 :莫尔强度理论是建立在
试验数据的统计分析基础之上的。 1910年莫尔提出材料
的破坏是剪切破坏,材料在复杂应力状态下,某一斜面 上的剪应力达到一极限值,造成材料沿该斜面产生剪切
七、德鲁克-普拉格(Drucker-Prager)屈服准则 德鲁克-普拉格(Drucker-Prager)屈服准则是德鲁克 -普拉格于1952年提出的,在Mohr-Coulomb准则和Mises准 则基础上的扩展和推广而得:
f I 1 J
2
K 0
式中:
I1 x y z 1 2 3 m / 3
J2 1 6 1 6
为应力第一不变量;
2 2 2 yz

1
(
x
y ) (
2 2
y
z ) ( z x ) 6 ( xy
2 2 2
zx )
2

(
2 ) ( 2 3 ) ( 3 1 )
为应力偏量第二不变量;



t
t
E
式中: εt ——单轴拉伸破坏时的极限应变;
E——岩石的弹性模量;
σt——单轴抗拉强度。
讨论: 1、在单轴拉伸条件下:岩石发生拉伸断裂破坏,其强度 条件为:

t


t
E
2、在单轴压缩条件下:岩石发生纵向拉伸断裂 破坏,其强度条件为:

t


c


t
E

1(
f
2
1 f ) 3(
f
2
1 f ) 4
t
式中f为裂纹面间的摩擦系数。
六、岩石的屈服准则 屈服准则是判断某一点的应力是否进入塑性状态的判 断准则。
1、屈列斯卡(Tresca)准则
屈列斯卡准则在金属材料中应用很广。该准则是Tresca 于1864年提出的。他认为:当最大剪应达到某一数值时,岩 石开始屈服,进入塑性状态。其表达式为
E
即:

c
t
3、在三轴压缩条件下:σ 3方向的应变为

3

1 E

3
(
1

2
)
如果σ 3<μ (σ 1 +σ 2),则为拉应变,其强度条件为

3

1 E


3
(
1

2
)
t
而:

t
t
E
故,强度条件又可表示为:

3
(
1

3
2
)
(
1
2) K
2
2
(
2
3) K
2
2
(
3
1) K
2
2
0
Tresca准则不考虑中间主应力的影响。
2、米赛斯(Mises)屈服准则 米赛斯认为:当应力强度达到某一数值时,岩石开始屈 服,进入塑性状态。其表达式为
( 1 2 ) (
1
3
0
1
2 (
1
3
3)
3)
1
0 < β< π/4
3、修正的格里菲斯强度判据
1962年,麦克.克林脱克等人认为,当应力σ y达到某 一临界值时,裂纹便闭合,在裂纹表面产生法向应力和摩擦 力,影响新裂纹的发生和发展。这种摩擦力恰恰是于是格里 菲斯断裂理论没有考虑到的。因此对原始的格里菲斯理论进 行了修正。 修正的格里菲斯准则为:
1
2
3)

t
β
3
cos 危险裂纹方位角: 2
1
2 (
1
3)

1 2
β= ±π/6
(2)双向压缩应力状态下 σ1>0,σ3 > 0, 满足σ1+3σ3 >0 破裂条件为:
(
1

1
3)
1
2
8 (
3)

t
危险裂纹方位角: cos
2
பைடு நூலகம்
2 (
强度曲线相切,则岩石处于极限平衡状态;若莫尔应力圆与
强度曲线相交,则岩石肯定破坏。

f ( )
o
莫尔强度包络线与应力圆

3、莫尔-库仑强度理论 τ f= f(σ )所表达的是一条曲线,该曲线的型式有: 直线型、抛物线型、双曲线型、摆线型。而直线型与库伦 准则表达式相同,因此,也称为库伦-莫尔强度理论。由 库仑公式表示莫尔包络线的强度理论,称为莫尔-库仑强 度理论。
滑移破坏,且破坏面平行于中间主应力σ 2作用方向(即
σ 2不影响材料的剪切破坏),破坏面上的剪应力τ 该面上法向应力σ 的函数,即:
f

τf = f (σ)
2、莫尔强度包络线: 指各极限应力圆的破坏点所组成的
轨迹线。τ
f
=f(σ ) 在τ
f
~σ 坐标中是一条曲线,称
的关系。极限应
为莫尔包络线,表示材料受到不同应力作用达到极限状态 时,滑动面上的法向应力σ 与剪应力τ 材料发生破坏。 用极限应力表示的莫尔圆称为极限莫尔应力圆(简称极 限应力圆)。
2 (
1
3
3)
(2)
破裂条件为:
1 3

3
3
0

t
危险裂纹方位角:
sin 2 0
如果应力点(σ 1,σ 3)落在强度曲线 上或曲线左边,则岩石发生破坏, 否则不破坏。
讨论:
(1)单轴拉伸应力状态下 σ1=0,σ3 <0,满足σ1+3σ3 ≤ 0, 破裂条件为: 3 t 危险裂纹方位角: sin 2
t
在常规三轴条件下( σ

3
=σ 2)强度条件为:
1
( 1 )

t
三、库伦(Coulomb)准则
1773年库伦提出了一个重要的准则(“摩擦”准则)。 库伦认为,材料的破坏主要是剪切破坏,当材料某一斜面 上的剪应力达到或超过该破坏面上的粘结力和摩擦阻力之 和,便会造成材料沿该斜面产生剪切滑移破坏。
α 、K为仅与岩石内摩擦角υ 和粘结力c有关的试验常数。

2 sin 3 ( 3 sin ) K 6 c cos 3 ( 3 sin )
德鲁克-普拉格(Drucker-Prager)屈服 准则考虑了中间主应力的影响,又考虑了静水
压力(平均应力σ m)的作用,克服了MohrCoulomb准则的主要弱点,可解释岩土材料在 静水压力下也能屈服和破坏的现象。该准则已 在国内外岩土力学与工程的数值计算分析中获 得广泛的应用。



c

2 c cos 1 sin

3
1 sin 1 sin
1c

2 c cos 1 sin
相关文档
最新文档