中考数学分类讨论专题复习教案

合集下载

中考数学专题复习教案

中考数学专题复习教案

中考数学专题复习教案一、教学目标本教案旨在帮助学生复中考数学各个专题,提高他们的数学能力和应试技巧。

具体目标如下:1. 复和掌握中考数学常见的专题知识点;2. 提高解题能力,培养学生的逻辑思维和问题解决能力;3. 熟悉中考数学题型和解题技巧,为考试做好准备。

二、教学内容根据中考数学的考试大纲和常见试题,本教案将涵盖以下专题的重点内容:1. 整式的加减运算2. 整式的乘法3. 分式的加减运算4. 分式的乘除运算5. 初等函数6. 平面图形的性质与运动7. 空间图形的性质与运动8. 数据的收集、整理与分析9. 概率与统计10. 三角形的性质与计算三、教学方法与策略为了有效地提高学生的数学研究效果,本教案采用以下教学方法和策略:1. 知识与实践相结合:通过教师讲解和学生实际操作相结合,深化学生对数学知识的理解;2. 案例教学:通过实际例题,让学生掌握解题的方法和技巧;3. 互动教学:引导学生积极参与讨论和提问,增强他们的研究兴趣和主动性;4. 个性化教学:根据学生的不同差异,采用不同的教学方式和资源,满足学生的研究需求;5. 检测与评价:定期进行小测验和练,及时发现学生的问题并加以解决。

四、教学评价为了对学生的研究情况进行评价和跟踪,本教案将采用以下评价方式:1. 日常表现评价:包括学生的课堂参与情况、作业完成情况等;2. 期中考试:对学生的专题掌握情况进行全面测试;3. 模拟考试:模拟中考试题,检验学生对各个专题的综合应用能力;4. 学业成绩评价:综合考虑学生的平时表现、考试成绩等因素,对学生的数学学业水平进行评价。

五、教学资源为了支持教学的顺利进行,本教案将准备以下教学资源:1. 教材:根据教学内容准备相应的教材和教辅资料;2. 题:提供各个专题的练题,供学生进行巩固和练;3. 投影仪和白板:用于展示案例和讲解;4. 计算器:辅助学生进行计算和实验。

六、教学计划根据教学内容和学校的教学进度,本教案将制定详细的教学计划。

中考数学复习方法教案版

中考数学复习方法教案版

中考数学复习方法教案精编版第一章:中考数学复习策略1.1 复习目标与计划分析中考数学考试大纲,明确复习目标。

制定合理的复习计划,确保全面覆盖知识点。

1.2 重点与难点确定中考数学的重点与难点内容。

针对性地进行讲解和练习,帮助学生掌握关键知识点。

1.3 复习方法与技巧介绍有效的复习方法和技巧,如分类复习、错题回顾等。

引导学生运用这些方法进行自主复习。

第二章:数与代数2.1 数的性质与运算复习有理数的加减乘除、乘方、平方根等运算。

强调运算顺序和法则,提高运算速度和准确性。

2.2 代数表达式与方程复习代数表达式的化简、求值、解方程等。

引导学生掌握解一元一次方程、一元二次方程等常见方程的方法。

第三章:几何专题3.1 平面几何复习点、线、面的基本性质和判定。

讲解三角形、四边形、圆等图形的性质和判定定理。

3.2 空间几何复习立体图形的性质和判定。

讲解三视图、对角线、表面积、体积等空间几何问题。

第四章:统计与概率4.1 统计复习数据的收集、整理、描述和分析方法。

讲解图表的绘制和解读,如条形图、折线图、饼图等。

4.2 概率复习事件的发生概率和统计概率的计算。

讲解条件概率、独立事件的概率等概率问题。

第五章:数学应用5.1 应用题解析复习应用题的解题思路和步骤。

讲解比例问题、行程问题、利润问题等常见应用题型的解法。

5.2 数学阅读题复习数学阅读题的解题技巧。

讲解从文中获取信息、建立数学模型的方法。

第六章:函数与图像6.1 一次函数与二次函数复习一次函数和二次函数的定义、图像特点。

讲解函数的增减性、对称性、零点等性质。

6.2 反比例函数与函数应用复习反比例函数的定义和图像特点。

讲解函数图像的变换和函数应用问题。

第七章:综合题型7.1 分析题复习分析题的解题思路和步骤。

讲解如何从问题中提炼关键信息,建立数学模型。

7.2 探究题复习探究题的解题思路和步骤。

讲解如何运用数学知识和方法进行探究和解决问题。

第八章:解题策略与优化8.1 解题技巧与方法复习解题技巧和方法,如换元法、分解法、数形结合法等。

初中数学中考总复习教案

初中数学中考总复习教案

初中数学中考总复习教案第一章:实数与代数1.1 有理数理解有理数的定义及分类掌握有理数的加减乘除运算规则能够进行有理数的乘方和开方运算1.2 整式与分式理解整式和分式的定义掌握整式和分式的加减乘除运算规则能够进行整式和分式的化简和求值第二章:函数与方程2.1 一次函数和二次函数理解一次函数和二次函数的定义和性质掌握一次函数和二次函数的图像和解析式能够解决一次函数和二次函数的实际问题2.2 一元一次方程和一元二次方程理解一元一次方程和一元二次方程的定义和解法掌握一元一次方程和一元二次方程的解法和应用能够解决一元一次方程和一元二次方程的实际问题第三章:几何与变换3.1 平面几何基本概念理解点、线、面的基本概念和性质掌握线段、射线、直线的性质和运算能够进行线段和角的大小比较3.2 三角形理解三角形的定义和性质掌握三角形的分类和判定方法能够解决三角形的相关问题第四章:统计与概率4.1 统计理解统计的基本概念和方法掌握数据的收集、整理和表示方法能够进行数据的分析和解释4.2 概率理解概率的基本概念和方法掌握事件的分类和概率的计算方法能够解决概率相关问题第五章:综合应用题5.1 实数与代数的综合应用题能够解决涉及实数与代数的综合应用题5.2 函数与方程的综合应用题能够解决涉及函数与方程的综合应用题5.3 几何与变换的综合应用题能够解决涉及几何与变换的综合应用题5.4 统计与概率的综合应用题能够解决涉及统计与概率的综合应用题第六章:实数与代数的综合应用题6.1 实数与代数的综合应用题能够解决涉及实数与代数的综合应用题,如面积、体积、距离等问题。

6.2 列代数式与求代数式的值能够根据实际问题列出相应的代数式能够求出代数式的值,包括解含绝对值、平方、立方等的代数式。

第七章:函数与方程的综合应用题7.1 一次函数和二次函数的综合应用题能够解决涉及一次函数和二次函数的综合应用题,如实际问题、图像分析等问题。

7.2 一元一次方程和一元二次方程的综合应用题能够解决涉及一元一次方程和一元二次方程的综合应用题,如实际问题、方程组等问题。

深圳市中考数学总复习课件(专题:分类讨论问题)

深圳市中考数学总复习课件(专题:分类讨论问题)

题目2
根据以上分类讨论问题类型选取 数道中考真题进行讲解和分析。
题目3
根据以上分类讨论问题类型选取 数道中考真题进行讲解和分析。
思考题
1
1. 应用分类讨论法解决其他类型
数学问题
2. 分类讨论法在误差分析和实验 设计方面的应用
2
思考如何应用分类讨论法解决其他类型 数学问题。
思考分类讨论法在误差分析和实验设计 方面的应用。
深圳市中考数学总复习课 件(专题:分类讨论问题)
深圳市中考数学总复习课件 专题:分类讨论问题
分类讨论法概述
将原问题分成几个子问题,分别进行讨论,综合得出原问题的解。与条件概率的关系。优点与缺点。
常见的分类讨论问题类型及解法
ቤተ መጻሕፍቲ ባይዱ
整除性问题
常见整除性定理及应用。解 法:分类讨论+化简。
奇偶性问题
判断奇偶性的方法。解法: 分类讨论+化简。
最大最小问题
最大最小值的定义。解法: 分类讨论+化简 or 达到最大 最小值的条件。
递推关系问题
递推关系的表达。解法:分类讨论+化简 or 找出 递推规律。
均值不等式问题
均值不等式的表述及应用。解法:分类讨论+化 简 or 使用均值不等式。
练习题解析
题目1
根据以上分类讨论问题类型选取 数道中考真题进行讲解和分析。

初中数学中考总复习教案

初中数学中考总复习教案

初中数学中考总复习教案一、复习目标1. 回顾和巩固初中阶段所学的基本数学知识,包括代数、几何、概率和统计等。

2. 提高学生的解题能力和思维能力,使他们能够熟练运用所学的知识解决实际问题。

3. 培养学生的应试技巧,提高他们在中考中的数学成绩。

二、复习内容1. 实数与代数:有理数、无理数、实数、代数式的运算、方程的解法等。

2. 函数:一次函数、二次函数、反比例函数、函数的性质等。

3. 几何:平面几何、立体几何、几何图形的性质和判定等。

4. 概率与统计:概率的计算、统计图表的绘制等。

5. 综合应用题:解决实际问题,运用所学的数学知识进行分析和解题。

三、复习方法1. 讲解与练习相结合:通过讲解重点知识点和典型题目,帮助学生巩固所学知识,并通过练习题进行巩固。

2. 分类复习:将所学知识进行分类,有针对性地进行复习,提高复习效果。

3. 引导学生进行自主学习:鼓励学生自主复习和探索,培养他们的独立思考能力。

4. 定期进行模拟考试:通过模拟考试,检验学生的复习效果,并及时进行查漏补缺。

四、复习计划1. 第一阶段:回顾和巩固实数与代数、函数、几何的基本知识,进行基础知识点的梳理。

2. 第二阶段:进行概率与统计、综合应用题的复习,结合实际例子进行讲解和练习。

3. 第三阶段:进行模拟考试,检验复习效果,针对学生的薄弱环节进行重点复习。

五、教学评价1. 学生能够掌握初中阶段所学的基本数学知识,对各类题型有一定的解题技巧。

2. 学生的数学思维能力得到提高,能够灵活运用所学知识解决实际问题。

3. 学生在中考中取得优异的成绩,达到预期的复习目标。

六、复习策略1. 针对不同知识点,采用不同的复习方法,如总结归纳、对比分析、实例讲解等。

2. 注重基础知识的学习,加强对概念、定理、公式的理解和记忆。

3. 培养学生的解题习惯,强调审题、析题、答题的步骤,提高解题效率。

4. 创设问题情境,激发学生的学习兴趣,引导学生主动参与复习过程。

九年级数学中考专题:分类讨论1 复习课件全国通用

九年级数学中考专题:分类讨论1 复习课件全国通用
BQP 的正切值; (3)当t为何值时,以B、P、Q三点为顶点的三角形是等 腰三角形?
(4)是否存在时刻t,使得PQ⊥BD?若存 在,求出 t的值;若不存在,请说明理由。
解:(1)如图1所示,过点P作PM BC, 垂足为M,则四边形PDCM为矩形。
PM DC 12 QB 16 t 1 S 12 (16 t ) 96 6t 12 (2)如图2所示,由OAP OBQ
150°




F a
在下图三角形的边上找出一点,使得该点与
三角形的两顶点构成等腰三角形!
A
110° 20° 50°
B
C
(分类讨论)
1、对∠A进行讨论
A 110° 20° 50°
C
20° 20°
B
C
A C
20° 20°
B 2、对∠B进行讨论 C
65°
3、对∠C进行讨论
C
110° 35° 50°
A C
图1 E


QE 12 30 在RtPEQ中, tanQPE , BQP QPE, PE t 29 30 tanBQP 29
(3)由图 1可知:CM PD 2t , CQ t , 若B、P、Q三点为顶点的三角形是 等腰三角形, 可分为三种情况;
①若PQ BQ。在RtPMQ中,PQ2 t 2 122.
当a=0时,为一次函数y=3x+1,交点为(1 a=9,交点为(-1,0)或( 3 1 ,0); 3
1 1 解析式为 Y= 3 x-4, 或 y=- x-3 3
当a不为0时,为二次函数y=ax2+(3-a)x+1, △ =a2 -10a+9=0. 解得a=1或 ,0)

(完整版)中考数学分类讨论专题复习教案

(完整版)中考数学分类讨论专题复习教案

中考数学分类讨论专题复习教案本资料为woRD文档,请点击下载地址下载全文下载地址第53讲中考复习专题(三)分类讨论复习教案【内容分析】重点:从问题的实际出发进行分类讨论.难点:克服思维的片面性,防止漏解.考点解读:在中学数学的概念、定理、法则、公式等基础知识中,有不少是分类给出的,遇到涉及这些知识的问题,就可能需要分类讨论。

另外,有些数学问题在解答中,可能条件或结论不唯一确定,有几种可能性,也需要从问题的实际出发进行分类讨论。

把被研究的对象分成若干种情况,然后对各种情况逐一进行讨论,最终得以解决整个问题,这种解决问题的方法称为分类讨论思想方法。

它体现了化整为零与积零为整的思想,是近年来中考重点考查的思想方法。

分类讨论思想方法也是一种重要的解题策略。

分类思想方法实质上是按照数学对象的共同性和差异性,将其区分为不同的种类的思想方法,其作用是克服思维的片面性,防止漏解.要注意,在分类时,必须按同一标准分类,做到不重不漏.【复习目标】通过复习能够掌握从问题的实际出发进行分类讨论的思想方法.当问题中存在不确定因素时,能够把被研究的对象分成若干种情况,然后对各种情况逐一进行讨论,最终得以解决整个问题.【教学环节安排】环节教学问题设计教学活动设计知识回顾在初中阶段数学教学中已经渗透了分类思想:如..在实数,,,,中,无理数有()A.1个B.2个c.3个D.4个2.下列根式中,不是最简二次根式的是()A.B.c.D.3.在式子,,,x,,32,,2x-y中单项式有,多项式有,整式有.教师与学生共同回顾,同时根据情况,可让学生适当举例说明.综合应用【典例分析】几何类讨论【例1】如图1,正方形ABCD的边长为2,BE=CE,MN=1,线段MN的两端在CD、AD上滑动,当Dm= 时,△ABE与以D、m、N为顶点的三角形相似.【分析】已知∠B=∠D,要使两三角形相似,必须还得使夹边对应成比例。

这就牵涉到找对应边的问题,Dm到底是和哪那条边对应边,我们不能确定,所以就要分情况来讨论:△ABE与以D、m、N为顶点的三角形相似时,Dm可以与BE 是对应边,也可以与AB是对应边,所以本题分两种情况.【思路点拨】当问题中存在不确定因素时,就要分情况进行讨论.【例2】如图2,在Rt△ABc中,∠BAc=90°,AB=Ac=2,点D在Bc上运动(不能到达点B、c),过D作∠ADE=45°,DE交Ac于E。

中考数学专题复习教学案--分类讨论题(附答案)

中考数学专题复习教学案--分类讨论题(附答案)

分类讨论题类型之一直线型中的分类讨论直线型中的分类讨论问题主要是对线段、三角形等问题的讨论,特别是等腰三角形问题和三角形高的问题尤为重要.例1.(·沈阳市)若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为()A.50° B.80° C.65°或50°D.50°或80°【解析】由于已知角未指明是顶角还是底角,所以要分类讨论:(1)当50°角是顶角时,则(180°-50°)÷2=65°,所以另两角是65°、65°;(2)当50°角是底角时,则180°-50°×2=80°,所以顶角为80°。

故顶角可能是50°或80°.答案:D .同步测试:1.(•乌鲁木齐)某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A.9cm B.12cm C.15cm D.12cm或15cm2. (·江西省)如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A 落在点A′处,(1)求证:B′E=BF;(2)设AE=a,AB=b, BF=c,试猜想a、b、c之间有何等量关系,并给予证明.类型之二圆中的分类讨论圆既是轴对称图形,又是中心对称图形,在解决圆的有关问题时,特别是无图的情况下,有时会以偏盖全、造成漏解,其主要原因是对问题思考不周、思维定势、忽视了分类讨论等.例2.(•湖北罗田)在Rt△ABC中,∠C=900,AC=3,BC=4.若以C点为圆心, r为半径所作的圆与斜边AB只有一个公共点,则r的取值范围是___ __.【解析】圆与斜边AB只有一个公共点有两种情况,1、圆与AB相切,此时r=2.4;2、圆与线段相交,点A在圆的内部,点B在圆的外部或在圆上,此时3<r≤4。

中考数学专题复习一分类讨论思想PPT课件

中考数学专题复习一分类讨论思想PPT课件
过点A作AD⊥BC,垂足为D, ∵∠ACB=75°-∠B=45°, sinACD AD,
AC
∴AD=AC×sin 45°, 在Rt△ABD中,∠B=30°,
∴AB=2AD=2AC×sin 45°=750 2 m.
答案:750 2 m
【知识归纳】解直角三角形实际应用的两点技能 1.转化:利用直角三角形或构造直角三角形解决实际问题,一 般先把实际问题转化为数学问题,若题目中无直角三角形,需 要添加辅助线(如作三角形的高等)构造直角三角形,再利用解 直角三角形的知识求解. 2.前提:解直角三角形时结合图形分清图形中哪个三角形是直 角三角形,哪条边是角的对边、斜边、邻边,此外正确理解俯 角、仰角、坡度、坡角等名词术语是解答此类题目的前提条件.
5.一次函数:已知一次函数与坐标轴围成的三角形的面积,求k 的值,常分直线交于坐标轴正半轴和负半轴讨论;确定反比例函 数与一次函数交点个数,常分一、三象限或二、四象限两种情 况讨论. 6.圆:圆的一条弦(直径除外)对两条弧,常分优弧和劣弧两种情 况讨论;求圆中两条平行弦的距离,常分两弦在圆心的同旁和两 旁两种情况讨论;圆与圆的相切,此时要考虑分外切和内切两种 情况讨论.
4.在几何中的应用:对于几何问题,我们常通过图形,找出边、 角的数量关系,通过边、角的数量关系,得出图形的性质等.
【例2】(2013·兰州中考)已知反比例函数y1= k 的图象与
x
一次函数y2=ax+b的图象交于点A(1,4)和点B(m,-2). (1)求这两个函数的解析式. (2)视察图象,当x>0时,直接 写出y1>y2时自变量x的取值范围. (3)如果点C与点A关于x轴对称, 求△ABC的面积.
5.(2013·十堰中考)如图,在小山的东侧A点有一个热气球,由

中考数学复习方法教案版

中考数学复习方法教案版

中考数学复习方法教案精编版一、教学目标1. 让学生了解中考数学复习的重要性,明确复习的目的和意义。

2. 培养学生掌握有效的数学复习方法,提高复习效率。

3. 帮助学生构建数学知识体系,巩固所学知识点。

4. 提升学生的数学思维能力,提高解题技巧。

二、教学内容1. 中考数学复习策略:a. 制定合理的复习计划b. 抓住重点,突破难点c. 分类整理,逐步复习d. 做好笔记,及时回顾2. 中考数学复习方法:a. 梳理知识点,形成知识网络b. 理解概念,掌握定理和公式c. 演练真题,提高应试能力三、教学过程1. 导入:引导学生回顾学习过程中的困惑和问题,激发学生复习的兴趣。

2. 讲解:详细讲解中考数学复习策略和方法,让学生明确复习的方向。

3. 案例分析:分析典型的中考数学题目,引导学生掌握解题技巧。

4. 实践演练:布置相关练习题,让学生运用所学方法进行自主复习。

5. 总结:对本节课的内容进行总结,强调复习的重要性和方法的应用。

四、教学评价1. 学生能够明确中考数学复习的目的和意义。

2. 学生掌握了一定的数学复习方法,能够自主进行复习。

3. 学生在解题过程中能够运用所学方法,提高解题效率。

五、教学资源1. 教学课件:展示中考数学复习策略和方法。

2. 练习题:供学生课后巩固所学知识。

3. 参考资料:提供一些中考数学复习的技巧和经验。

六、教学扩展1. 复习方法深入探讨:结合具体学科内容,深入分析不同类型题目的解题策略,如几何题、代数题、概率统计题等。

2. 学习小组互动:鼓励学生分组讨论,分享复习心得和解题经验,互相学习,共同进步。

七、教学案例1. 分析典型案例:选取具有代表性的中考数学题目,分析解题思路和方法,引导学生学会分析题目,找到解题关键。

2. 学生自主演练:让学生在课堂上或课后自主完成类似题目,检验复习效果,巩固知识点。

八、教学实践1. 模拟考试:组织模拟考试,让学生在真实考试环境中检验自己的复习成果,发现不足,及时调整复习策略。

中考数学一轮复习 分类讨论专题导学案

中考数学一轮复习 分类讨论专题导学案

分类讨论专题
思想在解决问题中的作用
求另外两角
,若
P
从点A
从点B
移动的时间
直角三角形中的直角顶点的分类讨论怎样解决?你还能举出分类讨论思想在
的坐标是(1,4),小亮站在
轴上点的位置,使△ABC为直角三角形,
厘米,那么,这条丝巾的:任务是
指导:学科长主持
由基础薄弱的同学开始轮流提出问题
相应的指导、点拨和生成小组问题,写在黑板上,全班交流,解决其他组可以解决的问题,最后生成各
分,鼓励其他小组向他们学习。

,动点P
移动,同时
移动,
相似?
.直角三角形中的直角顶点的分类讨论怎样解决?你还能举出分类讨
的坐标是(1,4),小
C的位置,使△ABC
的坐标;
要求:合上课本,
角为
,经检验两种可能都能组成三角形,所以这个三角形周长。

(完整版)中考数学分类讨论专题复习教案

(完整版)中考数学分类讨论专题复习教案

中考数学分类议论专题复习教课设计本资料为woRD 文档,请地点下载全文下载地点第53讲中考复习专题(三)分类议论复习教课设计【内容剖析】要点:从问题的本质出发进行分类议论.难点:战胜思想的片面性,防备漏解.考点解读:在中学数学的看法、定理、法例、公式等基础知识中,有许多是分类给出的,碰到波及这些知识的问题,便可能需要分类议论。

此外,有些数学识题在解答中,可能条件或结论不独一确立,有几种可能性,也需要从问题的本质出发进行分类议论。

把被研究的对象分红若干种状况,而后对各样状况逐个进行议论,最后得以解决整个问题,这类解决问题的方法称为分类议论思想方法。

它表现了化整为零与积零为整的思想,是最近几年来中考要点考察的思想方法。

分类议论思想方法也是一种重要的解题策略。

分类思想方法本质上是依据数学对象的共同性和差别性,将其划分为不一样的种类的思想方法,其作用是战胜思想的片面性,防备漏解.要注意,在分类时,一定按同一标准分类,做到不重不漏.【复习目标】经过复习能够掌握从问题的本质出发进行分类议论的思想方法.当问题中存在不确立要素时,能够把被研究的对象分红若干种状况,而后对各样状况逐个进行议论,最后得以解决整个问题.【教课环节安排】环节教课识题设计教课活动设计知识回顾在初中阶段数学教课中已经浸透了分类思想:如.. 在实数,,,,中,无理数有()A.1 个B.2 个c.3 个D.4 个2.以下根式中,不是最简二次根式的是()A.B.c.D.3.在式子,,, x,,32,,2x-y中单项式有,多项式有,整式有.教师与学生共同回首,同时依据状况,可让学生适合举例说明.综合应用【典例剖析】几何类议论【例1】如图1,正方形ABCD的边长为2,BE=CE , MN =1,线段MN的两头在CD、AD上滑动,当Dm=时,△ ABE与以 D、 m、 N 为极点的三角形相像.【剖析】已知∠B=∠D, 要使两三角形相像,一定还得使夹边对应成比率。

数学复习中考教案七篇

数学复习中考教案七篇

数学复习中考教案七篇数学复习中考教案七篇数学复习中考教案如何写?数学科学家们不断争论计算机辅助认证的严谨性。

当大量计算难以验证时,很难说证明是有效的和严谨的。

下面是小编为大家带来的数学复习中考教案七篇,希望大家能够喜欢!数学复习中考教案篇1一、内容简介本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。

关键信息:1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。

首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。

通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。

学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。

2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。

二、学习者分析:1、在学习本课之前应具备的基本知识和技能:①同类项的定义。

②合并同类项法则③多项式乘以多项式法则。

2、学习者对即将学习的内容已经具备的水平:在学习完全平方公式之前,学生已经能够整理出公式的右边形式。

这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。

三、教学/学习目标及其对应的课程标准:(一)教学目标:1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。

2、会推导完全平方公式,并能运用公式进行简单的计算。

(二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理数、实数、代数式、防城、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、防城、不等式、函数等进行描述。

(四)解决问题:能结合具体情景发现并提出数学问题;尝试从不同角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。

(五)情感与态度:敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解;能从交流中获益。

2023中考数学学生复习教案七篇

2023中考数学学生复习教案七篇

2023中考数学学生复习教案七篇2023中考数学学生复习教案七篇中考数学学生复习教案如何写?数学中的一些美丽定理具有这样的特性:它们极易从事实中归纳出来,但证明却隐藏的极深。

数学是科学之王。

下面是小编为大家带来的2023中考数学学生复习教案七篇,希望大家能够喜欢!2023中考数学学生复习教案一、教材分析以《初中数学新课程标准》为依据,立足课本,本学期介绍二次根式、勾股定理、平行四边形、一次函数和数据的分析五章内容。

本册书的5章内容涉及《数学课程标准》中“数与代数”“空间与图形”“统计与概率”“实践与综合应用”四个领域的内容。

其中对于“实践与综合应用”领域的内容,本册书安排了课题学习,并在每一章的最后安排了2~3个数学活动,通过这些课题学习和数学活动落实“实践与综合应用”的要求。

这5章大体上采用相近内容相对集中的方式安排,第十六章、十九章基本属于“数与代数”领域,第十七章、十八章基本属于“空间与图形”领域,最后一章是“统计与概率”领域,这样安排有助于加强知识间的纵向联系。

在各章具体内容的编写中,又特别注意加强各领域之间的横向联系。

二、学情分析1.进一步加强基础知识的数学教学,培养学习好习惯每次数学考试,基础知识的考察占大比重。

但即使是平时比较好的同学,也经常在基础题上失分。

所以,在以后的教学中,要夯实基础,做到每个学生都把握好基础题不失分。

培养好的解题习惯,勤于思考,多学善问。

2.增强学生的数感在数学教学中,培养学生对数字的敏感能力。

比如,在化简二次根式时,就极大地运用了数感,无形中提高了做题的速度。

其次,数感的培养,有利于学生对自己所做题目的感性检验,增加学生做题的正确率,有助于提高学生的审题能力,做到选择题“快,准,好”。

3. 培养学生的初步的逻辑推理和抽象思考等基本的数学能力部分学生缺乏空间想象能力,而这一能力对学习数学是十分重要的,对今后高中学好空间几何起着举足轻重的作用。

另外,数学就是一门逻辑性极强的科学,应着力培养学生的数学逻辑性,有助于学生做好证明题和大体步骤的完整解答。

中考数学《第36讲:分类讨论型问题》总复习讲解含真题分类汇编解析

中考数学《第36讲:分类讨论型问题》总复习讲解含真题分类汇编解析

第36讲分类讨论型问题(建议该讲放第21讲后教学)内容特性分类讨论思想就是将要研究的数学对象按照一定的标准划分为若干不同的情形,然后逐类进行研究和求解的一种数学解题思想.对于存在的一些不确定因素而无法解答或结论不能给予统一表述的数学问题,我们往往将问题划分为若干类或若干个局部问题来解决.解题策略很多数学问题很难从整体上去解决,若将其划分为所包含的各个局部问题,就可以逐个予以解决.分类讨论在解题策略上就是分而治之各个击破.具体是:(1)确定分类对象;(2)进行合理分类(理清分类“界限”,选择分类标准,并做到不重复、不遗漏);(3)逐类进行讨论;(4)归纳并得出结论.基本思想分类讨论的基本方法是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对各个分类逐步进行讨论,分层进行,获取阶段性结果;最后进行归纳小结,综合得出结论.类型一由计算化简时,运用法则、定理和原理的限制引起的讨论例1(·南通模拟)矩形一个角的平分线分矩形一边为1cm和3cm两部分,则这个矩形的面积为()A.3cm2B.4cm2C.12cm2D.4cm2或12cm2【解后感悟】解此题的关键是求出AB=AE,注意AE=1或3不确定,要进行分类讨论.1.(1)若关于x的函数y=kx2+2x-1与x轴仅有一个公共点,则实数k的值为____________________.(2)已知平面上有⊙O及一点P,点P到⊙O上一点的距离最长为6cm,最短为2cm,则⊙O的半径为cm.(3)若|a|=3,|b|=2,且a>b,则a+b=()A.5或-1 B.-5或1 C.5或1 D.-5或-1类型二在一个动态变化过程中,出现不同情况引起的讨论例2为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.人均住房面积(平方米)单价(万元/平方米)不超过30(平方米)0.3超过30平方米不超过m平方米部分(45≤m≤60)0.5超过m平方米部分0.7根据这个购房方案:(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y关于x的函数关系式;(3)若该家庭购买商品房的人均面积为50平方米,缴纳房款为y万元,且57<y≤60时,求m的取值范围.【解后感悟】本题是房款=房屋单价×购房面积在实际生活中的运用,由于单价随人均面积而变化,所以用分段函数的解析式来描述.同时建立不等式组求解,解答本题时求出函数解析式是关键.2.(1)在平面直角坐标系中,直线y=-x+2与反比例函数y=1x的图象有唯一公共点,若直线y=-x+b与反比例函数y=1x的图象有2个公共点,则b的取值范围是()A.b>2 B.-2<b<2 C.b>2或b<-2 D.b<-2(2)如图,在平面直角坐标系中,四边形OBCD是边长为4的正方形,平行于对角线BD 的直线l从O出发,沿x轴正方向以每秒1个单位长度的速度运动,运动到直线l与正方形没有交点为止.设直线l扫过正方形OBCD的面积为S,直线l运动的时间为t(秒),下列能反映S与t之间函数关系的图象是()3.已知抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A,B(点A,B在原点O两侧),与y轴相交于点C,且点A,C在一次函数y2=43x+n的图象上,线段AB长为16,线段OC长为8,当y1随着x的增大而减小时,求自变量x的取值范围.类型三由三角形的形状、关系不确定性引起的讨论例3(·湖州)如图,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数y=1x和y=9x在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交y=1x的图象于点C,连结AC.若△ABC是等腰三角形,则k的值是________.【解后感悟】解题的关键是用k表示点A、B、C的坐标,再进行分类讨论.4.(1)在平面直角坐标系中,O为坐标原点,点A的坐标为(1,3),M为坐标轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为()A.4 B.5 C.6 D.8(2)(·北流模拟)如图,在Rt△ABC中,∠C=90°,AC=12,BC=6,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,要使△ABC和△QPA 全等,则AP=.(3)(·临淄模拟)如图,在正方形ABCD中,M是BC边上的动点,N在CD上,且CN=14CD ,若AB =1,设BM =x ,当x = 时,以A 、B 、M 为顶点的三角形和以N 、C 、M 为顶点的三角形相似.类型四 由特殊四边形的形状不确定性引起的讨论例4 (·鄂州模拟)如图1,在四边形ABCD 中,AD ∥BC ,AB =8cm ,AD =16cm ,BC =22cm ,∠ABC =90°,点P 从点A 出发,以1cm /s 的速度向点D 运动,点Q 从点C 同时出发,以3cm /s 的速度向点B 运动,其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t 秒.(1)当t 为何值时,四边形ABQP 成为矩形?(2)当t 为何值时,以点P 、Q 与点A 、B 、C 、D 中的任意两个点为顶点的四边形为平行四边形?(3)四边形PBQD 是否能成为菱形?若能,求出t 的值;若不能,请说明理由,并探究如何改变Q 点的速度(匀速运动),使四边形PBQD 在某一时刻为菱形,求点Q 的速度.【解后感悟】解本题的关键是用方程(组)的思想解决问题,涉及四边形的知识,同时也是存在性问题,解答时要注意分类讨论及数形结合.5.(1)(·盐城模拟)在平面直角坐标系中有三点A(1,1),B(1,3),C(3,2),在直角坐标系中再找一个点D ,使这四个点构成平行四边形,则D 点坐标为 .(2)(·江阴模拟)如图,在等边三角形ABC 中,BC =6cm ,射线AG ∥BC ,点E 从点A 出发沿射线AG 以1cm /s 的速度运动,点F 从点B 出发沿射线BC 以2cm /s 的速度运动.如果点E 、F 同时出发,设运动时间为t(s ),当t = s 时,以A 、C 、E 、F 为顶点的四边形是平行四边形.(3) (·金华模拟)如图,B(6,4)在函数y =12x +1的图象上,A(5,2),点C 在x 轴上,点D 在函数y =12x +1上,以A 、B 、C 、D 四个点为顶点构成平行四边形,写出所有满足条件的D 点的坐标 .(4)(·萧山模拟)已知在平面直角坐标系中,点A 、B 、C 、D 的坐标依次为(-1,0),(m ,n),(-1,10),(-7,p),且p ≤n.若以A 、B 、C 、D 四个点为顶点的四边形是菱形,则n 的值是 .类型五 由直线与圆的位置关系不确定性引起的讨论例5 如图,已知⊙O 的半径为6cm ,射线PM 经过点O ,OP =10cm ,射线PN 与⊙O 相切于点Q.A 、B 两点同时从点P 出发,点A 以5cm /s 的速度沿射线PM 方向运动,点B 以4cm /s 的速度沿射线PN 方向运动.设运动时间为t(s ).(1)求PQ 的长;(2)当t 为何值时,直线AB 与⊙O 相切?【解后感悟】本题是直线与圆的位置关系应用,题目设置具有创新性.解决本题的关键是抓住直线与圆的两种情况位置关系,及其对应数量关系进行分析.6.(·泗洪模拟)如图,已知⊙P 的半径为2,圆心P 在抛物线y =12x 2-1上运动,当⊙P与x 轴相切时,圆心P 的坐标为 .【压轴把关题】如图,在平面直角坐标系中,点A ,B 的坐标分别是(-3,0),(0,6),动点P 从点O 出发,沿x 轴正方向以每秒1个单位的速度运动,同时动点C 从点B 出发,沿射线BO 方向以每秒2个单位的速度运动.以CP ,CO 为邻边构造▱PCOD ,在线段OP 延长线上取点E ,使PE =AO ,设点P 运动的时间为t 秒.(1)当点C 运动到线段OB 的中点时,求t 的值及点E 的坐标; (2)当点C 在线段OB 上时,求证:四边形ADEC 为平行四边形;(3)在线段PE 上取点F ,使PF =1,过点F 作MN ⊥PE ,截取FM =2,FN =1,且点M ,N 分别在第一、四象限,在运动过程中,设▱PCOD 的面积为S.①当点M ,N 中,有一点落在四边形ADEC 的边上时,求出所有满足条件的t 的值; ②若点M ,N 中恰好只有一个点落在四边形ADEC 内部(不包括边界)时,直接写出S 的取值范围.【方法与对策】本题是四边形的综合题,对于第(3)题解题的关键是正确分几种不同情况求解.①当点C在BO上时,第一种情况,当点M在CE边上时,由△EMF∽△ECO求解,第二种情况,当点N在DE边上时,由△EFN∽△EPD求解;【分类讨论应不重复、不遗漏】在△ABC中,P是AB上的动点(P异于A,B),过点P的一条直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线.如图,∠A=36°,AB=AC,当点P在AC的垂直平分线上时,过点P的△ABC的相似线最多有________条.参考答案第36讲 分类讨论型问题【例题精析】例1 ∵四边形ABCD 是矩形,∴AB =CD ,AD =BC ,AD ∥BC ,∴∠AEB =∠CBE ,∵BE 平分∠ABC ,∴∠ABE =∠CBE ,∴∠AEB =∠ABE ,∴AB =AE ,①当AE =1cm 时,AB =1cm =CD ,AD =1cm +3cm =4cm =BC ,此时矩形的面积是1cm ×4cm =4cm 2;②当AE =3cm 时,AB =3cm =CD ,AD =4cm =BC ,此时矩形的面积是:3cm ×4cm =12cm 2;故选D .例2 (1)由题意,得三口之家应缴购房款为:0.3×90+0.5×30=42(万元); (2)由题意,得①当0≤x ≤30时,y =0.3×3x =0.9x ;②当30<x ≤m 时,y =0.9×30+0.5×3×(x -30)=1.5x -18;③当x >m 时,y =0.9×30+0.5×3(m -30)+0.7×3×(x -m)=2.1x -18-0.6m.∴y =⎩⎪⎨⎪⎧0.9x (0≤x ≤30)1.5x -18(30<x ≤m )2.1x -18-0.6m (x>m )(45≤m ≤60). (3)由题意,得①当50≤m ≤60时,y =1.5×50-18=57(舍).②当45≤m <50时,y =2.1×50-0.6m -18=87-0.6m.∵57<y ≤60,∴57<87-0.6m ≤60,∴45≤m <50.综合①②得45≤m <50.例3 ∵点B 是y =kx 和y =9x 的交点,y =kx =9x ,解得:x =3k ,y =3k ,∴点B 坐标为⎝⎛⎭⎫3k ,3k ,点A 是y =kx 和y =1x 的交点,y =kx =1x ,解得:x =1k ,y =k ,∴点A坐标为⎝⎛⎭⎫1k ,k ,∵BD ⊥x 轴,∴点C 横坐标为3k,纵坐标为13k=k3,∴点C 坐标为⎝ ⎛⎭⎪⎫3k ,k 3,∴BA ≠AC ,若△ABC 是等腰三角形,①AB =BC ,则⎝⎛⎭⎫3k -1k 2+(3k -k )2=3k -k 3,解得:k =377;②AC =BC ,则⎝⎛⎭⎫3k -1k 2+⎝⎛⎭⎫k 3-k 2=3k -k 3,解得:k =155;故答案为k =377或155.例4 (1)∵∠ABC =90°,AP ∥BQ ,∴当AP =BQ 时,四边形ABQP 成为矩形,由运动知,AP =t ,CQ =3t ,∴BQ =22-3t ,∴t =22-3t ,解得t =112.∴当t =112时,四边形ABQP成为矩形; (2)当P 、Q 两点与A 、B 两点构成的四边形是平行四边形时,就是(1)中的情形,此时t =112.当P 、Q 两点与C 、D 两点构成的四边形是平行四边形时,∵PD ∥QC ,∴当PD =QC 时,四边形PQCD 为平行四边形.此时,16-t =3t ,t =4;当P 、Q 两点与B 、D 两点构成的四边形是平行四边形时,同理,16-t =22-3t ,t =3;当P 、Q 两点与A 、C 两点构成的四边形是平行四边形时,同理,t =3t ,t =0,不符合题意;故当t =112或t =4或t =3时,以点P 、Q 与点A 、B 、C 、D 中的任意两个点为顶点的四边形为平行四边形. (3)四边形PBQD 不能成为菱形.理由如下:∵PD ∥BQ ,∴当PD =BQ =BP 时,四边形PBQD 能成为菱形.由PD =BQ ,得16-t =22-3t ,解得t =3,当t =3时,PD =BQ =13,AP =AD -PD =16-13=3.在Rt △ABP 中,AB =8,根据勾股定理得,BP =AB 2+AP 2=64+9=73≠13,∴四边形PBQD 不能成为菱形;如果Q 点的速度改变为v cm /s 时,能够使四边形PBQD 在时刻t s 为菱形,由题意得,⎩⎨⎧16-t =22-vt ,16-t =64+t 2,解得⎩⎪⎨⎪⎧t =6,v =2.故点Q 的速度为2cm /s 时,能够使四边形PBQD 在某一时刻为菱形.例5 (1)连结OQ ,∵PN 与⊙O 相切于点Q ,∴OQ ⊥PN ,即∠OQP =90°.∵OP =10,OQ =6,∴PQ =102-62=8(cm ). (2)过点O 作OC ⊥AB ,垂足为C.∵点A 的运动速度为5cm /s ,点B 的运动速度为4cm /s ,运动时间为t s ,∴PA =5t ,PB =4t.∵PO =10,PQ =8,∴PA PO =PB PQ =t2.∵∠P =∠P ,∴△PAB ∽△POQ ,∴∠PBA =∠PQO =90°.∵∠BQO =∠CBQ =∠OCB =90°,∴四边形OCBQ 为矩形,∴BQ =OC.∵⊙O 的半径为6,∴BQ =OC =6时,直线AB 与⊙O 相切.①当AB 运动到如图1所示的位置时,BQ =PQ -PB =8-4t ,由BQ =6,得8-4t =6,t =0.5.②当AB 运动到如图2所示的位置时,BQ =PB -PQ =4t -8,由BQ =6,得4t -8=6,t =3.5.综上,当t =0.5s 或3.5s 时,直线AB 与⊙O 相切.【变式拓展】1.(1)0或-1 (2)4或2 (3)C 2.(1)C (2)D3.根据OC 长为8可得一次函数中的n 的值为8或-8.分类讨论:①n =8时,易得A(-6,0),如图1,∵抛物线经过点A 、C ,且与x 轴交点A 、B 在原点的两侧,∴抛物线开口向下,则a <0,∵AB =16,且A(-6,0),∴B(10,0),而A 、B 关于对称轴对称,∴对称轴为直线x =-6+102=2,要使y 1随着x 的增大而减小,∵a <0,∴x ≥2;②n =-8时,易得A(6,0),如图2,∵抛物线过A 、C 两点,且与x 轴交点A ,B 在原点两侧,∴抛物线开口向上,则a >0,∵AB =16,且A(6,0),∴B(-10,0),而A 、B 关于对称轴对称,∴对称轴为直线x =6-102=-2,要使y 1随着x 的增大而减小,且a >0,∴x ≤-2.4.(1)C (2)6或12 (3)12或455.(1)(3,0)或(-1,2)或(3,4) (2)2或6 (3)(2,2)或(-6,-2)或(10,6) (4)2,5,186.(6,2)或(-6,2)【热点题型】【分析与解】(1)∵OB =6,C 是OB 的中点,∴BC =12OB =3.∴2t =3,即t =32s .∴OE =32+3=92,E(92,0). (2)如图1,连结CD 交OP 于点G ,在▱PCOD 中,CG =DG ,OG =PG ,∵AO =PE ,∴AG =EG .∴四边形ADEC 是平行四边形. (3)①(Ⅰ)当点C 在线段BO 上时,第一种情况:如图2,当点M 在CE 边上时,∵MF ∥OC ,∴△EMF ∽△ECO.∴MFCO=EF EO ,即26-2t =23+t,解得t =1.第二种情况:如图3,当点N 在DE 边时,∵NF ∥PD ,∴△EFN ∽△EPD.∴FN PD =EF EP 即16-2t =23,解得t =94.(Ⅱ)当点C 在BO 的延长线上时,第一种情况:如图4,当点M 在DE 边上时,∵MF ∥PD ,∴EMF ∽△EDP.∴MF DP =EF EP 即22t -6=23,解得t =92.第二种情况:如图5,当点N 在CE 边上时,∵NF ∥OC ,∴△EFN ∽△EOC.∴FN OC =EF EO 即12t -6=23+t ,解得t =5.综上所述,所有满足条件的t 的值为1,94,92,5.②278<S ≤92或272<S ≤20.【错误警示】当PD∥BC时,△APD∽△ABC,当PE∥AC时,△BPE∽△BAC,连结PC,∵∠A=36°,AB=AC,点P在AC的垂直平分线上,∴AP=PC,∠ABC=∠ACB =72°,∴∠ACP=∠PAC=36°,∴∠PCB=36°,∴∠B=∠B,∠PCB=∠A,∴△CPB ∽△ACB,故过点P的△ABC的相似线最多有3条.故答案为:3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学分类讨论专题复习教案
本资料为woRD文档,请点击下载地址下载全文下载地址第53讲中考复习专题(三)分类讨论复习教案【内容分析】
重点:从问题的实际出发进行分类讨论.
难点:克服思维的片面性,防止漏解.
考点解读:在中学数学的概念、定理、法则、公式等基础知识中,有不少是分类给出的,遇到涉及这些知识的问题,就可能需要分类讨论。

另外,有些数学问题在解答中,可能条件或结论不唯一确定,有几种可能性,也需要从问题的实际出发进行分类讨论。

把被研究的对象分成若干种情况,然后对各种情况逐一进行讨论,最终得以解决整个问题,这种解决问题的方法称为分类讨论思想方法。

它体现了化整为零与积零为整的思想,是近年来中考重点考查的思想方法。

分类讨论思想方法也是一种重要的解题策略。

分类思想方法实质上是按照数学对象的共同性和差异性,将其区分为不同的种类的思想方法,其作用是克服思维的片面性,防止漏解.要注意,在分类时,必须按同一标准分类,做到不重不漏.【复习目标】
通过复习能够掌握从问题的实际出发进行分类讨论的思想方法.当问题中存在不确定因素时,能够把被研究的对象分成若干种情况,然后对各种情况逐一进行讨论,最终得
以解决整个问题.
【教学环节安排】
环节
教学问题设计
教学活动设计




在初中阶段数学教学中已经渗透了分类思想:如.
.在实数,,,,中,无理数有(

A.1个
B.2个
c.3个
D.4个
2.下列根式中,不是最简二次根式的是(

A.
B.
c.
D.
3.在式子,,,x,,
32,,2x-y中单项式有
,多项式有,整式有
.
教师与学生共同回顾,同时根据情况,可让学生适当举例说明.




【典例分析】几何类讨论
【例1】如图1,正方形ABCD的边长为2,BE=CE,MN=1,线段MN的两端在CD、AD上滑动,当Dm= 时,△ABE与以D、m、N为顶点的三角形相似.
【分析】已知∠B=∠D,要使两三角形相似,必须还得使夹边对应成比例。

这就牵涉到找对应边的问题,Dm到底是和哪那条边对应边,我们不能确定,所以就要分情况来讨论:△ABE与以D、m、N为顶点的三角形相似时,Dm可以与BE 是对应边,也可以与AB是对应边,所以本题分两种情况.
【思路点拨】当问题中存在不确定因素时,就要分情况进行讨论.
【例2】如图2,在Rt△ABc中,∠BAc=90°,AB=Ac=2,点D在Bc上运动(不能到达点B、c),过D作∠ADE=45°,DE交Ac于E。

⑴求证:△ABD∽△DcE;
⑵设BD=x,AE=y,求y关于x的函数关系式,并写出自变量x的取值范围;
⑶当△ADE为等腰三角形时,求AE的长.(提示:问题(3)需要分类讨论:○1当AD=AE时;○2当AE=DE时;○3当AD=DE时.)
函数类讨论
【例2】如图2,已知抛物线经过A,B及原点o,顶点为c.
(1)若点D在抛物线上,点E在抛物线的对称轴上,且以A、o、D、E为顶点的四边形是平行四边形,求点D的坐标;
(2)P是抛物线上第一象限内的动点,过点P作PmE ⊥x轴,垂足为m,是否存在点P使得以P、m、A为顶点的三角形与△Boc相似?若存在请求出P点的坐标;若不存在,请说明理由.
提示:先求出抛物线解析式;问题(1)分两种周情况○1当Ao为边时;○2当Ao为对角线时,则DE与Ao互相平分.
问题(2)先证出△Boc为直角三角形;再假设存在P点,使得以P、m、A为顶点的三角形与相似.○1若△AmP∽△Boc 则○2若△PmA∽△Boc则
教师出示问题,给学生充足的时间独立思考,分析,然后,在小组内互相讨论交流.
教师巡视,及时发现学生完成的情况,记录下所出现的问题,以便集中处理.
教师要求学生在做题的同时,总结解决问题所运用的知识点、方法和规律.
学生讨论、交流完成后,请学生讲解,阐述自己的观点或方法.
教师适时点拨.
展示解答过程.
提示学生分类标准要一致,同时思考要全面.




.已知_______.
2.在同一坐标系中,正比例函数与反比例函数的图象的交点的个数是(
)A.0个或2个
B.l个
c.2个
D.3个
3.等腰三角形的一个内角为70°,则其顶角为______.
4.已知等腰三角形一腰上的中线将它的周长分为9和12两部分,则腰长为,底边长为_______.
5..已知⊙o1和⊙o2相切于点P,半径分别为1cm和3cm.则⊙o1和⊙o2的圆心距为________.
6.已知o是△ABc的外心,∠A为最大角,∠Boc的度数为y°,∠BAc的度数为x°,求y与x的函数关系式.教师出示题目,学生解答.
完成后展示.并及时鼓励.
完善

合。

相关文档
最新文档