数量关系基本公式(整理版)

合集下载

数量关系公式总结

数量关系公式总结

1..两次相遇公式:单岸型 S=(3S1+S2)/2 两岸型 S=3S1-S2例题:两艘渡轮在同一时刻垂直驶离H 河的甲、乙两岸相向而行,一艘从甲岸驶向乙岸,另一艘从乙岸开往甲岸,它们在距离较近的甲岸720 米处相遇。

到达预定地点后,每艘船都要停留10 分钟,以便让乘客上船下船,然后返航。

这两艘船在距离乙岸400 米处又重新相遇。

问:该河的宽度是多少?典型两次相遇问题,这题属于两岸型(距离较近的甲岸720 米处相遇、距离乙岸400 米处又重新相遇)代入公式3*720-400=1760如果第一次相遇距离甲岸X米,第二次相遇距离甲岸Y米,这就属于单岸型了,也就是说属于哪类型取决于参照的是一边岸还是两边岸2.漂流瓶公式:T=(2t逆*t顺)/ (t逆-t顺)例题:AB两城由一条河流相连,轮船匀速前进,A――B,从A城到B城需行3天时间,而从B城到A城需行4天,从A城放一个无动力的木筏,它漂到B城需多少天?解:公式代入直接求得243.沿途数车问题公式:发车时间间隔T=(2t1*t2)/ (t1+t2 )车速/人速=(t1+t2)/ (t2-t1)例题:小红沿某路公共汽车路线以不变速度骑车去学校,该路公共汽车也以不变速度不停地运行,没隔6分钟就有辆公共汽车从后面超过她,每隔10分钟就遇到迎面开来的一辆公共汽车,公共汽车的速度是小红骑车速度的()倍?解:车速/人速=(10+6)/(10-6)=44.往返运动问题公式:V均=(2v1*v2)/(v1+v2)例题:一辆汽车从A地到B地的速度为每小时30千米,返回时速度为每小时20千米,则它的平均速度为多少千米/小时?()解:代入公式得2*30*20/(30+20)=245.电梯问题:能看到级数=(人速+电梯速度)*顺行运动所需时间(顺)能看到级数=(人速-电梯速度)*逆行运动所需时间(逆)能看到的扶梯级数=(2+1.5)*40=1406.什锦糖问题公式:均价A=n /{(1/a1)+(1/a2)+(1/a3)+(1/an)}例题:商店购进甲、乙、丙三种不同的糖,所有费用相等,已知甲、乙、丙三种糖每千克费用分别为 4.4 元,6 元,6.6 元,如果把这三种糖混在一起成为什锦糖,那么这种什锦糖每千克成本多少元?7.十字交叉法:A/B=(r-b)/(a-r)例:某班男生比女生人数多80%,一次考试后,全班平均成级为75 分,而女生的平均分比男生的平均分高20% ,则此班女生的平均分是:析:男生平均分X,女生1.2X1.2X 75-X 175 =X 1.2X-75 1.8得X=70 女生为84分析:假设女生的平均成绩为X,男生的平均Y。

小学数学基础知识整理(数量关系篇)

小学数学基础知识整理(数量关系篇)

小学数学基础知识整理(数量关系篇)小学数学基础知识整理(数量关系篇)数量关系计算公式方面1、单价×数量=总价2、单产量×数量=总产量3、速度×时间=路程4、工效×时间=工作总量5、加数+加数=和一个加数=和+另一个加数被减数-减数=差减数=被减数-差被减数=减数+差因数×因数=积一个因数=积÷另一个因数被除数÷除数=商除数=被除数÷商被除数=商×除数有余数的除法:被除数=商×除数+余数一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。

例:90÷5÷6=90÷(5×6)6、1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1吨=1000千克1千克= 1000克= 1公斤= 1市斤1公顷=10000平方米。

1亩=666.666平方米。

1升=1立方分米=1000毫升1毫升=1立方厘米把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。

把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

15、要学会把小数化成分数和把分数化成小数的化发。

16、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。

(或几个数公有的约数,叫做这几个数的公约数。

其中最大的一个,叫做最大公约数。

)17、互质数:公约数只有1的两个数,叫做互质数。

18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。

数量关系式大全

数量关系式大全

数量关系式大全数量关系式是数学中非常重要的一个概念,用于描述变量之间的关系。

本文将为您介绍数量关系式大全,主要包括以下几个方面:一、基本的数量关系式1. 平均数公式设有 n 个数:x1、x2、……、xn,平均数为 A,则平均数公式为:A = (x1 + x2 + …… + xn) / n2. 中位数公式设有 n 个数:x1、x2、……、xn,中位数为 M,则中位数公式为:①当 n 为奇数时:M = xn/2②当 n 为偶数时:M = (xn/2 + (xn/2 + 1)) / 23. 众数公式设有 n 个数:x1、x2、……、xn,出现次数最多的数为众数,则众数公式为:出现次数最多的数即为众数。

4. 极差公式设有 n 个数:x1、x2、……、xn,最大值为 max,最小值为min,则极差公式为:极差 = max - min二、分布型数量关系式1. 频率分布表设有一组 n 个数据,i 表示第 i 个数据,fi 表示第 i 个数据出现的频率,则频率分布表如下:2. 分组频数分布表设有一组 n 个数据,i 表示第 i 个数据,pi 表示 i 排列成类别的频数,则分组频数分布表如下:3. 相对频率分布设有一组 n 个数据,i 表示第 i 个数据,ri 表示第 i 个数据出现的相对频率,则相对频率分布如下:4. 累计频率分布表设有一组 n 个数据,i 表示第 i 个数据,Fi 表示第 i 个数据出现的累计频率,则累计频率分布表如下:三、函数型数量关系式1. 线性关系式若两个变量 x 和 y 之间存在线性关系,则函数关系式为:y = ax + b其中 a 为斜率,b 为截距。

2. 反比例关系式若两个变量 x 和 y 之间存在反比例关系,则函数关系式为:y = a / x其中 a 为比例常数。

3. 指数关系式若两个变量 x 和 y 之间存在指数关系,则函数关系式为:y = axb其中 a 和 b 为常数,且 b 为指数。

数量关系公式大全

数量关系公式大全

数量关系公式大全1.百分数公式:-百分数=(所占数量/总数量)×100%2.比例公式:-比例=已知数量/未知数量3.增长率公式:-增长率=增加的数量/原始数量4.直线方程:- y = mx + c,其中m是斜率,c是y轴截距5.平均值公式:-平均值=(所有数据之和)/(数据个数)6.学生t分布公式(用于计算样本平均值的置信度):-t=(平均值-总体平均值)/标准误差7.标准差公式(用于计算数据集的离散程度):- 标准差 = sqrt((每个数据值 - 平均值)^ 2的总和 / 数据个数)8.四分位数公式(用于描述数据集分布):-第一四分位数=(n+1)/4个数据点-第二四分位数(中位数)=(n+1)/2个数据点-第三四分位数=3(n+1)/4个数据点9.正态分布公式:-正态分布=(1/根号(2πσ^2))×e^(-(x-μ)^2/2σ^2)10.欧拉公式(描述复数和三角函数之间的关系):- e^(ix) = cos(x) + i × sin(x)11.斐波那契数列公式(描述费波那契数列中的数量关系):-Fn=Fn-1+Fn-2,其中F0=0,F1=112.二项式系数公式(描述二项式展开中的系数):-nCk=n!/(k!×(n-k)!),其中n为整数,k为介于0和n之间的整数13.反比例公式:-两个量A和B成反比例关系,即A×B=k(k为常数)14.几何级数公式(描述几何级数中的数量关系):-S=a/(1-r),其中a是首项,r是公比15.面积公式:-矩形面积=长×宽-三角形面积=(底边长×高)/2-圆面积=π×半径^2以上是一些常见的数量关系公式,它们在数学和科学中经常被使用。

通过掌握这些公式,我们可以更好地理解和解决各种与数量关系相关的问题。

完整版数量关系公式

完整版数量关系公式

数量关系常用公式总结:1.行程问题基础公式:路程=速度*时间一、相遇追及型追及问题:追及距离=(大速度-小速度)×追及时间相遇问题:相遇距离=(大速度+小速度)×相遇时间背离问题:背离距离=(大速度+小速度)×背离时间二、环形运动型反向运动:第N次相遇路程和为N个周长,环形周长=(大速度+小速度)×相遇时间同向运动:第N次相遇路程差为N个周长,环形周长=(大速度-小速度)×相遇时间三、流水行船型顺流路程=(船速+水速)×顺流时间逆流路程=(船速-水速)×逆流时间静水速度=(顺水速度+逆水速度)÷2水流速度=(顺水速度-逆水速度)÷2四、扶梯上下型扶梯总长=人走的阶数×[1±(V梯÷V人)],顺行用加法,逆行用减法,根据公式带入级,速度为v解析:设扶梯为s v=1 1) 解得×S=30×1(1+v÷S=20×2×(1+v÷2) s=60,所以选择B。

五、队伍行进型队头→队尾:队伍长度=(人速+队伍速度)×时间队尾→队头:队伍长度=(人速-队伍速度)×时间解析:假设通讯员和队伍的速度分别为v和u,所求时间为t,则: 600=(v-u)×3 解得 v=250600=v×(2+24÷60) u=50600=(v+u)×t t=2,所以选择D六、往返相遇型左右点出发:第N次迎面相遇,路程和=全程×(2N-1)第N次追上相遇,路程差=全程×(2N-1)同一点出发:第N次迎面相遇,路程和=全程×2N第N次追上相遇,路程差=全程×2N解析:a汽车第二次从甲地出发后与b汽车相遇,实际上是两辆车第3次迎面相遇,根据公式,路程和为5个全程,即5×210=1050(公里),使用的时间为1050÷(90+120)=5(小时),所以b汽车共行驶了120×5=600(公里),选择B七、典型行程模型等距离平均速度=(2速度1×速度2)÷(速度1+速度2)(调和平均数公式)(速度1和速度2分别代表往﹑返的速度)解析:代入公式v=2×60×120÷(60+120)=80等发车前后过车:发车间隔T=(2t1×t2) ÷(t1+t2);V车/V人=(t2+t1) ÷( t2-t1)例:某人沿电车线路匀速行走,每分钟有一辆电车从后面追上,每4分钟有一辆电车迎面开来,假设两个起点站的发车间隔相同,则这个发车间隔为多少?解析:依据公式,发车间隔T=(2t1×t2) ÷(t1+t2)=2×12×4÷(12+4)=6(分钟)。

国家公务员考试数量关系相关公式数字特性

国家公务员考试数量关系相关公式数字特性

1.等差数列通项公式:ܽܽ= ܽͳ+ ܽ−ͳܽ = ܽܽ+ (ܽ− ܽ)ܽ求和公式:ܽܽ= = ܽܽͳ+ܽܽͳ ܽ= 中位数×项数2.等比数列通项公式:ܽܽ= ܽͳݍܽ−ͳ= ܽܽݍ݉q n )(q≠1)求和公式:ܽܽ=ܽͳ(ݍ3.平方差公式:ܽʹ− ܽʹ=ሺܽ + ܽሻሺܽ− ܽሻʹ4.完全平方公式:(a ±b)= ܽʹ±ʹܽܽ + ܽʹ1.基础公式:总量=效率×时间(1)给完工时间型:①将工作总量赋值为完工时间的最小公倍数总量计算各主体效率②根据效率=时间③据题意列式求解(2)给效率比例型:①求出效率比例,对效率赋值②根据总量=效率×时间求出总量③据题意列式求解(3)给具体单位型:①设未知数 ②据题意列式求解2.牛吃草问题:Y=(N-X ) ×T,Y 代表原有草量(消耗量),N 代表牛数量(消耗),X 代表草生长速度(生长),T 代表吃草时间(消耗时间)1.基础公式:路程=速度×时间,平均速度=总总时路间程2.火车过桥:火车从进桥至完全驶离桥,所走路程=车长+桥长3.等距离平均速度= - -(适用于“上下坡”、“往返”等行驶路程相同但速度不同的情况)v 1+v 24. 相遇追及公式:①相遇路程=速度和×相遇时间(S 和 = V 和 x T 遇)2v 1v 2②追及路程=速度差×追及时间(ܽ差= ܽ差ൈ ܽ追)③线性两端出发第 n 次相遇:所走路程和=(2n-1) ×单次路程=速度和×相遇时间;( ʹn −ͳS = ܽ和 ൈ ܽ遇)④线性一端出发第n 次相遇:所走路程和=2n×单次路程=速度和×相遇时间(ʹnS = ܽ和ൈܽ遇)⑤环形路程第 n 次相遇:所走路程和=n 圈=速度和×相遇时间(ܽ圈 = ܽ和ൈ ܽ遇)⑥环形路程第 n 次追及:所走路程差=n 圈=速度差×追及时间(ܽ 圈= ܽ差ൈ ܽ追)5.比例行程①路程一定,速度与时间成反比②时间一定,路程与速度成正比③速度一定,路程与时间成正比6.流水行船相关公式:①顺水速度=船速+水速;②逆水速度=船速-水速;顺水速度+逆水速度③船速= ;ʹ顺水速度-逆水速度④水速= ;ʹ⑤静水速度=船速;漂流速度=水速1.基础公式: ②利润率=成利本润= 售本= 成本售价−ͳ①利润=售价-成本3 售价=成本×(1+利润率)=成本+利润1.基本公式:4 折扣=折折前后价价⑤总价=单价×数量;总进价=单个进价×数量;总利润=单个利润×数量=总售价-总进价2.分段计费:题型特征: 问在不同收费标准下,一共需要的费用。

小学五年级数学公式大全整理

小学五年级数学公式大全整理

学习整理收集于网络,仅供参考小学五年级数学公式大全整理小学五年级数学公式大全涵盖了多个方面,包括基本的数量关系、几何图形计算、统计与概率等。

以下是一些常用的数学公式及其说明:一、数量关系计算公式1、单价、数量与总价单价×数量 = 总价总价÷单价 = 数量总价÷数量 = 单价2、速度、时间与路程速度×时间 = 路程路程÷速度 = 时间路程÷时间 = 速度3、工效、时间与工作总量工效×时间 = 工作总量工作总量÷工效 = 时间工作总量÷时间 = 工效4、加数与和加数 + 加数 = 和和 - 一个加数 = 另一个加数5、被减数、减数与差被减数 - 减数 = 差被减数 - 差 = 减数差 + 减数 = 被减数6、因数与积因数×因数 = 积积÷一个因数 = 另一个因数7、被除数、除数与商被除数÷除数 = 商被除数÷商 = 除数商×除数 = 被除数8、有余数的除法被除数 = 商×除数 + 余数二、几何图形计算公式1、正方形周长 = 边长× 4面积 = 边长×边长2、长方形周长 = (长 + 宽) × 2面积 = 长×宽3、三角形面积 = (底×高) ÷ 24、平行四边形面积 = 底×高5、梯形面积 = (上底 + 下底) ×高÷ 26、圆周长 = 直径×π = 2 ×半径×π面积 = 半径×半径×π7、长方体表面积 = 2 × (长×宽 + 长×高 + 宽×高) 体积 = 长×宽×高8、正方体表面积 = 棱长×棱长× 6体积 = 棱长×棱长×棱长9、圆柱侧面积 = 底面周长×高表面积 = 侧面积 + 2 ×底面积体积 = 底面积×高10、圆锥体积 = (1/3) ×底面积×高三、其他常用公式1、分数分子÷分母 = 分数值分数值×分母 = 分子分子÷分数值 = 分母2、百分数百分数 = (部分÷总量) × 100%3、统计与概率中位数:一组数据从小到大(或从大到小)排列,中间的数众数:一组数据中出现次数最多的数四、运算定律1、加法交换律:两数相加,交换加数的位置,和不变。

常用的数量关系式 简

常用的数量关系式 简

一、常用的数量关系式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数二、小学数学图形计算公式1、正方形(C:周长S:面积a:边长)周长=边长×4 C=4a 面积=边长×边长S=a×a2、正方体(V:体积a:棱长)表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a3、长方形(C:周长S:面积a:边长)周长=(长+宽)×2 C=2(a+b) 面积=长×宽S=ab4、长方体(V:体积s:面积a:长b: 宽h:高)(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高V=abh5、三角形(s:面积a:底h:高)面积=底×高÷2 s=ah÷2 三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形(s:面积a:底h:高)面积=底×高s=ah7、梯形(s:面积a:上底b:下底h:高)面积=(上底+下底)×高÷2 s=(a+b)× h÷28、圆形(S:面积C:周长лd=直径r=半径)(1)周长=直径×л=2×л×半径C=лd=2лr (2)面积=半径×半径×л9、圆柱体(v:体积h:高s:底面积r:底面半径c:底面周长)(1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10、圆锥体(v:体积h:高s:底面积r:底面半径)体积=底面积×高÷311、和差问题的公式:(和+差)÷2=大数(和-差)÷2=小数12、和倍问题: 和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)13、差倍问题:差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)14、相遇问题相遇路程=速度和×相遇时间;相遇时间=相遇路程÷速度和;速度和=相遇路程÷相遇时间15、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量16、利润与折扣问题利润=售出价-成本;利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比;利息=本金×利率×时间;税后利息=本金×利率×时间×(1-20%) 三、常用单位换算长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算:1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体(容)积单位换算:1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1立方米=1000升重量单位换算:1吨=1000 千克1千克=1000克1千克=1公斤人民币单位换算:1元=10角1角=10分1元=100分时间单位换算:1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒基本概念第一章数和数的运算一概念(一)整数1 整数的意义:自然数和0都是整数。

(完整版)数量关系公式

(完整版)数量关系公式

数量关系常用公式总结:1.行程问题基础公式:行程 =速度 * 时间一、相遇追及型追及问题:追及距离 =(大速度 - 小速度)×追及时间相遇问题:相遇距离=(大速度+小速度)×相遇时间背叛问题:背叛距离=(大速度+小速度)×背叛时间二、环形运动型反向运动:第 N次相遇行程和为N个周长,环形周长=(大速度+小速度)×相遇时间同向运动:第 N次相遇行程差为 N个周长,环形周长=(大速度- 小速度)×相遇时间三、流水行船型顺水行程 =(船速 +水速)×顺水时间逆流行程 =(船速 - 水速)×逆流时间静水速度 =(顺水速度 +逆水速度)÷ 2水流速度 =(顺水速度 - 逆水速度)÷ 2四、扶梯上下型扶梯总长 =人走的阶数× [1 ±( V 梯÷ V 人) ] ,顺行用加法,逆行用减法剖析 : 设扶梯为 s 级,速度为 v,依照公式带入S=30×1×(1+v ÷1) 解得 v=1S=20×2×(1+v ÷2)s=60,所以选择B。

五、队伍行进型队头→队尾:队伍长度 =(人速 +队伍速度)×时间队尾→队头:队伍长度 =(人速 - 队伍速度)×时间v 和u,所求时间为t,则:剖析:假设通讯员和队伍的速度分别为600= (v-u )× 3解得v=250600=v ×(2+24 ÷60)u=50600=(v+u)× t t=2,所以选择D六、往返相遇型左右点出发:第N 次迎面相遇,行程和 =全程×( 2N-1)第N 次追上相遇,行程差 =全程×( 2N-1)同一点出发:第 N 次迎面相遇,行程和 =全程× 2N第N 次追上相遇,行程差 =全程× 2N剖析: a 汽车第二次从甲地出发后与3 次迎面相遇,依照公式,行程和为b 汽车相遇,实际上是两辆车第5 个全程,即 5×210=1050(公里),使用的时间为 1050÷( 90+120)=5(小时),所以 b 汽车共行驶了 120×5=600(公里),选择 B七、典型行程模型等距离平均速度 =(2 速度 1×速度 2)÷(速度 1+速度 2)(调停平均数公式)(速度 1 和速度 2 分别代表往﹑返的速度)剖析:代入公式v=2×60×120÷( 60+120)=80等发车前后过车:发车间隔 T=(2t1 ×t2)÷(t1+t2);V车/V 人=(t2+t1) ÷( t2-t1)例:某人沿电车线路匀速行走,每分钟有一辆电车从后边追上,每4分钟有一辆电车迎面开来,假设两个起点站的发车间隔相同,则这个发车间隔为多少?剖析:依照公式,发车间隔T=(2t1 × t2)÷(t1+t2)=2× 12×4÷(12+4)=6(分钟)。

(完整版)小学数学数量关系式及公式总汇

(完整版)小学数学数量关系式及公式总汇
v=体积h=高s=底面积r=底面半径c=底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10圆锥体
v=体积h=高s=底面积r=底面半径
体积=底面积×高÷3
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题的公式
和÷(倍数-1)=小数
6加数+加数=和
和-一个加数=另一个加数
7被减数-减数=差
被减数-差=减数
差+减数=被减数
8因数×因数=积
积÷一个因数=另一个因数
9被除数÷除数=商
被除数÷商=除数
商×除数=被除数
小学数学图形计算公式
1正方形
C周长S面积a边长
周长=边长×4
C=4a
面积=边长×边长
S=a×a
2正方体
V:体积a:棱长
表面积=棱长×棱长×6
s=ah÷2
三角形高=面积×2÷底
三角形底=面积×2÷高
6平行四边形
s面积a底h高
面积=底×高
s=ah
7梯形
s面积a上底b下底h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8圆形
S=面积C=周长πd=直径r=半径
(1)周长=直径×π=2×π×半径
C=πd=2πr
(2)面积=半径×半径×π
9圆柱体
小数×倍数=大数
(或者和-小数=大数)
差倍问题的公式
差÷(倍数-1)=小数
小数×倍数=大数
(或小数+差=大数)
植树问题
1非封闭线路上的植树问题主要可分为以下三种情况:

公务员及事业单位考试行测数量关系的常用公式

公务员及事业单位考试行测数量关系的常用公式

行测常用数学公式1. 平方差公式:(a +b )·(a -b )=a 2-b 22. 完全平方公式:(a±b )2=a 2±2ab +b23. 完全立方公式:(a ±b)3=(a±b)(a 2 ab+b 2)4. 立方和差公式:a 3+b 3=(a ±b)(a 2+ ab+b 2) mnm +nm n =a m -n (a m )n =a mn (ab)n =a n ·b n(1)s n =2)(1n a a n +⨯=na 1+21n(n-1)d ;(2)a n =a 1+(n -1)d ;(3)项数n =da a n 1-+1; (4)若a,A,b 成等差数列,则:2A =a+b ; (5)若m+n=k+i ,则:a m +a n =a k +a i ;(6)前n 个奇数:1,3,5,7,9,…(2n —1)之和为n 21为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和)(1)a n =a 1q;(2)s n =qq a n -11 ·1)-((q ≠1)(3)若a,G,b 成等比数列,则:G 2=ab ; (4)若m+n=k+i ,则:a m ·a n =a k ·a i ; (5)a m -a n =(m-n)d (6)nma a =q (m-n) 1为首项,a n 为末项,q 为公比,s n 为等比数列前n 项的和)(1)一元二次方程求根公式:ax 2+bx+c=a(x-x 1)(x-x 2)其中:x 1=a ac b b 242-+-;x 2=aac b b 242---(b 2-4ac ≥0)根与系数的关系:x 1+x 2=-a b ,x 1·x 2=a c(2)ab b a 2≥+ ab b a ≥+2)2( ab b a 222≥+ abc c b a ≥++3)3( (3)abc c b a 3222≥++ abc c b a 33≥++推广:n n n x x x n x x x x ......21321≥++++(4)一阶导为零法:连续可导函数,在其内部取得最大值或最小值时,其导数为零。

行测数量关系公式大全

行测数量关系公式大全

行测数量关系公式大全
行测中的数量关系是指通过对事物数量的分析和计算来解决问题的方法。

在行测中,关于数量关系的问题非常常见,因此掌握相关的公式和解题方法非常重要。

下面是行测中常用的数量关系公式:
一、基本数量关系公式:
1.两个数的比例关系:两个数a和b的比例关系表示为a:b,可以用分数形式a/b或者百分数形式a%表示。

2.百分数与小数的关系:100%=1或者1%=0.01
3.百分数、小数和分数的转化关系:百分数转化为小数除以100,小数转化为百分数乘以100,分数转化为百分数分子除以分母再乘以100或者分子除以分母再乘以100%。

4. 两个数的倍数关系:如果一个数a是另一个数b的倍数,可以表示成a = nb,其中n是整数。

二、增长和减少关系公式:
1.增长率的公式:增长率=(增长的数量/原来的数量)*100%。

2.减少率的公式:减少率=(减少的数量/原来的数量)*100%。

3.点数和百分数的关系:点数表示的是增长或减少的比例,1个点
=1%。

三、综合数量关系公式:
1.一对一关系:两个集合A和B中的元素一一对应,集合A中的元素个数等于集合B中的元素个数。

即,集合A和集合B的元数相等。

2.多对一关系:集合A中的一个元素对应集合B中的多个元素,集合B中的元素个数小于集合A中的元素个数。

3.多对多关系:集合A中的一个元素对应集合B中的多个元素,而集合B中的一个元素又对应集合A中的多个元素。

集合A和集合B的元素个数都可以不相等。

数量关系公式大全

数量关系公式大全

公考行测数量关系常用公式汇总1. 平方差公式:(a +b )·(a -b )=a 2-b 22. 完全平方公式:(a±b )2=a 2±2ab +b23. 完全立方公式:(a ±b)3=(a±b)(a 2 ab+b 2)4. 立方和差公式:a 3+b 3=(a ±b)(a 2+ ab+b 2) 5. a m·a n=am +na m ÷a n =a m -n (a m )n =a mn (ab)n =a n ·b n(1)s n =2)(1n a a n +⨯=na 1+21n(n-1)d ;(2)a n =a 1+(n -1)d ; (3)项数n =da a n 1-+1; (4)若a,A,b 成等差数列,则:2A =a+b ; (5)若m+n=k+i ,则:a m +a n =a k +a i ;(6)前n 个奇数:1,3,5,7,9,…(2n —1)之和为n 2(其中:n 为项数,a 1为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和)(1)a n =a 1q n -1;(2)s n =qq a n -11 ·1)-((q ≠1)(3)若a,G,b 成等比数列,则:G 2=ab ; (4)若m+n=k+i ,则:a m ·a n =a k ·a i ; (5)a m -a n =(m-n)d (6)nma a =q (m-n) (其中:n 为项数,a 1为首项,a n 为末项,q 为公比,s n 为等比数列前n 项的和)(1)一元二次方程求根公式:ax 2+bx+c=a(x-x 1)(x-x 2)其中:x 1=a ac b b 242-+-;x 2=aac b b 242---(b 2-4ac ≥0)根与系数的关系:x 1+x 2=-a b ,x 1·x 2=a c(2)ab b a 2≥+ ab b a ≥+2)2( ab b a 222≥+ abc c b a ≥++3)3((3)abc c b a 3222≥++ abc c b a 33≥++推广:n n n x x x n x x x x ......21321≥++++(4)一阶导为零法:连续可导函数,在其内部取得最大值或最小值时,其导数为零。

数量关系公式大全

数量关系公式大全

数量关系公式大全数量关系是数学中一个重要的概念,它描述了不同量之间的数学关系。

在实际生活和工作中,我们经常会遇到各种数量关系问题,因此掌握数量关系公式是十分重要的。

本文将为大家介绍数量关系公式的大全,帮助大家更好地理解和运用数量关系公式。

一、基本数量关系公式。

1. 相等关系,a = b,表示a和b相等。

2. 比例关系,a,b = c,d,表示a与b的比例等于c与d的比例。

3. 百分比关系,a% = b,表示a的百分之一等于b。

4. 倒数关系,a的倒数为1/a。

5. 平方关系,a²表示a的平方,a² = a a。

6. 立方关系,a³表示a的立方,a³ = a a a。

7. 平方根关系,√a表示a的平方根,(√a)² = a。

二、加减乘除的数量关系公式。

1. 加法,a + b = c,表示a与b的和等于c。

2. 减法,a b = c,表示a减去b的差等于c。

3. 乘法,a b = c,表示a与b的积等于c。

4. 除法,a / b = c,表示a除以b的商等于c。

三、比例的数量关系公式。

1. 直接比例,y = kx,表示y和x成正比,k为比例常数。

2. 反比例,xy = k,表示x和y成反比,k为比例常数。

四、百分比的数量关系公式。

1. 百分数,a% = a/100,表示a的百分之一。

2. 百分数的计算,a% b = c,表示a的百分之一乘以b等于c。

五、平均数的数量关系公式。

1. 算术平均数,(a₁ + a₂ + ... + aₙ) / n = x,表示n个数的和除以n等于平均数x。

2. 加权平均数,(a₁w₁ + a₂w₂ + ... + aₙwₙ) / (w₁ + w₂ + ... + wₙ) = x,表示每个数乘以相应权重的和除以权重的和等于加权平均数x。

六、百分比的数量关系公式。

1. 百分数,a% = a/100,表示a的百分之一。

2. 百分数的计算,a% b = c,表示a的百分之一乘以b等于c。

(完整版)数量关系公式

(完整版)数量关系公式

数量关系常用公式总结:1.行程问题基础公式:路程=速度*时间一、相遇追及型追及问题:追及距离=(大速度-小速度)×追及时间相遇问题:相遇距离=(大速度+小速度)×相遇时间背离问题:背离距离=(大速度+小速度)×背离时间二、环形运动型反向运动:第N次相遇路程和为N个周长,环形周长=(大速度+小速度)×相遇时间同向运动:第N次相遇路程差为N个周长,环形周长=(大速度-小速度)×相遇时间三、流水行船型顺流路程=(船速+水速)×顺流时间逆流路程=(船速-水速)×逆流时间静水速度=(顺水速度+逆水速度)÷2水流速度=(顺水速度-逆水速度)÷2四、扶梯上下型扶梯总长=人走的阶数×[1±(V梯÷V人)],顺行用加法,逆行用减法解析:设扶梯为s级,速度为v,根据公式带入S=30×1×(1+v÷1) 解得 v=1S=20×2×(1+v÷2) s=60,所以选择B。

五、队伍行进型队头→队尾:队伍长度=(人速+队伍速度)×时间队尾→队头:队伍长度=(人速-队伍速度)×时间解析:假设通讯员和队伍的速度分别为v和u,所求时间为t,则: 600=(v-u)×3 解得 v=250600=v×(2+24÷60) u=50600=(v+u)×t t=2,所以选择D六、往返相遇型左右点出发:第N次迎面相遇,路程和=全程×(2N-1)第N次追上相遇,路程差=全程×(2N-1)同一点出发:第N次迎面相遇,路程和=全程×2N第N次追上相遇,路程差=全程×2N解析:a汽车第二次从甲地出发后与b汽车相遇,实际上是两辆车第3次迎面相遇,根据公式,路程和为5个全程,即5×210=1050(公里),使用的时间为1050÷(90+120)=5(小时),所以b汽车共行驶了120×5=600(公里),选择B七、典型行程模型等距离平均速度=(2速度1×速度2)÷(速度1+速度2)(调和平均数公式)(速度1和速度2分别代表往﹑返的速度)解析:代入公式v=2×60×120÷(60+120)=80等发车前后过车:发车间隔T=(2t1×t2) ÷(t1+t2);V车/V人=(t2+t1) ÷( t2-t1)例:某人沿电车线路匀速行走,每分钟有一辆电车从后面追上,每4分钟有一辆电车迎面开来,假设两个起点站的发车间隔相同,则这个发车间隔为多少?解析:依据公式,发车间隔T=(2t1×t2) ÷(t1+t2)=2×12×4÷(12+4)=6(分钟)。

小学数学基础知识整理(数量关系篇)

小学数学基础知识整理(数量关系篇)

小学数学基础知识整理(数量关系篇)数量关系计算公式方面1、单价×数量=总价2、单产量×数量=总产量3、速度×时间=路程4、工效×时间=工作总量5、加数+加数=和一个加数=和+另一个加数被减数-减数=差减数=被减数-差被减数=减数+差因数×因数=积一个因数=积÷另一个因数被除数÷除数=商除数=被除数÷商被除数=商×除数有余数的除法:被除数=商×除数+余数一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。

例:90÷5÷6=90÷(5×6)6、1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1吨=1000千克1千克= 1000克= 1公斤= 1市斤1公顷=10000平方米。

1亩=666.666平方米。

1升=1立方分米=1000毫升1毫升=1立方厘米7、什么叫比:两个数相除就叫做两个数的比。

如:2÷5或3:6或1/3比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。

8、什么叫比例:表示两个比相等的式子叫做比例。

如3:6=9:189、比例的基本性质:在比例里,两外项之积等于两内项之积。

10、解比例:求比例中的未知项,叫做解比例。

如3:χ=9:1811、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。

如:y/x=k( k一定)或kx=y12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。

(完整版)常用的数量关系式

(完整版)常用的数量关系式

常用的数量关系式1、速度×时间=路程路程÷速度=时间路程÷时间=速度2、单价×数量=总价总价÷单价=数量总价÷数量=单价3、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率4、加数+加数=和和-一个加数=另一个加数5、被减数-减数=差被减数-差=减数差+减数=被减数6、因数×因数=积积÷一个因数=另一个因数6、被除数÷除数=商被除数÷商=除数商×除数=被除数在有余数的除法中: (被除数-余数)÷除数=商7、总数÷总份数=平均数8、相遇问题相遇路程=速度和×相遇时间或相遇路程=快车速度×相遇时间+慢车速度×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间9、利息=本金×利率×时间10、收入-支出=结余单产量×数量=总产量量的计量在日常生活、生产劳动和科学研究中,经常要进行各种量的计量,我国法定计量单位与国际计量单位一致。

名数;数和单位名称合起来叫做名数。

单名数:只含有一种单位名称的名数叫单名数。

复名数:含有两种或两种以上单位名称的名数叫复名数。

×进率高级单位的名数低级单位的名数÷进率长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算1平方千米=1000000平方米1公顷=10000平方米1平方千米=100公顷1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体积(容积)单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1立方分米=1升1立方厘米=1毫升1升=1000毫升质量单位换算1吨=1000 千克1千克=1000克1千克=1公斤人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月=4个季度大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒练习:填空(1). 1时30分=()时40分=()时时=()分0.7时=()分平方米=()平方分米125克=()千克2 立方分米=()升=()毫升10 吨=()吨()千克()元=50元8角1分(2).1米∶ 10厘米=()∶()=()∶()100毫升∶1升=()∶()=()∶ ()(3).填上适当的计量单位名称。

数量关系计算公式方面

数量关系计算公式方面

数量关系计算公式方面1、单价×数量=总价2、单产量×数量=总产量3、速度×时间=路程4、工效×时间=工作总量5、加数+加数=和一个加数=和+另一个加数被减数-减数=差减数=被减数-差被减数=减数+差被除数=商×除数被除数÷除数=商除数=被除数÷商因数×因数=积一个因数=积÷另一个因数有余数的除法:被除数=商×除数+余数一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。

6、1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1吨=1000千克1千克= 1000克= 1公斤= 1市斤1公顷=10000平方米。

1亩=666.666平方米。

1升=1立方分米=1000毫升1毫升=1立方厘米7、比:两个数相除就叫做两个数的比。

如:比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。

8、比例:表示两个比相等的式子叫做比例。

9、比例的基本性质:在比例里,两外项之积等于两内项之积。

10、解比例:求比例中的未知项,叫做解比例。

11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。

如:y/x=k( k一定)或kx=y12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。

如:x×y = k( k一定)或k / x = y百分数:表示一个数是另一个数的百分之几的数,叫做百分数。

百分数也叫做百分率或百分比。

基本数量关系式及常用公式

基本数量关系式及常用公式

基本数量关系式及常用公式一.基本数量关系式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率二.加减乘除个部分之间的关系1、加数+加数=和和-一个加数=另一个加数2、被减数-减数=差被减数-差=减数差+减数=被减数3、因数×因数=积积÷一个因数=另一个因数4、被除数÷除数=商被除数÷商=除数商×除数=被除数三.小学数学图形计算公式1、正方形:C周长S面积a边长周长=边长×4 C=4a 面积=边长×边长S=a×a2、正方体:V:体积a:棱长表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3、长方形:C周长S面积a边长周长=(长+宽)×2 C=2(a+b)面积=长×宽S=ab4、长方体V:体积s:面积a:长b:宽h:高(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5、三角形s面积a底h高面积=底×高÷2 s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形:s面积a底h高面积=底×高s=ah7、梯形:s面积 a上底b下底h高面积=(上底+下底)×高÷2 s=(a+b)×h÷28、圆形:S面积 C周长πd=直径r=半径(1)周长=直径×π=2×π×半径C=πd=2πr(2)面积=半径×半径×πS=πr29、圆柱体:v体积h:高s:底面积r:底面半径c:底面周长(1)侧面积=底面周长×高S侧=(2πr) h(2)表面积=侧面积+底面积×2 S表= S侧+ S×2(3)体积=底面积×高V= S×h(4)体积=侧面积÷2×半径V = S侧÷2×r10、圆锥体:v体积h高s底面积r底面半径体积=底面积×高÷3V= S×h÷3四.典型应用题的解题方法1.平均数问题:总数÷总份数=平均数2.和差问题的公式(和+差)÷2=大数(和-差)÷2=小数3.和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)4.差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)5.植树问题(1)非封闭线路上的植树问题主要可分为以下三种情形:①如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1)②如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数③如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1)(2)封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数6.盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数7.相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间8.追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间9.流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷210.浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量11.利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常用数学公式汇总一、基础代数公式1. 平方差公式:(a +b )´(a -b )=a 2 -b22. 完全平方公式:(a ±b ) 2 =a 2 ±2ab +b 2完全立方公式:(a ±b )3=(a ±b )(a 2 ab+b2) 3. 同底数幂相乘: a m´a n =a m +n(m 、n 为正整数,a ¹0) 同底数幂相除:a m ¸a n =a m -n (m 、n 为正整数,a ¹0)a 0 =1(a ¹0)a -p= p a1 (a ¹0,p 为正整数)4. 等差数列:(1)s n = 2 ) ( 1 n a a n⨯ + =na 1+ 21 n(n-1)d ; (2)a n =a 1+(n -1)d ;(3)n = d a a n 1- +1;(4)若a,A,b 成等差数列,则:2A =a+b ;(5)若m+n=k+i ,则:a m +a n =a k +a i ;(其中:n 为项数,a 1 为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和)5. 等比数列:(1)an =a 1 q -1 ; (2)s n = q q a n - 1 1 · 1 ) - ( (q 1)≠ (3)若a,G,b 成等比数列,则:G 2=ab ;(4)若m+n=k+i ,则:a m ·a n =a k ·a i ; (5)am -a n =(m-n)d (6) nma a =q (m-n) (其中:n 为项数,a 1 为首项,a n 为末项,q 为公比,s n 为等比数列前n 项的和)6.一元二次方程求根公式:ax2+bx+c=a(x-x 1)(x-x 2) 其中:x 1= a ac b b 2 4 2 - + - ;x 2= aac b b 2 4 2 - - - (b 2-4ac 0) ≥ 根与系数的关系:x 1+x 2=- ab ,x 1·x 2= a c二、基础几何公式1. 三角形:不在同一直线上的三点可以构成一个三角形;三角形内角和等于180°;三角形中任两 边之和大于第三边、任两边之差小于第三边;(1)角平分线:三角形一个的角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段,叫做三角形 的角的平分线。

(2)三角形的中线:连结三角形一个顶点和它对边中点的线段叫做三角形的中线。

(3)三角形的高:三角形一个顶点到它的对边所在直线的垂线段,叫做三角形的高。

(4)三角形的中位线:连结三角形两边中点的线段,叫做三角形的中位线。

(5)内心:角平分线的交点叫做内心;内心到三角形三边的距离相等。

重心:中线的交点叫做重心;重心到每边中点的距离等于这边中线的三分之一。

垂线:高线的交点叫做垂线;三角形的一个顶点与垂心连线必垂直于对边。

外心:三角形三边的垂直平分线的交点,叫做三角形的外心。

外心到三角形的三个顶点的距离相等。

直角三角形:有一个角为90度的三角形,就是直角三角形。

直角三角形的性质:(1)直角三角形两个锐角互余;(2)直角三角形斜边上的中线等于斜边的一半;(3)直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半;(4)直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角是30°;(5)直角三角形中,c2 =a 2 +b 2 (其中:a 、b 为两直角边长,c 为斜边长); (6)直角三角形的外接圆半径,同时也是斜边上的中线; 直角三角形的判定: (1)有一个角为90°;(2)边上的中线等于这条边长的一半;(3)若c2 =a 2 +b 2 ,则以a 、b 、c 为边的三角形是直角三角形; 2. 面积公式:正方形=边长´边长; 长方形= 长´宽;三角形= 21´ 底´高; 梯形 =2高(上底+下底)⨯ ; 圆形 =R2 平行四边形=底´高扇形 = 0 360n R 2正方体=6´边长´边长长方体=2´(长´宽+宽´高+长´高);圆柱体=2pr 2+2prh ;球的表面积=4R2 3. 体积公式正方体=边长´边长´边长; 长方体=长´宽´高;圆柱体=底面积´高=Sh =pr 2h圆锥 = 3 1 pr 2 h 球 = 3 34 R π 4. 与圆有关的公式设圆的半径为r ,点到圆心的距离为d ,则有:(1)d ﹤r :点在圆内(即圆的内部是到圆心的距离小于半径的点的集合); (2)d =r :点在圆上(即圆上部分是到圆心的距离等于半径的点的集合); (3)d ﹥r :点在圆外(即圆的外部是到圆心的距离大于半径的点的集合); 线与圆的位置关系的性质和判定:如果⊙O 的半径为r ,圆心O 到直线的距离为d ,那么: l (1)直线l 与⊙O 相交:d ﹤r ;(2)直线l 与⊙O 相切:d =r ; (3)直线l 与⊙O 相离:d ﹥r ; 圆与圆的位置关系的性质和判定:设两圆半径分别为R 和r ,圆心距为d ,那么:(1)两圆外离:; r R d + > (2)两圆外切:; r R d + = (3)两圆相交:(r R d rR + < < -r ≥); (4)两圆内切:( r R d - =r R >); (5)两圆内含:(r R d - <r >). 圆周长公式:C =2pR =pd (其中R 为圆半径,d 为圆直径,p »3.1415926»10);n 的圆心角所对的弧长l 的计算公式:l = 180Rn ;扇形的面积:(1)S 扇= 360 n pR 2 ;(2)S 扇= 2 1 l ;R ; 若圆锥的底面半径为r ,母线长为l ,则它的侧面积:S 侧=pr l 圆锥的体积:V = 3 1 Sh = 3 1 pr 2 h 。

三、其他常用知识1. 2 X 、3 X 、7 X 、8 X 的尾数都是以4为周期进行变化的;4 X 、9 X 的尾数都是以2为周期进行变化的;另外5 X 和6 X 的尾数恒为5和6,其中x 属于自然数。

2. 对任意两数a 、b ,如果a -b >0,则a >b ;如果a -b <0,则a <b ;如果a -b =0,则a =b 。

当a 、b 为任意两正数时,如果a/b >1,则a >b ;如果a/b <1,则a <b ;如果a/b =1,则a =b 。

当a 、b 为任意两负数时,如果a/b >1,则a <b ;如果a/b <1,则a >b ;如果a/b =1,则a =b 。

对任意两数a 、b ,当很难直接用作差法或者作商法比较大小时,我们通常选取中间值C ,如果 a >C ,且C >b ,则我们说a >b 。

3. 工程问题:工作量=工作效率´工作时间;工作效率=工作量¸工作时间; 工作时间=工作量¸工作效率;总工作量=各分工作量之和; 注:在解决实际问题时,常设总工作量为1。

4. 方阵问题:(1)实心方阵:方阵总人数=(最外层每边人数)2 最外层人数=(最外层每边人数-1)´4(2)空心方阵:中空方阵的人数=(最外层每边人数)2 -(最外层每边人数-2´层数) 2 =(最外层每边人数-层数)´层数´4=中空方阵的人数。

例:有一个3层的中空方阵,最外层有10人,问全阵有多少人?5. 利润问题:(1)利润=销售价(卖出价)-成本;利润率=成本 利润 = 成本 销售价-成本 = 成本销售价-1; 销售价=成本´(1+利润率);成本= +利润率销售价1 。

(2)单利问题利息=本金´利率´时期;本利和=本金+利息=本金´(1+利率´时期); 本金=本利和¸(1+利率´时期)。

年利率¸12=月利率; 月利率´12=年利率。

例解:用月利率求。

3年=12月´3=36个月 2400´(1+10.2%´36) =2400´1.3672 =3281.28(元) 6. 排列数公式:P =n (n -1)(n -2)¼(n -m +1),(m £n )mn 组合数公式:C mn =P ¸P =(规定=1)。

mn mm 0n C “装错信封”问题:D 1=0,D 2=1,D 3=2,D 4=9,D 5=44,D 6=265, 7. 年龄问题:关键是年龄差不变;几年后年龄=大小年龄差¸倍数差-小年龄 几年前年龄=小年龄-大小年龄差¸倍数差8. 日期问题:闰年是366天,平年是365天,其中:1、3、5、7、8、10、12月都是31天,4、6、9、11是 30天,闰年时候2月份29天,平年2月份是28天。

9. 植树问题(1)线形植树:棵数=总长÷间隔+1 (2)环形植树:棵数=总长÷间隔 (3)楼间植树:棵数=总长÷间隔-1(4)剪绳问题:对折N 次,从中剪M 刀,则被剪成了(2 N´M +1)段 10. 鸡兔同笼问题:鸡数=(兔脚数´总头数-总脚数)¸(兔脚数-鸡脚数) (一般将“每”量视为“脚数” ) 得失问题(鸡兔同笼问题的推广):不合格品数=(1只合格品得分数´产品总数-实得总分数)¸(每只合格品得分数+每只不合格品扣分数) =总产品数-(每只不合格品扣分数´总产品数+实得总分数)¸(每只合格品得分数+每只不合格品 扣分数)“灯泡厂生产灯泡的工人,按得分的多少给工资。

每生产一个合格品记4分,每生产一个不合格品不仅不记 分,还要扣除15分。

某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?” (4´1000-3525)¸(4+15) =475¸19=25(个)11.盈亏问题:(1)一次盈,一次亏:(盈+亏)¸(两次每人分配数的差)=人数(2)两次都有盈: (大盈-小盈)¸(两次每人分配数的差)=人数 (3)两次都是亏: (大亏-小亏)¸(两次每人分配数的差)=人数 (4)一次亏,一次刚好:亏¸(两次每人分配数的差)=人数 (5)一次盈,一次刚好:盈¸(两次每人分配数的差)=人数“小朋友分桃子,每人10个少9个,每人8个多7个。

相关文档
最新文档